60
1 Challenge the future EPP Electrical Power Processing Met EMVT op Zee P Bauer

EMVT 12 september - Pavol Bauer - TU Delft

Embed Size (px)

DESCRIPTION

Met EMVT op Zee

Citation preview

Page 1: EMVT 12 september - Pavol Bauer - TU Delft

1Challenge the futureEPP

Electrical Power Processing

Met EMVT op Zee

P Bauer

Page 2: EMVT 12 september - Pavol Bauer - TU Delft

2Challenge the futureEPP

Electrical Power Processing

Content

• Introduction

• Renewable energies offshore

• Wave energy innovation

• Need for the DC grids

Page 3: EMVT 12 september - Pavol Bauer - TU Delft

3Challenge the futureEPP

Electrical Power Processing

Real available solar energy per month

Data: NASA

Page 4: EMVT 12 september - Pavol Bauer - TU Delft

4Challenge the futureEPP

Electrical Power Processing

4

Real available wind energy per month

Data: NASA

Page 5: EMVT 12 september - Pavol Bauer - TU Delft

5Challenge the futureEPP

Electrical Power Processing

5

Data: NASA

Page 6: EMVT 12 september - Pavol Bauer - TU Delft

6Challenge the futureEPP

Electrical Power Processing

6

Page 7: EMVT 12 september - Pavol Bauer - TU Delft

7Challenge the futureEPP

Electrical Power Processing

• Wind energy offshore• Wave energy

Collection system

Page 8: EMVT 12 september - Pavol Bauer - TU Delft

8Challenge the futureEPP

Electrical Power Processing

• Higher average wind speeds at sea • Space limitations on shore• The turbines will on average have a larger

diameters and rated powers• Less turbulence and lower wind shear• Erection and maintenance will be more expensive• Turbine noise will probably not be an important

issue• Submarine electrical connection to shore • The farm will be difficult to access during periods

with high windsEPP

Electrical Power Processing

Page 9: EMVT 12 september - Pavol Bauer - TU Delft

9Challenge the futureEPP

Electrical Power Processing

9

gear-ASGbox

f

a) direct grid connection(normal plant for grid operation)

n= (1-s) f/p s~ 0...0.8 (output dependent)inductive reactive power consumer

~

1) with thyristor converter 2) with pulse inverter

n~ 0.8 1.2 f/p (controllable)1) inductive reactive power consumer

gear-box

b) grid connection via direct-current intermediate circuit

ASG

~

f

2) controllable reactive power output

DC

c) grid connection via direct ac converter

inductive reactive power consumer

gear-box

n~ 0.8 1.2 f/p (controllable)~

ASGf

d) dynamic slip control

(output dependent, dynamic)

gear-box

n= (1-s) f/p s~ 0... 0.1... (0.3)~

ASGf

inductive reactive power consumer

e) oversynchronous static Kraemer system

inductive reactive power consumer

gear-box

n~ 1...1.3 f/p (controllable)~

ASGf

n

n

n

n

n

box

controllable reactive power outputn~ .8...1.2 f/p (controllable)~

f) double fed asynchronous generator

gear-ASG

n f

controllable reactive power outputn= f/p

boxgear-

SGn f

g) direct grid connection

h) coupling to direct current grid

SGgear-box

n~ 0.5...1.2 n

n uDC

~ N

~n~ 0.5...1.2 f/p (controllable)

i) grid connection via direct-current intermediate circuit

ngear-box SG

f

1) with thyristor converter 2) with pulse inverter

1) inductive reactive power consumer2) controllable reactive power output

n~ 0.5...1.2 f/p (controllable)

1) with thyristor converter 2) with pulse inverterj) grid connection via direct-current intermediate circuit

~

2) controllable reactive power output1) inductive reactive power consumer

nSG

f

DC

DC

k) grid connection via direct-current intermediate circuit

~

1) with thyristor converter 2) with pulse inverter

n~ 0.6...1.2 f/p (controllable) 1) inductive reactive power consumer2) controllable reactive power output

n

DC

f

l) grid connection via direct ac converter

~n~ 0.8...1.2 f/p (controllable) (partial) reactive power consumer

n f

conversion system with asynchronous generator (ASG)conversion system with synchronous generator (SG)

sho r

t-ci

rcui

t ro

tor

mac

hine

ssl

ip r

ing

roto

r m

achi

nes

perm

anen

tly

exci

ted

mac

hine

sm

achi

nes

wit

h ex

cita

tion

sys

tem

(normal plant for independent operation)

*

*

*

Page 10: EMVT 12 september - Pavol Bauer - TU Delft

10Challenge the futureEPP

Electrical Power Processing

10

Page 11: EMVT 12 september - Pavol Bauer - TU Delft

11Challenge the futureEPP

Electrical Power Processing

11

Page 12: EMVT 12 september - Pavol Bauer - TU Delft

12Challenge the futureEPP

Electrical Power Processing

12

Page 13: EMVT 12 september - Pavol Bauer - TU Delft

13Challenge the futureEPP

Electrical Power Processing

Introduction wave

Page 14: EMVT 12 september - Pavol Bauer - TU Delft

14Challenge the futureEPP

Electrical Power Processing

IntroductionWave generators – Wave Dragon

Page 15: EMVT 12 september - Pavol Bauer - TU Delft

15Challenge the futureEPP

Electrical Power Processing

IntroductionWave generators – Pelamis

Page 16: EMVT 12 september - Pavol Bauer - TU Delft

16Challenge the futureEPP

Electrical Power Processing

IntroductionWave generators – Oscillating Water Column

Page 17: EMVT 12 september - Pavol Bauer - TU Delft

17Challenge the futureEPP

Electrical Power Processing

IntroductionWave generators – Oyster

Page 18: EMVT 12 september - Pavol Bauer - TU Delft

18Challenge the futureEPP

Electrical Power Processing

Introduction waveWave generators – Archimedes Wave Swing

Page 19: EMVT 12 september - Pavol Bauer - TU Delft

19Challenge the futureEPP

Electrical Power Processing

IntroductionWave Generators – EAPWEC

(1)

(2) (3)

“Snake” made of rolled DE material and filled with water

Page 20: EMVT 12 september - Pavol Bauer - TU Delft

20Challenge the futureEPP

Electrical Power Processing

IntroductionElectro Active Polymer – Dielectric Elastomer (DE)

• Actuator - If a voltage is applied to the electrodes electrostatic forces will squeeze the

dielectric elastomer material and reduce in thickness and expand in area

• Sensor - Stretching the DE material will change area and thickness resulting in a change

in capacitance which can be measured

• Generator - If a stretched DE film is charged and then relaxed the voltage will increase

significantly; converting mechanical energy to electrical energy

DE STRETCHED

DE CONTRACTED

contraction

� large capacitance

� low voltage

� low energy state

� small capacitance

� high voltage

� high energy state

Page 21: EMVT 12 september - Pavol Bauer - TU Delft

21Challenge the futureEPP

Electrical Power Processing

Principle of operation

• Energy is generated as the charged electroactive polymer decreases in area and increases in thickness as it contracts

Variable capacitor generator

Energy = ½ Qo2 (1/Cr - 1/Cs)

C = εr εo x film area/film thickness

+ + + + +

_ _ _ _ _

+Vin (lo)+Vout(high)

EAP STRETCHED

+ + + + +_ _ _ _ _

+Vin (low)+Vout(high)

Dielectric Elastomer

Compliant Electrodes (2)

EAP CONTRACTED

Page 22: EMVT 12 september - Pavol Bauer - TU Delft

22Challenge the futureEPP

Electrical Power Processing

Introduction

• Constant voltage

• Constant charge

• Constant electric field

Methods for Energy Harvesting

T

Cs

Cc

0

10 kV

0

Id

Ic

tcharge tdischarge

∆tc

∆td

∆qc

∆qd

• Current shape optimization for

the optimum energy harvesting

cycle

Page 23: EMVT 12 september - Pavol Bauer - TU Delft

23Challenge the futureEPP

Electrical Power Processing

IntroductionPower Take Off System

• Low voltage DC bus of 800 V

• Maximum power output per segment 10 kW

• High power PEU required, 100 kW peak power rating

• Target efficiency of PEU >95%

• Bidirectional power flow capability of the PEU

Page 24: EMVT 12 september - Pavol Bauer - TU Delft

24Challenge the futureEPP

Electrical Power Processing

Medium-voltage dc-dc topologies

1) Two Quadrant Converter – Boost-Buck (2QC)

2) Flying Capacitor Multilevel Converter (FCMC)

3) Cascade Multilevel Converter (CMC)

4) Boost-Buck Multilevel Converter (B/BMC)

5) Multiphase Boost-Buck Converter (MPC)

• Final decision will be made based on a total ranking of the converter based

on multiple criteria

Page 25: EMVT 12 september - Pavol Bauer - TU Delft

25Challenge the futureEPP

Electrical Power Processing

Medium-voltage dc-dc topologies

• High efficiency at low switching

frequencies and low VDE

• Simple control

• Stacking of switches neccessary

• High current switches

• High current ripple through CDE

• Huge inductor size

1) Two Quadrant – Boost/Buck

Page 26: EMVT 12 september - Pavol Bauer - TU Delft

26Challenge the futureEPP

Electrical Power Processing

V2V1

Lk

S3S1

S2 S4

S7S5

S6 S8

iLk

vT1 vT2

1:n

DAB1

DAB2

DABN

VBUSVGEN

DAB module

I1 I2

V1 V2

• Input parallel output series converter with DABs

• Very wide output voltage range

• Variable frequency trapezoidal control method for DABs

Page 27: EMVT 12 september - Pavol Bauer - TU Delft

27Challenge the futureEPP

Electrical Power Processing

0 1000 2000 3000 4000 5000 600085

87

89

91

93

95

97

99

power [W]

eff

cie

ncy

[%]

parallelbypass

Comparison of parallel and bypass module

control method using efficiency curves

0 500 1000 1500 200085

87

89

91

93

95

97

99

power [W]

eff

cie

ncy

[%]

Efficiency curve of the module and

combination of parallel and bypass methods

– hybrid method

DAB

module 2

DAB

module 1

Controller

DAB

module 3

bypass

VGEN

c o n t r o l s i g n a l s

Page 28: EMVT 12 september - Pavol Bauer - TU Delft

28Challenge the futureEPP

Electrical Power Processing

Medium-voltage dc-dc topologies

• DAB circuit for balancing of

intermediate capacitor

• Medium-voltage transformer

• ZCS and ZVS

• Low current switches

• Simple control

• Low current ripple through CDE

• Different control methods

• Transformer for every module

needed

• Low efficiency at low VDE

3) Cascade Multilevel

Page 29: EMVT 12 september - Pavol Bauer - TU Delft

29Challenge the futureEPP

Electrical Power Processing

Chapter 17

Electric Utility Applications

• These applications are growing rapidly

Page 30: EMVT 12 september - Pavol Bauer - TU Delft

30Challenge the futureEPP

Electrical Power Processing

• AC versus DC

string

G

G

G

star

~=

=~

DC

~=

DC

~

~=

=

G

G

=~

=~

DC

~=

~

G

=

G

~=

GG

~~==

40 / 80 kV6.25 MVA

80 kV(2 X 40 kV)

80 kV(2 X 40 kV)

4.16 / 40 kV6.25 MVA

150 kV

5 / 33 kV31.25 MVA

33 kV

150 kV

40 / 150 kV125 MVA

150 kV

33 / 150 kV125 MVA

40 / 150 kV125 MVA

40 / 80 kV6.25 MVA

40 / 80 kV125 MVA

10 kV(2 X 5 kV)4.16 / 10 kV

6.25 MVA

5 / 10 kV31.25 MVA

=≈

=≈

4.16 / 40 kV6.25 MVA

40 / 80 kV125 MVA

string

G G G

G

G

star

=~=~

~=

=~

~=

=~

~=

=~

~

~=

=

33 kV

5 / 33 kV6.25 MVA

150 kV

5 / 33 kV31.25 MVA

33 kV

150 kV

4.16 / 5 kV6.25 MVA

33 / 150 kV125 MVA

33 / 150 kV125 MVA

5 kV

4.16 / 5 kV6.25 MVA

Collection systems

Page 31: EMVT 12 september - Pavol Bauer - TU Delft

31Challenge the futureEPP

Electrical Power Processing

31

Data: NASA

Page 32: EMVT 12 september - Pavol Bauer - TU Delft

32Challenge the futureEPP

Electrical Power Processing Electrical

Maximum allowable load current asa function of cable length

Itot RI

R,maxI

l

maxI IR,max = Imax - IC

= Imax – U/wC’ length

Power Processing

Page 33: EMVT 12 september - Pavol Bauer - TU Delft

33Challenge the futureEPP

Electrical Power Processing

33

Page 34: EMVT 12 september - Pavol Bauer - TU Delft

34Challenge the futureEPP

Electrical Power Processing

Thank You for Your Attention

Any Questions?

Page 35: EMVT 12 september - Pavol Bauer - TU Delft

35Challenge the futureEPP

Electrical Power Processing

Page 36: EMVT 12 september - Pavol Bauer - TU Delft

36Challenge the futureEPP

Electrical Power Processing

• 1882

• 1882 The world’s first power transmission over a long distance was based on

DC. The first transmission was from Miesbach to Munich – by Oskar von Miller

and Marcel Deprez: 57 km, 1.4 kV

• 1945: World’s first DC transmission project by Siemens and AEG: 115 km

cable, mercury-arc based link from the power station Elbe/Elektrowerke AG to

Bewag/Berlin at 60 MW / ±200 kV, ready for commissioning, but then

transported to Russia …

History of DC power Transmission

• 1945

J.Dorn Siemens

Page 37: EMVT 12 september - Pavol Bauer - TU Delft

37Challenge the futureEPP

Electrical Power Processing J.Dorn Siemens

HVDC advantages

Long overhead lines with high transmission Capacity,low transmission losses and reduced right-of-way

Cable transmissions with low losses and without limitation in length

Asynchronous grids can be interconnected

Increase of transmission capacity without increasing short circuit currents

Fast control of power flow, independent from AC conditions

Firewall against cascading disturbances, active power oscillation damping

Page 38: EMVT 12 september - Pavol Bauer - TU Delft

38Challenge the futureEPP

Electrical Power Processing

J.Dorn Siemens

Worldwide installed capacity

Page 39: EMVT 12 september - Pavol Bauer - TU Delft

39Challenge the futureEPP

Electrical Power Processing

J.Dorn Siemens

• HVDC Classic

• Line comutated CSC

• Thyristors with turn on

Capability only

• VSC HVDC

• Self commutated VSC

• Semiconductor Switches with torn

on and turn off - IGBT

Page 40: EMVT 12 september - Pavol Bauer - TU Delft

40Challenge the futureEPP

Electrical Power Processing

HVDC Classic vs VSC

Page 41: EMVT 12 september - Pavol Bauer - TU Delft

41Challenge the futureEPP

Electrical Power Processing

HVDC Applications

Page 42: EMVT 12 september - Pavol Bauer - TU Delft

42Challenge the futureEPP

Electrical Power Processing

• Long distance overhead

• DC submarine cable

• Back to Back

HVDC Applications

J.Dorn Siemens

Page 43: EMVT 12 september - Pavol Bauer - TU Delft

43Challenge the futureEPP

Electrical Power Processing

HVDC Transmission

• There are many such systems all over the world

Page 44: EMVT 12 september - Pavol Bauer - TU Delft

44Challenge the futureEPP

Electrical Power Processing

HVDC Poles

• Each pole consists of 12-pulse converters

Page 45: EMVT 12 september - Pavol Bauer - TU Delft

45Challenge the futureEPP

Electrical Power Processing

HVDC Transmission: 12-Pulse Waveforms

Page 46: EMVT 12 september - Pavol Bauer - TU Delft

46Challenge the futureEPP

Electrical Power Processing

HVDC Transmission: Converters

• Inverter mode of operation

Page 47: EMVT 12 september - Pavol Bauer - TU Delft

47Challenge the futureEPP

Electrical Power Processing

Control of HVDC Transmission System

• Inverter is operated at the minimum extinction angle and the rectifier in the current-control mode

Page 48: EMVT 12 september - Pavol Bauer - TU Delft

48Challenge the futureEPP

Electrical Power Processing

Breakthrough

Page 49: EMVT 12 september - Pavol Bauer - TU Delft

49Challenge the futureEPP

Electrical Power Processing

Thyristors

Page 50: EMVT 12 september - Pavol Bauer - TU Delft

50Challenge the futureEPP

Electrical Power Processing

Thyristors en module 2x13

Page 51: EMVT 12 september - Pavol Bauer - TU Delft

51Challenge the futureEPP

Electrical Power ProcessingChapter 17 Electric

VSC HVDC

Page 52: EMVT 12 september - Pavol Bauer - TU Delft

52Challenge the futureEPP

Electrical Power Processing

Multilevel

reduced semiconductor voltage - Lower harmonic distortion- More levels possible (multi

level)

Page 53: EMVT 12 september - Pavol Bauer - TU Delft

53Challenge the futureEPP

Electrical Power Processing

Multilevel

• Practical realization

σ

σ

α

Page 54: EMVT 12 september - Pavol Bauer - TU Delft

54Challenge the futureEPP

Electrical Power Processing

Space vector multilevel

Page 55: EMVT 12 september - Pavol Bauer - TU Delft

55Challenge the futureEPP

Electrical Power ProcessingChapter 17 Electric

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

B

A

VSC HVDC

Page 56: EMVT 12 september - Pavol Bauer - TU Delft

56Challenge the futureEPP

Electrical Power ProcessingCopyright © 2003

Chapter 17 ElectricUtility Applications

Page 57: EMVT 12 september - Pavol Bauer - TU Delft

57Challenge the futureEPP

Electrical Power ProcessingChapter 17 ElectricUtilityApplications

Page 58: EMVT 12 september - Pavol Bauer - TU Delft

58Challenge the futureEPP

Electrical Power Processing

– Press-pack IGBT modules for the CTL converter.

ABB

Page 59: EMVT 12 september - Pavol Bauer - TU Delft

59Challenge the futureEPP

Electrical Power Processing

Alsthom

Page 60: EMVT 12 september - Pavol Bauer - TU Delft

60Challenge the futureEPP

Electrical Power Processing

Thank You for Your Attention

Any Questions?