80
ПРИКЛАДНАЯ ФИЗИКА И МАТЕМАТИКА APPLIED PHYSICS AND MATHEMATICS 2 2014 ISSN 2307-1621

Прикладная физика и математика 2014 №2

  • Upload
    hur-ma

  • View
    244

  • Download
    8

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА

ИМАТЕМАТИКА

APPLIED PHYSICS AND MATHEMATICS

2

∙ 2

01

4

ISSN 2307-1621

Page 2: Прикладная физика и математика 2014 №2
Page 3: Прикладная физика и математика 2014 №2

Учредители: ООО «Научтехлитиздат» ООО «Мир журналов»Журнал зарегистрирован в Федеральной службе по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор)

Свидетельство о регистрации: СМИ ПИ ФС77-50415 от 25.06.2012 г.

Подписные индексы: ОАО «Роспечать» 83190«Пресса России» 10363

Главный редактор: Академик РАН А.Н. Лагарьков

Зам. главного редактора д-р физ.-мат. наук А.Л. Рахманов

Редакция: В.Б. Гончарова, Н.Н. Годованец, Е.А. Боброва, И.Ю. Шабловская, В.С. Сердюк

Редакционная коллегия:Гуляев Ю.В., акад. РАН, (Россия)Загородный А.Г., акад. РАН и НАН Украины, (Украина)Лагарьков А.Н., акад. РАН, (Россия)Сигов А.С., акад. РАН, (Россия)Трубецкой К.Н., акад. РАН, (Россия)Хомич В.Ю., акад. РАН, (Россия)Щербаков И.А., акад. РАН, (Россия)Колачевский Н.Н., чл.-корр. РАН, (Россия)Силин В.П., чл.-корр. РАН, (Россия)Трубецков Д.И., чл.-корр. РАН, (Россия)Белоконов И.В. д-р техн. наук, проф., (Россия)Волошин И.Ф., д-р техн. наук, проф., (Россия)Галченко Ю.П., д-р техн. наук, (Россия)Громов Ю.Ю., д-р техн. наук, проф., (Россия)Джанджгава Г.И., д-р техн. наук, проф., (Россия)Джашитов В.Э., д-р техн. наук, проф., (Россия)Зоухди С., д-р наук, проф., (Франция)Калинов А.В., д-р техн. наук, проф., (Россия)Карась В.И., д-р физ-мат наук, проф., (Украина)Кейлин В.Е., д-р техн. наук, проф., (Россия)Ковалев К.Л., д-р техн. наук, проф., (Россия)Красильщик И.С., д-р физ.-мат. наук, проф., (Россия)Кусмарцев Ф.В., д-р философии, проф., (Англия)Кушнер А.Г., д-р физ-мат. наук, (Россия)Литвинов Г.Л., канд. физ.-мат. наук, (Россия)Лошак Ж., д-р философии, проф., (Франция)Лычагин В.В., д-р физ.-мат. наук, проф., (Россия)Первадчук В.П., д-р техн. наук, проф., (Россия)Рахманов А.Л., д-р физ.-мат. наук, проф., (Россия)Реутов В.Г., д-р техн. наук, (Россия)Романовский В.Р., д-р физ.-мат. наук, проф., (Россия)Рухадзе А.А., д-р физ.-мат. наук, проф., (Россия)Рыбин В.М., д-р техн. наук, проф., (Россия)Самхарадзе Т.Г., д-р техн. наук, проф., (Россия)Сихвола А., д-р наук, проф., (Финляндия) Уруцкоев Л.И., д-р физ-мат наук, проф., (Россия)Цаплин А.И., д-р техн. наук, проф., (Россия)Шалае В., д-р наук, проф., (США)Щелев М.Я., д-р физ.-мат. наук, (Россия)Фишер Л.М., д-р физ.-мат. наук, проф., (Россия)

Дизайн и верстка: Б.Е. ГолишниковСтатьи, поступающие в редакцию, рецензируютсяАдрес редакции:

107258, Москва, Алымов пер., д. 17, корп. 2, редакция журнала «Прикладная физика и математика»Тел.: 8 (985) 233-07-98, E-mail: [email protected]Подписано в печать 17.03.2014 г.Формат 60х88 1/8. Бумага мелованная матоваяПечать офсетная. Усл.-печ. л. 16,4. Уч.-изд. л. 16,9. Заказ ПФ-108. Тираж 420 экз.

Издатель: ООО «Научтехлитиздат», 107258, Москва, Алымов пер., д. 17, корп. 2Оригинал-макет и электронная версия подготовлены ООО «Научтехлитиздат»Отпечатано в типографии ООО «Научтехлитиздат»107258, Москва, Алымов пер., д. 17, корп. 2Тел.: 8 (499) 168-21-28

СодержаниеПРИКЛАДНАЯ ФИЗИКА

В.А. НикеровА.А. Рухадзе, Г.В. Шолин

КасКадно-деградационная модель происхождения

КосмичесКих лучей и Вселенной 3

С.А. Юдицкий

моделироВание логиКи образного мышления 9

С.О. Крамаров, В.И. Лукасевич

соВместная оценКа эфемерид наВигационных спутниКоВ

и Координат объеКта на осноВе

методоВ стохастичесКой фильтрации 13

ПРИКЛАДНАЯ мАтемАтИКА

К. Девиан, Ж. Бертранд

ноВые достижения В области стандартной модели КВантоВой

физиКи В алгебре Клиффорда (часть 2) 20

С.Т. Мухамбетжанов, Т.С. Кенжебаев

моделироВание Вытеснения нефти с учетом массообменных

процессоВ 50

Г.Ф. Ефимова, Н.Г. Шмелёва

о применении интегрального предстаВления при решении

КраеВых задач 57

ИСтОРИЯ ФИЗИКИ И мАтемАтИКИ

Е.С. Ратнер

об ураноВом проеКте гитлероВсКой германии 65

праВила оформления, рассмотрения, публиКации и рецензироВания статей 76

ISSN 2307-1621 2 ∙ 2014НАУЧНЫЙ ЖУРНАЛ

ПРикЛАдНАя физикА и мАтемАтикА

Page 4: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014

Founder and Publisher: Ltd. The Publishing House«Nauchtehlitizdat»LLC «World magazines»The journal is registered the Federal Service for Supervision of Communications, Information Technology and Communications (Roskomnadzor)

Certificate of Registration of Media: PI ФС77-50415 from 25.06.2012

Subscription numbers: The Public Corporation «Rospechat» 83190«Pressa Rossii» 10363

Editor in Chief: А.N. Lagarkov, acad. RAS

Deputy Editor in chief: А.L. Rahmanov, Doctor of Phys.-Math. Sciences

Editorial Staff: V.B. Goncharova, N.N. Godovanec, E.A. Bobrova, I.Ju. Shablovskaja, V.S. Serdjuk

Editorial Board:Belokonov I.V. (Russia)Caplin A.I. (Russia)Dzhandzhgava G.I. (Russia) Dzhashitova V.Je. (Russia) Fisher L. (Russia)Galchenko Ju.P. (Russia) Gromov Ju.Ju. (Russia) Guljaev Ju.V. (Russia)Homich V.Ju. (Russia)Kalinov A.V. (Russia) Karas' V.I. (Ukraine) Kejlin V.E. (Russia)Kolachevskij N.N. (Russia) Kovalev K.L. (Russia)Krasil'shhik I.S. (Russia) Kushner A.G. (Russia) Kusmartsev F.V (England) Lagarkov A.N. (Russia)Litvinov G.L. (Russia) Loshak Zh. (France) Lychagin V.V. (Russia) Rahmanov A.L. (Russia) Pervadchuk V.P. (Russia) Reutov V.G. (Russia)Romanovskij V.R. (Russia)Rukhadze A.A. (Russia)Rybin V.M. (Russia) Samkharadze T.G. (Russia)Shalae V. (USA) Shelev M.J. (Russia)Sherbakov I.A. (Russia)Sigov A.S. (Russia)Sihvola А. (Finland) Silin V.P. (Russia)Trubeckoj K.N. (Russia)Trubeckov D.I. (Russia)Uruckoev L.I. (Russia)Voloshin I.F. (Russia) Zagorodnyj A.G. (Ukraine) Zouhdi S. (France)

Design, Make-Up: B.E. GolishnikovArticles submitted articles are reviewedEditorial office address:

107258, Moscow, Alymov per., 17, bldg. 2 editors «Applied Physics and Mathematics»Phone: 8 (985) 233-07-98E-mail: [email protected] to the press: 17.03.2014 г.Format 60х88 1/8. Matt coated paperOffset printing. Conv. printer’s sheets 16,4. Uch.-ed. l. 16,9. The order ПФ-108. Circ. 420 экз. The layout and the electronic version of the journal are made by ltd. The Publishing House «Nauchtehlitizdat»Printed in ltd. The publishing house «Nauchtehlitizdat» 107258, Moscow, Alymov per., 17, bldg. 2Phone: 8 (499) 168-21-28

ContentAPPLIED PHYSICS

V.A. NikerovA.A. Rukhadze, G.V. Sholin

CasCade degradation model оf CosmiC rays and

universe origin 3

S.A. Yuditskiy

simulate the logiC of imaginative thinking 9

S.O. Kramarov, V.I. Lukasevich

Joint estimation ephemeris navigation satellites and

Coordinates of the obJeCt

based on the methods of

stoChastiC filtering 13

APPLIED MAtHEMAtICS

C. Daviau, J. Bertrand

new insights in the standard model of quantum physiCs

in Clifford algebra (part 2) 20

S.T. Mukhambetzhanov, T.S. Kenzhebaev

modeling of oil displaCement Considering of mass

transfer proCesses 50

G.F. Efimova, N.G. Shmeleva

the appliCation of integrated presentation

to boundary problems 57

HIStORY OF PHYSICS AND MAtHEMAtICS

Е.S. Ratner

uranium proJeCt in nazi germany 65

rules of Consideration,publiCation and

review artiCles 76

SCIENTIFIC JOURNALISSN 2307-1621 2 ∙ 2014

AppLIEd phySICS ANd MAThEMATICS

3

Page 5: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 3

ПРикЛАдНАяфизикА

1. IntroductionIt has already been published [1–3] that the cascade of cosmic rays in a wide energy range in fact (degradation of energy and cascade) and form (power-law decrease) is a degradation diffusion cascade, and can be described by the relevant theory. The direct analogy and similar energy dependence of the fast electron ionization cascade (with

relatively low particles energy) and the cosmic rays degra-dation cascade (with relatively high particles energy) have been shown. Thus the attention of astrophysicists to deg-radation cascade model of cosmic rays was attracted. But the mathematical apparatus was unusual for a wide range of scientists. Since 2008, the authors analyzed the latest achievements in the field of cosmic rays, and were again marveled by the analogy of the description of the electron

CASCADE DEgRADAtION MODEL OF COSMIC RAYS AND UNIvERSE ORIgINV.A. NIKEROV – Principle Researcher, Doctor of Phys.-Math. Sciences, Professor National Research University Higher School of Economics E-mail: [email protected]. RUKhADzE – Principle Researcher, Doctor of Phys.-Math. Sciences, Professor E-mail: [email protected]. ShOLIN – Principle Researcher, Doctor of Phys.-Math. Sciences National Research Center Kurchatov Institute, E-mail: [email protected]мoscow, Russian Federation

The power-law dependency of cosmic rays energy distribution over a wide energy range shows their degradation origin. In other words, the cosmic rays cascade has an energy power-law distribution not because it is accelerated in the shock waves or electromagnetic fields, but because it is the cascade. Analysis of the cosmic rays spectra in comparison with the typical degradation spectra of cascade processes makes possible to describe the kinetics processes of cosmic rays origin, in particular the differential energy loss probabilities, the cascade role,

and also to describe the possible mechanisms of the universe or its essential parts origin. The variants of primary particles fluctuation origin are considered including the simultaneous origin, as well as during the finite or infinite period of time. The energy and number of cosmic rays and universe primary particles are estimated according to experimental cosmic rays energy distributions.Key words: cosmic rays, cascade processes, degradation pro-cesses, particles energy distribution, universe origin

КАСКАДНО-ДегРАДАцИОННАЯ мОДеЛь ПРОИСхОжДеНИЯ КОСмИчеСКИх Лучей И ВСеЛеННОйВ.А. НИКЕРОВ – главный научный сотрудник, доктор физ.-мат. наук, профессор московский институт электроники и математики Национального исследовательского университета «Высшая школа экономики» E-mail: [email protected]А.А. РУХАДЗЕ – главный научный сотрудник, доктор физ.-мат. наук, профессор Институт общей физики им. А.м. Прохорова РАН E-mail: [email protected]Г.В. ШОЛИН – главный научный сотрудник, доктор физ.-мат. наукНациональный исследовательский центр «Курчатовский институт», E-mail: [email protected]москва, Российская Федерация

Степенной характер энергетического распределения кос-мических лучей в широком диапазоне энергий свидетель-ствует об их каскадно-деградационном происхождении. Иными словами, каскад космических лучей имеет степенной энергетический вид не потому, что он ускоряется в ударных волнах или электромагнитных полях, а потому что он каскад. Анализ и сравнение спектров космических лучей с типич-ными деградационными спектрами различных каскадных процессов позволяет сделать выводы о кинетике процессов

возникновения и распространения космических лучей, в частности о дифференциальных вероятностях потери энер-гии и о вкладе каскадности, а также возможных механизмах возникновения Вселенной или ее существенных частей. Сделаны оценки энергии и количества первичных частиц космических лучей и Вселенной.Ключевые слова: космические лучи, каскадные процессы, деградационные процессы, распределения частиц по энер-гии, происхождение Вселенной

2

Page 6: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 20144

ENGLISH

ПРИКЛАДНАЯ ФИЗИКА

ionization cascade and the cosmic rays cascade. The global power-law energy distribution of cosmic rays par-ticles is usually explained [4–6] by the semi-empirical and not global mechanisms of particle acceleration in shock waves or electromagnetic fields. Such explanations used in global energy range, in our view, is not convincing.

At first we must give the definitions to describe the cascade degradation model of cosmic rays. The cascade process is the process of fast particle energy loss due to the transfer of energy to the secondary particles created in the cascade process. The degradation process is the process of energy loss of a fast particle, for example, due to cascade processes or collisions with some other par-ticles. The first degradation equation (degradation spec-trum equation) for asymmetrical flows in energy space was formulated by U. Fano and L. V. Spenser [8, 9]. H. A. Bethe and J. H. Jacob [10] analyzed the cascade spatial problem in their age theory. For a long time, the problem was considered to be too complicated and was solved mainly by numerical methods including Monte Carlo simulations.

However, later the problem was solved analytically at the Kurchatov Institute for a wide range of processes [1, 11]. We found the analytical solutions for degrada-tion diffusion cascade of charged particles, atoms and molecules with the initial energies ranging from several MeV to 1 eV and lower. We considered the transport of relativistic and non-relativistic electron beams [1, 11–17], the physics of the upper atmosphere [1, 12], the kinetics of gamma-ray laser [2, 17], chemical kinet-ics [12] and other problems [2]. Energy distributions were obtained with the help of the degradation cascade model, the spatial distribution – using the model of the generalized diffusion. The fundamental property of degradation diffusion cascade was found. For a variety of particles and the actual processes the energy spec-trum of fast particles in a wide energy range usually has the a power-decay. As a result, we formulated [19–20] a more simple and more global concept of the origin of cosmic rays based on the analysis of non-equilibrium distributions of degradation cascade.

The aim of this work is to improve the concept for the origin of cosmic rays on the basis of the analysis of non-equilibrium degradation cascade distributions. At the same time we emphasize here the role of the cascade processes, as well as the possible links between these processes with the universe or its essential parts origin.

The behavior of equilibrium and non-equilibrium energy distributions is determined by the properties of space [1]. For example, the equilibrium Maxwell expo-nential distribution can be derived from space isotropy and independence of distributions by coordinates. In turn, the typical power-law dependence on the energy

of non-equilibrium degradation distributions can be at-tributed to three-dimensional space. For example, the power-law decrease of the Coulomb interaction cross section with increasing distance can be derived from the power-law quadratic decrease of the Coulomb force in three-dimensional space.

It should be stressed that the typical degradation cas-cade can’t be represented as the process in which the fast first generation (primary) particle generates two second generation particles of one half (or comparable) energy of primary particle. It is easy to show that such process yields an exponential distribution, which is not typical, both for cosmic rays, and for the ionization cascade. Rather, the typical degradation cascade is the process in which the fast first generation particle generates second generation particles with relatively low energy. Then the second generation particles usually can generate third generation particles with lower energy, etc.

2. Mathematical description ofthe degradation cascade of cosmic rays and the ionization cascadeDegradation cascade of fast electrons (similar degrada-tion cascade of cosmic rays) is described with the help of degradation equation [5, 13] with respect to degradation spectrum Z(E):

Z E PTi T E Z T dT

E I

PE Uex U Z E U f E

( ) ( ) ( )

( ) ( ) ( ),

= − ++

∞∫

+ + + +1

(1)

with the boundary condition Z ( ) .∞ = 0 Here PE Wξ( ) is

the probability that a particle with energy E in the pro-cess x (i – ionization, ex – stimulation) loses energy W, f E1( ) – the energy distribution of the primary particles,

I, U – mean excitation and ionization potentials of the medium particles. Thus one primary particle with energy E0 corresponds to the δ-function:

f E E E1 0( ) ).= ( −δ (2)

Degradation equation to some part looks like the ki-netic equation, describing the energy exchange between the particles as a result of their collisions. However, there are significant differences. The kinetic equation takes into account the balance (inflow and outflow) of the particles with particular energy. In turn, degradation equation takes into account only the inflow of particles. Such approach is very convenient for degradation problems with asymmetric flows in the energy space. Collision cross sections traditionally play a key role in the kinetic equation. In turn, degradation equation

5

Page 7: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 5

ENGLISH

ПРИКЛАДНАЯ ФИЗИКА

is determined by the probabilities of processes. In this case, the cascade processes can be collisionless (spon-taneous – such as β-decay) and accompanied by the generation of secondary particles. Distribution function in a wide energy range can be obtained [6] from the degradation spectrum, multiplying it by the lifetime of a particle with energy E.

The complex cosmic rays cascade processes descrip-tion with the help of the kinetic equation is usually com-pleted by the Monte Carlo method, which can’t reveal any significant analytical relationships. In turn, degra-dation equation allows to obtain analytical solutions for almost all cascade processes. It is significant that for the ultra-relativistic cosmic rays the type of particle is not as important, as its energy (mass is not so important, as the energy and momentum).

This has provided an opportunity to identify an anal-ogy between a well-studied electrons ionization cascade energy distributions with electron energy of 1 keV-1 MeV and the cosmic rays distributions with much higher energies.

Degradation equation is solved by reduction to a system of integral equations for successive genera-tions (k = 1, 2, 3 ... – generation number):

Zk E PTi T E Zk T dT

E I

PE Uex U Zk E U fk E

( ) ( ) ( )

( ) ( ) ( ),

= − ++

∞∫

+ + + +

1

Zk ( ) ,∞ = 0 …

(3)

The partial ionization probability is represented as a sum of two terms corresponding to the primary and sec-ondary electrons

PTi W PT

i W PTi W W E W I( ) ( ) ( ) ~ ( ) ,≡ + − + − + −1 2 3 3 (4)

where the primary electrons by definition corresponds to the component PT

i W W1 3( ) ~ .− Typical power-law degra-dation spectrum view follows from equation (1), since the integral of the power function usually gives the pow-er function.

Energy degradation for each generation is described by the zero approximation differential equation

dZk E

dE

fk E

Wk

( )( ) ( )

,

0

= − (5)

(where Wk is the average loss of energy in the collision of particles of k-th generation) with the solution

Zk E fk E dE WkE

( )( ) ( ) / .

0 =∞∫ (6)

The proposed algorithm, taking into account the elec-tron multiplication up to the third generation (contribu-tion of higher generations can be neglected), gives the solution

Z E

W

E I q

W E I

I EI

E I

Σ ( )

( )

=

= ++

++

+

+

1

1

1 0 2 02 1

22

1

622 2

2

α γ α( )

( )

ln

( )

. (7)

Here αn and γn are averaging of the ionization and excitation probabilities, coefficient q allows for the third generation particles.

Fig. 1 shows a typical view of degradation spectra of electron with different initial energy (1 MeV and 1 keV) in molecular hydrogen. It can be seen that the spectra with different initial energies looks similar.

Fig. 2 shows the degradation spectrum of electron with initial energy of 1 MeV in molecular fluorine. It is seen from a comparison with Fig. 1 that the spectra in different environments looks similar and differ primarily by the ionization potential (and the average energy loss in the inelastic process).

Thus, it can be shown that degradation spectra of electron in the energy range from hundreds of eV to a few MeV for media consisting of molecules of hydrogen,

Fig. 1 • Degradation spectra of electron with the initial energy of 1 MeV and 1 keV in molecular hydrogen: curve – analytical calculation, dotted – numerical calculation

4

Page 8: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 20146

ENGLISH

ПРИКЛАДНАЯ ФИЗИКА

helium, nitrogen and oxygen can be represented by uni-versal formula:

Z EI

E

E I

I EI

E IΣ ( ), ,

( )

ln

( )= +

++

+

+

( )

0 6 0 50213 2 2

2 (8)

with an accuracy of 10%.Obviously, the degradation spectrum has quadratic

decay with increasing energy in a wide energy range. The contribution of primary, secondary and tertiary particles to the total energy spectrum (Fig. 3) is of par-ticular interest.

In the above-threshold energies in the case of a sta-tionary initiation, the cascade-degradation distribution function of particle energy f (E) is also stationary, and is related to degradation spectrum by equation:

f(E) = const Z(Е) t(E), (9)

here t(E) is lifetime (before the next collision with energy loss) of particle with kinetic energy E. This equa-tion shows that in the stationary state degradation spec-trum can be determined both by inflow and outflow of particles. The lifetime t(E) in a wide energy range of energy is proportional to E–0,25, and the decrease of the electron distribution function of the energy is also close to a quadratic:

Z(E) = const E-1,75, (10)

In the subthreshold energy area the electron distribu-tion function coincides with degradation spectrum:

z(E) = f(E), (11)

Such power-law dependences also hold for the other typical partial probabilities of energy loss in the degrada-tion cascade processes. Let’s consider the typical process with equal probability of energy loss in the range from 0 to ±∆Emax, so that the average energy loss is equal to ±∆Emax / .2 Such probability takes place is the case of collision of solid spheres. It is essential that degradation equation in this case allows us to obtain an exact analyti-cal solution.

In particular, let’s formulate the degradation equation for a primary particle with the energy E0 :

Z E Z WWE

dW E E( )( )

( ).=∞∫ + −α

δ0

(12)

Here the multiplication factor a determines the number of particles after the cascade degradation act of a single particle. In the case of a = 1 the cascade degradation process occurs with a single particle with-out multiplication – it is the case of solid spheres colli-sion. In the case of a = 2 each cascade degradation act gives as a result the transformation of single particle into two identical particles with basically different ki-netic energy – this case to some part looks like ioniza-tion cascade.

Fig. 2 • Degradation spectra of electron with the initial energy of 1 MeV in molecular fluorine: curve – analytical calculation, dotted – numerical calculation.

Fig. 3 • The partial contribution of the first, the second and the third generations of ionization cascade of electron with initial energy of 1 MeV in molecular hydrogen.

7

Page 9: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 7

ENGLISH

ПРИКЛАДНАЯ ФИЗИКА

Finding a solution of the equation in the form of deg-radation spectrum typical power dependence

Z E CEn E E( ) ( )= + −δ0

(13)

gives as a result of the direct substitution:

C E n= − = −α α α0

1, .

As a result for a = 1 for energies up to primary:

Z E E E E E E( ) ( ) ( )= − − + −θ δ0

10

. (14)

And for a = 2 degradation spectrum is equal to:

Z E E E E E E E( ) ( ) ( ).= − − + −20 0

20

θ δ (15)

3. Cascade degradation model foruniverse origin and its consequencesThus, the similarity between the distributions of the ionization cascade of electrons with energy in the range from hundreds of eV to a few MeV and of cosmic rays with much higher energies suggests a cascade nature of the cosmic rays origin, and results in a number of inter-esting conclusions.

First of all, the differential probability of energy loss of cosmic ray particles is similar to the probability of ionization cascade of electrons in the energy range from hundreds of eV to a few MeV.

It is essential that the cascade degradation process pre-supposes the existence of the primary particles (particle), which actually generate the process. It can be hypoth-esized that just this cascade degradation process caused the creation of the universe (or a substantial part of the universe). Such an assumption can help to solve a number of problems related to dark matter and dark energy.

In the most radical version of the cascade degradation model for the origin of the universe one primary particle with very high energy generates universe. The origin of the primary particle (primary particles) can be associated with some kind of primary fluctuation. However, the law of conservation of momentum may require that the pri-mary fluctuation generates just two primary particles.

In another variant of the cascade degradation model for the origin of the universe the primary fluctuation (pri-mary fluctuations) generates a sufficiently large number of primary particles which energy can be estimated by the kink position in experimental energy distributions of cosmic rays. These primary fluctuations could in princi-ple take place simultaneously or within a finite and even an infinite period of time.

It should be noted here that the power-law of degra-dation distributions has a point of beginning and a point

of end, which corresponds to 2 kinks in degradation spectrum. The lower kink occurs at energy E10 of the or-der of average unit energy loss in the cascade process. So for the ionization cascade

E10 ≈ 2I.

The upper kink occurs at energy E20 where the num-ber of primary and secondary particles is roughly equal. The upper kink in accordance with the solution of deg-radation equation (8) is naturally associated with the en-ergy E0 of the primary cosmic ray particles and of the universe:

E0 ≈ E20 2/I. (16)

The available experimental data allow us to estimate the energy of the primary cosmic ray particles and the universe, as well as their number (see equation (8) and Fig. 3).

If a kink occurs at energy E20 ~ 1015–19 eV and I ~ 109 eV, then the lower bound, in accordance with (16) gives the energy of the primary particle E0 ~ 1021–29 eV. If the energy of the universe is equal to 1090 eV, then in this case, the estimate gives the number of primary particles of about 1061–69. The upper bound for the 1 (or 2) primary particle gives the energy of the primary cosmic ray particle and the universe of about 1090 eV, and the energy of kink in accordance with (16) is equal to E20 ~ 1050 eV.

4. Conclusions1. Power function of the energy distribution of cosmic

rays particles in a wide energy range indicates theirdegradation origin. In other words, the cosmic rayscascade has an energy power-law distribution not be-cause it is accelerates in the shock waves or electro-magnetic fields, but because it’s the cascade.

2. Differential probability of energy loss of cosmic raysparticles is similar to the probability of electrons ion-ization cascade in the energy range from hundreds ofeV to a few MeV. The similarity of these probabili-ties can be of fundamental explanation related to thethree-dimensionality of the universe.

3. A fundamental property of the cascade degradationenergy distribution of the particles is a kink at the endof the power decrease that can be used to describe thecascade degradation process of the cosmic rays andthe universe origin. If a kink occurs in the range of1015–19 eV (lower bound), the energy of the primaryparticle is equal to 1021–29 eV, and the number of pri-mary particles is equal to 1061–69. The upper boundfor 1 or 2 primary particles gives the energy of theprimary particle equal to 1090 eV and the kink energyequal to 1050 eV.

6

Page 10: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 20148

ENGLISH

ПРИКЛАДНАЯ ФИЗИКА

References

1. Nikerov V.A., Sholin G.V. Kinetika degradatsionnykhprotsessov [Degradation processes kinetics]. M.: Izd-voEnergoatomizdat [Moscow: Publishing house Energoato-mizdat]. 1985. 136 p.

2. Nikerov V.A., Sholin G.V. Fast Particle Degradation Dif-fusion Cascade. Harwood Academic Publishers, Supple-ment to Phys.Rev. 2000. 106 p.

3. Nikerov V.A. O chem signalyat kosmicheskie luchi [Whatthe cosmic rays inform about]. Khimiya i zhizn [Chemis-try and Life]. 1984. 12. 107 p.

4. Cronin J.W. Cosmic Rays: the Most Energetic Particles inthe Universe. Rev. Mod. Phys. 1999. Vol. 71. РP. 165–169.

5. Т. Antoni et al., KASCADE Measurements of En-ergy Spectra for Elemental Groups of Cosmic Rays:Results and Open Problems. Astroparticle Phys-ics. 2005. Vol. 24. РP. 1–25.

6. Horandel J.R., Kalmykov N.N., Timokhin A.V. The end ofthe galactic cosmic ray energy spectrum – a phenomenolog-ical view. J. Phys.: Conf. Ser. 2006. Vol. 47. РP. 132–139.

7. Zatsepin G.T., Roganova T.M. Issledovaniya. Uspekhifizicheskikh nauk. [Physical Sciences Achievements].2009. Vol. 179. РP. 1203–1211.

8. Fano U. Degradation and range straggling of high-energyradiations. Phys.Rev. 1953. Vol. 92. 2. РP. 328–349.

9. Spencer L.V., Fano U. Energy spectrum resulting fromelectron slowing down. Phys.Rev. 1954. Vol. 93. 6.РP. 1172–1181.

10. Bethe H.A., Jacob J.H. Diffusion of fast electrons in thepresence of an electric field. Phys.Rev.A. 1977. Vol. 16. 5. РP. 1952–1963.

11. Nikerov V.A., Sholin G.V. Tormozhenie bystrykh elek-tronov v gelii i molekulyarnom vodorode v priblizheniidegradatsionnogo kaskada [Fast electrons slowing downin helium and molecular hydrogen in the approximationof degradation cascade]. Fizika plazmy [Plasma Phys-ics]. 1978. Vol. 4. 6. РP. 1265–1270.

12. Nikerov V.A. Primeneniya chastits i izlucheniy vysokoyenergii [High energy particles and radiation applica-tions]. M.: Izd-vo Vysshaya shkola [Moscow, Publishinghouse Vysshaya shkola]. 1988. 152 p.

13. Nikerov V.A. Elektronnye puchki za rabotoy [Electronbeams at work]. M.: Energoatomizdat [Moscow: Publish-ing house Energoatomizdat]. 1988. 128 p.

14. Abramov V.N., Nikerov V.A. Asimptotiki energet-icheskikh spektrov i funktsiy raspredeleniya tormo-zyashchikhsya v misheni bystrykh elektronov: Tezisydoklada [The asymptotic behavior of the energy spectraand distribution functions of fast electrons deceleratedin the target: Abstracts]. 1 Mezhdunarodnoe sovesh-chanie «Radiatsionnaya fizika tverdogo tela» [1 Interna-tional Conference «Radiation Physics of Solids»]. Sochi.1989. 22 p.

15. Kuznetsov N.M., Nikerov V.A. Otsenki prostranst-venno-energeticheskikh raspredeleniy produktov tor-mozheniya bystrykh nerelyativistskikh elektronov v ra-zlichnykh sredakh [The spatial and energy distributionsestimations of the products of fast non-relativistic elec-trons slowing down in a various media]. Khimicheskayafizika [Chemical Physics]. 1995. Vol. 14. 4. PР. 66–72.

16. Nikerov V.A., Pozhidaev Ye.D. Transportirovka puchkovzaryazhennykh chastits cherez razlichnye sredy [Transport of charged particles in various media]. M.: Izd-vo MGI-EM [Moscow, Publishing house MGIEM]. 1997. 68 p.

17. Karyagin S.V., Nikerov V.A. Degradatsionno-diffuz-ionnaya model kaskadnogo rasprostraneniya atomovotdachi vblizi poverkhnosti [Degradation diffusionmodel of the cascade transport of recoil atoms nearthe surface]. Khimicheskaya fizika [Chemical Phys-ics]. 1997. Vol. 16. 8. PP. 99–104.

18. Nikerov V.A., Sholin G.V., Rusanov V.D. O roli ter-micheski neravnovesnykh atomov i molekul v tsepnoyrazvetvlennoy reaktsii vodoroda so ftorom [On the roleof thermal nonequilibrium atoms and molecules in thebranched chain reaction of hydrogen with fluorine].Doklady AN SSSR [Reports of the USSR Academy ofSciences]. 1979. Vol. 248. 3. РP. 610–613.

19. Nikerov V.A., Rukhadze A.A., Sholin G.V. Degradatsi-onno-kaskadnaya model kosmicheskikh luchey [Degrada-tion cascade model of cosmic rays] // Prikladnaya fizika[Applied Physics]. 2009. 6. РP. 5–9.

20. Nikerov V.A., Rukhadze A.A., Sholin G.V. Kaskadno-deg-radatsionnaya model proiskhozhdeniya kosmicheskikhluchey i Vselennoy [Cascade degradatiion model of thecosmic rays and the universe origin]. Inzhenernaya fizika[Engineering Physics]. 2013. 3. РP. 18–22.

Сведения об авторах Information about the authors

Никеров Виктор Алексеевичглавный научный сотрудник

доктор физ.-мат. наук, профессорМосковский институт электроники и математики

Национального исследовательского университета «Высшая школа экономики» при Правительстве РФ

101000, Москва, Российская Федерация, Мясницкая ул., 20 E-mail: [email protected], [email protected]

Рухадзе Анри Амвросьевич главный научный сотрудник

доктор физ.-мат. наук, профессорИнститут общей физики им. А.М. Прохорова РАН

119991, Москва, Российская Федерация, ул. Вaвилова, 38E-mail: [email protected]

Sholin gennadiy vasilyevichPrinciple Researcher, Doctor of Phys.-Math. Sciences

National Research Center Kurchatov InstituteE-mail: [email protected]

Nikerov viktor AlekseevichPrinciple ResearcherDoctor of Phys.-Math. Sciences, ProfessorNational Research University Higher School of Economics101000, Moscow, Russian Federation Myasnitskaya Street, 20E-mail: [email protected], [email protected] Anri Amvros'evichPrinciple ResearcherDoctor of Phys- Math. Sciences, ProfessorInstitute of General Physics A.M. Prokhorov General Physics Institute119991, Moscow, Russian Federation, Vavilova, 38E-mail: [email protected]Шолин геннадий Васильевичглавный научный сотрудник, доктор физ.-мат. наук Национальный исследовательский центр «Курчатовский институт»E-mail: [email protected]

9

Page 11: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 9

ПРИКЛАДНАЯ ФИЗИКА

мОДеЛИРОВАНИе ЛОгИКИ ОБРАЗНОгО мЫШЛеНИЯС.А. ЮДИцКИй – доктор техн. наук, профессор, главный научный сотрудник Институт проблем управления им. В.А. трапезникова москва, Российская Федерация, E-mail: [email protected]

Рассмотрена функционально-логическая модель образного мышления. Дана структурная схема модели. На основе вве-денной модели проиллюстрирован ряд психологических механизмов образного мышления.

Ключевые слова: мысленный образ, содержательная и эмоциональная часть образа, оперативная и долговременная память мозга, жизненный цикл образа, фильтрация и коррекция образов, ассоциированные образы.

S.A. YUDITSKIY – Doctor of techn. Sciences, Professor, Senior Researcher v.A. trapeznikov Institute of Control Sciences of Russian Academy of Sciences Moscow, Russian Federation, E-mail: [email protected]

SIMULAtE tHE LOgIC OF IMAgINAtIvE tHINKINgThe functional and logical model of imaginative thinking. The block diagram of the model. On the basis of proposed model is illustrated a number of psychological mechanisms of imaginative thinking.

Key words: mental image, meaningful and emotional part of the image, operational and long-term memory of the brain, the life cycle of the image, filtering and correction of images associ-ated images.

ВведениеВ фундаментальной монографии американских ученых – нейропсихолога Р. Хансона и невролога Р. Мендиуса «Мозг и счастье» [1] со ссылками на 186 опубликованных работ различных авторов, вскры-та органическая связь между подходами и методами более чем тысячелетней буддисткой созерцательной традиции самосовершенствования психики человека и достижениями современной нейропсихологии. Про-водится качественный анализ процессов, протекаю-щих в анатомических структурах головного мозга, в том числе взаимодействий между этими структурами. Количественный анализ при существующих техноло-гиях вряд ли возможен. Состояния мозга определя-ются конфигурациями на множестве активированных нейронных клеток, где общее число нейронов пре-вышает 100 миллиардов, а число возможных конфи-гураций 10 в миллионной степени. Вместе с тем к лучшему пониманию механизмов работы мозга ведет и другой путь, заключающийся в построении гипо-тетических функционально-логических моделей, не претендующие на адекватность реальным нейронным структурам и биохимическим способам их взаимо-действия, но отображающие принципы и механизмы преобразования информации в мозге.

В данной статье рассматривается одна из возмож-ных функционально-логических моделей (ФЛМ), а именно модель образного мышления. Словосо-четание «образное мышление» говорит о том, что человек мыслит (может мыслить) на языке образов. Под образом понимается целостный виртуальный информационный объект, поддержанный опреде-ленной конфигурацией активированных нейронов. Образ состоит из двух частей – содержательной

(смысловой) и эмоциональной (фоновой). Содер-жательная часть образа первично порождается ин-формацией из трех источников: от внешней среды (в данный момент времени); от долговременной па-мяти, отражающей события всей предыдущей жиз-ни человека; сигналами, отображающими физиче-ское состояние организма. Информация от внешней среды может содержать компоненты, соответствую-щие органам чувств: визуальную (текст, формулы, картинки), звуковую (музыка, шумы), обонятель-ную (запахи), вкусовую и тактильную, а также их различные комбинации. Эмоциональная (фоновая) часть образа является в основном следствием со-держательной части, а также зависит от состояния организма. В зависимости от ситуации эмоцио-нальный фон образа может многократно меняться. Сформированный содержательный образ до конца жизни хранится в долговременной памяти мозга, но при необходимости может временно передаваться в оперативную (рабочую) память, которая интер-претируется как поле сознания. Осознание образа трактуется как привлечение к нему внимания при нахождении в оперативной памяти. ФЛМ отобража-ет потоки мысленных образов, в том числе преоб-разования, которые могут выполняться над ними. В статье далее дается структурное описание ФЛМ об-разного мышления и на ее основе обсуждается ряд психологических механизмов.

Функционально-логическая модель образного мышленияСтруктурная схема ФЛМ в виде ориентированного графа дана на рисунке 1. Вершины графа изобража-ются прямоугольниками и соответствуют действи-ям (операциям), производимым над образами. Дуги

8

Page 12: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201410

ПРИКЛАДНАЯ ФИЗИКА

(стрелки) отображают потоки образов. При работе мозга нейрон активизируется от 5 до 50 раз в секун-ду, в то время как временной интервал между по-явлением новых образов как правило существенно больше. Быстродействие мозга намного превышает быстродействие среды (внешней и внутренней), порождающей новые образы. Это дает основание считать, что к моменту «рождения» нового обра-за все необходимые подготовительные внутренние процессы в мозге завершены, и цикл обработки применительно к уже новому образу повторяется. Другими словами, мозг, вероятно, работает по асин-хронному принципу.

Вернемся к схеме на рисунке 1. Операция Р1 на основе оговоренной выше внешней и внутренней ин-формации кодирует описание образа на внутреннем языке мозга (к сожалению, пока нет единого обще-принятого мнения о характеристиках такого языка). Код образа передается на операцию Р2, которая осу-ществляет предварительную оценку содержательной (в специальных случаях и эмоциональной) части об-раза: полезен (+), вреден (–), безразличен (0). Безраз-личные образы отсеиваются, что предохраняет мозг от излишней информации. Возможно, следовало бы отсеивать и эмоционально резко отрицательные (па-нические) образы, которые преимущественно явля-ются плодом фантазии. Но это уже проблема соци-альной психологии.

Образ, предварительно оцененный как положи-тельный или отрицательный, передается на опе-рацию Р3, реализуемую в рабочей (оперативной) памяти мозга. Цель этой операции, представляю-щей собой сложный процесс, состоит в уточнении характеристик образа и определении того, чем он может быть полезен или вреден. Прежде всего вы-ясняется, не содержится ли он долговременной па-мяти мозга, где в упорядоченном виде хранятся все образы от момента появления у младенца способ-ности к образному мышлению вплоть до настояще-го момента. Если не содержится, то определяются все образы, ассоциативно связанные с данным об-разом. Процесс выявления ассоциативных связей повторяется для вновь введенных образов, и т.д., вплоть до появления уже встречавшегося образа, или образа, который ни с кем не ассоциирован. Все вышесказанное фиксируется в виде так назы-ваемого графа ассоциативности, пример которого дан внутри прямоугольника Р3. Граф ассоциатив-ности всегда может быть построен за конечное число шагов, т.к. число образов в долговременной памяти мозга ограниченно. Вместе с тем, весь-ма сомнительно, чтобы уточнение характеристик образа мозг производил таким прямолинейным

способом – построением полного графа ассоциа-тивности. Возможно, он каким-то образом сокра-щает число шагов алгоритма и вводит в оператив-ную память фрагменты графа, удовлетворяющие ограничениям на емкость оперативной памяти моз-га. Уточнение параметров может выполняться пу-тем сопоставления образов. На формальной моде-ли это можно выполнить перемещением маркеров (фишек) между вершинами фрагмента (подграфа) графа ассоциативности, где наличие маркера в вер-шине, сопоставленной образу, интерпретируется как привлечение внимания (осознание) этого об-раза. Заметим, что в модели оперативной памяти мозга может быть одновременно маркировано не-сколько вершин. Это иллюстрирует способность человека одновременно думать о разных вещах, вероятно «перескакивая» с образа на образ. Осоз-нанный образ из оперативной памяти передается на операцию Р4, которая осуществляет его семан-тический анализ. Если содержание образа с точки зрения субъекта негативно, и это подтверждается отрицательной эмоциональной оценкой, то прове-ряется возможность коррекции исследуемого обра-за. Мозг моделирует ситуации, которые могут воз-никнуть как следствия этого негативного образа, и среди них ищет позитивные ситуации. Если та-ковые находятся, то тем самым изменяется (в луч-шую сторону) и содержание образа, и его эмоцио-нальная оценка – настроение субъекта. Коррекция образа производится операцией Р5 .

Приведем простейший пример коррекции образа. Вы полностью доверяли человеку, считали его своим верным другом. И неожиданно узнали, что он вас не-однократно предавал. Вам очень тяжело. Но вы ведь узнали истинное лицо этого «друга», и больше ни-когда он таковым не будет. Пришло эмоциональное облегчение.

Дуги графа на рисунке 1 помечены следующими потоками образов:

Т1 – сформированные образы, включающие содержательную часть и эмоциональную оценку;

Т2 – образы, прошедшие предварительную оценку; Т3 – образы из оперативной памяти, направленные

на семантический анализ; Т4 – образы, не требующие коррекции; Т5 – образы, направленные на коррекцию; Т6, Т7 – откорректированные образы; Т8 – запросы в долговременную память; Т9 – ассоциированные образы из долговременной

памяти.

11

Page 13: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 11

ПРИКЛАДНАЯ ФИЗИКА

РИС. 1 • Функционально-логическая модель образного мышления

Психологические механизмы образного мышленияПостроенная функционально-логическая модель ил-люстрирует ряд известных психологических меха-низмов. Приведем некоторые из них.

1. Жизненный цикл образа. Очень старые люди снеповрежденным мозгом хорошо помнят то, чтопроисходило с ними в раннем детстве. Следова-тельно, конфигурация активированных нейронов,поддерживающая ранние образы, сохранялась

в долговременной памяти мозга всю жизнь, и эти нейроны не участвовали ни в каких других конфигурациях.

2. Фильтрация образов. Отсеивание образов наоперации Р2, вероятно, производится путемоценки их числовых характеристик. Рассмотримвозможную версию этого процесса. Введем двехарактеристики функционально-логической мо-дели образного мышления, принимающие зна-чения на целочисленной балльной шкале. Этихарактеристики являются функциями, опреде-ленными на дискретном времени t = 0, 1, … , N,

10

Page 14: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201412

ПРИКЛАДНАЯ ФИЗИКА

в котором работает мозг. Пусть функция x(t) ото-бражает приоритет образа, находящегося в опе-ративной памяти мозга, и принимает только по-ложительные значения (чем больше значение, тем выше приоритет), а функция y (t) соответ-ствует текущей эмоциональной оценке этого образа и может иметь как положительное, так и отрицательное значение. Зададим константы x*, – y*. Образ отсеивается (фильтруется), если (x < x*) или ( y < – y*).

3. Выстраивание неосознанных цепочек образов.Если мозг настроен на какую-то «доминантнуютему», то в голову могут лезть и самые невероят-ные образы, казалось бы не имеющие отношенияк теме. Но если «распутать клубок», то обнару-жится ассоциативная связь (может быть оченьдлинная и сложная) между данным и доминант-ным образами. Связь эта реализуется взаимодей-ствием между оперативной и долговременнойпамятью мозга. Алгоритм взаимодействия может(и должен) быть описан на языке математики.

4. Параллельные цепочки образов в поле сознания.Об этом феномене мы уже говорили ранее. Посто-ронние мысли могут врываться в рассуждения,нарушать логику изложения. Причем процессыэти происходят в оперативной памяти – поле со-знания. В принципе возможны два варианта: либоэто взаимодействие независимых процессов,либо это один процесс с прерываниями и вставка-ми. Мозг хранит еще много тайн.

5. Возникновение циклов – повторяющихся после-довательностей образов. Циклы возникают привзаимодействии оперативной и долговременнойпамяти, если в последовательности образов при-ходим к такому, который уже встречался ранее.Цикл осознается при «повторении ходов» (в шах-матной терминологии). Для выхода из цикла ре-комендуется переключить внимание на другуюдоминантную тему.

6. Дыхательно-текстовая медитация [2]. Осно-вана на диафрагмальном дыхании, которое со-провождается мысленным проговариванием вы-ученных наизусть стихотворных текстов. Тексты

подбираются таким образом, чтобы вызвать у субъекта при медитации позитивные содержа-тельные образы, несущие: запомненное ощу-щение счастья разделенной любви, душевного покоя, свободы, умиротворения, радости, и т.д. Как правило, позитивные образы возникает при воспоминаниях о близких и дорогих людях, о судьбоносных счастливых случаях в жизни, о приятных событиях. Текст может быть песней или романсом и мысленно сопровождаться му-зыкальным фоном.

7. Борьба с ложными и вредными образами. Лож-ным образом может быть неадекватная гипер-трофированная реакция на малозначительноесобытие, которое вы восприняли как обиду (нокоторой оно в реальности не было) [1].Пример вредного образа – детальное и много-кратно повторяемое моделирование предстояще-го события со страхом его плохого исхода (темсамым вы настраиваетесь на плохой исход). Имножество других подобных случаев. Эффектив-ный способ борьбы – осознание этих образов какложные и вредные, переключение сознания с по-мощью медитации.

Литература

1. Хансон Р., Мендиус Р. Мозг и счастье. Загадки совре-менной нейропсихологии, М.: Эксмо, 2011. 320 c.

2. Юдицкий С.А. Информационно-энергетическиевзаимодействия и метод дыхательно-текстовой ме-дитации // Прикладная физика и математика, 2014. 1. С. 29–34.

References3. Hanson R. Mendius R. Mozg i schast'e. Zagadki

sovremennoj nejropsihologii. [Buddha’s Brain. ThePractical Neuroscienceof Happiness, Ljve and Wis-dom]. M.: Eksmo [Moscow: Publishing house «Eks-mo»], 2009. 320 p.

4. Yudickij S.A. Informacionno-energeticheskie vzaimo-dejstviya i metod dyhatel'no-tekstovoj meditacii. Prik-ladnaya fizika i matematika [Information-energy inter-actions and the method of respiration and meditationtext. Applied Physics and Mathematics], 2014. 1.PP. 29–34.

Сведения об авторе Information about the author

Юдицкий Семен Абрамовичдоктор техн. наук, профессор

главный научный сотрудник Институт проблем управления им. В.А. Трапезникова

117997, Москва, Российская Федерацияул. Профсоюзная, д. 65

E-mail: [email protected]

Yuditskiy Semen AbramovichDoctor of Techn. Sciences, Professor, Senior Researcher V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences117997, Moscow, Russian FederationProfsoyuznaya street, 65E-mail: [email protected]

13

Page 15: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 13

ПРИКЛАДНАЯ ФИЗИКА

ВведениеТочность определения параметров движения объ-екта с помощью спутниковых навигационных си-стем (СНС) в значительной степени зависит от точности эфемеридных данных, используемых в существующих алгоритмах обработки спутниковых

измерений. В свою очередь, текущее определение эфемерид осуществляется с ошибкой, зависящей от типа используемой СНС (GPS или ГЛОНАСС), сте-пени учета возмущающих факторов, влияющих на положение спутников, частоты обновления данных и пр. и может достигать даже на небольших интер-валах времени (до 30 мин.) значительных величин

СОВмеСтНАЯ ОцеНКА эФемеРИД НАВИгАцИОННЫх СПутНИКОВ И КООРДИНАт ОБъеКтА НА ОСНОВе метОДОВ СтОхАСтИчеСКОй ФИЛьтРАцИИС.О. КРАМАРОВ – доктор физ.-мат. наук, профессор, Институт управления, бизнеса и праваРостов-на-Дону, Российская Федерация, E-mail: [email protected]В.И. ЛУКАСЕВИч – генеральный директор ОАО «цеНтРОмАШПРОеКт» москва, Российская Федерация, E-mail: [email protected]

В существующих спутниковых навигационных системах (СНС) текущее определение эфемерид спутников осуществляется с ошибкой, зависящей от типа используемой СНС (GPS или ГЛОНАСС), степени учета возмущающих факторов, влияющих на положение спутников, частоты обновления данных и пр. и может достигать даже на небольших интервалах времени значительных величин. При этом для вычисления навига-ционных параметров спутников используются детермини-рованные алгоритмы, не предполагающие использования каких-либо навигационных измерений и не учитывающие стохастический характер воздействий, возмущающих движе-ние спутника. Но очевидно, что их учет существенно повы-шает точность определения эфемеридных данных. В связи с этим, в статье рассматривается возможность построения ал-горитмов оценки текущих параметров возмущенного движе-ния спутников совместно с решением навигационной задачи для любых подвижных объектов. В качестве уравнений, опи-сывающих изменение спутниковых навигационных параме-

тров, взят алгоритм СНС ГЛОНАСС, а в качестве наблюдателя оцениваемых параметров использованы информационные сигналы кодовых измерений (псевдодальности). Для постро-ения модели комплексированного вектора навигационных параметров наблюдаемых спутников и объекта были исполь-зованы уравнения, описывающие изменение навигационных параметров любых подвижных объектов и инвариантные к виду физической модели объекта, траектории его движе-ния, характеру возмущений и пр. Полученное представление уравнений оцениваемых навигационных параметров в фор-ме «объект-наблюдатель» позволило использовать для нели-нейных оценок как эфемерид спутников, так и вектора коор-динат объекта, обобщенный (нелинейный) фильтр Калмана. Эффективность предложенного подхода проиллюстрирова-на численным моделированием разработанного алгоритма фильтрации.Ключевые слова: эфемериды спутников, кодовые и допле-ровские измерения, нелинейный фильтр Калмана.

JOINt EStIMAtION EPHEMERIS NAvIgAtION SAtELLItES AND COORDINAtES OF tHE ObJECt bASED ON tHE MEtHODS OF StOCHAStIC FILtERINgS.O. KRAMAROV – Doctor of Phys.-Math. Sciences, Professor,Institute of management, business and law Rostov-on-Don, Russian Federation, E-mail: [email protected]. LUKASEVICh – general director JSC «CENtROMASHPOEKt» Moscow, Russian Federation, E-mail: [email protected]

In the existing satellite navigation systems (SNS), the current definition satellite ephemeris is in error, depending on the type of SNS (GPS and GLONASS), the level of integration of disturb-ing factors affecting the positions of the satellites, the update rate, etc., and can reach even in small intervals time of consider-able magnitude. As for the calculation of satellite navigation pa-rameters are used deterministic algorithms that do not involve the use of any navigational measurements and do not take into account the stochastic nature of the effects of disturbing the movement of the satellite. But it is clear that their inclusion significantly improves the accuracy of the ephemeris data. In this regard, the article discusses the possibility of constructing algorithms for the current parameters of the perturbed motion of satellites in conjunction with the navigation solution for any moving objects. As the equations describing the change of sat-

ellite navigation data, the algorithm is taken GLONASS as well as an observer of the estimated parameters used data signals code measurements (pseudo). To build a model complexed vec-tor navigation parameters of satellites and the object were used equation describing the change in the navigation parameters of any moving objects and invariant to the form of physical mod-el of the object, its trajectory, the nature of disturbances, etc. The resulting representation of the equations estimated navi-gation parameters in the form of «object-observer» allowed the use of non-linear estimates as satellite ephemeris and vector coordinates of the object, a generic (nonlinear) Kalman filter. The effectiveness of the proposed approach is illustrated by a numerical simulation of the algorithm filtering.Keywords: ephemeris satellites, code and Doppler measure-ments, nonlinear Kalman filter.

12

Page 16: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201414

ПРИКЛАДНАЯ ФИЗИКА

(десятки метров) [1, 2]. При этом истинное поло-жение спутников уточняется по радиолокацион-ным измерениям базовых станций через заданные интервалы времени (например, в СНС ГЛОНАСС – через 30 мин.), внутри которых для вычисления на-вигационных параметров спутников используются детерминированные алгоритмы, не предполагаю-щие использования каких-либо навигационных из-мерений и не учитывающие стохастический харак-тер воздействий, возмущающих движение спутника [1, 3]. В то же время очевидно, что их учет совмест-но с использованием дополнительной измеритель-ной информации может существенно повысить точ-ность определения эфемеридных данных [2, 4–7]. В связи с этим рассмотрим возможность построения алгоритмов оценки текущих параметров реально-го – возмущенного, движения спутников совместно с решением навигационной задачи для любых под-вижных объектов.

Постановка задачиВ связи с тем, что предлагаемый далее подход не за-висит от вида используемого режима спутниковых измерений, рассмотрим далее только стандартный (автономный) режим – как наиболее универсальный, и, соответственно, только кодовые и доплеровские измерения спутниковых навигационных систем. При этом решение поставленной задачи проведем для СНС с высокой частотой поступления навигаци-онных сообщений, позволяющей считать характер спутниковых измерений по отношению к динамике изменения навигационных параметров объекта не-прерывным [6–12]. (В настоящее время частота при-ема спутниковых сообщений в ряде навигационных приемников (Topcon (ранее Javad), Trimble) уже со-ставляет 100 Гц с дальнейшей тенденцией к ее уве-личению [3, 6, 7].)

В качестве базового алгоритма вычисления спут-никовых навигационных параметров далее рассмо-трим алгоритм СНС ГЛОНАСС, где значения скоро-стей V V Vc c cξ η ζ, ,

и координат ξс,ηс, ζс спутника в

гринвичской СК (ГСК) вычисляются путем решения следующей системы дифференциальных уравнений движения спутника [1]:

ξ ξc cV= ,

η ηc cV= ,

ζ ζc cV= ,

V V g A Tc c cξ ζ ξ ξξ= + + +2 20Ω Ω ( ) , (1)

V g A Tc cη η η= + ( )0 ,

V V g A Tc c cζ ξ ζ ζζ= + + +2 20Ω Ω ( ) ,

где ± Ω - угловая скорость вращения Земли,

gξ = − + −− − −µρ ρ η ρ ξA A AJa3 2 2 2 213

21 5[ ( )] ,

gη = − + −− − −µρ ρ η ρA A AJa3 2 2 2 213

21 5[ ( )] η ,

gζ = − + −− − −µρ ρ η ρA A AJa3 2 2 2 213

21 5[ ( )] ζ ,

×→µ = 398600, 44 км3/с2 – гравитационная постоянная,

ρ ξ η ζA A A A= + +2 2 2 – модуль радиуса-вектора коорди-нат ξ с,η с, ζ с спутника в гринвичской СК,J =1082,63× 10–6 – коэффициент, характеризующий несферичность нормального поля тяготения Земли (вторая зональная гармоника разложения геопотен-циала в ряд по сферическим функциям), а = 6378,136 км – большая полуось модельного эл-липсоида Земли,A T cξ ( )0 , A T cη ( )0 , A T cζ ( )0 – ускорения от лунно-сол-

нечных гравитационных возмущений, T c0 – время эфемеридных данных, с которого начи-нается интегрирование уравнений движения спутни-ка (эфемеридные данные T c0 , ξ с(T c0 ),ηс(T c0 ), ζ с(T c0 ),V cξ (T c0 ),V cη (T c0 ),V cζ (T c0 ), A T cξ ( )0 , A T cη ( )0 , A T cζ ( )0

реги-стрируются приемником СНС ГЛОНАСС наравне с кодовыми и доплеровскими измерениями и обновля-ются 1 раз в 30 минут).

Очевидно, что при детерминированном (кусоч-но-постоянном) описании в (1) лунно-солнечных гравитационных возмущений не учитываются дру-гие реальные возмущения, соизмеримые или мень-шие лунно-солнечных возмущений и носящие слу-чайный непрерывный характер, что при увеличении их интенсивности может привести к неустойчиво-сти решения системы (1) и соответствующим «вы-бросам» при определении координат объекта [6, 12–17]. Аппроксимируя данные множественные возмущения векторным белым гауссовским шумом (БГШ) ξ c( ) с нулевым средним и матрицей интен-сивностей Dξ , трансформируем уравнения (1) к векторной форме Ланжевена, исходной для после-дующего построения устойчивых алгоритмов спут-никовой навигации на основе использования совре-менных методов теории стохастической нелинейной фильтрации [4]:

15

Page 17: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 15

ПРИКЛАДНАЯ ФИЗИКА

Y F Yc c c c= ( ) +03

ξ( ), (2)

где Yс = ξ η ζ ξ η ζA A A A A A"V V V , 03 – нулевой вектор

размерности 3,

F Yc c( ) =

VVV

V g A Tg A T

V g A T

c

c

c

c

c

c

c

c

ξ

η

ζ

ζ ξ ξ

η η

ξ ζ ζ

ξ

ζ

2

2

20

0

20

Ω Ω

Ω Ω

+ + +

+

+ + +

( )

( )

( ))

.

Для возможности использования описания (2) при стохастической оценке параметров движения спутников необходимо, как известно, иметь урав-нение наблюдателя оцениваемых параметров [4]. В качестве последнего может быть использован ин-формационный сигнал кодовых измерений (псевдо-дальность), который после применения известных алгоритмов компенсации погрешностей [1] в общем случае может быть записан как [1,2]:

ZR = ( ) ( ) ( )ξ ξ η η ζ ζA A A− + − + −2 2 2 +WZR , (3)

где ξ c,η c, ζ c – координаты спутника в ГСК, ξ ,η , ζ – текущие координаты объекта в ГСК, WZ R

– белый гауссовский шум (БГШ) с нулевым сред-ним и известной интенсивностью DZ R

(t), обусловлен-ный алгоритмически нескомпенсированными ошибка-ми часов спутников и приемника, задержками сигнала при прохождении ионосферы и тропосферы, ошиб-ками многолучевости и др. погрешностями. (Следует при этом отметить, что приведенная информационная модель наблюдения справедлива как для кодового, так и для фазового режимов измерений, поэтому получен-ные далее результаты носят общий характер).

Из (3) очевидна явная зависимость сигналов спут-никовых измерений от текущих координат конкрет-ного спутника, что позволяет, во-первых, осущест-влять их непосредственное наблюдение на борту подвижного объекта, а во-вторых, формировать их устойчивую оценку, используя известные методы те-ории стохастической фильтрации.

В связи с этим в терминах теории нелинейной фильтрации задача повышения точности совмест-ного определения эфемеридных данных и коорди-нат объекта может быть сформулирована как задача синтеза алгоритмов стохастической оценки вектора навигационных параметров спутника Yc и объекта по принятым на объекте спутниковым измерениям.

Инвариантная стохастическая модель изменения навигационных параметров подвижного объектаНо непосредственное применение теории фильтрации к системе «объект-наблюдатель» (2), (3) невозможно в силу зависимости сигнала (3) еще и от вектора ко-ординат объекта, требующего соответствующего опи-сания, аналогичного (2). Для завершения построения модели вектора навигационных параметров, наблю-даемых в кодовых измерениях (3), проанализируем принципиальную возможность стохастического син-теза уравнений навигационных параметров любых подвижных объектов по спутниковым измерениям, обеспечивающих инвариантность алгоритмов филь-трации к виду физической модели объекта, траекто-рии его движения, характеру возмущений и пр.

Для решения этой задачи воспользуемся моделью информационного сигнала доплеровских измерений (псевдоскорости) ZV в автономном режиме, которая может быть представлена следующим образом [1,2]:

ZV A c A c A cV V V V V V= − − + − − + − − ×[( )( ) ( )( ) ( )( )]ξ ξ η η ζ ζξ ξ η η ζ ζ

× ( ( ) ( ) ( )ξ ξ η η ζ ζA A A− + − + −2 2 2 )-1 +WZV , (4)

где V V Vc c cξ η ζ, , – проекции вектора скорости спутни-ка на оси ГСК, V V Vξ η ζ, , – проекции вектора скорости объекта на оси ГСК, WV – БГШ с нулевым средним и известной интенсивностью DZV (t), обусловленный нескомпенсированными погрешностями измерения.

Относительно вектора скорости объекта уравне-ние (4) можно переписать в виде:

[ ( ) ( ) ( )ξ ξ η η ζ ζξ η ζA c A c A cV V V− + − + − ] –

− − + − + −( ) ( ) ( )ξ ξ η η ζ ζA A A2 2 2 (ZV – WZV ) =

= ( ) ( ) ( ) ,ξ ξ η η ζ ζξ η ζA A AV V V− + − + −

или в векторной форме:

( ) ( ) ( ) ( ) ( )ε ε ε ε ε ε ε εAT

c AT

A V Z ATV Z W VV− − [ − − ] − = −

1

2 , (5)

гдеε ξ η ζ ε ξ η ζA c A c

T T= =, .

Для определения всех компонентов вектора ско-рости V = ε объекта приведенного уравнения, полу-ченного по доплеровским измерениям одного спут-ника, недостаточно. В связи с этим, для формирования недостающих уравнений предварительно введем следующие обозначения:

ε ξ η ζci c c cT

i i i i= =, , ,1 2 3 – вектор координат i-го

спутника в ГСК, Vci= V V Vci ci ciT

ξ η ζ – вектор скоро-

14

Page 18: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201416

ПРИКЛАДНАЯ ФИЗИКА

сти i-го спутника в ГСК, ZVi – сигнал доплеровских измерений i-го спутника, WZVi – погрешности допле-ровских измерений i-го спутника.

Для возможности полного определения вектора скорости объекта V = ε запишем систему уравне-ний, аналогичных (5), но построенных уже по допле-ровским измерениям трех спутников [5]:

( ) ( ) ( ) ( ) ( )ε ε ε ε ε ε ε ε εcT

c cT

c V Z cTV Z W V1 1 1 1 1 1 1

1

2− − [ − − ] − = − ,

( ) ( ) ( ) ( ) ( )ε ε ε ε ε ε ε ε εcT

c cT

c V Z cTV Z W V2 2 2 2 2 2 2

1

2− − [ − − ] − = − ,

( ) ( ) ( ) ( ) ( )ε ε ε ε ε ε ε ε εcT

c cT

c V Z cTV Z W V3 3 3 3 3 3 3

1

2− − [ − − ] − = − .

Обозначив далее для сокращения записи

( ) ( )[ − − ]ε ε ε εcT

ci i

1

2 = ρi , i =1 2 3, , ,

ρ ε ε ε ερ

ρρ

( , , , )c c c1 2 3

1

2

3

0 0

0 0

0 0

= , ZZZZ

V

V

V

V

0

1

2

3

= , WWWW

Z

Z

Z

Z

V

V

V

V

0

1

2

3

= ,

запишем полученную систему уравнений в вектор-ном виде:

( )

( )

( )

( , , , )

(

ε ε

ε ε

ε ε

ρ ε ε ε ε

ρ ε

cT

c

cT

c

cT

c

c c c V

V

V

V

Z1 1

2 2

3 3

1 2 3 0

− +

+ cc c c Z

cT

cT

cT

W V1 2 3 0

1

2

3

, , , )

( )

( )

( )

.ε ε ε

ε ε

ε ε

ε ε

ε=

Данная система легко допускает разрешение от-носительно вектора скорости объекта V = ε [5]:

ε

ε ε

ε ε

ε ε

ε ε

ε ε

ε ε

=

−( )

( )

( )

(

( )

( )

(

cT

cT

cT

cT

c

cT

c

c

V

V1

2

3

1 1

2 2

3

1

))

( , , , ) ( , , , ) ),

Tc

c c c V c c c Z

V

Z W V

3

1 2 3 1 2 3 00

− +ρ ε ε ε ε ρ ε ε ε ε

(6)

ε ε0 0= ( ),

где

( )

( )

( )

( , , , )

ε ε

ε ε

ε ε

ε ε ε εc

T

cT

cT

c c c

1

2

3

1 2 3

1

=

Φ – матрица, обрат-

ная матрице ( )

( )

( )

ε ε

ε ε

ε ε

cT

cT

cT

1

2

3

(приведена в Приложении).

Тогда в векторной форме Ланжевена, исходной для последующего синтеза уравнений апостериорной

оценки, уравнения (6) можно представить следую-щим образом:

ε ε ε= ( ) + ( )F t F WZV0 1 0, , (7)

где ε ε0 0= ( ) , F c c c c c c1 1 2 3 1 2 3ε ε ε ε ε ρ ε ε ε ε( ) = Φ( , , , ) ( , , , ) ,

F t

V

V

V

c c c

cT

c

cT

c

cT

0 1 2 3

1 1

2 2

3

ε ε ε ε ε

ε ε

ε ε

ε ε

, ( , , , )

(

( )

( )

( )

( ) = ×

×

Φ

cc

c c c VZ

3

1 2 3 0−ρ ε ε ε ε( , , , ) ).

Принципиальными особенностями полученных уравнений (7) являются, во-первых, их общий ха-рактер (т.к. при их выводе не было сделано никаких упрощающих допущений о физической модели объ-екта, характере его движения и виде действующих на него возмущений), а во-вторых, возможность использования на их основе методов нелинейной стохастической фильтрации, обеспечивающих опти-мальность оценок навигационных переменных при обработке информации с СНС.

Комплексированный вектор навигационных параметров спутников и объектаТак как для формирования уравнений (7) вектора па-раметров движения объекта ε необходимо иметь точные значения навигационных параметров не од-ного, а трех спутников, то полный вектор оценивае-мых переменных помимо вектора ε должен вклю-чать еще и векторы состояния этих спутников, описываемые соответствующими уравнениями, ана-логичными (2):

Y F Y ici ci ciic= ( ) + =

01 2 3

3

ξ ( ), , , .

Полная система уравнений комплексированного вектора Y Y Y Yc

TcT

cT T T

= 1 2 3 ε принимает в этом слу-чае вид:

Y F Yc c c c1 1 1

3

1

0= ( ) +

ξ ( ),

Y F Yc c c c2 2 2

3

2

0= ( ) +

ξ ( ),

Y F Yc c c c3 3 3

3

3

0= ( ) +

ξ ( ),

ε ε ε= ( ) + ( )F t F WZV0 1 0, ,

17

Page 19: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 17

ПРИКЛАДНАЯ ФИЗИКА

или в общей форме:

Y F Y t F Y= ( ) + ( ), ,* γ (8)

где

F Y t

F Y

F Y

F Y

F t

c c

c c

c c

,

,

( ) =

( )( )( )( )

1 1

2 2

3 3

0 ε

,

F Y

EEEF

* ,( ) =

( )

6

6

6

1

0 0 0

0 0 0

0 0 0

0 0 0 ε

γ

ξ

ξ

ξ

=

0

0

0

3

1

3

2

3

3

0

( )

( )

( )

.

c

c

c

ZW V

Для окончательного решения задачи апостери-орного оценивания комплексированного вектора Y необходимо, как и ранее, сформировать соответству-ющий наблюдатель его компонентов. Проведенный ранее анализ информационной модели наблюдателя (3) показывает, что сигналы кодовых измерений лю-бого спутника явно зависят (т.е. обеспечивают пол-ное наблюдение) как от вектора координат объекта, так и от координат этого же спутника. В связи с этим для фильтрации всего комплексированного вектора состояния Y необходимо наличие кодовых измерений со всех трех спутников. В этом случае размерность наблюдателя увеличивается до трех:

ZR1 = ( ) ( ) ( )ξ ξ η η ζ ζc c c1 1 1

2 2 2− + − + − +W ZR1 =

= H c1 1( , )ε ε + W ZR1,

ZR2 = ( ) ( ) ( )ξ ξ η η ζ ζc c c2 2 2

2 2 2− + − + − +W ZR2 =

= H c2 2( , )ε ε + W ZR2 ,

ZR3 = ( ) ( ) ( )ξ ξ η η ζ ζc c c3 3 3

2 2 2− + − + − +W ZR3 =

= H c3 3( , )ε ε + W ZR3 ,

где Z Ri – сигнал кодовых измерений i – го спутника,WZRi – погрешности кодовых измерений i-го спутни-ка,или в векторной форме:

ZZZZ

HHH

R

R

R

R

c

c

c

0

1

2

3

1

2

3

1

2

3

= =

( , )

( , )

( , )

ε ε

ε ε

ε ε

+WWW

Z

Z

Z

R

R

R

1

2

3

= H Y0 ( ) +W ZR0 . (9)

Апостериорная оценка комплексированного вектора навигационных параметров

Полученное представление уравнений оцениваемых навигационных параметров в форме «объект-наблю-датель» (8), (9) позволяет построить для вектора со-стояния Y многомерную апостериорную плотность вероятности ρZ Y t,( ) , знание которой в данном слу-чае решает проблему определения любых вероят-ностных оценок как эфемерид спутников, так и век-тора координат объекта ε [4]. Так как процедура формирования ρZ Y t,( ) в общем случае сводится к решению многомерного интегро-дифференциально-го уравнения с частными производными (уравнения Стратоновича), которое в общем случае не имеет аналитического решения, то для получения оценок нелинейных процессов вида (8) используют различ-ные приближенные (субоптимальные) методы [4], наиболее известным и востребованным из которых является обобщенный (нелинейный) фильтр Калма-на. (Использование которого в системах навигации на сегодняшний день позволяет достичь необходи-мого компромисса между требуемой точностью и вычислительными затратами).

Исходя из уравнений «объект-наблюдатель» (8), (9) и следуя [4], обобщенный фильтр Калмана для ис-следуемого случая может быть записан следующим образом:

( ) ( ) ( )0 0ˆ ˆ ˆ ˆ, , RY F Y t K Y t Z H Y = + − , (10)

( ) ( ) ( )0

0 1ˆ

ˆ ˆ, ,ˆ R

T

Z

H YK Y t R Y t D

Y−

∂=

∂,

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )0* *

ˆ ˆ, ,ˆ ˆ ˆ, , ,

ˆ ˆ

ˆ ˆ ˆ ˆ, , ,R

T

T TZ

F Y t F Y tR Y t R Y t R Y t

Y Y

F Y D F Y K Y t D K Y tγ

∂ ∂= + +

∂ ∂

+ −

где Y – текущая оценка вектора Y , Y0 = ( )M Y0 ,

R(Y, t)– апостериорная ковариационная матрица,

R M Y Y Y Y

D

DD

DD

DD

T

Z

ii

V

0 0 0 0 0

1

2

3

0 0 0

0 0 0

0 0 0

0 0 0

0

0

= −( ) −( )

= =

,

, ,γξ

16

Page 20: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201418

ПРИКЛАДНАЯ ФИЗИКА

D iiξ , , ,=1 2 3 – матрицы интенсивностей воз-мущающих ускорений спутников, DZR0

– матрица интенсивностей помех кодо-вых измерений,DZV 0

– матрица интенсивностей помех допле-ровских измерений.

По сравнению с традиционным подхо-дом – вычислением эфемерид спутников в соответствии с (1) и обработкой спут-никовых измерений (3), (4) с использова-нием итеративных алгоритмов или МНК [1], алгоритм (10) требует существенно больших вычислительных затрат (тем не менее, легко реализуемых современными вычислительными средствами в реальном времени), но за счет динамического учета и оптимальной обработки случайных воз-мущений эфемерид и помех спутниковых измерений позволяет обеспечить, как по-казано ниже, большую точность оценки навигационных параметров как спутни-ков, так и объекта.

Интересно также отметить, что если со-звездие спутников содержит m 3 спутни-ков, то возникает возможность одновремен-ного синтеза Cm3 различных уравнений координатного вектора объекта, вектор на-блюдения которого в каждом случае содер-жит m измерений кодовых дальностей (со всех спутников). Это, в свою очередь, приводит к возможности параллельной реа-лизации Cm3 нелинейных фильтров, анало-гичных (10), – если позволяют возможности вычислителя. Одновременное формирова-ние Cm3 оценок навигационных параметров, равнозначных с информационной точки зре-ния, в свою очередь, позволяет существенно поднять точность позиционирования объек-та и спутников за счет дополнительных про-цедур обработки полученных оценок – ус-реднения, использования метода медианы и др. робастных алгоритмов обработки ста-тистической информации [4].

Приложение

При обозначениях:

( ) , ( ) , ( ) , , , ,ξ ξ ξ η η η ζ ζ ζc i c i c ii i i i− = − = − = =1 2 3 матрица Φ( , , , )ε ε ε εc c c1 2 3 имеет вид:

Φε ε ε ε ε ξ η ζ η ζ η ξ ζ ξ ζ ζ ξ η ξ η( , , , ) ( ) ( ) (c c c1 2 3 1 2 3 3 2 1 2 3 3 2 1 2 3 3 2= − − − + − )) ×− − + −− − +−1

2 3 3 2 1 3 3 1 1 2 2 1

3 2 2 3 3 1 1 3 2 1

η ζ η ζ η ζ η ζ η ζ η ζξ ζ ξ ζ ξ ζ ξ ζ ξ ζ −−

− − + −ξ ζ

ξ η ξ η ξ η ξ η ξ η ξ η1 2

2 3 3 2 1 3 3 1 1 2 2 1

Пример

Для иллюстрации эффективности предложенного подхода было проведено моделирование алгоритма фильтрации (10) на временном интервале t c∈[ ]0 1000; с шагом Dt = 0,01 с мето-дом Рунге-Кутты 4-го порядка. Движение объекта задавалось по локсодромической кривой с азимутальным углом 45˚ из точки с долготой – 30˚, широтой – 45˚(ε0 2 254 963 52 4 509 927 05 3 905 711 39= , , ,

T м) и законом изменения проекции скорости объекта на пло-скость меридиана: VМ = 10 (1+sin 0.005t) м/с.

Линейное движение каждого спутника моделировалось интегрированием уравнений его движения (2) при следую-щих начальных условиях: для 1-го спутника –

ξ с = 22 48 106, ⋅ м , η с =9 106⋅ м , ζ с = 8 106⋅ м ,

V V Vc c cξ η ζ= = ⋅ =− ⋅10 4 10 6 68 103 3 3м с м с м с/ , / , , / ;

для 2-го –

ξ с = 0,η с = 0, ζ с = 25 5 106, ⋅ < ,

V V Vc c cξ η ζ= ⋅ =− ⋅ = ⋅3 10 6 973 10 2 103 3 3м с м с м с/ , , / , / ;

для 3-го – ξ с = 25 5 10

6, ⋅ м , η с = 0, ζ с = 0,

V V Vc c cξ η ζ= = =−0 0 7850, , /м с .

В качестве модели помех измерений и возмущающих ускорений спутников был использован аддитивный гаус-совский вектор-шум с нулевым матожиданием и интенсив-ностью для: кодовых измерений – (10 м)2, доплеровских измерений – (0.25 м/с)2, возмущающих ускорений – (2 10 5⋅ − м/с2)2.

По окончании временного интервала моделирования мак-симальные ошибки оценки эфемерид спутников составили: ∆ ∆ ∆ξ η ζ− − −9 12 7м м м, , (при использовании традиционного алгоритма, соответственно: ∆ ∆ ∆ξ η ζ− − −31 37 24м м м, , ), компонентов навигационного вектора объекта:∆ ∆ ∆ξ η ζ− − −11 7 4м м м, , (при использовании традиционного алгоритма – ∆ ∆ ∆ξ η ζ− − −23 18 14м м м, , ), что свидетельствует о возможности весьма эффективного практического использования предложенного подхода.

19

Page 21: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 19

ПРИКЛАДНАЯ ФИЗИКА

Литература1. Интерфейсный контрольный документ ГЛОНАСС

(5.1 редакция). М.: РНИИ КП, 2008 г.2. ГЛОНАСС. Принципы построения и функциони-

рования / Под ред. Перова А.И., Харисова В.Н. М.:Радиотехника, 2010. 800 с.

3. www.trimble.com4. Тихонов В.И., Харисов В.Н. Статистический анализ

и синтез радиотехнических устройств и систем. М.:Радио и связь, 1991. 608 с.

5. Соколов С.В. Синтез моделей пространственныхтраекторий и их применение для решения задачспутниковой навигации // Прикладная физика и ма-тематика. 2. 2013. С. 3–12.

6. Feigl K. L, R. W. King T. A. Herring M. Rotchacher.A scheme for reducing the effect of selective availabil-ity on precise geodetic measurements from the GlobalPositioning System, Geophysical Research Letters, 18,12891292. 1991. PP. 210–231.

7. Lichten S.M., J.S. Border. Strategies for high-precisionGlobal Positioning System orbit Determination, J. Geo-phys. Res, 92, 1987. PP. 12751–12762.

8. Hofmann-Wellenhof B., Lichtenegger H., Collins J.Some GPS Surveying Problems, Proc. of sixth Int.Geodt. sym. on Satellite Positioning, Columbus, OHIO,1992. PP. 336–344.

9. Dow J.M., Feltens J., Duque P., Sarti F. A GPS orbitdetermination and analysis facility, Proc. of sixth Int.Geodt. sym. on Satellite Positioning, Columbus, OHIO,1992. PP. 472–481.

10. Hofmann-Wellenhof B., Lichtenegger L., Collins J.Global positioning system. Theory and practice. Ther-revized edition, New York, 1994.

11. Lo Sherman C., Peterson, Benjamin B., Enge, Per K.Proving the Integrity of the Weighted Sum Squared Er-ror (WSSE) Loran Cycle Confidence Algorithm – Navi-gation: The Journal of the Institute of Navigation,Vol. 54. 4. 2007.

12. Savage P.G. Velocity and Position Algorithms. AIAAJournal Of Guidance, Control, And Dynamics, Vol.21,No. 2, March-April 1983. PP. 208–221.

13. Bar-Sever Y. A new Massachusetts model for GPS yawattitude, Journal of Geodesy, 70, 714723, 1996.

14. Schodlbauer A., Krack K., Scherer B., Widmann R.GPS Leveling in high precision engineering surveys,Proc. of sixth Int. Geodt. sym. on Satellite Positioning,Columbus, OHIO, 1992. PP. 893–903.

15. Yunck T.P. Orbit Determination, Global PositioningSystem: Theory and Applications, Vol.2, Edited by Par-kinson B.W., Spilker J.J., 1996. PP. 559–592.

16. Herring T.A. Geodetic Applications of GPS, Proceed-ings of The IEEE, 1999. Vol. 87. 1. PP. 92–110,

17. Dare P., Saleh H. GPS Network Design: Logistics Solu-tion Using Optimal and Near-Optimal Methods, Journalof Geodesy, 2000. Vol. 74. PP. 467–478.

References1. Interfejsnyj kontrol’nyj dokument GLONASS (5.1 redakcija) [Inter-

face control document GLONASS (5.1 version)] M.: RNII KP [Mos-cow: Publishing house «RSRI SDB»]. 2008. 57 p.

2. GLONASS. Principy postroenija i funkcionirovanija. Pod red. PerovaA.I., Harisova V.N. [GLONASS. Principles of construction and op-eration. Ed. A.I. Perov, V.N. Kharisov] M.: Radiotehnika [Moscow:Publishing house «Radiotechnik»], 2010. 800 p.

3. www.trimble.com4. Tihonov V.I., Harisov V.N. Statisticheskij analiz i sintez ra-

diotehnicheskih ustrojstv i sistem. [Tikhonov V.I., Kharisov V. N. Sta-tistical analysis and synthesis of wireless devices and systems.] M.:Radio i svjaz’ [Moscow: Publishing house «Radio and communica-tion»], 1991. 608 p.

5. Sokolov S.V. Sintez modelei prostranstvennyh trajektorij i ih primen-enie dlya reshenija zadach sputnikovoi navigaczii [Sokolov S.V. Syn-thesis of spatial trajectories of analytical models and their applicationto solving satellite navigation]. Prikladnaja fizika i matematika [Ap-plied physics and mathematics]. 2, 2013. PР. 3–12.

6. Feig K.L, R.W. King, T.A. Herring, M. Rotchacher. A scheme for re-ducing the effect of selective availability on precise geodetic measure-ments from the Global Positioning System, Geophysical Research Let-ters, 18, 12891292. 1991. PP. 210–231.

7. Lichten S.M., J.S. Border. Strategies for high-precision Global Po-sitioning System orbit Determination, J. Geophys. Res. 92. 1987.PP. 12751–12762.

8. Hofmann-Wellenhof B., Lichtenegger H., Collins J. Some GPS Sur-veying Problems, Proc. of sixth Int. Geodt. sym. on Satellite Position-ing. Columbus, OHIO. 1992. PP. 336–344.

9. Dow J.M., Feltens, J. Duque, P. Sarti, F. A GPS orbit determination andanalysis facility, Proc. of sixth Int. Geodt. sym. on Satellite Position-ing, Columbus. OHIO. 1992. PP. 472–481.

10. Hofmann-Wellenhof B., Lichtenegger L., Collins J. Global position-ing system. Theory and practice. Therrevized edition, New York,1994. PP. 308–331.

11. Lo Sherman C. Peterson, Benjamin B., Enge, Per K. Proving the Integ-rity of the Weighted Sum Squared Error (WSSE) Loran Cycle Confi-dence Algorithm – Navigation: The Journal of the Institute of Naviga-tion, 2007. Vol. 54. 4. PP. 212–230.

12. Savage P.G. Velocity and Position Algorithms. AIAA Journal OfGuidance, Control, And Dynamics. 1983. Vol. 21. 2, March-April.PP. 208–221.

13. Bar-Sever Y. A new Massachusetts model for GPS yaw attitude, Jour-nal of Geodesy, 70. 714723. 1996. PP. 108–123.

14. Schodlbauer A., Krack K., Scherer B., Widmann R. GPS Leveling inhigh precision engineering surveys, Proc. of sixth Int. Geodt. sym. onSatellite Positioning, Columbus, OHIO. 1992. PP. 893–903.

15. Yunck T.P. Orbit Determination, Global Positioning System: Theoryand Applications. Vol. 2. Edited by Parkinson. B.W. Spilker J.J., 1996.PP. 559–592.

16. Herring T.A. Geodetic Applications of GPS, Proceedings of The IEEE, 1999. Vol. 87. 1. PP. 92–110.

17. Dare P., Saleh H. GPS Network Design: Logistics Solution Using Op-timal and Near-Optimal Methods, Journal of Geodesy, 2000. Vol. 74.PP. 467–478.

Сведения об авторах Information about the authors

Крамаров Сергей Олеговичдоктор физ.-мат. наук, профессор

Институт управления, бизнеса и права 344068, Ростов-на-Дону, Российская Федерация

пр-кт М. Нагибина, 33а/47E-mail: [email protected]

Лукасевич Виктор Ивановичгенеральный директор ОАО «ЦЕНТРОМАШПРОЕКТ»

129626, Москва, Российская Федерацияпр-кт Мира, 102, корп. Б

E-mail: [email protected]

Kramarov Sergej OlegovichDoctor of Phys.-Math. Sciences, Professor Institute of management, business and law 344068, Rostov-on-Don, Russian Federation pr-kt M. Nagibina, 33а/47E-mail: [email protected] viktor IvanovichGeneral director JSC «CENTROMASHPOEKT» 129626, Moscow, Russian Federationpr-kt Mira, 102, korp. БE-mail: [email protected]

18

Page 22: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201420

C. Daviau – Le Moulin de la Lande 44522, Pouille-les-coteaux France, Еmail: [email protected]. BertranD – 15 avenue Danielle Casanova 95210, Saint-Gratien France, Еmail: [email protected]

New iNSiGhtS iN the StaNDarD MoDeL oF quaNtuM PhySiCS iN CLiFForD aLGebra (Part 2)

This is the second of three parts. It presents the first conse- quences of the extended invariance studied in the first part. We extend next this invariant theory to electro-weak and strong interactions. We present in this frame the experimental and theoretical recent works on magnetic monopoles.

Keywords: invariance group, gauge invariance, electromagne-tism, weak interactions, strong interactions, Clifford algebras, magnetic monopoles.

К. Девиан – 44522, Франция, Апулия холмы. Мулен де ла Ланде Еmail: [email protected] Ж. БертранД – 95210, Франция, Санкт-Гратиан. 15 пр-т Даниэль Казанова Еmail: [email protected]

НовыЕ ДоСтижЕНия в обЛАСти СтАНДАртНой МоДЕЛи КвАНтовой ФизиКи в АЛГЕбрЕ КЛиФФорДА (ЧАСтЬ 2)

Это вторая часть из трех частей статьи. В ней представлены первые результаты применения расширенной инвариант-ности представленных в первой части. Дается продолжение рассмотрения теории инвариантов слабых и сильных взаи-модействий. Представлены результаты последних экспери-ментальных и теоретических работ.

Keywords: группа инвариантности, калибровочная инва-риантность, электромагнетизм, слабые взаимодействия, сильные взаимодействия, алгебры Клиффорда, магнитные монополии.

introduction of the second partSection 5 presents some first consequences of novel-ties presented in the first part. The anisotropy of the intrinsic space-time explains why we see muons and tauons beside electrons, their similarities and differenc-es. The intrinsic manifold has a torsion whose compo-nents were calculated for plane waves. The mass term is linked to this torsion. Next we present the building of the de Broglie’s wave of a system of electrons as a wave in the ordinary space-time, and not in a configuration space where space and time do not have the same sta-tus, with value onto the space algebra. We present also as a counter-example a wave equation [8] without La-grangian formalism, we solve this wave equation in the hydrogen case.

Section 6 is devoted to our main progress since [6]. We present the electroweak gauge theory in the frame of the space-time algebra, first for the lepton case, sec-ondly for the quark case. Next we use the Cl5,1 Clif-

ford algebra to extend the gauge to strong interac-tions. Even if our aim is the same as in [7], we use here a different Clifford algebra, because we need the link between the wave of the particle and the wave of the antiparticle that is used in the standard mod-el of electro-weak and strong interactions. We get a U (1) × SU (2) × SU (3) gauge group in this frame. The addition from the standard model is the compre-hension of the insensitivity of leptons to strong inter-actions. We extend to the Cl5,1 frame the form invari-ance of the gauge interactions. This induces the use of a complex 6-dimensional space-time into which the usual 4-dimensional space- time is well separated from supplementary dimensions. Finally the nullity of right waves of the neutrino and of quarks induces two remarkable identities. They imply that waves of lep-tons and the full wave of the lepton and of three col-ored quarks have an invertible value. These identities allow a wave equation with a mass term, which is both form invariant and gauge invariant.

ПрикладнаяМаТЕМаТика

21

Page 23: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 21

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

Section 7 is devoted to magnetic monopoles. We ex-plain Russian experiments and our french experiments. We precise their results, particularly the wavelength. We use our study of electro-weak interactions in the case of the magnetic monopole.

For the works at E.C.N., thanks to Didier Priem, his effciency, his inven- tiveness, his kindness, thanks to Guillaume Racineux who constantly supported us.

5. ConsequencesWe study a first consequence of the two space-time manifolds and of the dilations between these two manifolds: the non isotropy of the intrinsic manifold. We link this with the existence of three kinds of lep-tons. We present new possibilities for the wave of sys-tems of identical particles. We study a wave equation without possibility of Lagrangian mechanism.

The wave of the electron induces, in each space-time point, a geometric transformation from the tangent space-time to an intrinsic manifold linked to the wave, onto the usual space-time of the restricted relativity. The intrinsic space-time, contrarily to the usual space-time, is not iso-tropic, and we study now this anisotropy.

5.1 anisotropy

The fact that there exists, in the Dirac theory, a privi-leged direction was re- marked by par Louis de Bro-glie as soon as his first work on the Dirac equation [12] p. 13835: ”Les fonctions ψi solutions de ces qua-tions sont donc intimement lies au choix des axes com-me dans la thorie de Pauli; elles doivent servir calculer des probabilits pour lesquelles l’axe des z joue un rle particulier”. The solution to this diffculty is that with a rotation it is always possible to bring the z axis onto any direction of the space.

The solution uses then a conveniently chosen element of Cl*3 , which generates a spatial rotation and rotates the third axis onto the chosen direction. There is al-ways two solutions, and then the final space-time, the relative space-time, is isotropic, has no privileged di-rection. But the initial space-time, the intrinsic space-time, on the contrary, remains perfectly non-isotropic: before as after the rotation, it is always σ3 which is privileged. We have remarked previously that with the Lorentz rotations of the complex formalism the γµ ma-trices are invariant. They are identical before or after the rotation. Whatever formalism is used it is always the third component of the spin that is measured and the square of the spin vector, never the first or the sec-

35 Translation:”The ψi functions solutions of these equations are then completely linked to the choice of axis as into the Pauli theory; They must serve to calculate probabilities for which the z axis plays a particular role”.

ond component of the spin. The reason is evident if we regard the wave equation or the Lagrangian in the Clif-ford algebra of space. This third direction is present into the wave equation and into the Lagrangian which both contain a iσ3.

Now, and this is the first concrete consequence of cal-culations with the Pauli algebra, it is perfectly possible to write two other Lagrangian densities, two other wave equations similar to the Dirac equation:

lies au choix des axes comme dans la thorie de Pauli; elles doivent servir calculerdes probabilits pour lesquelles l’axe des z joue un rle particulier”. The solutionto this difficulty is that with a rotation it is always possible to bring the z axisonto any direction of the space.

The solution uses then a conveniently chosen element of Cl∗3, which generatesa spatial rotation and rotates the third axis onto the chosen direction. Thereis always two solutions, and then the final space-time, the relative space-time,is isotropic, has no privileged direction. But the initial space-time, the intrinsicspace-time, on the contrary, remains perfectly non-isotropic: before as afterthe rotation, it is always σ3 which is privileged. We have remarked previouslythat with the Lorentz rotations of the complex formalism the γµ matrices areinvariant. They are identical before or after the rotation. Whatever formalismis used it is always the third component of the spin that is measured and thesquare of the spin vector, never the first or the second component of the spin.The reason is evident if we regard the wave equation or the Lagrangian in theClifford algebra of space. This third direction is present into the wave equationand into the Lagrangian which both contain a iσ3.

Now, and this is the first concrete consequence of calculations with the Paulialgebra, it is perfectly possible to write two other Lagrangian densities, two otherwave equations similar to the Dirac equation:

∇φ+ qAφσ23 +me−iβφσ23 = 0 (5.1)

∇φ+ qAφσ31 +me−iβφσ31 = 0 (5.2)

The invariant wave equations obtained by multiplying on the left by φ are

φ(∇φ)σ32 + φqAφ+mρ = 0 (5.3)

φ(∇φ)σ13 + φqAφ+mρ = 0 (5.4)

With the wave equation (5.1)(5.3), it is the first axis which is privileged.The conservative space-time vectors are D0 and D1. To solve the wave equation(5.1) for the hydrogen atom, we shall take again the method of separation ofvariables of Appendix C, making a circular permutation p on indexes 1, 2, 3 ofmatrices σ: 1 → 2, 2 → 3, 3 → 1, and on indexes of formula (C.1). Since it isthe only thing that changes, results will be similar.

With the wave equation (5.2), it is the second axis which is privileged. Theconservative space-time vectors are D0 and D2. To solve the wave equation(5.2) for the hydrogen atom, we shall take again the method of separation ofvariables of Appendix C, making a circular permutation p2 = p−1 on indexes 1,2, 3 of matrices σ, and on indexes of formula (C.1). Since it is the only thingthat changes, results will be similar.

In all what we know today about experimental physics there is somethingvery similar. Beside electrons exist also muons and tauons. Three kinds ofobjects are similar and nevertheless different. Muons are known since more

which the z axis plays a particular role”.

62

(5.1)

lies au choix des axes comme dans la thorie de Pauli; elles doivent servir calculerdes probabilits pour lesquelles l’axe des z joue un rle particulier”. The solutionto this difficulty is that with a rotation it is always possible to bring the z axisonto any direction of the space.

The solution uses then a conveniently chosen element of Cl∗3, which generatesa spatial rotation and rotates the third axis onto the chosen direction. Thereis always two solutions, and then the final space-time, the relative space-time,is isotropic, has no privileged direction. But the initial space-time, the intrinsicspace-time, on the contrary, remains perfectly non-isotropic: before as afterthe rotation, it is always σ3 which is privileged. We have remarked previouslythat with the Lorentz rotations of the complex formalism the γµ matrices areinvariant. They are identical before or after the rotation. Whatever formalismis used it is always the third component of the spin that is measured and thesquare of the spin vector, never the first or the second component of the spin.The reason is evident if we regard the wave equation or the Lagrangian in theClifford algebra of space. This third direction is present into the wave equationand into the Lagrangian which both contain a iσ3.

Now, and this is the first concrete consequence of calculations with the Paulialgebra, it is perfectly possible to write two other Lagrangian densities, two otherwave equations similar to the Dirac equation:

∇φ+ qAφσ23 +me−iβφσ23 = 0 (5.1)

∇φ+ qAφσ31 +me−iβφσ31 = 0 (5.2)

The invariant wave equations obtained by multiplying on the left by φ are

φ(∇φ)σ32 + φqAφ+mρ = 0 (5.3)

φ(∇φ)σ13 + φqAφ+mρ = 0 (5.4)

With the wave equation (5.1)(5.3), it is the first axis which is privileged.The conservative space-time vectors are D0 and D1. To solve the wave equation(5.1) for the hydrogen atom, we shall take again the method of separation ofvariables of Appendix C, making a circular permutation p on indexes 1, 2, 3 ofmatrices σ: 1 → 2, 2 → 3, 3 → 1, and on indexes of formula (C.1). Since it isthe only thing that changes, results will be similar.

With the wave equation (5.2), it is the second axis which is privileged. Theconservative space-time vectors are D0 and D2. To solve the wave equation(5.2) for the hydrogen atom, we shall take again the method of separation ofvariables of Appendix C, making a circular permutation p2 = p−1 on indexes 1,2, 3 of matrices σ, and on indexes of formula (C.1). Since it is the only thingthat changes, results will be similar.

In all what we know today about experimental physics there is somethingvery similar. Beside electrons exist also muons and tauons. Three kinds ofobjects are similar and nevertheless different. Muons are known since more

which the z axis plays a particular role”.

62

. (5.2)

The invariant wave equations obtained by multiply-ing on the left by φ are

lies au choix des axes comme dans la thorie de Pauli; elles doivent servir calculerdes probabilits pour lesquelles l’axe des z joue un rle particulier”. The solutionto this difficulty is that with a rotation it is always possible to bring the z axisonto any direction of the space.

The solution uses then a conveniently chosen element of Cl∗3, which generatesa spatial rotation and rotates the third axis onto the chosen direction. Thereis always two solutions, and then the final space-time, the relative space-time,is isotropic, has no privileged direction. But the initial space-time, the intrinsicspace-time, on the contrary, remains perfectly non-isotropic: before as afterthe rotation, it is always σ3 which is privileged. We have remarked previouslythat with the Lorentz rotations of the complex formalism the γµ matrices areinvariant. They are identical before or after the rotation. Whatever formalismis used it is always the third component of the spin that is measured and thesquare of the spin vector, never the first or the second component of the spin.The reason is evident if we regard the wave equation or the Lagrangian in theClifford algebra of space. This third direction is present into the wave equationand into the Lagrangian which both contain a iσ3.

Now, and this is the first concrete consequence of calculations with the Paulialgebra, it is perfectly possible to write two other Lagrangian densities, two otherwave equations similar to the Dirac equation:

∇φ+ qAφσ23 +me−iβφσ23 = 0 (5.1)

∇φ+ qAφσ31 +me−iβφσ31 = 0 (5.2)

The invariant wave equations obtained by multiplying on the left by φ are

φ(∇φ)σ32 + φqAφ+mρ = 0 (5.3)

φ(∇φ)σ13 + φqAφ+mρ = 0 (5.4)

With the wave equation (5.1)(5.3), it is the first axis which is privileged.The conservative space-time vectors are D0 and D1. To solve the wave equation(5.1) for the hydrogen atom, we shall take again the method of separation ofvariables of Appendix C, making a circular permutation p on indexes 1, 2, 3 ofmatrices σ: 1 → 2, 2 → 3, 3 → 1, and on indexes of formula (C.1). Since it isthe only thing that changes, results will be similar.

With the wave equation (5.2), it is the second axis which is privileged. Theconservative space-time vectors are D0 and D2. To solve the wave equation(5.2) for the hydrogen atom, we shall take again the method of separation ofvariables of Appendix C, making a circular permutation p2 = p−1 on indexes 1,2, 3 of matrices σ, and on indexes of formula (C.1). Since it is the only thingthat changes, results will be similar.

In all what we know today about experimental physics there is somethingvery similar. Beside electrons exist also muons and tauons. Three kinds ofobjects are similar and nevertheless different. Muons are known since more

which the z axis plays a particular role”.

62

(5.3)

lies au choix des axes comme dans la thorie de Pauli; elles doivent servir calculerdes probabilits pour lesquelles l’axe des z joue un rle particulier”. The solutionto this difficulty is that with a rotation it is always possible to bring the z axisonto any direction of the space.

The solution uses then a conveniently chosen element of Cl∗3, which generatesa spatial rotation and rotates the third axis onto the chosen direction. Thereis always two solutions, and then the final space-time, the relative space-time,is isotropic, has no privileged direction. But the initial space-time, the intrinsicspace-time, on the contrary, remains perfectly non-isotropic: before as afterthe rotation, it is always σ3 which is privileged. We have remarked previouslythat with the Lorentz rotations of the complex formalism the γµ matrices areinvariant. They are identical before or after the rotation. Whatever formalismis used it is always the third component of the spin that is measured and thesquare of the spin vector, never the first or the second component of the spin.The reason is evident if we regard the wave equation or the Lagrangian in theClifford algebra of space. This third direction is present into the wave equationand into the Lagrangian which both contain a iσ3.

Now, and this is the first concrete consequence of calculations with the Paulialgebra, it is perfectly possible to write two other Lagrangian densities, two otherwave equations similar to the Dirac equation:

∇φ+ qAφσ23 +me−iβφσ23 = 0 (5.1)

∇φ+ qAφσ31 +me−iβφσ31 = 0 (5.2)

The invariant wave equations obtained by multiplying on the left by φ are

φ(∇φ)σ32 + φqAφ+mρ = 0 (5.3)

φ(∇φ)σ13 + φqAφ+mρ = 0 (5.4)

With the wave equation (5.1)(5.3), it is the first axis which is privileged.The conservative space-time vectors are D0 and D1. To solve the wave equation(5.1) for the hydrogen atom, we shall take again the method of separation ofvariables of Appendix C, making a circular permutation p on indexes 1, 2, 3 ofmatrices σ: 1 → 2, 2 → 3, 3 → 1, and on indexes of formula (C.1). Since it isthe only thing that changes, results will be similar.

With the wave equation (5.2), it is the second axis which is privileged. Theconservative space-time vectors are D0 and D2. To solve the wave equation(5.2) for the hydrogen atom, we shall take again the method of separation ofvariables of Appendix C, making a circular permutation p2 = p−1 on indexes 1,2, 3 of matrices σ, and on indexes of formula (C.1). Since it is the only thingthat changes, results will be similar.

In all what we know today about experimental physics there is somethingvery similar. Beside electrons exist also muons and tauons. Three kinds ofobjects are similar and nevertheless different. Muons are known since more

which the z axis plays a particular role”.

62

. (5.4)

With the wave equation (5.1) (5.3), it is the first axis which is privileged. The conservative space-time vectors are D0 and D1 . To solve the wave equation (5.1) for the hydrogen atom, we shall take again the method of sepa-ration of variables of Appendix C, making a circular per-mutation p on indexes 1, 2, 3 of matrices σ: 1 → 2, 2 → 3, 3 → 1, and on indexes of formula (C.1). Since it is the only thing that changes, results will be similar.

With the wave equation (5.2), it is the second axis which is privileged. The conservative space-time vectors are D0 and D2 . To solve the wave equation (5.2) for the hydrogen atom, we shall take again the method of sepa-ration of variables of Appendix C, making a circular per-mutation p2 = p−1 on indexes 1, 2, 3 of matrices σ, and on indexes of formula (C.1). Since it is the only thing that changes, results will be similar.

In all what we know today about experimental physics there is something very similar. Beside elec-trons exist also muons and tauons. Three kinds of ob-jects are similar and nevertheless different. Muons are known since more than 70 years, and until now with-out a simple explanation saying why they exist, nor what distinguishes them from electrons. We shall as-sociate here to each category, that is said to each of the three generations, one of the three wave equations (3.9), (5.3) and (5.4). The similarity between the wave equations allows to explain why electrons, muons and tauons have the same properties, behave in the same way into an electromagnetic field, and have the same energy levels in a Coulombian potential. In fact, to see a difference between these three equations, it is neces-sary to go past the wave equation of a single particle

20

Page 24: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201422

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

and to enter the question of a system made of different kinds of particles.36

We cannot be objected that the third direction or the first direction may be put after a rotation in any direc-tion: a rotation cannot turn both the third direction and the first direction into a given direction. So in this di-rection it is impossible to measure both the spin of an electron following (3.9) and the spin of a muon follow-ing (5.3).

In addition we know that a muon, even if it is a parti-cle with spin 1

2 as the electron, cannot spontaneously dis-

integrate into an alone electron. Its disintegration gives an electron plus a muonic neutrino and an electronic an-tineutrino. This may be understood in the following way: The wave of the muonic neutrino, as the wave of the muon, has the property to have a measurable spin in the first direction and takes away the muon’s spin. The spin of the electron which is measurable in the third direction is brought by the antineutrino with a spin opposed to the spin of the electron.

Just before we supposed arbitrarily that the electron follows (3.9) and that the muon follows (5.3). One or the other could evidently follow (5.4), nothing allows us to choose. On the other hand, the choice made by the Na-ture of one or another equation justifies the fact that the physical space is oriented: Consider in the intrinsic space three space vectors having respectively the third direc-tion and the wavelength of the electron, the first direction and the wavelength of the muon, the second direction and the wavelength of a tauon. Those three vectors form a ba-sis of the intrinsic space. If we exchange now the second and the third vectors, we get another basis, with another orientation.

These three equations (3.9), (5.3) and 5.4) are equiv-alent only if the mass terms are equal into the different equations. But the experiment shows that these masses are completely different from a generation to another. This difference, of unknown origin, contributes to differ-entiate the three generations of leptons.

5.1.1 torsion

We have calculated the affne connection of the intrinsic manifold [5]. In the case of plane waves studied in sec-tions 2 and 3 only two terms are not zero and give a tor-sion. This terms of torsion are linked to the proper mass of the particle.

36 We know for instance that a muon within the electronic cloud of an atom, does not respect the Pauli principle of exclusion. This is rather easy to justify if that exclusion principle is linked to the spin of the different particles, because the spin of an electron following the equation (3.10) is always measured in the third direction and cannot be added or subtracted to the spin of a muon following the wave equation (5.1) which is always measured in the first direction.

5.2 Systems of electrons

The non-relativistic theory for a particle system gives to a system of two particles without spin a wave ψ = ψ1 ψ2 which is the product of the two waves of each particle, when it is possible to neglect the interaction between these particles. We cannot transpose ψ1 ψ2 into

and give a torsion. This terms of torsion are linked to the proper mass of theparticle.

5.2 Systems of electrons

The non-relativistic theory for a particle system gives to a system of two particleswithout spin a wave ψ = ψ1ψ2 which is the product of the two waves of eachparticle, when it is possible to neglect the interaction between these particles.We cannot transpose ψ1ψ2 into φ1φ2 which should transform into Mφ1Mφ2

under the dilation R defined in (1.42), because M does not commute with φ.Another product is suggested by (4.14) because if φ12 = φ1φ

−12 we get

φ′12 = φ′

1φ′−12 = Mφ1φ

−12 M−1 = Mφ12M

−1. (5.5)

And φ12 transforms under a dilation as the electromagnetic field. But thefactor e−iE

t of the non-relativistic quantum mechanics becomes in the case ofthe electron e−

Ecx

0σ12 with the Cl3 algebra, and with φ1φ−12 the energies are

not added but subtracted. To get the addition of energies we can consider termsas φ1σ1φ

−12 or φ1σ2φ

−12 because σ1 and σ2 anti-commute with σ12 and

σ1e− E

cx0σ12 = e

Ecx

0σ12σ1. (5.6)

Since we have

σ2 = σ1σ12 = σ1eπ2 σ12 (5.7)

σ1 and σ2 differ only by a constant gauge factor and we can choose σ1. Sincewe know that two electrons are identical we can consider only terms such asφ1σ1φ

−12 ± φ2σ1φ

−11 . The Pauli principle invites us to consider for the wave of

a system of two electrons

φ12 = φ1σ1φ−12 − φ2σ1φ

−11 (5.8)

which is antisymmetric:

φ21 = −φ12 (5.9)

and transforms under a dilation R of dilator M as F [4]

φ′12 = Mφ12M

−1. (5.10)

For a system of three electrons whose respective waves are φ1, φ2, φ3 we consider

φ123 = φ12φ3 + φ23φ1 + φ31φ2 (5.11)

which satisfies

φ123 = φ231 = φ312 = −φ132 = −φ321 = −φ132, (5.12)

φ′123 = Mφ123. (5.13)

64

which should transform into

and give a torsion. This terms of torsion are linked to the proper mass of theparticle.

5.2 Systems of electrons

The non-relativistic theory for a particle system gives to a system of two particleswithout spin a wave ψ = ψ1ψ2 which is the product of the two waves of eachparticle, when it is possible to neglect the interaction between these particles.We cannot transpose ψ1ψ2 into φ1φ2 which should transform into Mφ1Mφ2

under the dilation R defined in (1.42), because M does not commute with φ.Another product is suggested by (4.14) because if φ12 = φ1φ

−12 we get

φ′12 = φ′

1φ′−12 = Mφ1φ

−12 M−1 = Mφ12M

−1. (5.5)

And φ12 transforms under a dilation as the electromagnetic field. But thefactor e−iE

t of the non-relativistic quantum mechanics becomes in the case ofthe electron e−

Ecx

0σ12 with the Cl3 algebra, and with φ1φ−12 the energies are

not added but subtracted. To get the addition of energies we can consider termsas φ1σ1φ

−12 or φ1σ2φ

−12 because σ1 and σ2 anti-commute with σ12 and

σ1e− E

cx0σ12 = e

Ecx

0σ12σ1. (5.6)

Since we have

σ2 = σ1σ12 = σ1eπ2 σ12 (5.7)

σ1 and σ2 differ only by a constant gauge factor and we can choose σ1. Sincewe know that two electrons are identical we can consider only terms such asφ1σ1φ

−12 ± φ2σ1φ

−11 . The Pauli principle invites us to consider for the wave of

a system of two electrons

φ12 = φ1σ1φ−12 − φ2σ1φ

−11 (5.8)

which is antisymmetric:

φ21 = −φ12 (5.9)

and transforms under a dilation R of dilator M as F [4]

φ′12 = Mφ12M

−1. (5.10)

For a system of three electrons whose respective waves are φ1, φ2, φ3 we consider

φ123 = φ12φ3 + φ23φ1 + φ31φ2 (5.11)

which satisfies

φ123 = φ231 = φ312 = −φ132 = −φ321 = −φ132, (5.12)

φ′123 = Mφ123. (5.13)

64

under the dila-tion R defined in (1.42), because M does not commute with φ. Another product is suggested by (4.14) because if

and give a torsion. This terms of torsion are linked to the proper mass of theparticle.

5.2 Systems of electrons

The non-relativistic theory for a particle system gives to a system of two particleswithout spin a wave ψ = ψ1ψ2 which is the product of the two waves of eachparticle, when it is possible to neglect the interaction between these particles.We cannot transpose ψ1ψ2 into φ1φ2 which should transform into Mφ1Mφ2

under the dilation R defined in (1.42), because M does not commute with φ.Another product is suggested by (4.14) because if φ12 = φ1φ

−12 we get

φ′12 = φ′

1φ′−12 = Mφ1φ

−12 M−1 = Mφ12M

−1. (5.5)

And φ12 transforms under a dilation as the electromagnetic field. But thefactor e−iE

t of the non-relativistic quantum mechanics becomes in the case ofthe electron e−

Ecx

0σ12 with the Cl3 algebra, and with φ1φ−12 the energies are

not added but subtracted. To get the addition of energies we can consider termsas φ1σ1φ

−12 or φ1σ2φ

−12 because σ1 and σ2 anti-commute with σ12 and

σ1e− E

cx0σ12 = e

Ecx

0σ12σ1. (5.6)

Since we have

σ2 = σ1σ12 = σ1eπ2 σ12 (5.7)

σ1 and σ2 differ only by a constant gauge factor and we can choose σ1. Sincewe know that two electrons are identical we can consider only terms such asφ1σ1φ

−12 ± φ2σ1φ

−11 . The Pauli principle invites us to consider for the wave of

a system of two electrons

φ12 = φ1σ1φ−12 − φ2σ1φ

−11 (5.8)

which is antisymmetric:

φ21 = −φ12 (5.9)

and transforms under a dilation R of dilator M as F [4]

φ′12 = Mφ12M

−1. (5.10)

For a system of three electrons whose respective waves are φ1, φ2, φ3 we consider

φ123 = φ12φ3 + φ23φ1 + φ31φ2 (5.11)

which satisfies

φ123 = φ231 = φ312 = −φ132 = −φ321 = −φ132, (5.12)

φ′123 = Mφ123. (5.13)

64

we get

and give a torsion. This terms of torsion are linked to the proper mass of theparticle.

5.2 Systems of electrons

The non-relativistic theory for a particle system gives to a system of two particleswithout spin a wave ψ = ψ1ψ2 which is the product of the two waves of eachparticle, when it is possible to neglect the interaction between these particles.We cannot transpose ψ1ψ2 into φ1φ2 which should transform into Mφ1Mφ2

under the dilation R defined in (1.42), because M does not commute with φ.Another product is suggested by (4.14) because if φ12 = φ1φ

−12 we get

φ′12 = φ′

1φ′−12 = Mφ1φ

−12 M−1 = Mφ12M

−1. (5.5)

And φ12 transforms under a dilation as the electromagnetic field. But thefactor e−iE

t of the non-relativistic quantum mechanics becomes in the case ofthe electron e−

Ecx

0σ12 with the Cl3 algebra, and with φ1φ−12 the energies are

not added but subtracted. To get the addition of energies we can consider termsas φ1σ1φ

−12 or φ1σ2φ

−12 because σ1 and σ2 anti-commute with σ12 and

σ1e− E

cx0σ12 = e

Ecx

0σ12σ1. (5.6)

Since we have

σ2 = σ1σ12 = σ1eπ2 σ12 (5.7)

σ1 and σ2 differ only by a constant gauge factor and we can choose σ1. Sincewe know that two electrons are identical we can consider only terms such asφ1σ1φ

−12 ± φ2σ1φ

−11 . The Pauli principle invites us to consider for the wave of

a system of two electrons

φ12 = φ1σ1φ−12 − φ2σ1φ

−11 (5.8)

which is antisymmetric:

φ21 = −φ12 (5.9)

and transforms under a dilation R of dilator M as F [4]

φ′12 = Mφ12M

−1. (5.10)

For a system of three electrons whose respective waves are φ1, φ2, φ3 we consider

φ123 = φ12φ3 + φ23φ1 + φ31φ2 (5.11)

which satisfies

φ123 = φ231 = φ312 = −φ132 = −φ321 = −φ132, (5.12)

φ′123 = Mφ123. (5.13)

64

(5.5)

And φ12 transforms under a dilation as the electro-magnetic field. But the factor

and give a torsion. This terms of torsion are linked to the proper mass of theparticle.

5.2 Systems of electrons

The non-relativistic theory for a particle system gives to a system of two particleswithout spin a wave ψ = ψ1ψ2 which is the product of the two waves of eachparticle, when it is possible to neglect the interaction between these particles.We cannot transpose ψ1ψ2 into φ1φ2 which should transform into Mφ1Mφ2

under the dilation R defined in (1.42), because M does not commute with φ.Another product is suggested by (4.14) because if φ12 = φ1φ

−12 we get

φ′12 = φ′

1φ′−12 = Mφ1φ

−12 M−1 = Mφ12M

−1. (5.5)

And φ12 transforms under a dilation as the electromagnetic field. But thefactor e−iE

t of the non-relativistic quantum mechanics becomes in the case ofthe electron e−

Ecx

0σ12 with the Cl3 algebra, and with φ1φ−12 the energies are

not added but subtracted. To get the addition of energies we can consider termsas φ1σ1φ

−12 or φ1σ2φ

−12 because σ1 and σ2 anti-commute with σ12 and

σ1e− E

cx0σ12 = e

Ecx

0σ12σ1. (5.6)

Since we have

σ2 = σ1σ12 = σ1eπ2 σ12 (5.7)

σ1 and σ2 differ only by a constant gauge factor and we can choose σ1. Sincewe know that two electrons are identical we can consider only terms such asφ1σ1φ

−12 ± φ2σ1φ

−11 . The Pauli principle invites us to consider for the wave of

a system of two electrons

φ12 = φ1σ1φ−12 − φ2σ1φ

−11 (5.8)

which is antisymmetric:

φ21 = −φ12 (5.9)

and transforms under a dilation R of dilator M as F [4]

φ′12 = Mφ12M

−1. (5.10)

For a system of three electrons whose respective waves are φ1, φ2, φ3 we consider

φ123 = φ12φ3 + φ23φ1 + φ31φ2 (5.11)

which satisfies

φ123 = φ231 = φ312 = −φ132 = −φ321 = −φ132, (5.12)

φ′123 = Mφ123. (5.13)

64

of the non-relativ-istic quantum mechanics becomes in the case of the elec-tron

and give a torsion. This terms of torsion are linked to the proper mass of theparticle.

5.2 Systems of electrons

The non-relativistic theory for a particle system gives to a system of two particleswithout spin a wave ψ = ψ1ψ2 which is the product of the two waves of eachparticle, when it is possible to neglect the interaction between these particles.We cannot transpose ψ1ψ2 into φ1φ2 which should transform into Mφ1Mφ2

under the dilation R defined in (1.42), because M does not commute with φ.Another product is suggested by (4.14) because if φ12 = φ1φ

−12 we get

φ′12 = φ′

1φ′−12 = Mφ1φ

−12 M−1 = Mφ12M

−1. (5.5)

And φ12 transforms under a dilation as the electromagnetic field. But thefactor e−iE

t of the non-relativistic quantum mechanics becomes in the case ofthe electron e−

Ecx

0σ12 with the Cl3 algebra, and with φ1φ−12 the energies are

not added but subtracted. To get the addition of energies we can consider termsas φ1σ1φ

−12 or φ1σ2φ

−12 because σ1 and σ2 anti-commute with σ12 and

σ1e− E

cx0σ12 = e

Ecx

0σ12σ1. (5.6)

Since we have

σ2 = σ1σ12 = σ1eπ2 σ12 (5.7)

σ1 and σ2 differ only by a constant gauge factor and we can choose σ1. Sincewe know that two electrons are identical we can consider only terms such asφ1σ1φ

−12 ± φ2σ1φ

−11 . The Pauli principle invites us to consider for the wave of

a system of two electrons

φ12 = φ1σ1φ−12 − φ2σ1φ

−11 (5.8)

which is antisymmetric:

φ21 = −φ12 (5.9)

and transforms under a dilation R of dilator M as F [4]

φ′12 = Mφ12M

−1. (5.10)

For a system of three electrons whose respective waves are φ1, φ2, φ3 we consider

φ123 = φ12φ3 + φ23φ1 + φ31φ2 (5.11)

which satisfies

φ123 = φ231 = φ312 = −φ132 = −φ321 = −φ132, (5.12)

φ′123 = Mφ123. (5.13)

64

with the Cl3 algebra, and with

and give a torsion. This terms of torsion are linked to the proper mass of theparticle.

5.2 Systems of electrons

The non-relativistic theory for a particle system gives to a system of two particleswithout spin a wave ψ = ψ1ψ2 which is the product of the two waves of eachparticle, when it is possible to neglect the interaction between these particles.We cannot transpose ψ1ψ2 into φ1φ2 which should transform into Mφ1Mφ2

under the dilation R defined in (1.42), because M does not commute with φ.Another product is suggested by (4.14) because if φ12 = φ1φ

−12 we get

φ′12 = φ′

1φ′−12 = Mφ1φ

−12 M−1 = Mφ12M

−1. (5.5)

And φ12 transforms under a dilation as the electromagnetic field. But thefactor e−iE

t of the non-relativistic quantum mechanics becomes in the case ofthe electron e−

Ecx

0σ12 with the Cl3 algebra, and with φ1φ−12 the energies are

not added but subtracted. To get the addition of energies we can consider termsas φ1σ1φ

−12 or φ1σ2φ

−12 because σ1 and σ2 anti-commute with σ12 and

σ1e− E

cx0σ12 = e

Ecx

0σ12σ1. (5.6)

Since we have

σ2 = σ1σ12 = σ1eπ2 σ12 (5.7)

σ1 and σ2 differ only by a constant gauge factor and we can choose σ1. Sincewe know that two electrons are identical we can consider only terms such asφ1σ1φ

−12 ± φ2σ1φ

−11 . The Pauli principle invites us to consider for the wave of

a system of two electrons

φ12 = φ1σ1φ−12 − φ2σ1φ

−11 (5.8)

which is antisymmetric:

φ21 = −φ12 (5.9)

and transforms under a dilation R of dilator M as F [4]

φ′12 = Mφ12M

−1. (5.10)

For a system of three electrons whose respective waves are φ1, φ2, φ3 we consider

φ123 = φ12φ3 + φ23φ1 + φ31φ2 (5.11)

which satisfies

φ123 = φ231 = φ312 = −φ132 = −φ321 = −φ132, (5.12)

φ′123 = Mφ123. (5.13)

64

the energies are not added but subtracted. To get the addi-tion of energies we can consider terms as

and give a torsion. This terms of torsion are linked to the proper mass of theparticle.

5.2 Systems of electrons

The non-relativistic theory for a particle system gives to a system of two particleswithout spin a wave ψ = ψ1ψ2 which is the product of the two waves of eachparticle, when it is possible to neglect the interaction between these particles.We cannot transpose ψ1ψ2 into φ1φ2 which should transform into Mφ1Mφ2

under the dilation R defined in (1.42), because M does not commute with φ.Another product is suggested by (4.14) because if φ12 = φ1φ

−12 we get

φ′12 = φ′

1φ′−12 = Mφ1φ

−12 M−1 = Mφ12M

−1. (5.5)

And φ12 transforms under a dilation as the electromagnetic field. But thefactor e−iE

t of the non-relativistic quantum mechanics becomes in the case ofthe electron e−

Ecx

0σ12 with the Cl3 algebra, and with φ1φ−12 the energies are

not added but subtracted. To get the addition of energies we can consider termsas φ1σ1φ

−12 or φ1σ2φ

−12 because σ1 and σ2 anti-commute with σ12 and

σ1e− E

cx0σ12 = e

Ecx

0σ12σ1. (5.6)

Since we have

σ2 = σ1σ12 = σ1eπ2 σ12 (5.7)

σ1 and σ2 differ only by a constant gauge factor and we can choose σ1. Sincewe know that two electrons are identical we can consider only terms such asφ1σ1φ

−12 ± φ2σ1φ

−11 . The Pauli principle invites us to consider for the wave of

a system of two electrons

φ12 = φ1σ1φ−12 − φ2σ1φ

−11 (5.8)

which is antisymmetric:

φ21 = −φ12 (5.9)

and transforms under a dilation R of dilator M as F [4]

φ′12 = Mφ12M

−1. (5.10)

For a system of three electrons whose respective waves are φ1, φ2, φ3 we consider

φ123 = φ12φ3 + φ23φ1 + φ31φ2 (5.11)

which satisfies

φ123 = φ231 = φ312 = −φ132 = −φ321 = −φ132, (5.12)

φ′123 = Mφ123. (5.13)

64

or

and give a torsion. This terms of torsion are linked to the proper mass of theparticle.

5.2 Systems of electrons

The non-relativistic theory for a particle system gives to a system of two particleswithout spin a wave ψ = ψ1ψ2 which is the product of the two waves of eachparticle, when it is possible to neglect the interaction between these particles.We cannot transpose ψ1ψ2 into φ1φ2 which should transform into Mφ1Mφ2

under the dilation R defined in (1.42), because M does not commute with φ.Another product is suggested by (4.14) because if φ12 = φ1φ

−12 we get

φ′12 = φ′

1φ′−12 = Mφ1φ

−12 M−1 = Mφ12M

−1. (5.5)

And φ12 transforms under a dilation as the electromagnetic field. But thefactor e−iE

t of the non-relativistic quantum mechanics becomes in the case ofthe electron e−

Ecx

0σ12 with the Cl3 algebra, and with φ1φ−12 the energies are

not added but subtracted. To get the addition of energies we can consider termsas φ1σ1φ

−12 or φ1σ2φ

−12 because σ1 and σ2 anti-commute with σ12 and

σ1e− E

cx0σ12 = e

Ecx

0σ12σ1. (5.6)

Since we have

σ2 = σ1σ12 = σ1eπ2 σ12 (5.7)

σ1 and σ2 differ only by a constant gauge factor and we can choose σ1. Sincewe know that two electrons are identical we can consider only terms such asφ1σ1φ

−12 ± φ2σ1φ

−11 . The Pauli principle invites us to consider for the wave of

a system of two electrons

φ12 = φ1σ1φ−12 − φ2σ1φ

−11 (5.8)

which is antisymmetric:

φ21 = −φ12 (5.9)

and transforms under a dilation R of dilator M as F [4]

φ′12 = Mφ12M

−1. (5.10)

For a system of three electrons whose respective waves are φ1, φ2, φ3 we consider

φ123 = φ12φ3 + φ23φ1 + φ31φ2 (5.11)

which satisfies

φ123 = φ231 = φ312 = −φ132 = −φ321 = −φ132, (5.12)

φ′123 = Mφ123. (5.13)

64

because σ1 and σ2 anti-commute with σ12 and

and give a torsion. This terms of torsion are linked to the proper mass of theparticle.

5.2 Systems of electrons

The non-relativistic theory for a particle system gives to a system of two particleswithout spin a wave ψ = ψ1ψ2 which is the product of the two waves of eachparticle, when it is possible to neglect the interaction between these particles.We cannot transpose ψ1ψ2 into φ1φ2 which should transform into Mφ1Mφ2

under the dilation R defined in (1.42), because M does not commute with φ.Another product is suggested by (4.14) because if φ12 = φ1φ

−12 we get

φ′12 = φ′

1φ′−12 = Mφ1φ

−12 M−1 = Mφ12M

−1. (5.5)

And φ12 transforms under a dilation as the electromagnetic field. But thefactor e−iE

t of the non-relativistic quantum mechanics becomes in the case ofthe electron e−

Ecx

0σ12 with the Cl3 algebra, and with φ1φ−12 the energies are

not added but subtracted. To get the addition of energies we can consider termsas φ1σ1φ

−12 or φ1σ2φ

−12 because σ1 and σ2 anti-commute with σ12 and

σ1e− E

cx0σ12 = e

Ecx

0σ12σ1. (5.6)

Since we have

σ2 = σ1σ12 = σ1eπ2 σ12 (5.7)

σ1 and σ2 differ only by a constant gauge factor and we can choose σ1. Sincewe know that two electrons are identical we can consider only terms such asφ1σ1φ

−12 ± φ2σ1φ

−11 . The Pauli principle invites us to consider for the wave of

a system of two electrons

φ12 = φ1σ1φ−12 − φ2σ1φ

−11 (5.8)

which is antisymmetric:

φ21 = −φ12 (5.9)

and transforms under a dilation R of dilator M as F [4]

φ′12 = Mφ12M

−1. (5.10)

For a system of three electrons whose respective waves are φ1, φ2, φ3 we consider

φ123 = φ12φ3 + φ23φ1 + φ31φ2 (5.11)

which satisfies

φ123 = φ231 = φ312 = −φ132 = −φ321 = −φ132, (5.12)

φ′123 = Mφ123. (5.13)

64

(5.6)

Since we have

and give a torsion. This terms of torsion are linked to the proper mass of theparticle.

5.2 Systems of electrons

The non-relativistic theory for a particle system gives to a system of two particleswithout spin a wave ψ = ψ1ψ2 which is the product of the two waves of eachparticle, when it is possible to neglect the interaction between these particles.We cannot transpose ψ1ψ2 into φ1φ2 which should transform into Mφ1Mφ2

under the dilation R defined in (1.42), because M does not commute with φ.Another product is suggested by (4.14) because if φ12 = φ1φ

−12 we get

φ′12 = φ′

1φ′−12 = Mφ1φ

−12 M−1 = Mφ12M

−1. (5.5)

And φ12 transforms under a dilation as the electromagnetic field. But thefactor e−iE

t of the non-relativistic quantum mechanics becomes in the case ofthe electron e−

Ecx

0σ12 with the Cl3 algebra, and with φ1φ−12 the energies are

not added but subtracted. To get the addition of energies we can consider termsas φ1σ1φ

−12 or φ1σ2φ

−12 because σ1 and σ2 anti-commute with σ12 and

σ1e− E

cx0σ12 = e

Ecx

0σ12σ1. (5.6)

Since we have

σ2 = σ1σ12 = σ1eπ2 σ12 (5.7)

σ1 and σ2 differ only by a constant gauge factor and we can choose σ1. Sincewe know that two electrons are identical we can consider only terms such asφ1σ1φ

−12 ± φ2σ1φ

−11 . The Pauli principle invites us to consider for the wave of

a system of two electrons

φ12 = φ1σ1φ−12 − φ2σ1φ

−11 (5.8)

which is antisymmetric:

φ21 = −φ12 (5.9)

and transforms under a dilation R of dilator M as F [4]

φ′12 = Mφ12M

−1. (5.10)

For a system of three electrons whose respective waves are φ1, φ2, φ3 we consider

φ123 = φ12φ3 + φ23φ1 + φ31φ2 (5.11)

which satisfies

φ123 = φ231 = φ312 = −φ132 = −φ321 = −φ132, (5.12)

φ′123 = Mφ123. (5.13)

64

(5.7)

σ1 and σ2 differ only by a constant gauge factor and we can choose σ1. Since we know that two electrons are identical we can consider only terms such

and give a torsion. This terms of torsion are linked to the proper mass of theparticle.

5.2 Systems of electrons

The non-relativistic theory for a particle system gives to a system of two particleswithout spin a wave ψ = ψ1ψ2 which is the product of the two waves of eachparticle, when it is possible to neglect the interaction between these particles.We cannot transpose ψ1ψ2 into φ1φ2 which should transform into Mφ1Mφ2

under the dilation R defined in (1.42), because M does not commute with φ.Another product is suggested by (4.14) because if φ12 = φ1φ

−12 we get

φ′12 = φ′

1φ′−12 = Mφ1φ

−12 M−1 = Mφ12M

−1. (5.5)

And φ12 transforms under a dilation as the electromagnetic field. But thefactor e−iE

t of the non-relativistic quantum mechanics becomes in the case ofthe electron e−

Ecx

0σ12 with the Cl3 algebra, and with φ1φ−12 the energies are

not added but subtracted. To get the addition of energies we can consider termsas φ1σ1φ

−12 or φ1σ2φ

−12 because σ1 and σ2 anti-commute with σ12 and

σ1e− E

cx0σ12 = e

Ecx

0σ12σ1. (5.6)

Since we have

σ2 = σ1σ12 = σ1eπ2 σ12 (5.7)

σ1 and σ2 differ only by a constant gauge factor and we can choose σ1. Sincewe know that two electrons are identical we can consider only terms such asφ1σ1φ

−12 ± φ2σ1φ

−11 . The Pauli principle invites us to consider for the wave of

a system of two electrons

φ12 = φ1σ1φ−12 − φ2σ1φ

−11 (5.8)

which is antisymmetric:

φ21 = −φ12 (5.9)

and transforms under a dilation R of dilator M as F [4]

φ′12 = Mφ12M

−1. (5.10)

For a system of three electrons whose respective waves are φ1, φ2, φ3 we consider

φ123 = φ12φ3 + φ23φ1 + φ31φ2 (5.11)

which satisfies

φ123 = φ231 = φ312 = −φ132 = −φ321 = −φ132, (5.12)

φ′123 = Mφ123. (5.13)

64

. The Pauli principle invites us to consider for the wave of a system of two electrons

and give a torsion. This terms of torsion are linked to the proper mass of theparticle.

5.2 Systems of electrons

The non-relativistic theory for a particle system gives to a system of two particleswithout spin a wave ψ = ψ1ψ2 which is the product of the two waves of eachparticle, when it is possible to neglect the interaction between these particles.We cannot transpose ψ1ψ2 into φ1φ2 which should transform into Mφ1Mφ2

under the dilation R defined in (1.42), because M does not commute with φ.Another product is suggested by (4.14) because if φ12 = φ1φ

−12 we get

φ′12 = φ′

1φ′−12 = Mφ1φ

−12 M−1 = Mφ12M

−1. (5.5)

And φ12 transforms under a dilation as the electromagnetic field. But thefactor e−iE

t of the non-relativistic quantum mechanics becomes in the case ofthe electron e−

Ecx

0σ12 with the Cl3 algebra, and with φ1φ−12 the energies are

not added but subtracted. To get the addition of energies we can consider termsas φ1σ1φ

−12 or φ1σ2φ

−12 because σ1 and σ2 anti-commute with σ12 and

σ1e− E

cx0σ12 = e

Ecx

0σ12σ1. (5.6)

Since we have

σ2 = σ1σ12 = σ1eπ2 σ12 (5.7)

σ1 and σ2 differ only by a constant gauge factor and we can choose σ1. Sincewe know that two electrons are identical we can consider only terms such asφ1σ1φ

−12 ± φ2σ1φ

−11 . The Pauli principle invites us to consider for the wave of

a system of two electrons

φ12 = φ1σ1φ−12 − φ2σ1φ

−11 (5.8)

which is antisymmetric:

φ21 = −φ12 (5.9)

and transforms under a dilation R of dilator M as F [4]

φ′12 = Mφ12M

−1. (5.10)

For a system of three electrons whose respective waves are φ1, φ2, φ3 we consider

φ123 = φ12φ3 + φ23φ1 + φ31φ2 (5.11)

which satisfies

φ123 = φ231 = φ312 = −φ132 = −φ321 = −φ132, (5.12)

φ′123 = Mφ123. (5.13)

64

(5.8)

which is antisymmetric:

and give a torsion. This terms of torsion are linked to the proper mass of theparticle.

5.2 Systems of electrons

The non-relativistic theory for a particle system gives to a system of two particleswithout spin a wave ψ = ψ1ψ2 which is the product of the two waves of eachparticle, when it is possible to neglect the interaction between these particles.We cannot transpose ψ1ψ2 into φ1φ2 which should transform into Mφ1Mφ2

under the dilation R defined in (1.42), because M does not commute with φ.Another product is suggested by (4.14) because if φ12 = φ1φ

−12 we get

φ′12 = φ′

1φ′−12 = Mφ1φ

−12 M−1 = Mφ12M

−1. (5.5)

And φ12 transforms under a dilation as the electromagnetic field. But thefactor e−iE

t of the non-relativistic quantum mechanics becomes in the case ofthe electron e−

Ecx

0σ12 with the Cl3 algebra, and with φ1φ−12 the energies are

not added but subtracted. To get the addition of energies we can consider termsas φ1σ1φ

−12 or φ1σ2φ

−12 because σ1 and σ2 anti-commute with σ12 and

σ1e− E

cx0σ12 = e

Ecx

0σ12σ1. (5.6)

Since we have

σ2 = σ1σ12 = σ1eπ2 σ12 (5.7)

σ1 and σ2 differ only by a constant gauge factor and we can choose σ1. Sincewe know that two electrons are identical we can consider only terms such asφ1σ1φ

−12 ± φ2σ1φ

−11 . The Pauli principle invites us to consider for the wave of

a system of two electrons

φ12 = φ1σ1φ−12 − φ2σ1φ

−11 (5.8)

which is antisymmetric:

φ21 = −φ12 (5.9)

and transforms under a dilation R of dilator M as F [4]

φ′12 = Mφ12M

−1. (5.10)

For a system of three electrons whose respective waves are φ1, φ2, φ3 we consider

φ123 = φ12φ3 + φ23φ1 + φ31φ2 (5.11)

which satisfies

φ123 = φ231 = φ312 = −φ132 = −φ321 = −φ132, (5.12)

φ′123 = Mφ123. (5.13)

64

(5.9)

and transforms under a dilation R of dilator M as F [4]

and give a torsion. This terms of torsion are linked to the proper mass of theparticle.

5.2 Systems of electrons

The non-relativistic theory for a particle system gives to a system of two particleswithout spin a wave ψ = ψ1ψ2 which is the product of the two waves of eachparticle, when it is possible to neglect the interaction between these particles.We cannot transpose ψ1ψ2 into φ1φ2 which should transform into Mφ1Mφ2

under the dilation R defined in (1.42), because M does not commute with φ.Another product is suggested by (4.14) because if φ12 = φ1φ

−12 we get

φ′12 = φ′

1φ′−12 = Mφ1φ

−12 M−1 = Mφ12M

−1. (5.5)

And φ12 transforms under a dilation as the electromagnetic field. But thefactor e−iE

t of the non-relativistic quantum mechanics becomes in the case ofthe electron e−

Ecx

0σ12 with the Cl3 algebra, and with φ1φ−12 the energies are

not added but subtracted. To get the addition of energies we can consider termsas φ1σ1φ

−12 or φ1σ2φ

−12 because σ1 and σ2 anti-commute with σ12 and

σ1e− E

cx0σ12 = e

Ecx

0σ12σ1. (5.6)

Since we have

σ2 = σ1σ12 = σ1eπ2 σ12 (5.7)

σ1 and σ2 differ only by a constant gauge factor and we can choose σ1. Sincewe know that two electrons are identical we can consider only terms such asφ1σ1φ

−12 ± φ2σ1φ

−11 . The Pauli principle invites us to consider for the wave of

a system of two electrons

φ12 = φ1σ1φ−12 − φ2σ1φ

−11 (5.8)

which is antisymmetric:

φ21 = −φ12 (5.9)

and transforms under a dilation R of dilator M as F [4]

φ′12 = Mφ12M

−1. (5.10)

For a system of three electrons whose respective waves are φ1, φ2, φ3 we consider

φ123 = φ12φ3 + φ23φ1 + φ31φ2 (5.11)

which satisfies

φ123 = φ231 = φ312 = −φ132 = −φ321 = −φ132, (5.12)

φ′123 = Mφ123. (5.13)

64

(5.10)

For a system of three electrons whose respective waves are ϕ1, ϕ2, ϕ3 we consider

and give a torsion. This terms of torsion are linked to the proper mass of theparticle.

5.2 Systems of electrons

The non-relativistic theory for a particle system gives to a system of two particleswithout spin a wave ψ = ψ1ψ2 which is the product of the two waves of eachparticle, when it is possible to neglect the interaction between these particles.We cannot transpose ψ1ψ2 into φ1φ2 which should transform into Mφ1Mφ2

under the dilation R defined in (1.42), because M does not commute with φ.Another product is suggested by (4.14) because if φ12 = φ1φ

−12 we get

φ′12 = φ′

1φ′−12 = Mφ1φ

−12 M−1 = Mφ12M

−1. (5.5)

And φ12 transforms under a dilation as the electromagnetic field. But thefactor e−iE

t of the non-relativistic quantum mechanics becomes in the case ofthe electron e−

Ecx

0σ12 with the Cl3 algebra, and with φ1φ−12 the energies are

not added but subtracted. To get the addition of energies we can consider termsas φ1σ1φ

−12 or φ1σ2φ

−12 because σ1 and σ2 anti-commute with σ12 and

σ1e− E

cx0σ12 = e

Ecx

0σ12σ1. (5.6)

Since we have

σ2 = σ1σ12 = σ1eπ2 σ12 (5.7)

σ1 and σ2 differ only by a constant gauge factor and we can choose σ1. Sincewe know that two electrons are identical we can consider only terms such asφ1σ1φ

−12 ± φ2σ1φ

−11 . The Pauli principle invites us to consider for the wave of

a system of two electrons

φ12 = φ1σ1φ−12 − φ2σ1φ

−11 (5.8)

which is antisymmetric:

φ21 = −φ12 (5.9)

and transforms under a dilation R of dilator M as F [4]

φ′12 = Mφ12M

−1. (5.10)

For a system of three electrons whose respective waves are φ1, φ2, φ3 we consider

φ123 = φ12φ3 + φ23φ1 + φ31φ2 (5.11)

which satisfies

φ123 = φ231 = φ312 = −φ132 = −φ321 = −φ132, (5.12)

φ′123 = Mφ123. (5.13)

64

(5.11)

which satisfies

and give a torsion. This terms of torsion are linked to the proper mass of theparticle.

5.2 Systems of electrons

The non-relativistic theory for a particle system gives to a system of two particleswithout spin a wave ψ = ψ1ψ2 which is the product of the two waves of eachparticle, when it is possible to neglect the interaction between these particles.We cannot transpose ψ1ψ2 into φ1φ2 which should transform into Mφ1Mφ2

under the dilation R defined in (1.42), because M does not commute with φ.Another product is suggested by (4.14) because if φ12 = φ1φ

−12 we get

φ′12 = φ′

1φ′−12 = Mφ1φ

−12 M−1 = Mφ12M

−1. (5.5)

And φ12 transforms under a dilation as the electromagnetic field. But thefactor e−iE

t of the non-relativistic quantum mechanics becomes in the case ofthe electron e−

Ecx

0σ12 with the Cl3 algebra, and with φ1φ−12 the energies are

not added but subtracted. To get the addition of energies we can consider termsas φ1σ1φ

−12 or φ1σ2φ

−12 because σ1 and σ2 anti-commute with σ12 and

σ1e− E

cx0σ12 = e

Ecx

0σ12σ1. (5.6)

Since we have

σ2 = σ1σ12 = σ1eπ2 σ12 (5.7)

σ1 and σ2 differ only by a constant gauge factor and we can choose σ1. Sincewe know that two electrons are identical we can consider only terms such asφ1σ1φ

−12 ± φ2σ1φ

−11 . The Pauli principle invites us to consider for the wave of

a system of two electrons

φ12 = φ1σ1φ−12 − φ2σ1φ

−11 (5.8)

which is antisymmetric:

φ21 = −φ12 (5.9)

and transforms under a dilation R of dilator M as F [4]

φ′12 = Mφ12M

−1. (5.10)

For a system of three electrons whose respective waves are φ1, φ2, φ3 we consider

φ123 = φ12φ3 + φ23φ1 + φ31φ2 (5.11)

which satisfies

φ123 = φ231 = φ312 = −φ132 = −φ321 = −φ132, (5.12)

φ′123 = Mφ123. (5.13)

64

(5.12)

and give a torsion. This terms of torsion are linked to the proper mass of theparticle.

5.2 Systems of electrons

The non-relativistic theory for a particle system gives to a system of two particleswithout spin a wave ψ = ψ1ψ2 which is the product of the two waves of eachparticle, when it is possible to neglect the interaction between these particles.We cannot transpose ψ1ψ2 into φ1φ2 which should transform into Mφ1Mφ2

under the dilation R defined in (1.42), because M does not commute with φ.Another product is suggested by (4.14) because if φ12 = φ1φ

−12 we get

φ′12 = φ′

1φ′−12 = Mφ1φ

−12 M−1 = Mφ12M

−1. (5.5)

And φ12 transforms under a dilation as the electromagnetic field. But thefactor e−iE

t of the non-relativistic quantum mechanics becomes in the case ofthe electron e−

Ecx

0σ12 with the Cl3 algebra, and with φ1φ−12 the energies are

not added but subtracted. To get the addition of energies we can consider termsas φ1σ1φ

−12 or φ1σ2φ

−12 because σ1 and σ2 anti-commute with σ12 and

σ1e− E

cx0σ12 = e

Ecx

0σ12σ1. (5.6)

Since we have

σ2 = σ1σ12 = σ1eπ2 σ12 (5.7)

σ1 and σ2 differ only by a constant gauge factor and we can choose σ1. Sincewe know that two electrons are identical we can consider only terms such asφ1σ1φ

−12 ± φ2σ1φ

−11 . The Pauli principle invites us to consider for the wave of

a system of two electrons

φ12 = φ1σ1φ−12 − φ2σ1φ

−11 (5.8)

which is antisymmetric:

φ21 = −φ12 (5.9)

and transforms under a dilation R of dilator M as F [4]

φ′12 = Mφ12M

−1. (5.10)

For a system of three electrons whose respective waves are φ1, φ2, φ3 we consider

φ123 = φ12φ3 + φ23φ1 + φ31φ2 (5.11)

which satisfies

φ123 = φ231 = φ312 = −φ132 = −φ321 = −φ132, (5.12)

φ′123 = Mφ123. (5.13)

64

(5.13)

The Pauli principle is satisfied and ϕ123 transforms as a unique electronic wave37. Then for four electrons we consider

37 If a similar construction is possible for quarks, this could explain why a proton or a neutron containing three quarks is seen also as a unique spinor, transforming under a Lorentz rotation as the wave of a unique electron.

23

Page 25: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 23

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

The Pauli principle is satisfied and φ123 transforms as a unique electronic wave37. Then for four electrons we consider

φ1234 = φ12φ34 + φ23φ14 + φ31φ24 + φ34φ12 + φ14φ23 + φ31φ24 (5.14)

which is antisymmetric, and transforms also as the electromagnetic field

φ′1234 = Mφ1234M

−1. (5.15)

We can easily generalize to n electrons. We get n + 1 wave equations, one foreach electronic wave

∇φk + qAkφkσ12 +me−iβkφkσ12 = 0 (5.16)

where Ak is the sum of the exterior potential A and the potential created bythe n− 1 other electrons, βk is the Yvon-Takabayasi angle of the kth electron.And the wave of the system is antisymmetric. The wave equation of this waveis determined by the n wave equations of each particle. If n is even φ12...n

transforms under a dilation as the electromagnetic field F . The wave of aneven system appears as a boson wave. Even systems compose greater systemssymmetrically as in (5.14). This is the source of the Bose-Einstein statistics. Ifn is odd φ12...n transforms under a dilation as a spinor φ. The wave of an oddsystem of electrons transforms under a dilation as the wave of a unique electron.

The wave of a system propagates, as the waves of each electron, in the usualspace-time. It is not necessary to use configuration spaces. Difficulties comingfrom the difference between a unique time and several spaces disappear. Spaceis, as the time, unique in this model. The wave of a system is not very differentfrom the waves of its individual parts, they continue to exist and to propagate.

This model can also explain why a muon in an electronic cloud does notfollow the Pauli’s principle of exclusion: with a wave equation (5.1) for instancethe phase contains not a σ12 factor, but instead a σ23 factor, and the muoncannot add its impulse-energy and so cannot enter the process of constructionof a wave of system described here.

5.3 Equation without Lagrangian formalism

We have seen in 2.4 that the Lagrangian density of the Dirac wave is exactlythe scalar part of the invariant wave equation. The Lagrangian formalism is aconsequence, not the cause of the Dirac equation. Therefore, if we modify thewave equation without changing its scalar part, we shall get a wave equationwhich cannot result from a Lagrangian mechanism, since the scalar part givesthe Dirac equation without change [8].

Such a wave may be non-physical, since the Lagrangian formalism worksvery well for each physical situation. We shall nevertheless study a case, as

37If a similar construction is possible for quarks, this could explain why a proton or aneutron containing three quarks is seen also as a unique spinor, transforming under a Lorentzrotation as the wave of a unique electron.

65

The Pauli principle is satisfied and φ123 transforms as a unique electronic wave37. Then for four electrons we consider

φ1234 = φ12φ34 + φ23φ14 + φ31φ24 + φ34φ12 + φ14φ23 + φ31φ24 (5.14)

which is antisymmetric, and transforms also as the electromagnetic field

φ′1234 = Mφ1234M

−1. (5.15)

We can easily generalize to n electrons. We get n + 1 wave equations, one foreach electronic wave

∇φk + qAkφkσ12 +me−iβkφkσ12 = 0 (5.16)

where Ak is the sum of the exterior potential A and the potential created bythe n− 1 other electrons, βk is the Yvon-Takabayasi angle of the kth electron.And the wave of the system is antisymmetric. The wave equation of this waveis determined by the n wave equations of each particle. If n is even φ12...n

transforms under a dilation as the electromagnetic field F . The wave of aneven system appears as a boson wave. Even systems compose greater systemssymmetrically as in (5.14). This is the source of the Bose-Einstein statistics. Ifn is odd φ12...n transforms under a dilation as a spinor φ. The wave of an oddsystem of electrons transforms under a dilation as the wave of a unique electron.

The wave of a system propagates, as the waves of each electron, in the usualspace-time. It is not necessary to use configuration spaces. Difficulties comingfrom the difference between a unique time and several spaces disappear. Spaceis, as the time, unique in this model. The wave of a system is not very differentfrom the waves of its individual parts, they continue to exist and to propagate.

This model can also explain why a muon in an electronic cloud does notfollow the Pauli’s principle of exclusion: with a wave equation (5.1) for instancethe phase contains not a σ12 factor, but instead a σ23 factor, and the muoncannot add its impulse-energy and so cannot enter the process of constructionof a wave of system described here.

5.3 Equation without Lagrangian formalism

We have seen in 2.4 that the Lagrangian density of the Dirac wave is exactlythe scalar part of the invariant wave equation. The Lagrangian formalism is aconsequence, not the cause of the Dirac equation. Therefore, if we modify thewave equation without changing its scalar part, we shall get a wave equationwhich cannot result from a Lagrangian mechanism, since the scalar part givesthe Dirac equation without change [8].

Such a wave may be non-physical, since the Lagrangian formalism worksvery well for each physical situation. We shall nevertheless study a case, as

37If a similar construction is possible for quarks, this could explain why a proton or aneutron containing three quarks is seen also as a unique spinor, transforming under a Lorentzrotation as the wave of a unique electron.

65

(5.14)which is antisymmetric, and transforms also as the elec-tromagnetic field

The Pauli principle is satisfied and φ123 transforms as a unique electronic wave37. Then for four electrons we consider

φ1234 = φ12φ34 + φ23φ14 + φ31φ24 + φ34φ12 + φ14φ23 + φ31φ24 (5.14)

which is antisymmetric, and transforms also as the electromagnetic field

φ′1234 = Mφ1234M

−1. (5.15)

We can easily generalize to n electrons. We get n + 1 wave equations, one foreach electronic wave

∇φk + qAkφkσ12 +me−iβkφkσ12 = 0 (5.16)

where Ak is the sum of the exterior potential A and the potential created bythe n− 1 other electrons, βk is the Yvon-Takabayasi angle of the kth electron.And the wave of the system is antisymmetric. The wave equation of this waveis determined by the n wave equations of each particle. If n is even φ12...n

transforms under a dilation as the electromagnetic field F . The wave of aneven system appears as a boson wave. Even systems compose greater systemssymmetrically as in (5.14). This is the source of the Bose-Einstein statistics. Ifn is odd φ12...n transforms under a dilation as a spinor φ. The wave of an oddsystem of electrons transforms under a dilation as the wave of a unique electron.

The wave of a system propagates, as the waves of each electron, in the usualspace-time. It is not necessary to use configuration spaces. Difficulties comingfrom the difference between a unique time and several spaces disappear. Spaceis, as the time, unique in this model. The wave of a system is not very differentfrom the waves of its individual parts, they continue to exist and to propagate.

This model can also explain why a muon in an electronic cloud does notfollow the Pauli’s principle of exclusion: with a wave equation (5.1) for instancethe phase contains not a σ12 factor, but instead a σ23 factor, and the muoncannot add its impulse-energy and so cannot enter the process of constructionof a wave of system described here.

5.3 Equation without Lagrangian formalism

We have seen in 2.4 that the Lagrangian density of the Dirac wave is exactlythe scalar part of the invariant wave equation. The Lagrangian formalism is aconsequence, not the cause of the Dirac equation. Therefore, if we modify thewave equation without changing its scalar part, we shall get a wave equationwhich cannot result from a Lagrangian mechanism, since the scalar part givesthe Dirac equation without change [8].

Such a wave may be non-physical, since the Lagrangian formalism worksvery well for each physical situation. We shall nevertheless study a case, as

37If a similar construction is possible for quarks, this could explain why a proton or aneutron containing three quarks is seen also as a unique spinor, transforming under a Lorentzrotation as the wave of a unique electron.

65

(5.15)

We can easily generalize to n electrons. We get n + 1 wave equations, one for each electronic wave

The Pauli principle is satisfied and φ123 transforms as a unique electronic wave37. Then for four electrons we consider

φ1234 = φ12φ34 + φ23φ14 + φ31φ24 + φ34φ12 + φ14φ23 + φ31φ24 (5.14)

which is antisymmetric, and transforms also as the electromagnetic field

φ′1234 = Mφ1234M

−1. (5.15)

We can easily generalize to n electrons. We get n + 1 wave equations, one foreach electronic wave

∇φk + qAkφkσ12 +me−iβkφkσ12 = 0 (5.16)

where Ak is the sum of the exterior potential A and the potential created bythe n− 1 other electrons, βk is the Yvon-Takabayasi angle of the kth electron.And the wave of the system is antisymmetric. The wave equation of this waveis determined by the n wave equations of each particle. If n is even φ12...n

transforms under a dilation as the electromagnetic field F . The wave of aneven system appears as a boson wave. Even systems compose greater systemssymmetrically as in (5.14). This is the source of the Bose-Einstein statistics. Ifn is odd φ12...n transforms under a dilation as a spinor φ. The wave of an oddsystem of electrons transforms under a dilation as the wave of a unique electron.

The wave of a system propagates, as the waves of each electron, in the usualspace-time. It is not necessary to use configuration spaces. Difficulties comingfrom the difference between a unique time and several spaces disappear. Spaceis, as the time, unique in this model. The wave of a system is not very differentfrom the waves of its individual parts, they continue to exist and to propagate.

This model can also explain why a muon in an electronic cloud does notfollow the Pauli’s principle of exclusion: with a wave equation (5.1) for instancethe phase contains not a σ12 factor, but instead a σ23 factor, and the muoncannot add its impulse-energy and so cannot enter the process of constructionof a wave of system described here.

5.3 Equation without Lagrangian formalism

We have seen in 2.4 that the Lagrangian density of the Dirac wave is exactlythe scalar part of the invariant wave equation. The Lagrangian formalism is aconsequence, not the cause of the Dirac equation. Therefore, if we modify thewave equation without changing its scalar part, we shall get a wave equationwhich cannot result from a Lagrangian mechanism, since the scalar part givesthe Dirac equation without change [8].

Such a wave may be non-physical, since the Lagrangian formalism worksvery well for each physical situation. We shall nevertheless study a case, as

37If a similar construction is possible for quarks, this could explain why a proton or aneutron containing three quarks is seen also as a unique spinor, transforming under a Lorentzrotation as the wave of a unique electron.

65

(5.16)

where Ak is the sum of the exterior potential A and the potential created by the n − 1 other electrons, βk is the Yvon-Takabayasi angle of the kth electron. And the wave of the system is antisymmetric. The wave equation of this wave is determined by the n wave equations of each par-ticle. If n is even ϕ12...n transforms under a dilation as the electromagnetic field F. The wave of an even system ap-pears as a boson wave. Even systems compose greater systems symmetrically as in (5.14). This is the source of the Bose-Einstein statistics. If n is odd ϕ12...n transforms under a dilation as a spinor ϕ. The wave of an odd system of electrons transforms under a dilation as the wave of a unique electron.

The wave of a system propagates, as the waves of each electron, in the usual space-time. It is not necessary to use configuration spaces. Difficulties coming from the difference between a unique time and several spac-es disappear. Space is, as the time, unique in this mod-el. The wave of a system is not very different from the waves of its individual parts, they continue to exist and to propagate.

This model can also explain why a muon in an elec-tronic cloud does not follow the Pauli’s principle of ex-clusion: with a wave equation (5.1) for instance the phase contains not a σ12 factor, but instead a σ23 factor, and the muon cannot add its impulse-energy and so cannot en-ter the process of construction of a wave of system de-scribed here.

5.3 equation without Lagrangian formalism

We have seen in 2.4 that the Lagrangian density of the Dirac wave is exactly the scalar part of the invariant wave equation. The Lagrangian formalism is a conse-quence, not the cause of the Dirac equation. Therefore, if we modify the wave equation without changing its scalar part, we shall get a wave equation which cannot result from a Lagrangian mechanism, since the scalar part gives the Dirac equation without change [8].

Such a wave may be non-physical, since the Lagrang-ian formalism works very well for each physical situa-tion. We shall nevertheless study a case, as failures and accidents are scrutinized in the industry or as counter-ex-

amples are used in mathematics. We consider the invari-ant wave equation

failures and accidents are scrutinized in the industry or as counter-examples areused in mathematics. We consider the invariant wave equation

φ(∇φ)σ21 + φqAφ+mφφ(1 + εσ3) = 0. (5.17)

where ε is a very small real constant. Only the mass term is changed from theinvariant equation (2.81) equivalent to the Dirac equation. Computation of firstterms is unchanged, the mass term is

mφφ(1 + εσ3) = m(Ω1 + iΩ2)(1 + εσ3)

= mΩ1 +mεΩ1σ3 +mεΩ2iσ3 + imΩ2. (5.18)

and the system (2.118) to (2.125) becomes

0 = w3 + V 0 +mΩ1 (5.19)

0 = v2 + V 1 (5.20)

0 = −v1 + V 2 (5.21)

0 = w0 + V 3 +mεΩ1 (5.22)

0 = −v3 +mΩ2 (5.23)

0 = w2 (5.24)

0 = −w1 (5.25)

0 = −v0 +mεΩ2 (5.26)

This last equation signifies that the current of probability is no more conserva-tive, so this wave equation is certainly unusual. Now it is easy to escape theproblem of the conservation of probabilities: we start from the homogeneousnon-linear equation (3.9) and we add the same mass term

φ(∇φ)σ21 + φqAφ+mρ(1 + εσ3) = 0. (5.27)

The system (3.21) to (3.28) becomes

0 = w3 + V 0 +mρ (5.28)

0 = v2 + V 1 (5.29)

0 = −v1 + V 2 (5.30)

0 = w0 + V 3 +mερ (5.31)

0 = −v3 (5.32)

0 = w2 (5.33)

0 = −w1 (5.34)

0 = −v0 (5.35)

And as previously we have two conservative currents, J = D0 and K = D3.It is easy to see that (5.27) is invariant under Cl∗3, there are two gauge invari-ances (see 3.1). The angular momentum operators of the Dirac theory are still

66

(5.17)

where E is a very small real constant. Only the mass term is changed from the invariant equation (2.81) equivalent to the Dirac equation. Computation of first terms is un-changed, the mass term is

failures and accidents are scrutinized in the industry or as counter-examples areused in mathematics. We consider the invariant wave equation

φ(∇φ)σ21 + φqAφ+mφφ(1 + εσ3) = 0. (5.17)

where ε is a very small real constant. Only the mass term is changed from theinvariant equation (2.81) equivalent to the Dirac equation. Computation of firstterms is unchanged, the mass term is

mφφ(1 + εσ3) = m(Ω1 + iΩ2)(1 + εσ3)

= mΩ1 +mεΩ1σ3 +mεΩ2iσ3 + imΩ2. (5.18)

and the system (2.118) to (2.125) becomes

0 = w3 + V 0 +mΩ1 (5.19)

0 = v2 + V 1 (5.20)

0 = −v1 + V 2 (5.21)

0 = w0 + V 3 +mεΩ1 (5.22)

0 = −v3 +mΩ2 (5.23)

0 = w2 (5.24)

0 = −w1 (5.25)

0 = −v0 +mεΩ2 (5.26)

This last equation signifies that the current of probability is no more conserva-tive, so this wave equation is certainly unusual. Now it is easy to escape theproblem of the conservation of probabilities: we start from the homogeneousnon-linear equation (3.9) and we add the same mass term

φ(∇φ)σ21 + φqAφ+mρ(1 + εσ3) = 0. (5.27)

The system (3.21) to (3.28) becomes

0 = w3 + V 0 +mρ (5.28)

0 = v2 + V 1 (5.29)

0 = −v1 + V 2 (5.30)

0 = w0 + V 3 +mερ (5.31)

0 = −v3 (5.32)

0 = w2 (5.33)

0 = −w1 (5.34)

0 = −v0 (5.35)

And as previously we have two conservative currents, J = D0 and K = D3.It is easy to see that (5.27) is invariant under Cl∗3, there are two gauge invari-ances (see 3.1). The angular momentum operators of the Dirac theory are still

66

failures and accidents are scrutinized in the industry or as counter-examples areused in mathematics. We consider the invariant wave equation

φ(∇φ)σ21 + φqAφ+mφφ(1 + εσ3) = 0. (5.17)

where ε is a very small real constant. Only the mass term is changed from theinvariant equation (2.81) equivalent to the Dirac equation. Computation of firstterms is unchanged, the mass term is

mφφ(1 + εσ3) = m(Ω1 + iΩ2)(1 + εσ3)

= mΩ1 +mεΩ1σ3 +mεΩ2iσ3 + imΩ2. (5.18)

and the system (2.118) to (2.125) becomes

0 = w3 + V 0 +mΩ1 (5.19)

0 = v2 + V 1 (5.20)

0 = −v1 + V 2 (5.21)

0 = w0 + V 3 +mεΩ1 (5.22)

0 = −v3 +mΩ2 (5.23)

0 = w2 (5.24)

0 = −w1 (5.25)

0 = −v0 +mεΩ2 (5.26)

This last equation signifies that the current of probability is no more conserva-tive, so this wave equation is certainly unusual. Now it is easy to escape theproblem of the conservation of probabilities: we start from the homogeneousnon-linear equation (3.9) and we add the same mass term

φ(∇φ)σ21 + φqAφ+mρ(1 + εσ3) = 0. (5.27)

The system (3.21) to (3.28) becomes

0 = w3 + V 0 +mρ (5.28)

0 = v2 + V 1 (5.29)

0 = −v1 + V 2 (5.30)

0 = w0 + V 3 +mερ (5.31)

0 = −v3 (5.32)

0 = w2 (5.33)

0 = −w1 (5.34)

0 = −v0 (5.35)

And as previously we have two conservative currents, J = D0 and K = D3.It is easy to see that (5.27) is invariant under Cl∗3, there are two gauge invari-ances (see 3.1). The angular momentum operators of the Dirac theory are still

66

(5.18)and the system (2.118) to (2.125) becomes

(5.19)(5.20)(5.21)(5.22)(5.23)(5.24)(5.25)(5.26)

This last equation signifies that the current of prob-ability is no more conservative, so this wave equation is certainly unusual. Now it is easy to escape the problem of the conservation of probabilities: we start from the homogeneous non-linear equation (3.9) and we add the same mass term

failures and accidents are scrutinized in the industry or as counter-examples areused in mathematics. We consider the invariant wave equation

φ(∇φ)σ21 + φqAφ+mφφ(1 + εσ3) = 0. (5.17)

where ε is a very small real constant. Only the mass term is changed from theinvariant equation (2.81) equivalent to the Dirac equation. Computation of firstterms is unchanged, the mass term is

mφφ(1 + εσ3) = m(Ω1 + iΩ2)(1 + εσ3)

= mΩ1 +mεΩ1σ3 +mεΩ2iσ3 + imΩ2. (5.18)

and the system (2.118) to (2.125) becomes

0 = w3 + V 0 +mΩ1 (5.19)

0 = v2 + V 1 (5.20)

0 = −v1 + V 2 (5.21)

0 = w0 + V 3 +mεΩ1 (5.22)

0 = −v3 +mΩ2 (5.23)

0 = w2 (5.24)

0 = −w1 (5.25)

0 = −v0 +mεΩ2 (5.26)

This last equation signifies that the current of probability is no more conserva-tive, so this wave equation is certainly unusual. Now it is easy to escape theproblem of the conservation of probabilities: we start from the homogeneousnon-linear equation (3.9) and we add the same mass term

φ(∇φ)σ21 + φqAφ+mρ(1 + εσ3) = 0. (5.27)

The system (3.21) to (3.28) becomes

0 = w3 + V 0 +mρ (5.28)

0 = v2 + V 1 (5.29)

0 = −v1 + V 2 (5.30)

0 = w0 + V 3 +mερ (5.31)

0 = −v3 (5.32)

0 = w2 (5.33)

0 = −w1 (5.34)

0 = −v0 (5.35)

And as previously we have two conservative currents, J = D0 and K = D3.It is easy to see that (5.27) is invariant under Cl∗3, there are two gauge invari-ances (see 3.1). The angular momentum operators of the Dirac theory are still

66

(5.27)

The system (3.21) to (3.28) becomes

(5.28)(5.29)(5.30)(5.31)(5.32)(5.33)(5.34)(5.35)

And as previously we have two conservative currents, J = D0 and K = D3. It is easy to see that (5.27) is invariant under Cl*3 , there are two gauge invariances (see 3.1). The angular momentum operators of the Dirac theory are still available, but there is no Hamiltonian to commute with them. This wave equation cannot come from a Lagrang-ian density since such a density should modify (5.28), which gives (3.9), not (5.27).

failures and accidents are scrutinized in the industry or as counter-examples areused in mathematics. We consider the invariant wave equation

φ(∇φ)σ21 + φqAφ+mφφ(1 + εσ3) = 0. (5.17)

where ε is a very small real constant. Only the mass term is changed from theinvariant equation (2.81) equivalent to the Dirac equation. Computation of firstterms is unchanged, the mass term is

mφφ(1 + εσ3) = m(Ω1 + iΩ2)(1 + εσ3)

= mΩ1 +mεΩ1σ3 +mεΩ2iσ3 + imΩ2. (5.18)

and the system (2.118) to (2.125) becomes

0 = w3 + V 0 +mΩ1 (5.19)

0 = v2 + V 1 (5.20)

0 = −v1 + V 2 (5.21)

0 = w0 + V 3 +mεΩ1 (5.22)

0 = −v3 +mΩ2 (5.23)

0 = w2 (5.24)

0 = −w1 (5.25)

0 = −v0 +mεΩ2 (5.26)

This last equation signifies that the current of probability is no more conserva-tive, so this wave equation is certainly unusual. Now it is easy to escape theproblem of the conservation of probabilities: we start from the homogeneousnon-linear equation (3.9) and we add the same mass term

φ(∇φ)σ21 + φqAφ+mρ(1 + εσ3) = 0. (5.27)

The system (3.21) to (3.28) becomes

0 = w3 + V 0 +mρ (5.28)

0 = v2 + V 1 (5.29)

0 = −v1 + V 2 (5.30)

0 = w0 + V 3 +mερ (5.31)

0 = −v3 (5.32)

0 = w2 (5.33)

0 = −w1 (5.34)

0 = −v0 (5.35)

And as previously we have two conservative currents, J = D0 and K = D3.It is easy to see that (5.27) is invariant under Cl∗3, there are two gauge invari-ances (see 3.1). The angular momentum operators of the Dirac theory are still

66

failures and accidents are scrutinized in the industry or as counter-examples areused in mathematics. We consider the invariant wave equation

φ(∇φ)σ21 + φqAφ+mφφ(1 + εσ3) = 0. (5.17)

where ε is a very small real constant. Only the mass term is changed from theinvariant equation (2.81) equivalent to the Dirac equation. Computation of firstterms is unchanged, the mass term is

mφφ(1 + εσ3) = m(Ω1 + iΩ2)(1 + εσ3)

= mΩ1 +mεΩ1σ3 +mεΩ2iσ3 + imΩ2. (5.18)

and the system (2.118) to (2.125) becomes

0 = w3 + V 0 +mΩ1 (5.19)

0 = v2 + V 1 (5.20)

0 = −v1 + V 2 (5.21)

0 = w0 + V 3 +mεΩ1 (5.22)

0 = −v3 +mΩ2 (5.23)

0 = w2 (5.24)

0 = −w1 (5.25)

0 = −v0 +mεΩ2 (5.26)

This last equation signifies that the current of probability is no more conserva-tive, so this wave equation is certainly unusual. Now it is easy to escape theproblem of the conservation of probabilities: we start from the homogeneousnon-linear equation (3.9) and we add the same mass term

φ(∇φ)σ21 + φqAφ+mρ(1 + εσ3) = 0. (5.27)

The system (3.21) to (3.28) becomes

0 = w3 + V 0 +mρ (5.28)

0 = v2 + V 1 (5.29)

0 = −v1 + V 2 (5.30)

0 = w0 + V 3 +mερ (5.31)

0 = −v3 (5.32)

0 = w2 (5.33)

0 = −w1 (5.34)

0 = −v0 (5.35)

And as previously we have two conservative currents, J = D0 and K = D3.It is easy to see that (5.27) is invariant under Cl∗3, there are two gauge invari-ances (see 3.1). The angular momentum operators of the Dirac theory are still

66

22

Page 26: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201424

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

5.3.1 Plane waves

We consider a plane wave with a phase ϕ satisfying (3.35) with the vector v defined in (3.35). Without exte-rior electromagnetic field we get in the place of (3.39)

available, but there is no Hamiltonian to commute with them. This wave equa-tion cannot come from a Lagrangian density since such a density should modify(5.28), which gives (3.9), not (5.27).

5.3.1 Plane waves

We consider a plane wave with a phase ϕ satisfying (3.35) with the vector vdefined in (3.35). Without exterior electromagnetic field we get in the place of(3.39)

−mvφ+me−iβφ(1 + εσ3) = 0. (5.36)

This gives

φ(1 + εσ3) = eiβvφ (5.37)

Conjugating, we then get

φ(1− εσ3) = e−iβ vφ (5.38)

Together we have

φ(1 + εσ3)(1− εσ3) = eiβvφ(1− εσ3)

φ(1− ε2) = eiβve−iβ vφ

(1− ε2)φ = vvφ (5.39)

and we get

v · v = vv = 1− ε2 (5.40)

||v|| =√1− ε2 (5.41)

We let then

c′ = c√1− ε2 ; v = v′

√1− ε2. (5.42)

And we get

||v′|| = 1. (5.43)

First consequence: c′, not c is the velocity limit of this unusual quantum object.The present study has no known physical application, but this wave equationindicates that the limit speed c is not so general [8] than we thought. 38

38More, if ε tends to 1 the limit speed tends to 0 and may be very small.

67

(5.36)

This gives

available, but there is no Hamiltonian to commute with them. This wave equa-tion cannot come from a Lagrangian density since such a density should modify(5.28), which gives (3.9), not (5.27).

5.3.1 Plane waves

We consider a plane wave with a phase ϕ satisfying (3.35) with the vector vdefined in (3.35). Without exterior electromagnetic field we get in the place of(3.39)

−mvφ+me−iβφ(1 + εσ3) = 0. (5.36)

This gives

φ(1 + εσ3) = eiβvφ (5.37)

Conjugating, we then get

φ(1− εσ3) = e−iβ vφ (5.38)

Together we have

φ(1 + εσ3)(1− εσ3) = eiβvφ(1− εσ3)

φ(1− ε2) = eiβve−iβ vφ

(1− ε2)φ = vvφ (5.39)

and we get

v · v = vv = 1− ε2 (5.40)

||v|| =√1− ε2 (5.41)

We let then

c′ = c√1− ε2 ; v = v′

√1− ε2. (5.42)

And we get

||v′|| = 1. (5.43)

First consequence: c′, not c is the velocity limit of this unusual quantum object.The present study has no known physical application, but this wave equationindicates that the limit speed c is not so general [8] than we thought. 38

38More, if ε tends to 1 the limit speed tends to 0 and may be very small.

67

(5.37)

Conjugating, we then get

available, but there is no Hamiltonian to commute with them. This wave equa-tion cannot come from a Lagrangian density since such a density should modify(5.28), which gives (3.9), not (5.27).

5.3.1 Plane waves

We consider a plane wave with a phase ϕ satisfying (3.35) with the vector vdefined in (3.35). Without exterior electromagnetic field we get in the place of(3.39)

−mvφ+me−iβφ(1 + εσ3) = 0. (5.36)

This gives

φ(1 + εσ3) = eiβvφ (5.37)

Conjugating, we then get

φ(1− εσ3) = e−iβ vφ (5.38)

Together we have

φ(1 + εσ3)(1− εσ3) = eiβvφ(1− εσ3)

φ(1− ε2) = eiβve−iβ vφ

(1− ε2)φ = vvφ (5.39)

and we get

v · v = vv = 1− ε2 (5.40)

||v|| =√1− ε2 (5.41)

We let then

c′ = c√1− ε2 ; v = v′

√1− ε2. (5.42)

And we get

||v′|| = 1. (5.43)

First consequence: c′, not c is the velocity limit of this unusual quantum object.The present study has no known physical application, but this wave equationindicates that the limit speed c is not so general [8] than we thought. 38

38More, if ε tends to 1 the limit speed tends to 0 and may be very small.

67

(5.38)

Together we have

available, but there is no Hamiltonian to commute with them. This wave equa-tion cannot come from a Lagrangian density since such a density should modify(5.28), which gives (3.9), not (5.27).

5.3.1 Plane waves

We consider a plane wave with a phase ϕ satisfying (3.35) with the vector vdefined in (3.35). Without exterior electromagnetic field we get in the place of(3.39)

−mvφ+me−iβφ(1 + εσ3) = 0. (5.36)

This gives

φ(1 + εσ3) = eiβvφ (5.37)

Conjugating, we then get

φ(1− εσ3) = e−iβ vφ (5.38)

Together we have

φ(1 + εσ3)(1− εσ3) = eiβvφ(1− εσ3)

φ(1− ε2) = eiβve−iβ vφ

(1− ε2)φ = vvφ (5.39)

and we get

v · v = vv = 1− ε2 (5.40)

||v|| =√1− ε2 (5.41)

We let then

c′ = c√1− ε2 ; v = v′

√1− ε2. (5.42)

And we get

||v′|| = 1. (5.43)

First consequence: c′, not c is the velocity limit of this unusual quantum object.The present study has no known physical application, but this wave equationindicates that the limit speed c is not so general [8] than we thought. 38

38More, if ε tends to 1 the limit speed tends to 0 and may be very small.

67

(5.39)

and we get

available, but there is no Hamiltonian to commute with them. This wave equa-tion cannot come from a Lagrangian density since such a density should modify(5.28), which gives (3.9), not (5.27).

5.3.1 Plane waves

We consider a plane wave with a phase ϕ satisfying (3.35) with the vector vdefined in (3.35). Without exterior electromagnetic field we get in the place of(3.39)

−mvφ+me−iβφ(1 + εσ3) = 0. (5.36)

This gives

φ(1 + εσ3) = eiβvφ (5.37)

Conjugating, we then get

φ(1− εσ3) = e−iβ vφ (5.38)

Together we have

φ(1 + εσ3)(1− εσ3) = eiβvφ(1− εσ3)

φ(1− ε2) = eiβve−iβ vφ

(1− ε2)φ = vvφ (5.39)

and we get

v · v = vv = 1− ε2 (5.40)

||v|| =√1− ε2 (5.41)

We let then

c′ = c√1− ε2 ; v = v′

√1− ε2. (5.42)

And we get

||v′|| = 1. (5.43)

First consequence: c′, not c is the velocity limit of this unusual quantum object.The present study has no known physical application, but this wave equationindicates that the limit speed c is not so general [8] than we thought. 38

38More, if ε tends to 1 the limit speed tends to 0 and may be very small.

67

(5.40)

available, but there is no Hamiltonian to commute with them. This wave equa-tion cannot come from a Lagrangian density since such a density should modify(5.28), which gives (3.9), not (5.27).

5.3.1 Plane waves

We consider a plane wave with a phase ϕ satisfying (3.35) with the vector vdefined in (3.35). Without exterior electromagnetic field we get in the place of(3.39)

−mvφ+me−iβφ(1 + εσ3) = 0. (5.36)

This gives

φ(1 + εσ3) = eiβvφ (5.37)

Conjugating, we then get

φ(1− εσ3) = e−iβ vφ (5.38)

Together we have

φ(1 + εσ3)(1− εσ3) = eiβvφ(1− εσ3)

φ(1− ε2) = eiβve−iβ vφ

(1− ε2)φ = vvφ (5.39)

and we get

v · v = vv = 1− ε2 (5.40)

||v|| =√1− ε2 (5.41)

We let then

c′ = c√1− ε2 ; v = v′

√1− ε2. (5.42)

And we get

||v′|| = 1. (5.43)

First consequence: c′, not c is the velocity limit of this unusual quantum object.The present study has no known physical application, but this wave equationindicates that the limit speed c is not so general [8] than we thought. 38

38More, if ε tends to 1 the limit speed tends to 0 and may be very small.

67

(5.41)

We let then

available, but there is no Hamiltonian to commute with them. This wave equa-tion cannot come from a Lagrangian density since such a density should modify(5.28), which gives (3.9), not (5.27).

5.3.1 Plane waves

We consider a plane wave with a phase ϕ satisfying (3.35) with the vector vdefined in (3.35). Without exterior electromagnetic field we get in the place of(3.39)

−mvφ+me−iβφ(1 + εσ3) = 0. (5.36)

This gives

φ(1 + εσ3) = eiβvφ (5.37)

Conjugating, we then get

φ(1− εσ3) = e−iβ vφ (5.38)

Together we have

φ(1 + εσ3)(1− εσ3) = eiβvφ(1− εσ3)

φ(1− ε2) = eiβve−iβ vφ

(1− ε2)φ = vvφ (5.39)

and we get

v · v = vv = 1− ε2 (5.40)

||v|| =√1− ε2 (5.41)

We let then

c′ = c√

1− ε2 ; v = v′√1− ε2. (5.42)

And we get

||v′|| = 1. (5.43)

First consequence: c′, not c is the velocity limit of this unusual quantum object.The present study has no known physical application, but this wave equationindicates that the limit speed c is not so general [8] than we thought. 38

38More, if ε tends to 1 the limit speed tends to 0 and may be very small.

67

(5.42)

And we get

available, but there is no Hamiltonian to commute with them. This wave equa-tion cannot come from a Lagrangian density since such a density should modify(5.28), which gives (3.9), not (5.27).

5.3.1 Plane waves

We consider a plane wave with a phase ϕ satisfying (3.35) with the vector vdefined in (3.35). Without exterior electromagnetic field we get in the place of(3.39)

−mvφ+me−iβφ(1 + εσ3) = 0. (5.36)

This gives

φ(1 + εσ3) = eiβvφ (5.37)

Conjugating, we then get

φ(1− εσ3) = e−iβ vφ (5.38)

Together we have

φ(1 + εσ3)(1− εσ3) = eiβvφ(1− εσ3)

φ(1− ε2) = eiβve−iβ vφ

(1− ε2)φ = vvφ (5.39)

and we get

v · v = vv = 1− ε2 (5.40)

||v|| =√1− ε2 (5.41)

We let then

c′ = c√1− ε2 ; v = v′

√1− ε2. (5.42)

And we get

||v′|| = 1. (5.43)

First consequence: c′, not c is the velocity limit of this unusual quantum object.The present study has no known physical application, but this wave equationindicates that the limit speed c is not so general [8] than we thought. 38

38More, if ε tends to 1 the limit speed tends to 0 and may be very small.

67

(5.43)

First consequence: c′, not c is the velocity limit of this unusual quantum object. The present study has no known physical application, but this wave equation indi-cates that the limit speed c is not so general [8] than we thought.38

6. electro-weak and strong interactionsWe firstly use the Clifford algebra of space-time to study electro-weak interactions. We begin with weak interactions of the electron with its neutrino and their charge conjugate waves. Next we study invari- ances of these interactions. We extend the gauge group to the quark sector, using Cl5,1. We present in this frame the SU (3) group of chromodynamics. We study the geometric transformation generated by the complete wave in the frame of the 6-dimensional space-time. We get two remarkable identities which make the wave often invertible. We get wave equations with mass term, that are form invariant and gauge invariant.

38 More, if

available, but there is no Hamiltonian to commute with them. This wave equa-tion cannot come from a Lagrangian density since such a density should modify(5.28), which gives (3.9), not (5.27).

5.3.1 Plane waves

We consider a plane wave with a phase ϕ satisfying (3.35) with the vector vdefined in (3.35). Without exterior electromagnetic field we get in the place of(3.39)

−mvφ+me−iβφ(1 + εσ3) = 0. (5.36)

This gives

φ(1 + εσ3) = eiβvφ (5.37)

Conjugating, we then get

φ(1− εσ3) = e−iβ vφ (5.38)

Together we have

φ(1 + εσ3)(1− εσ3) = eiβvφ(1− εσ3)

φ(1− ε2) = eiβve−iβ vφ

(1− ε2)φ = vvφ (5.39)

and we get

v · v = vv = 1− ε2 (5.40)

||v|| =√1− ε2 (5.41)

We let then

c′ = c√1− ε2 ; v = v′

√1− ε2. (5.42)

And we get

||v′|| = 1. (5.43)

First consequence: c′, not c is the velocity limit of this unusual quantum object.The present study has no known physical application, but this wave equationindicates that the limit speed c is not so general [8] than we thought. 38

38More, if ε tends to 1 the limit speed tends to 0 and may be very small.

67

tends to 1 the limit speed tends to 0 and may be very small.

6.1 the Weinberg-Salam model for the electron

An extension of the Dirac equation up to electro-weak interactions [26] was tried by D. Hestenes [14] and by R. Boudet [2] [3] in the frame of the Clifford algebra Cl1,3 of the space-time. We used in [7] another start which im-plies the use of the greater frame Cl2,3. A greater frame was necessary because we wanted to use no supple-mentary condition. Now, the study that we shall make in this section necessitates to use the condition (2.120) or (2.125) which is used in the standard model to link the wave of the antiparticle to the wave of the particle. Therefore the mathematical frame remains the space-time algebra which has 16 dimensions, enough to accom-modate 8 real parameters of the wave of the electron and 8 parameters of its neutrino.39 We saw in 3.5 that the con-dition (2.125) is compatible with the nonlinear equation and that it solves the puzzle of negative energies.

We begin with the electron case and we follow [13]. We change nothing to the Dirac wave of the electron, not-ed as ψe in the Dirac formalism and as φe with space al-gebra. We use the same notations as previously for Weyl spinors. The electron wave is noted as ψe , the wave of the electronic neutrino as ψn , the wave of the positron as ψp and the wave of the electronic anti-neutrino as ψa . As previously right spinors are ξ Weyl spinors and left ones are η spinors.

6 Electro-weak and strong interactions

We firstly use the Clifford algebra of space-time to study electro-weakinteractions. We begin with weak interactions of the electron withits neutrino and their charge conjugate waves. Next we study invari-ances of these interactions. We extend the gauge group to the quarksector, using Cl5,1. We present in this frame the SU(3) group of chro-modynamics. We study the geometric transformation generated bythe complete wave in the frame of the 6-dimensional space-time. Weget two remarkable identities which make the wave often invertible.We get wave equations with mass term, that are form invariant andgauge invariant.

6.1 The Weinberg-Salam model for the electron

An extension of the Dirac equation up to electro-weak interactions [26] was triedby D. Hestenes [14] and by R. Boudet [2] [3] in the frame of the Clifford algebraCl1,3 of the space-time. We used in [7] another start which implies the use ofthe greater frame Cl2,3. A greater frame was necessary because we wanted touse no supplementary condition. Now, the study that we shall make in thissection necessitates to use the condition (2.120) or (2.125) which is used in thestandard model to link the wave of the antiparticle to the wave of the particle.Therefore the mathematical frame remains the space-time algebra which has16 dimensions, enough to accommodate 8 real parameters of the wave of theelectron and 8 parameters of its neutrino.39 We saw in 3.5 that the condition(2.125) is compatible with the nonlinear equation and that it solves the puzzleof negative energies.

We begin with the electron case and we follow [13]. We change nothing tothe Dirac wave of the electron, noted as ψe in the Dirac formalism and as φe

with space algebra. We use the same notations as previously for Weyl spinors.The electron wave is noted as ψe, the wave of the electronic neutrino as ψn, thewave of the positron as ψp and the wave of the electronic anti-neutrino as ψa.As previously right spinors are ξ Weyl spinors and left ones are η spinors.

ψe =

(ξeηe

); ψn =

(ξnηn

); ψp =

(ξpηp

); ψa =

(ξaηa

). (6.1)

We have

φe =√2(ξe −iσ2η

∗e

); φe =

√2(ηe −iσ2ξ

∗e

)(6.2)

φn =√2(ξn −iσ2η

∗n

); φn =

√2(ηn −iσ2ξ

∗n

)(6.3)

φp = φeσ1 ; φa = φnσ1 (6.4)

39We shall see in 6.6 that only four of them are non zero.

6 Electro-weak and strong interactions

We firstly use the Clifford algebra of space-time to study electro-weakinteractions. We begin with weak interactions of the electron withits neutrino and their charge conjugate waves. Next we study invari-ances of these interactions. We extend the gauge group to the quarksector, using Cl5,1. We present in this frame the SU(3) group of chro-modynamics. We study the geometric transformation generated bythe complete wave in the frame of the 6-dimensional space-time. Weget two remarkable identities which make the wave often invertible.We get wave equations with mass term, that are form invariant andgauge invariant.

6.1 The Weinberg-Salam model for the electron

An extension of the Dirac equation up to electro-weak interactions [26] was triedby D. Hestenes [14] and by R. Boudet [2] [3] in the frame of the Clifford algebraCl1,3 of the space-time. We used in [7] another start which implies the use ofthe greater frame Cl2,3. A greater frame was necessary because we wanted touse no supplementary condition. Now, the study that we shall make in thissection necessitates to use the condition (2.120) or (2.125) which is used in thestandard model to link the wave of the antiparticle to the wave of the particle.Therefore the mathematical frame remains the space-time algebra which has16 dimensions, enough to accommodate 8 real parameters of the wave of theelectron and 8 parameters of its neutrino.39 We saw in 3.5 that the condition(2.125) is compatible with the nonlinear equation and that it solves the puzzleof negative energies.

We begin with the electron case and we follow [13]. We change nothing tothe Dirac wave of the electron, noted as ψe in the Dirac formalism and as φe

with space algebra. We use the same notations as previously for Weyl spinors.The electron wave is noted as ψe, the wave of the electronic neutrino as ψn, thewave of the positron as ψp and the wave of the electronic anti-neutrino as ψa.As previously right spinors are ξ Weyl spinors and left ones are η spinors.

ψe =

(ξeηe

); ψn =

(ξnηn

); ψp =

(ξpηp

); ψa =

(ξaηa

). (6.1)

We have

φe =√2(ξe −iσ2η

∗e

); φe =

√2(ηe −iσ2ξ

∗e

)(6.2)

φn =√2(ξn −iσ2η

∗n

); φn =

√2(ηn −iσ2ξ

∗n

)(6.3)

φp = φeσ1 ; φa = φnσ1 (6.4)

39We shall see in 6.6 that only four of them are non zero.

(6.1)

We have

6 Electro-weak and strong interactions

We firstly use the Clifford algebra of space-time to study electro-weakinteractions. We begin with weak interactions of the electron withits neutrino and their charge conjugate waves. Next we study invari-ances of these interactions. We extend the gauge group to the quarksector, using Cl5,1. We present in this frame the SU(3) group of chro-modynamics. We study the geometric transformation generated bythe complete wave in the frame of the 6-dimensional space-time. Weget two remarkable identities which make the wave often invertible.We get wave equations with mass term, that are form invariant andgauge invariant.

6.1 The Weinberg-Salam model for the electron

An extension of the Dirac equation up to electro-weak interactions [26] was triedby D. Hestenes [14] and by R. Boudet [2] [3] in the frame of the Clifford algebraCl1,3 of the space-time. We used in [7] another start which implies the use ofthe greater frame Cl2,3. A greater frame was necessary because we wanted touse no supplementary condition. Now, the study that we shall make in thissection necessitates to use the condition (2.120) or (2.125) which is used in thestandard model to link the wave of the antiparticle to the wave of the particle.Therefore the mathematical frame remains the space-time algebra which has16 dimensions, enough to accommodate 8 real parameters of the wave of theelectron and 8 parameters of its neutrino.39 We saw in 3.5 that the condition(2.125) is compatible with the nonlinear equation and that it solves the puzzleof negative energies.

We begin with the electron case and we follow [13]. We change nothing tothe Dirac wave of the electron, noted as ψe in the Dirac formalism and as φe

with space algebra. We use the same notations as previously for Weyl spinors.The electron wave is noted as ψe, the wave of the electronic neutrino as ψn, thewave of the positron as ψp and the wave of the electronic anti-neutrino as ψa.As previously right spinors are ξ Weyl spinors and left ones are η spinors.

ψe =

(ξeηe

); ψn =

(ξnηn

); ψp =

(ξpηp

); ψa =

(ξaηa

). (6.1)

We have

φe =√2(ξe −iσ2η

∗e

); φe =

√2(ηe −iσ2ξ

∗e

)(6.2)

φn =√2(ξn −iσ2η

∗n

); φn =

√2(ηn −iσ2ξ

∗n

)(6.3)

φp = φeσ1 ; φa = φnσ1 (6.4)

39We shall see in 6.6 that only four of them are non zero.

(6.2)

6 Electro-weak and strong interactions

We firstly use the Clifford algebra of space-time to study electro-weakinteractions. We begin with weak interactions of the electron withits neutrino and their charge conjugate waves. Next we study invari-ances of these interactions. We extend the gauge group to the quarksector, using Cl5,1. We present in this frame the SU(3) group of chro-modynamics. We study the geometric transformation generated bythe complete wave in the frame of the 6-dimensional space-time. Weget two remarkable identities which make the wave often invertible.We get wave equations with mass term, that are form invariant andgauge invariant.

6.1 The Weinberg-Salam model for the electron

An extension of the Dirac equation up to electro-weak interactions [26] was triedby D. Hestenes [14] and by R. Boudet [2] [3] in the frame of the Clifford algebraCl1,3 of the space-time. We used in [7] another start which implies the use ofthe greater frame Cl2,3. A greater frame was necessary because we wanted touse no supplementary condition. Now, the study that we shall make in thissection necessitates to use the condition (2.120) or (2.125) which is used in thestandard model to link the wave of the antiparticle to the wave of the particle.Therefore the mathematical frame remains the space-time algebra which has16 dimensions, enough to accommodate 8 real parameters of the wave of theelectron and 8 parameters of its neutrino.39 We saw in 3.5 that the condition(2.125) is compatible with the nonlinear equation and that it solves the puzzleof negative energies.

We begin with the electron case and we follow [13]. We change nothing tothe Dirac wave of the electron, noted as ψe in the Dirac formalism and as φe

with space algebra. We use the same notations as previously for Weyl spinors.The electron wave is noted as ψe, the wave of the electronic neutrino as ψn, thewave of the positron as ψp and the wave of the electronic anti-neutrino as ψa.As previously right spinors are ξ Weyl spinors and left ones are η spinors.

ψe =

(ξeηe

); ψn =

(ξnηn

); ψp =

(ξpηp

); ψa =

(ξaηa

). (6.1)

We have

φe =√2(ξe −iσ2η

∗e

); φe =

√2(ηe −iσ2ξ

∗e

)(6.2)

φn =√2(ξn −iσ2η

∗n

); φn =

√2(ηn −iσ2ξ

∗n

)(6.3)

φp = φeσ1 ; φa = φnσ1 (6.4)

39We shall see in 6.6 that only four of them are non zero.

(6.3)

6 Electro-weak and strong interactions

We firstly use the Clifford algebra of space-time to study electro-weakinteractions. We begin with weak interactions of the electron withits neutrino and their charge conjugate waves. Next we study invari-ances of these interactions. We extend the gauge group to the quarksector, using Cl5,1. We present in this frame the SU(3) group of chro-modynamics. We study the geometric transformation generated bythe complete wave in the frame of the 6-dimensional space-time. Weget two remarkable identities which make the wave often invertible.We get wave equations with mass term, that are form invariant andgauge invariant.

6.1 The Weinberg-Salam model for the electron

An extension of the Dirac equation up to electro-weak interactions [26] was triedby D. Hestenes [14] and by R. Boudet [2] [3] in the frame of the Clifford algebraCl1,3 of the space-time. We used in [7] another start which implies the use ofthe greater frame Cl2,3. A greater frame was necessary because we wanted touse no supplementary condition. Now, the study that we shall make in thissection necessitates to use the condition (2.120) or (2.125) which is used in thestandard model to link the wave of the antiparticle to the wave of the particle.Therefore the mathematical frame remains the space-time algebra which has16 dimensions, enough to accommodate 8 real parameters of the wave of theelectron and 8 parameters of its neutrino.39 We saw in 3.5 that the condition(2.125) is compatible with the nonlinear equation and that it solves the puzzleof negative energies.

We begin with the electron case and we follow [13]. We change nothing tothe Dirac wave of the electron, noted as ψe in the Dirac formalism and as φe

with space algebra. We use the same notations as previously for Weyl spinors.The electron wave is noted as ψe, the wave of the electronic neutrino as ψn, thewave of the positron as ψp and the wave of the electronic anti-neutrino as ψa.As previously right spinors are ξ Weyl spinors and left ones are η spinors.

ψe =

(ξeηe

); ψn =

(ξnηn

); ψp =

(ξpηp

); ψa =

(ξaηa

). (6.1)

We have

φe =√2(ξe −iσ2η

∗e

); φe =

√2(ηe −iσ2ξ

∗e

)(6.2)

φn =√2(ξn −iσ2η

∗n

); φn =

√2(ηn −iσ2ξ

∗n

)(6.3)

φp = φeσ1 ; φa = φnσ1 (6.4)

39We shall see in 6.6 that only four of them are non zero.

(6.4)

which giveswhich gives

φp =√2(ηp −iσ2ξ

∗p

); φp =

√2(ξp −iσ2η

∗p

)(6.5)

φa =√2(ηa −iσ2ξ

∗a

); φa =

√2(ξa −iσ2η

∗a

)(6.6)

ξ1p = η∗2e, ξ2p = −η∗1e; η1p = −ξ∗2e; η2p = ξ∗1e

ξ1a = η∗2n, ξ2a = −η∗1n; η1a = −ξ∗2n; η2a = ξ∗1n. (6.7)

We used in [7] a wave Ψ function of the space-time with value into the Cl2,3 =M4(C) algebra. We disposed waves of particle on the above line and waves ofantiparticle on the second line to get correct transformations of left and rightwaves under Lorentz dilations, as we will see in 6.5. We used a σ1 factor whichwas a necessary factor exchanging ξ and η terms. This allows to get a wave forthese four particles of the electronic sector40 and with the link (2.125) betweenthe wave of the particle and the wave of the antiparticle we have

Ψ =

(φe φn

φaσ1 φpσ1

)=

(φe φn

φn φe

)(6.8)

Now with (6.4) and (6.8) the wave is a function of space-time with value in theClifford algebra of space-time. The Weinberg-Salam model uses ξe, ηe, ηn andsupposes ξn = 0. This hypothesis will be used further in 6.6. To separate ξe, ηeand ηn the Weinberg-Salam model uses projectors 1

2 (1 ± γ5), which read withour choice (1.75) of Dirac matrices:

1

2(1− γ5)ψ = ψL =

(0 00 I

)(ξη

)=

(0η

)(6.9)

1

2(1 + γ5)ψ = ψR =

(I 00 0

)(ξη

)=

(ξ0

). (6.10)

Then for particles left waves are η waves and right waves are ξ waves. This isCl∗3 invariant, consequently relativistic invariant, since under a Lorentz dilation

D defined by D : x → x′ = MxM† we have (1.30) : ξ′ = Mξ, η′ = Mη. Theγ5 matrix is not included in the space-time algebra41, but this is not a problemhere, because the projectors separating ξ and η are in space algebra 1

2 (1± σ3):

φR =√2(ξ 0

)= φ

(1 00 0

)= φ

1

2(1 + σ3)

φL =√2(0 −iσ2η

∗) = φ

(0 00 1

)= φ

1

2(1− σ3) (6.11)

φL =√2(η 0

)= φ

1

2(1 + σ3) ; φR = φ

1

2(1− σ3).

40We could exchange the places of φe and φn. With (6.8) the wave of the electron has valuein the even sub-algebra and the neutrino has value in the odd part of the algebra. The otherchoice is possible if we adapt the definition of projectors in (6.12) to (6.16)

41This was wrongly considered as a reason to forbid the use of space-time algebra.

69

(6.5)

which gives

φp =√2(ηp −iσ2ξ

∗p

); φp =

√2(ξp −iσ2η

∗p

)(6.5)

φa =√2(ηa −iσ2ξ

∗a

); φa =

√2(ξa −iσ2η

∗a

)(6.6)

ξ1p = η∗2e, ξ2p = −η∗1e; η1p = −ξ∗2e; η2p = ξ∗1e

ξ1a = η∗2n, ξ2a = −η∗1n; η1a = −ξ∗2n; η2a = ξ∗1n. (6.7)

We used in [7] a wave Ψ function of the space-time with value into the Cl2,3 =M4(C) algebra. We disposed waves of particle on the above line and waves ofantiparticle on the second line to get correct transformations of left and rightwaves under Lorentz dilations, as we will see in 6.5. We used a σ1 factor whichwas a necessary factor exchanging ξ and η terms. This allows to get a wave forthese four particles of the electronic sector40 and with the link (2.125) betweenthe wave of the particle and the wave of the antiparticle we have

Ψ =

(φe φn

φaσ1 φpσ1

)=

(φe φn

φn φe

)(6.8)

Now with (6.4) and (6.8) the wave is a function of space-time with value in theClifford algebra of space-time. The Weinberg-Salam model uses ξe, ηe, ηn andsupposes ξn = 0. This hypothesis will be used further in 6.6. To separate ξe, ηeand ηn the Weinberg-Salam model uses projectors 1

2 (1 ± γ5), which read withour choice (1.75) of Dirac matrices:

1

2(1− γ5)ψ = ψL =

(0 00 I

)(ξη

)=

(0η

)(6.9)

1

2(1 + γ5)ψ = ψR =

(I 00 0

)(ξη

)=

(ξ0

). (6.10)

Then for particles left waves are η waves and right waves are ξ waves. This isCl∗3 invariant, consequently relativistic invariant, since under a Lorentz dilation

D defined by D : x → x′ = MxM† we have (1.30) : ξ′ = Mξ, η′ = Mη. Theγ5 matrix is not included in the space-time algebra41, but this is not a problemhere, because the projectors separating ξ and η are in space algebra 1

2 (1± σ3):

φR =√2(ξ 0

)= φ

(1 00 0

)= φ

1

2(1 + σ3)

φL =√2(0 −iσ2η

∗) = φ

(0 00 1

)= φ

1

2(1− σ3) (6.11)

φL =√2(η 0

)= φ

1

2(1 + σ3) ; φR = φ

1

2(1− σ3).

40We could exchange the places of φe and φn. With (6.8) the wave of the electron has valuein the even sub-algebra and the neutrino has value in the odd part of the algebra. The otherchoice is possible if we adapt the definition of projectors in (6.12) to (6.16)

41This was wrongly considered as a reason to forbid the use of space-time algebra.

69

(6.6)

which gives

φp =√2(ηp −iσ2ξ

∗p

); φp =

√2(ξp −iσ2η

∗p

)(6.5)

φa =√2(ηa −iσ2ξ

∗a

); φa =

√2(ξa −iσ2η

∗a

)(6.6)

ξ1p = η∗2e, ξ2p = −η∗1e; η1p = −ξ∗2e; η2p = ξ∗1e

ξ1a = η∗2n, ξ2a = −η∗1n; η1a = −ξ∗2n; η2a = ξ∗1n. (6.7)

We used in [7] a wave Ψ function of the space-time with value into the Cl2,3 =M4(C) algebra. We disposed waves of particle on the above line and waves ofantiparticle on the second line to get correct transformations of left and rightwaves under Lorentz dilations, as we will see in 6.5. We used a σ1 factor whichwas a necessary factor exchanging ξ and η terms. This allows to get a wave forthese four particles of the electronic sector40 and with the link (2.125) betweenthe wave of the particle and the wave of the antiparticle we have

Ψ =

(φe φn

φaσ1 φpσ1

)=

(φe φn

φn φe

)(6.8)

Now with (6.4) and (6.8) the wave is a function of space-time with value in theClifford algebra of space-time. The Weinberg-Salam model uses ξe, ηe, ηn andsupposes ξn = 0. This hypothesis will be used further in 6.6. To separate ξe, ηeand ηn the Weinberg-Salam model uses projectors 1

2 (1 ± γ5), which read withour choice (1.75) of Dirac matrices:

1

2(1− γ5)ψ = ψL =

(0 00 I

)(ξη

)=

(0η

)(6.9)

1

2(1 + γ5)ψ = ψR =

(I 00 0

)(ξη

)=

(ξ0

). (6.10)

Then for particles left waves are η waves and right waves are ξ waves. This isCl∗3 invariant, consequently relativistic invariant, since under a Lorentz dilation

D defined by D : x → x′ = MxM† we have (1.30) : ξ′ = Mξ, η′ = Mη. Theγ5 matrix is not included in the space-time algebra41, but this is not a problemhere, because the projectors separating ξ and η are in space algebra 1

2 (1± σ3):

φR =√2(ξ 0

)= φ

(1 00 0

)= φ

1

2(1 + σ3)

φL =√2(0 −iσ2η

∗) = φ

(0 00 1

)= φ

1

2(1− σ3) (6.11)

φL =√2(η 0

)= φ

1

2(1 + σ3) ; φR = φ

1

2(1− σ3).

40We could exchange the places of φe and φn. With (6.8) the wave of the electron has valuein the even sub-algebra and the neutrino has value in the odd part of the algebra. The otherchoice is possible if we adapt the definition of projectors in (6.12) to (6.16)

41This was wrongly considered as a reason to forbid the use of space-time algebra.

69

which gives

φp =√2(ηp −iσ2ξ

∗p

); φp =

√2(ξp −iσ2η

∗p

)(6.5)

φa =√2(ηa −iσ2ξ

∗a

); φa =

√2(ξa −iσ2η

∗a

)(6.6)

ξ1p = η∗2e, ξ2p = −η∗1e; η1p = −ξ∗2e; η2p = ξ∗1e

ξ1a = η∗2n, ξ2a = −η∗1n; η1a = −ξ∗2n; η2a = ξ∗1n. (6.7)

We used in [7] a wave Ψ function of the space-time with value into the Cl2,3 =M4(C) algebra. We disposed waves of particle on the above line and waves ofantiparticle on the second line to get correct transformations of left and rightwaves under Lorentz dilations, as we will see in 6.5. We used a σ1 factor whichwas a necessary factor exchanging ξ and η terms. This allows to get a wave forthese four particles of the electronic sector40 and with the link (2.125) betweenthe wave of the particle and the wave of the antiparticle we have

Ψ =

(φe φn

φaσ1 φpσ1

)=

(φe φn

φn φe

)(6.8)

Now with (6.4) and (6.8) the wave is a function of space-time with value in theClifford algebra of space-time. The Weinberg-Salam model uses ξe, ηe, ηn andsupposes ξn = 0. This hypothesis will be used further in 6.6. To separate ξe, ηeand ηn the Weinberg-Salam model uses projectors 1

2 (1 ± γ5), which read withour choice (1.75) of Dirac matrices:

1

2(1− γ5)ψ = ψL =

(0 00 I

)(ξη

)=

(0η

)(6.9)

1

2(1 + γ5)ψ = ψR =

(I 00 0

)(ξη

)=

(ξ0

). (6.10)

Then for particles left waves are η waves and right waves are ξ waves. This isCl∗3 invariant, consequently relativistic invariant, since under a Lorentz dilation

D defined by D : x → x′ = MxM† we have (1.30) : ξ′ = Mξ, η′ = Mη. Theγ5 matrix is not included in the space-time algebra41, but this is not a problemhere, because the projectors separating ξ and η are in space algebra 1

2 (1± σ3):

φR =√2(ξ 0

)= φ

(1 00 0

)= φ

1

2(1 + σ3)

φL =√2(0 −iσ2η

∗) = φ

(0 00 1

)= φ

1

2(1− σ3) (6.11)

φL =√2(η 0

)= φ

1

2(1 + σ3) ; φR = φ

1

2(1− σ3).

40We could exchange the places of φe and φn. With (6.8) the wave of the electron has valuein the even sub-algebra and the neutrino has value in the odd part of the algebra. The otherchoice is possible if we adapt the definition of projectors in (6.12) to (6.16)

41This was wrongly considered as a reason to forbid the use of space-time algebra.

69

(6.7)

We used in [7] a wave Ψ function of the space-time with value into the Cl2,3 = M4

which gives

φp =√2(ηp −iσ2ξ

∗p

); φp =

√2(ξp −iσ2η

∗p

)(6.5)

φa =√2(ηa −iσ2ξ

∗a

); φa =

√2(ξa −iσ2η

∗a

)(6.6)

ξ1p = η∗2e, ξ2p = −η∗1e; η1p = −ξ∗2e; η2p = ξ∗1e

ξ1a = η∗2n, ξ2a = −η∗1n; η1a = −ξ∗2n; η2a = ξ∗1n. (6.7)

We used in [7] a wave Ψ function of the space-time with value into the Cl2,3 =M4(C) algebra. We disposed waves of particle on the above line and waves ofantiparticle on the second line to get correct transformations of left and rightwaves under Lorentz dilations, as we will see in 6.5. We used a σ1 factor whichwas a necessary factor exchanging ξ and η terms. This allows to get a wave forthese four particles of the electronic sector40 and with the link (2.125) betweenthe wave of the particle and the wave of the antiparticle we have

Ψ =

(φe φn

φaσ1 φpσ1

)=

(φe φn

φn φe

)(6.8)

Now with (6.4) and (6.8) the wave is a function of space-time with value in theClifford algebra of space-time. The Weinberg-Salam model uses ξe, ηe, ηn andsupposes ξn = 0. This hypothesis will be used further in 6.6. To separate ξe, ηeand ηn the Weinberg-Salam model uses projectors 1

2 (1 ± γ5), which read withour choice (1.75) of Dirac matrices:

1

2(1− γ5)ψ = ψL =

(0 00 I

)(ξη

)=

(0η

)(6.9)

1

2(1 + γ5)ψ = ψR =

(I 00 0

)(ξη

)=

(ξ0

). (6.10)

Then for particles left waves are η waves and right waves are ξ waves. This isCl∗3 invariant, consequently relativistic invariant, since under a Lorentz dilation

D defined by D : x → x′ = MxM† we have (1.30) : ξ′ = Mξ, η′ = Mη. Theγ5 matrix is not included in the space-time algebra41, but this is not a problemhere, because the projectors separating ξ and η are in space algebra 1

2 (1± σ3):

φR =√2(ξ 0

)= φ

(1 00 0

)= φ

1

2(1 + σ3)

φL =√2(0 −iσ2η

∗) = φ

(0 00 1

)= φ

1

2(1− σ3) (6.11)

φL =√2(η 0

)= φ

1

2(1 + σ3) ; φR = φ

1

2(1− σ3).

40We could exchange the places of φe and φn. With (6.8) the wave of the electron has valuein the even sub-algebra and the neutrino has value in the odd part of the algebra. The otherchoice is possible if we adapt the definition of projectors in (6.12) to (6.16)

41This was wrongly considered as a reason to forbid the use of space-time algebra.

69

algebra. We disposed waves of particle on the above line and waves of antipar-

39 We shall see in 6.6 that only four of them are non zero.

25

Page 27: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 25

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

ticle on the second line to get correct transformations of left and right waves under Lorentz dilations, as we will see in 6.5. We used a σ1 factor which was a necessary fac-tor exchanging ξ and η terms. This allows to get a wave for these four particles of the electronic sector 40 and with the link (2.125) between the wave of the particle and the wave of the antiparticle we have

which gives

φp =√2(ηp −iσ2ξ

∗p

); φp =

√2(ξp −iσ2η

∗p

)(6.5)

φa =√2(ηa −iσ2ξ

∗a

); φa =

√2(ξa −iσ2η

∗a

)(6.6)

ξ1p = η∗2e, ξ2p = −η∗1e; η1p = −ξ∗2e; η2p = ξ∗1e

ξ1a = η∗2n, ξ2a = −η∗1n; η1a = −ξ∗2n; η2a = ξ∗1n. (6.7)

We used in [7] a wave Ψ function of the space-time with value into the Cl2,3 =M4(C) algebra. We disposed waves of particle on the above line and waves ofantiparticle on the second line to get correct transformations of left and rightwaves under Lorentz dilations, as we will see in 6.5. We used a σ1 factor whichwas a necessary factor exchanging ξ and η terms. This allows to get a wave forthese four particles of the electronic sector40 and with the link (2.125) betweenthe wave of the particle and the wave of the antiparticle we have

Ψ =

(φe φn

φaσ1 φpσ1

)=

(φe φn

φn φe

)(6.8)

Now with (6.4) and (6.8) the wave is a function of space-time with value in theClifford algebra of space-time. The Weinberg-Salam model uses ξe, ηe, ηn andsupposes ξn = 0. This hypothesis will be used further in 6.6. To separate ξe, ηeand ηn the Weinberg-Salam model uses projectors 1

2 (1 ± γ5), which read withour choice (1.75) of Dirac matrices:

1

2(1− γ5)ψ = ψL =

(0 00 I

)(ξη

)=

(0η

)(6.9)

1

2(1 + γ5)ψ = ψR =

(I 00 0

)(ξη

)=

(ξ0

). (6.10)

Then for particles left waves are η waves and right waves are ξ waves. This isCl∗3 invariant, consequently relativistic invariant, since under a Lorentz dilation

D defined by D : x → x′ = MxM† we have (1.30) : ξ′ = Mξ, η′ = Mη. Theγ5 matrix is not included in the space-time algebra41, but this is not a problemhere, because the projectors separating ξ and η are in space algebra 1

2 (1± σ3):

φR =√2(ξ 0

)= φ

(1 00 0

)= φ

1

2(1 + σ3)

φL =√2(0 −iσ2η

∗) = φ

(0 00 1

)= φ

1

2(1− σ3) (6.11)

φL =√2(η 0

)= φ

1

2(1 + σ3) ; φR = φ

1

2(1− σ3).

40We could exchange the places of φe and φn. With (6.8) the wave of the electron has valuein the even sub-algebra and the neutrino has value in the odd part of the algebra. The otherchoice is possible if we adapt the definition of projectors in (6.12) to (6.16)

41This was wrongly considered as a reason to forbid the use of space-time algebra.

69

(6.8)

Now with (6.4) and (6.8) the wave is a function of space-time with value in the Clifford algebra of space-time. The Weinberg-Salam model uses ξe , ηe , ηn and sup-poses ξn = 0. This hypothesis will be used further in 6.6. To separate ξe , ηe and ηn the Weinberg-Salam model uses projectors 1

2 (1 ± γ5), which read with our choice (1.75)

of Dirac matrices:

which gives

φp =√2(ηp −iσ2ξ

∗p

); φp =

√2(ξp −iσ2η

∗p

)(6.5)

φa =√2(ηa −iσ2ξ

∗a

); φa =

√2(ξa −iσ2η

∗a

)(6.6)

ξ1p = η∗2e, ξ2p = −η∗1e; η1p = −ξ∗2e; η2p = ξ∗1e

ξ1a = η∗2n, ξ2a = −η∗1n; η1a = −ξ∗2n; η2a = ξ∗1n. (6.7)

We used in [7] a wave Ψ function of the space-time with value into the Cl2,3 =M4(C) algebra. We disposed waves of particle on the above line and waves ofantiparticle on the second line to get correct transformations of left and rightwaves under Lorentz dilations, as we will see in 6.5. We used a σ1 factor whichwas a necessary factor exchanging ξ and η terms. This allows to get a wave forthese four particles of the electronic sector40 and with the link (2.125) betweenthe wave of the particle and the wave of the antiparticle we have

Ψ =

(φe φn

φaσ1 φpσ1

)=

(φe φn

φn φe

)(6.8)

Now with (6.4) and (6.8) the wave is a function of space-time with value in theClifford algebra of space-time. The Weinberg-Salam model uses ξe, ηe, ηn andsupposes ξn = 0. This hypothesis will be used further in 6.6. To separate ξe, ηeand ηn the Weinberg-Salam model uses projectors 1

2 (1 ± γ5), which read withour choice (1.75) of Dirac matrices:

1

2(1− γ5)ψ = ψL =

(0 00 I

)(ξη

)=

(0η

)(6.9)

1

2(1 + γ5)ψ = ψR =

(I 00 0

)(ξη

)=

(ξ0

). (6.10)

Then for particles left waves are η waves and right waves are ξ waves. This isCl∗3 invariant, consequently relativistic invariant, since under a Lorentz dilation

D defined by D : x → x′ = MxM† we have (1.30) : ξ′ = Mξ, η′ = Mη. Theγ5 matrix is not included in the space-time algebra41, but this is not a problemhere, because the projectors separating ξ and η are in space algebra 1

2 (1± σ3):

φR =√2(ξ 0

)= φ

(1 00 0

)= φ

1

2(1 + σ3)

φL =√2(0 −iσ2η

∗) = φ

(0 00 1

)= φ

1

2(1− σ3) (6.11)

φL =√2(η 0

)= φ

1

2(1 + σ3) ; φR = φ

1

2(1− σ3).

40We could exchange the places of φe and φn. With (6.8) the wave of the electron has valuein the even sub-algebra and the neutrino has value in the odd part of the algebra. The otherchoice is possible if we adapt the definition of projectors in (6.12) to (6.16)

41This was wrongly considered as a reason to forbid the use of space-time algebra.

69

(6.9)

which gives

φp =√2(ηp −iσ2ξ

∗p

); φp =

√2(ξp −iσ2η

∗p

)(6.5)

φa =√2(ηa −iσ2ξ

∗a

); φa =

√2(ξa −iσ2η

∗a

)(6.6)

ξ1p = η∗2e, ξ2p = −η∗1e; η1p = −ξ∗2e; η2p = ξ∗1e

ξ1a = η∗2n, ξ2a = −η∗1n; η1a = −ξ∗2n; η2a = ξ∗1n. (6.7)

We used in [7] a wave Ψ function of the space-time with value into the Cl2,3 =M4(C) algebra. We disposed waves of particle on the above line and waves ofantiparticle on the second line to get correct transformations of left and rightwaves under Lorentz dilations, as we will see in 6.5. We used a σ1 factor whichwas a necessary factor exchanging ξ and η terms. This allows to get a wave forthese four particles of the electronic sector40 and with the link (2.125) betweenthe wave of the particle and the wave of the antiparticle we have

Ψ =

(φe φn

φaσ1 φpσ1

)=

(φe φn

φn φe

)(6.8)

Now with (6.4) and (6.8) the wave is a function of space-time with value in theClifford algebra of space-time. The Weinberg-Salam model uses ξe, ηe, ηn andsupposes ξn = 0. This hypothesis will be used further in 6.6. To separate ξe, ηeand ηn the Weinberg-Salam model uses projectors 1

2 (1 ± γ5), which read withour choice (1.75) of Dirac matrices:

1

2(1− γ5)ψ = ψL =

(0 00 I

)(ξη

)=

(0η

)(6.9)

1

2(1 + γ5)ψ = ψR =

(I 00 0

)(ξη

)=

(ξ0

). (6.10)

Then for particles left waves are η waves and right waves are ξ waves. This isCl∗3 invariant, consequently relativistic invariant, since under a Lorentz dilation

D defined by D : x → x′ = MxM† we have (1.30) : ξ′ = Mξ, η′ = Mη. Theγ5 matrix is not included in the space-time algebra41, but this is not a problemhere, because the projectors separating ξ and η are in space algebra 1

2 (1± σ3):

φR =√2(ξ 0

)= φ

(1 00 0

)= φ

1

2(1 + σ3)

φL =√2(0 −iσ2η

∗) = φ

(0 00 1

)= φ

1

2(1− σ3) (6.11)

φL =√2(η 0

)= φ

1

2(1 + σ3) ; φR = φ

1

2(1− σ3).

40We could exchange the places of φe and φn. With (6.8) the wave of the electron has valuein the even sub-algebra and the neutrino has value in the odd part of the algebra. The otherchoice is possible if we adapt the definition of projectors in (6.12) to (6.16)

41This was wrongly considered as a reason to forbid the use of space-time algebra.

69

(6.10)

Then for particles left waves are η waves and right waves are ξ waves. This is Cl*3 invariant, consequently relativistic invariant, since under a Lorentz dilation D defined by

which gives

φp =√2(ηp −iσ2ξ

∗p

); φp =

√2(ξp −iσ2η

∗p

)(6.5)

φa =√2(ηa −iσ2ξ

∗a

); φa =

√2(ξa −iσ2η

∗a

)(6.6)

ξ1p = η∗2e, ξ2p = −η∗1e; η1p = −ξ∗2e; η2p = ξ∗1e

ξ1a = η∗2n, ξ2a = −η∗1n; η1a = −ξ∗2n; η2a = ξ∗1n. (6.7)

We used in [7] a wave Ψ function of the space-time with value into the Cl2,3 =M4(C) algebra. We disposed waves of particle on the above line and waves ofantiparticle on the second line to get correct transformations of left and rightwaves under Lorentz dilations, as we will see in 6.5. We used a σ1 factor whichwas a necessary factor exchanging ξ and η terms. This allows to get a wave forthese four particles of the electronic sector40 and with the link (2.125) betweenthe wave of the particle and the wave of the antiparticle we have

Ψ =

(φe φn

φaσ1 φpσ1

)=

(φe φn

φn φe

)(6.8)

Now with (6.4) and (6.8) the wave is a function of space-time with value in theClifford algebra of space-time. The Weinberg-Salam model uses ξe, ηe, ηn andsupposes ξn = 0. This hypothesis will be used further in 6.6. To separate ξe, ηeand ηn the Weinberg-Salam model uses projectors 1

2 (1 ± γ5), which read withour choice (1.75) of Dirac matrices:

1

2(1− γ5)ψ = ψL =

(0 00 I

)(ξη

)=

(0η

)(6.9)

1

2(1 + γ5)ψ = ψR =

(I 00 0

)(ξη

)=

(ξ0

). (6.10)

Then for particles left waves are η waves and right waves are ξ waves. This isCl∗3 invariant, consequently relativistic invariant, since under a Lorentz dilation

D defined by D : x → x′ = MxM† we have (1.30) : ξ′ = Mξ, η′ = Mη. Theγ5 matrix is not included in the space-time algebra41, but this is not a problemhere, because the projectors separating ξ and η are in space algebra 1

2 (1± σ3):

φR =√2(ξ 0

)= φ

(1 00 0

)= φ

1

2(1 + σ3)

φL =√2(0 −iσ2η

∗) = φ

(0 00 1

)= φ

1

2(1− σ3) (6.11)

φL =√2(η 0

)= φ

1

2(1 + σ3) ; φR = φ

1

2(1− σ3).

40We could exchange the places of φe and φn. With (6.8) the wave of the electron has valuein the even sub-algebra and the neutrino has value in the odd part of the algebra. The otherchoice is possible if we adapt the definition of projectors in (6.12) to (6.16)

41This was wrongly considered as a reason to forbid the use of space-time algebra.

69

we have (1.30):

which gives

φp =√2(ηp −iσ2ξ

∗p

); φp =

√2(ξp −iσ2η

∗p

)(6.5)

φa =√2(ηa −iσ2ξ

∗a

); φa =

√2(ξa −iσ2η

∗a

)(6.6)

ξ1p = η∗2e, ξ2p = −η∗1e; η1p = −ξ∗2e; η2p = ξ∗1e

ξ1a = η∗2n, ξ2a = −η∗1n; η1a = −ξ∗2n; η2a = ξ∗1n. (6.7)

We used in [7] a wave Ψ function of the space-time with value into the Cl2,3 =M4(C) algebra. We disposed waves of particle on the above line and waves ofantiparticle on the second line to get correct transformations of left and rightwaves under Lorentz dilations, as we will see in 6.5. We used a σ1 factor whichwas a necessary factor exchanging ξ and η terms. This allows to get a wave forthese four particles of the electronic sector40 and with the link (2.125) betweenthe wave of the particle and the wave of the antiparticle we have

Ψ =

(φe φn

φaσ1 φpσ1

)=

(φe φn

φn φe

)(6.8)

Now with (6.4) and (6.8) the wave is a function of space-time with value in theClifford algebra of space-time. The Weinberg-Salam model uses ξe, ηe, ηn andsupposes ξn = 0. This hypothesis will be used further in 6.6. To separate ξe, ηeand ηn the Weinberg-Salam model uses projectors 1

2 (1 ± γ5), which read withour choice (1.75) of Dirac matrices:

1

2(1− γ5)ψ = ψL =

(0 00 I

)(ξη

)=

(0η

)(6.9)

1

2(1 + γ5)ψ = ψR =

(I 00 0

)(ξη

)=

(ξ0

). (6.10)

Then for particles left waves are η waves and right waves are ξ waves. This isCl∗3 invariant, consequently relativistic invariant, since under a Lorentz dilation

D defined by D : x → x′ = MxM† we have (1.30) : ξ′ = Mξ, η′ = Mη. Theγ5 matrix is not included in the space-time algebra41, but this is not a problemhere, because the projectors separating ξ and η are in space algebra 1

2 (1± σ3):

φR =√2(ξ 0

)= φ

(1 00 0

)= φ

1

2(1 + σ3)

φL =√2(0 −iσ2η

∗) = φ

(0 00 1

)= φ

1

2(1− σ3) (6.11)

φL =√2(η 0

)= φ

1

2(1 + σ3) ; φR = φ

1

2(1− σ3).

40We could exchange the places of φe and φn. With (6.8) the wave of the electron has valuein the even sub-algebra and the neutrino has value in the odd part of the algebra. The otherchoice is possible if we adapt the definition of projectors in (6.12) to (6.16)

41This was wrongly considered as a reason to forbid the use of space-time algebra.

69

. The γ5 matrix is not included in the space-time algebra41, but this is not a problem here, be-cause the projectors separating ξ and η are in space alge-bra 1

2 (1 ± σ3):

(6.10)

We define now two projectors P± and four operators P0 , P1 , P2 , P3 acting in the space-time algebra as followsWe define now two projectors P± and four operators P0, P1, P2, P3 acting in

the space-time algebra as follows

P±(Ψ) =1

2(Ψ± iΨγ21) ; i = γ0123 (6.12)

P0(Ψ) = Ψγ21 +1

2Ψi+

1

2iΨγ30 = Ψγ21 + P−(Ψ)i (6.13)

P1(Ψ) =1

2(iΨγ0 +Ψγ012) = P+(Ψ)γ3i (6.14)

P2(Ψ) =1

2(Ψγ3 − iΨγ123) = P+(Ψ)γ3 (6.15)

P3(Ψ) =1

2(−Ψi+ iΨγ30) = P+(Ψ)(−i). (6.16)

Noting PµPν(Ψ) = Pµ[Pν(Ψ)] they satisfy

P1P2 = P3 = −P2P1

P2P3 = P1 = −P3P2

P3P1 = P2 = −P1P3 (6.17)

P 21 = P 2

2 = P 23 = −P+

P0Pj = PjP0 = −iPj , j = 1, 2, 3.

The Weinberg-Salam model replaces partial derivatives ∂µ by covariant deriva-tives

Dµ = ∂µ − ig1Y

2Bµ − ig2TjW

jµ (6.18)

with Tj =τj2 for a doublet of left-handed particles and Tj = 0 for a singlet of

right-handed particle. Y is the weak hypercharge, YL = −1, YR = −2 for theelectron. To transpose into space-time algebra, we let

D = σµDµ ; D = γµDµ =

(0 D

D 0

)(6.19)

B = σµBµ ; B = γµBµ =

(0 B

B 0

)(6.20)

W j = σµW jµ ; Wj = γµW j

µ =

(0 W j

W j 0

)(6.21)

We will prove now that (6.18) comes from

D = ∂∂∂ +g12BP0 +

g22(W1P1 +W2P2 +W3P3). (6.22)

Firstly we have in space-time algebra (see 1.4.1)

∂∂∂Ψ =

(0 ∇∇ 0

)(φe φn

φaσ1 φpσ1

)=

(∇φaσ1 ∇φpσ1

∇φe ∇φn

)(6.23)

70

(6.12)

40 We could exchange the places of φe and φn . With (6.8) the wave of the electron has value in the even sub-algebra and the neutrino has value in the odd part of the algebra. The other choice is possible if we adapt the definition of pro jectors in (6.12) to (6.16).

41 This was wrongly considered as a reason to forbid the use of space-time algebra.

(6.13)

(6.14)

(6.15)

(6.16)

Noting

We define now two projectors P± and four operators P0, P1, P2, P3 acting inthe space-time algebra as follows

P±(Ψ) =1

2(Ψ± iΨγ21) ; i = γ0123 (6.12)

P0(Ψ) = Ψγ21 +1

2Ψi+

1

2iΨγ30 = Ψγ21 + P−(Ψ)i (6.13)

P1(Ψ) =1

2(iΨγ0 +Ψγ012) = P+(Ψ)γ3i (6.14)

P2(Ψ) =1

2(Ψγ3 − iΨγ123) = P+(Ψ)γ3 (6.15)

P3(Ψ) =1

2(−Ψi+ iΨγ30) = P+(Ψ)(−i). (6.16)

Noting PµPν(Ψ) = Pµ[Pν(Ψ)] they satisfy

P1P2 = P3 = −P2P1

P2P3 = P1 = −P3P2

P3P1 = P2 = −P1P3 (6.17)

P 21 = P 2

2 = P 23 = −P+

P0Pj = PjP0 = −iPj , j = 1, 2, 3.

The Weinberg-Salam model replaces partial derivatives ∂µ by covariant deriva-tives

Dµ = ∂µ − ig1Y

2Bµ − ig2TjW

jµ (6.18)

with Tj =τj2 for a doublet of left-handed particles and Tj = 0 for a singlet of

right-handed particle. Y is the weak hypercharge, YL = −1, YR = −2 for theelectron. To transpose into space-time algebra, we let

D = σµDµ ; D = γµDµ =

(0 D

D 0

)(6.19)

B = σµBµ ; B = γµBµ =

(0 B

B 0

)(6.20)

W j = σµW jµ ; Wj = γµW j

µ =

(0 W j

W j 0

)(6.21)

We will prove now that (6.18) comes from

D = ∂∂∂ +g12BP0 +

g22(W1P1 +W2P2 +W3P3). (6.22)

Firstly we have in space-time algebra (see 1.4.1)

∂∂∂Ψ =

(0 ∇∇ 0

)(φe φn

φaσ1 φpσ1

)=

(∇φaσ1 ∇φpσ1

∇φe ∇φn

)(6.23)

70

they satisfy

We define now two projectors P± and four operators P0, P1, P2, P3 acting inthe space-time algebra as follows

P±(Ψ) =1

2(Ψ± iΨγ21) ; i = γ0123 (6.12)

P0(Ψ) = Ψγ21 +1

2Ψi+

1

2iΨγ30 = Ψγ21 + P−(Ψ)i (6.13)

P1(Ψ) =1

2(iΨγ0 +Ψγ012) = P+(Ψ)γ3i (6.14)

P2(Ψ) =1

2(Ψγ3 − iΨγ123) = P+(Ψ)γ3 (6.15)

P3(Ψ) =1

2(−Ψi+ iΨγ30) = P+(Ψ)(−i). (6.16)

Noting PµPν(Ψ) = Pµ[Pν(Ψ)] they satisfy

P1P2 = P3 = −P2P1

P2P3 = P1 = −P3P2

P3P1 = P2 = −P1P3 (6.17)

P 21 = P 2

2 = P 23 = −P+

P0Pj = PjP0 = −iPj , j = 1, 2, 3.

The Weinberg-Salam model replaces partial derivatives ∂µ by covariant deriva-tives

Dµ = ∂µ − ig1Y

2Bµ − ig2TjW

jµ (6.18)

with Tj =τj2 for a doublet of left-handed particles and Tj = 0 for a singlet of

right-handed particle. Y is the weak hypercharge, YL = −1, YR = −2 for theelectron. To transpose into space-time algebra, we let

D = σµDµ ; D = γµDµ =

(0 D

D 0

)(6.19)

B = σµBµ ; B = γµBµ =

(0 B

B 0

)(6.20)

W j = σµW jµ ; Wj = γµW j

µ =

(0 W j

W j 0

)(6.21)

We will prove now that (6.18) comes from

D = ∂∂∂ +g12BP0 +

g22(W1P1 +W2P2 +W3P3). (6.22)

Firstly we have in space-time algebra (see 1.4.1)

∂∂∂Ψ =

(0 ∇∇ 0

)(φe φn

φaσ1 φpσ1

)=

(∇φaσ1 ∇φpσ1

∇φe ∇φn

)(6.23)

70

(6.17)

The Weinberg-Salam model replaces partial deriva-tives ∂µ by covariant derivatives

We define now two projectors P± and four operators P0, P1, P2, P3 acting inthe space-time algebra as follows

P±(Ψ) =1

2(Ψ± iΨγ21) ; i = γ0123 (6.12)

P0(Ψ) = Ψγ21 +1

2Ψi+

1

2iΨγ30 = Ψγ21 + P−(Ψ)i (6.13)

P1(Ψ) =1

2(iΨγ0 +Ψγ012) = P+(Ψ)γ3i (6.14)

P2(Ψ) =1

2(Ψγ3 − iΨγ123) = P+(Ψ)γ3 (6.15)

P3(Ψ) =1

2(−Ψi+ iΨγ30) = P+(Ψ)(−i). (6.16)

Noting PµPν(Ψ) = Pµ[Pν(Ψ)] they satisfy

P1P2 = P3 = −P2P1

P2P3 = P1 = −P3P2

P3P1 = P2 = −P1P3 (6.17)

P 21 = P 2

2 = P 23 = −P+

P0Pj = PjP0 = −iPj , j = 1, 2, 3.

The Weinberg-Salam model replaces partial derivatives ∂µ by covariant deriva-tives

Dµ = ∂µ − ig1Y

2Bµ − ig2TjW

jµ (6.18)

with Tj =τj2 for a doublet of left-handed particles and Tj = 0 for a singlet of

right-handed particle. Y is the weak hypercharge, YL = −1, YR = −2 for theelectron. To transpose into space-time algebra, we let

D = σµDµ ; D = γµDµ =

(0 D

D 0

)(6.19)

B = σµBµ ; B = γµBµ =

(0 B

B 0

)(6.20)

W j = σµW jµ ; Wj = γµW j

µ =

(0 W j

W j 0

)(6.21)

We will prove now that (6.18) comes from

D = ∂∂∂ +g12BP0 +

g22(W1P1 +W2P2 +W3P3). (6.22)

Firstly we have in space-time algebra (see 1.4.1)

∂∂∂Ψ =

(0 ∇∇ 0

)(φe φn

φaσ1 φpσ1

)=

(∇φaσ1 ∇φpσ1

∇φe ∇φn

)(6.23)

70

(6.18)

with

We define now two projectors P± and four operators P0, P1, P2, P3 acting inthe space-time algebra as follows

P±(Ψ) =1

2(Ψ± iΨγ21) ; i = γ0123 (6.12)

P0(Ψ) = Ψγ21 +1

2Ψi+

1

2iΨγ30 = Ψγ21 + P−(Ψ)i (6.13)

P1(Ψ) =1

2(iΨγ0 +Ψγ012) = P+(Ψ)γ3i (6.14)

P2(Ψ) =1

2(Ψγ3 − iΨγ123) = P+(Ψ)γ3 (6.15)

P3(Ψ) =1

2(−Ψi+ iΨγ30) = P+(Ψ)(−i). (6.16)

Noting PµPν(Ψ) = Pµ[Pν(Ψ)] they satisfy

P1P2 = P3 = −P2P1

P2P3 = P1 = −P3P2

P3P1 = P2 = −P1P3 (6.17)

P 21 = P 2

2 = P 23 = −P+

P0Pj = PjP0 = −iPj , j = 1, 2, 3.

The Weinberg-Salam model replaces partial derivatives ∂µ by covariant deriva-tives

Dµ = ∂µ − ig1Y

2Bµ − ig2TjW

jµ (6.18)

with Tj =τj2 for a doublet of left-handed particles and Tj = 0 for a singlet of

right-handed particle. Y is the weak hypercharge, YL = −1, YR = −2 for theelectron. To transpose into space-time algebra, we let

D = σµDµ ; D = γµDµ =

(0 D

D 0

)(6.19)

B = σµBµ ; B = γµBµ =

(0 B

B 0

)(6.20)

W j = σµW jµ ; Wj = γµW j

µ =

(0 W j

W j 0

)(6.21)

We will prove now that (6.18) comes from

D = ∂∂∂ +g12BP0 +

g22(W1P1 +W2P2 +W3P3). (6.22)

Firstly we have in space-time algebra (see 1.4.1)

∂∂∂Ψ =

(0 ∇∇ 0

)(φe φn

φaσ1 φpσ1

)=

(∇φaσ1 ∇φpσ1

∇φe ∇φn

)(6.23)

70

for a doublet of left-handed particles and Tj = 0 for a singlet of right-handed particle. Y is the weak hypercharge, YL = −1, YR = −2 for the electron. To trans-pose into space-time algebra, we let

(6.19)

(6.20)

(6.21)

We will prove now that (6.18) comes from

We define now two projectors P± and four operators P0, P1, P2, P3 acting inthe space-time algebra as follows

P±(Ψ) =1

2(Ψ± iΨγ21) ; i = γ0123 (6.12)

P0(Ψ) = Ψγ21 +1

2Ψi+

1

2iΨγ30 = Ψγ21 + P−(Ψ)i (6.13)

P1(Ψ) =1

2(iΨγ0 +Ψγ012) = P+(Ψ)γ3i (6.14)

P2(Ψ) =1

2(Ψγ3 − iΨγ123) = P+(Ψ)γ3 (6.15)

P3(Ψ) =1

2(−Ψi+ iΨγ30) = P+(Ψ)(−i). (6.16)

Noting PµPν(Ψ) = Pµ[Pν(Ψ)] they satisfy

P1P2 = P3 = −P2P1

P2P3 = P1 = −P3P2

P3P1 = P2 = −P1P3 (6.17)

P 21 = P 2

2 = P 23 = −P+

P0Pj = PjP0 = −iPj , j = 1, 2, 3.

The Weinberg-Salam model replaces partial derivatives ∂µ by covariant deriva-tives

Dµ = ∂µ − ig1Y

2Bµ − ig2TjW

jµ (6.18)

with Tj =τj2 for a doublet of left-handed particles and Tj = 0 for a singlet of

right-handed particle. Y is the weak hypercharge, YL = −1, YR = −2 for theelectron. To transpose into space-time algebra, we let

D = σµDµ ; D = γµDµ =

(0 D

D 0

)(6.19)

B = σµBµ ; B = γµBµ =

(0 B

B 0

)(6.20)

W j = σµW jµ ; Wj = γµW j

µ =

(0 W j

W j 0

)(6.21)

We will prove now that (6.18) comes from

D = ∂∂∂ +g12BP0 +

g22(W1P1 +W2P2 +W3P3). (6.22)

Firstly we have in space-time algebra (see 1.4.1)

∂∂∂Ψ =

(0 ∇∇ 0

)(φe φn

φaσ1 φpσ1

)=

(∇φaσ1 ∇φpσ1

∇φe ∇φn

)(6.23)

70

(6.22)

Firstly we have in space-time algebra (see 1.4.1)

We define now two projectors P± and four operators P0, P1, P2, P3 acting inthe space-time algebra as follows

P±(Ψ) =1

2(Ψ± iΨγ21) ; i = γ0123 (6.12)

P0(Ψ) = Ψγ21 +1

2Ψi+

1

2iΨγ30 = Ψγ21 + P−(Ψ)i (6.13)

P1(Ψ) =1

2(iΨγ0 +Ψγ012) = P+(Ψ)γ3i (6.14)

P2(Ψ) =1

2(Ψγ3 − iΨγ123) = P+(Ψ)γ3 (6.15)

P3(Ψ) =1

2(−Ψi+ iΨγ30) = P+(Ψ)(−i). (6.16)

Noting PµPν(Ψ) = Pµ[Pν(Ψ)] they satisfy

P1P2 = P3 = −P2P1

P2P3 = P1 = −P3P2

P3P1 = P2 = −P1P3 (6.17)

P 21 = P 2

2 = P 23 = −P+

P0Pj = PjP0 = −iPj , j = 1, 2, 3.

The Weinberg-Salam model replaces partial derivatives ∂µ by covariant deriva-tives

Dµ = ∂µ − ig1Y

2Bµ − ig2TjW

jµ (6.18)

with Tj =τj2 for a doublet of left-handed particles and Tj = 0 for a singlet of

right-handed particle. Y is the weak hypercharge, YL = −1, YR = −2 for theelectron. To transpose into space-time algebra, we let

D = σµDµ ; D = γµDµ =

(0 D

D 0

)(6.19)

B = σµBµ ; B = γµBµ =

(0 B

B 0

)(6.20)

W j = σµW jµ ; Wj = γµW j

µ =

(0 W j

W j 0

)(6.21)

We will prove now that (6.18) comes from

D = ∂∂∂ +g12BP0 +

g22(W1P1 +W2P2 +W3P3). (6.22)

Firstly we have in space-time algebra (see 1.4.1)

∂∂∂Ψ =

(0 ∇∇ 0

)(φe φn

φaσ1 φpσ1

)=

(∇φaσ1 ∇φpσ1

∇φe ∇φn

)(6.23)

70

We define now two projectors P± and four operators P0, P1, P2, P3 acting inthe space-time algebra as follows

P±(Ψ) =1

2(Ψ± iΨγ21) ; i = γ0123 (6.12)

P0(Ψ) = Ψγ21 +1

2Ψi+

1

2iΨγ30 = Ψγ21 + P−(Ψ)i (6.13)

P1(Ψ) =1

2(iΨγ0 +Ψγ012) = P+(Ψ)γ3i (6.14)

P2(Ψ) =1

2(Ψγ3 − iΨγ123) = P+(Ψ)γ3 (6.15)

P3(Ψ) =1

2(−Ψi+ iΨγ30) = P+(Ψ)(−i). (6.16)

Noting PµPν(Ψ) = Pµ[Pν(Ψ)] they satisfy

P1P2 = P3 = −P2P1

P2P3 = P1 = −P3P2

P3P1 = P2 = −P1P3 (6.17)

P 21 = P 2

2 = P 23 = −P+

P0Pj = PjP0 = −iPj , j = 1, 2, 3.

The Weinberg-Salam model replaces partial derivatives ∂µ by covariant deriva-tives

Dµ = ∂µ − ig1Y

2Bµ − ig2TjW

jµ (6.18)

with Tj =τj2 for a doublet of left-handed particles and Tj = 0 for a singlet of

right-handed particle. Y is the weak hypercharge, YL = −1, YR = −2 for theelectron. To transpose into space-time algebra, we let

D = σµDµ ; D = γµDµ =

(0 D

D 0

)(6.19)

B = σµBµ ; B = γµBµ =

(0 B

B 0

)(6.20)

W j = σµW jµ ; Wj = γµW j

µ =

(0 W j

W j 0

)(6.21)

We will prove now that (6.18) comes from

D = ∂∂∂ +g12BP0 +

g22(W1P1 +W2P2 +W3P3). (6.22)

Firstly we have in space-time algebra (see 1.4.1)

∂∂∂Ψ =

(0 ∇∇ 0

)(φe φn

φaσ1 φpσ1

)=

(∇φaσ1 ∇φpσ1

∇φe ∇φn

)(6.23)

70

We define now two projectors P± and four operators P0, P1, P2, P3 acting inthe space-time algebra as follows

P±(Ψ) =1

2(Ψ± iΨγ21) ; i = γ0123 (6.12)

P0(Ψ) = Ψγ21 +1

2Ψi+

1

2iΨγ30 = Ψγ21 + P−(Ψ)i (6.13)

P1(Ψ) =1

2(iΨγ0 +Ψγ012) = P+(Ψ)γ3i (6.14)

P2(Ψ) =1

2(Ψγ3 − iΨγ123) = P+(Ψ)γ3 (6.15)

P3(Ψ) =1

2(−Ψi+ iΨγ30) = P+(Ψ)(−i). (6.16)

Noting PµPν(Ψ) = Pµ[Pν(Ψ)] they satisfy

P1P2 = P3 = −P2P1

P2P3 = P1 = −P3P2

P3P1 = P2 = −P1P3 (6.17)

P 21 = P 2

2 = P 23 = −P+

P0Pj = PjP0 = −iPj , j = 1, 2, 3.

The Weinberg-Salam model replaces partial derivatives ∂µ by covariant deriva-tives

Dµ = ∂µ − ig1Y

2Bµ − ig2TjW

jµ (6.18)

with Tj =τj2 for a doublet of left-handed particles and Tj = 0 for a singlet of

right-handed particle. Y is the weak hypercharge, YL = −1, YR = −2 for theelectron. To transpose into space-time algebra, we let

D = σµDµ ; D = γµDµ =

(0 D

D 0

)(6.19)

B = σµBµ ; B = γµBµ =

(0 B

B 0

)(6.20)

W j = σµW jµ ; Wj = γµW j

µ =

(0 W j

W j 0

)(6.21)

We will prove now that (6.18) comes from

D = ∂∂∂ +g12BP0 +

g22(W1P1 +W2P2 +W3P3). (6.22)

Firstly we have in space-time algebra (see 1.4.1)

∂∂∂Ψ =

(0 ∇∇ 0

)(φe φn

φaσ1 φpσ1

)=

(∇φaσ1 ∇φpσ1

∇φe ∇φn

)(6.23)

70

We define now two projectors P± and four operators P0, P1, P2, P3 acting inthe space-time algebra as follows

P±(Ψ) =1

2(Ψ± iΨγ21) ; i = γ0123 (6.12)

P0(Ψ) = Ψγ21 +1

2Ψi+

1

2iΨγ30 = Ψγ21 + P−(Ψ)i (6.13)

P1(Ψ) =1

2(iΨγ0 +Ψγ012) = P+(Ψ)γ3i (6.14)

P2(Ψ) =1

2(Ψγ3 − iΨγ123) = P+(Ψ)γ3 (6.15)

P3(Ψ) =1

2(−Ψi+ iΨγ30) = P+(Ψ)(−i). (6.16)

Noting PµPν(Ψ) = Pµ[Pν(Ψ)] they satisfy

P1P2 = P3 = −P2P1

P2P3 = P1 = −P3P2

P3P1 = P2 = −P1P3 (6.17)

P 21 = P 2

2 = P 23 = −P+

P0Pj = PjP0 = −iPj , j = 1, 2, 3.

The Weinberg-Salam model replaces partial derivatives ∂µ by covariant deriva-tives

Dµ = ∂µ − ig1Y

2Bµ − ig2TjW

jµ (6.18)

with Tj =τj2 for a doublet of left-handed particles and Tj = 0 for a singlet of

right-handed particle. Y is the weak hypercharge, YL = −1, YR = −2 for theelectron. To transpose into space-time algebra, we let

D = σµDµ ; D = γµDµ =

(0 D

D 0

)(6.19)

B = σµBµ ; B = γµBµ =

(0 B

B 0

)(6.20)

W j = σµW jµ ; Wj = γµW j

µ =

(0 W j

W j 0

)(6.21)

We will prove now that (6.18) comes from

D = ∂∂∂ +g12BP0 +

g22(W1P1 +W2P2 +W3P3). (6.22)

Firstly we have in space-time algebra (see 1.4.1)

∂∂∂Ψ =

(0 ∇∇ 0

)(φe φn

φaσ1 φpσ1

)=

(∇φaσ1 ∇φpσ1

∇φe ∇φn

)(6.23)

70

(6.23)

while we get with (6.19)while we get with (6.19)

DΨ =

(0 D

D 0

)(φe φn

φaσ1 φpσ1

)=

(Dφaσ1 Dφpσ1

Dφe Dφn

). (6.24)

To compute P0(Ψ) we use

P0(Ψ) =

(p0(φe) p0(φn)

p0(φa)σ1 p0(φp)σ1

). (6.25)

And we get

Ψγ21 = i

(φeσ3 φnσ3

−φaσ3σ1 −φpσ3σ1

)(6.26)

1

2Ψi =

i

2

(φe −φn

φaσ1 −φpσ1

)(6.27)

1

2iΨγ30 =

i

2

(φeσ3 −φnσ3

φaσ3σ1 −φpσ3σ1

). (6.28)

Then we get

P0(Ψ) = i

(φe

1+3σ3

2 φn−1+σ3

2

φa1−σ3

2 σ1 φp−1−3σ3

2 σ1

)(6.29)

p0(φe) = iφe1 + 3σ3

2= i(2φeR − φeL) (6.30)

p0(φn) = iφn−1 + σ3

2= −iφnL (6.31)

p0(φp) = iφp−1− 3σ3

2= −i(2φpL − φpR) (6.32)

p0(φa) = iφa1− σ3

2= iφaR (6.33)

with

φeL = φe1− σ3

2; φeR = φe

1 + σ3

2(6.34)

φnL = φn1− σ3

2; φnR = φn

1 + σ3

2(6.35)

φpL = φp1 + σ3

2; φpR = φp

1− σ3

2(6.36)

φaL = φa1 + σ3

2; φaR = φa

1− σ3

2(6.37)

which gives

BP0(Ψ) =

(0 B

B 0

)(p0(φe) p0(φn)

p0(φa)σ1 p0(φp)σ1

)

= i

(BφaRσ1 −B(2φpL − φpR)σ1

B(2φeR − φeL) −BφnL

). (6.38)

71

while we get with (6.19)

DΨ =

(0 D

D 0

)(φe φn

φaσ1 φpσ1

)=

(Dφaσ1 Dφpσ1

Dφe Dφn

). (6.24)

To compute P0(Ψ) we use

P0(Ψ) =

(p0(φe) p0(φn)

p0(φa)σ1 p0(φp)σ1

). (6.25)

And we get

Ψγ21 = i

(φeσ3 φnσ3

−φaσ3σ1 −φpσ3σ1

)(6.26)

1

2Ψi =

i

2

(φe −φn

φaσ1 −φpσ1

)(6.27)

1

2iΨγ30 =

i

2

(φeσ3 −φnσ3

φaσ3σ1 −φpσ3σ1

). (6.28)

Then we get

P0(Ψ) = i

(φe

1+3σ3

2 φn−1+σ3

2

φa1−σ3

2 σ1 φp−1−3σ3

2 σ1

)(6.29)

p0(φe) = iφe1 + 3σ3

2= i(2φeR − φeL) (6.30)

p0(φn) = iφn−1 + σ3

2= −iφnL (6.31)

p0(φp) = iφp−1− 3σ3

2= −i(2φpL − φpR) (6.32)

p0(φa) = iφa1− σ3

2= iφaR (6.33)

with

φeL = φe1− σ3

2; φeR = φe

1 + σ3

2(6.34)

φnL = φn1− σ3

2; φnR = φn

1 + σ3

2(6.35)

φpL = φp1 + σ3

2; φpR = φp

1− σ3

2(6.36)

φaL = φa1 + σ3

2; φaR = φa

1− σ3

2(6.37)

which gives

BP0(Ψ) =

(0 B

B 0

)(p0(φe) p0(φn)

p0(φa)σ1 p0(φp)σ1

)

= i

(BφaRσ1 −B(2φpL − φpR)σ1

B(2φeR − φeL) −BφnL

). (6.38)

71

(6.24)

To compute

while we get with (6.19)

DΨ =

(0 D

D 0

)(φe φn

φaσ1 φpσ1

)=

(Dφaσ1 Dφpσ1

Dφe Dφn

). (6.24)

To compute P0(Ψ) we use

P0(Ψ) =

(p0(φe) p0(φn)

p0(φa)σ1 p0(φp)σ1

). (6.25)

And we get

Ψγ21 = i

(φeσ3 φnσ3

−φaσ3σ1 −φpσ3σ1

)(6.26)

1

2Ψi =

i

2

(φe −φn

φaσ1 −φpσ1

)(6.27)

1

2iΨγ30 =

i

2

(φeσ3 −φnσ3

φaσ3σ1 −φpσ3σ1

). (6.28)

Then we get

P0(Ψ) = i

(φe

1+3σ3

2 φn−1+σ3

2

φa1−σ3

2 σ1 φp−1−3σ3

2 σ1

)(6.29)

p0(φe) = iφe1 + 3σ3

2= i(2φeR − φeL) (6.30)

p0(φn) = iφn−1 + σ3

2= −iφnL (6.31)

p0(φp) = iφp−1− 3σ3

2= −i(2φpL − φpR) (6.32)

p0(φa) = iφa1− σ3

2= iφaR (6.33)

with

φeL = φe1− σ3

2; φeR = φe

1 + σ3

2(6.34)

φnL = φn1− σ3

2; φnR = φn

1 + σ3

2(6.35)

φpL = φp1 + σ3

2; φpR = φp

1− σ3

2(6.36)

φaL = φa1 + σ3

2; φaR = φa

1− σ3

2(6.37)

which gives

BP0(Ψ) =

(0 B

B 0

)(p0(φe) p0(φn)

p0(φa)σ1 p0(φp)σ1

)

= i

(BφaRσ1 −B(2φpL − φpR)σ1

B(2φeR − φeL) −BφnL

). (6.38)

71

we use

while we get with (6.19)

DΨ =

(0 D

D 0

)(φe φn

φaσ1 φpσ1

)=

(Dφaσ1 Dφpσ1

Dφe Dφn

). (6.24)

To compute P0(Ψ) we use

P0(Ψ) =

(p0(φe) p0(φn)

p0(φa)σ1 p0(φp)σ1

). (6.25)

And we get

Ψγ21 = i

(φeσ3 φnσ3

−φaσ3σ1 −φpσ3σ1

)(6.26)

1

2Ψi =

i

2

(φe −φn

φaσ1 −φpσ1

)(6.27)

1

2iΨγ30 =

i

2

(φeσ3 −φnσ3

φaσ3σ1 −φpσ3σ1

). (6.28)

Then we get

P0(Ψ) = i

(φe

1+3σ3

2 φn−1+σ3

2

φa1−σ3

2 σ1 φp−1−3σ3

2 σ1

)(6.29)

p0(φe) = iφe1 + 3σ3

2= i(2φeR − φeL) (6.30)

p0(φn) = iφn−1 + σ3

2= −iφnL (6.31)

p0(φp) = iφp−1− 3σ3

2= −i(2φpL − φpR) (6.32)

p0(φa) = iφa1− σ3

2= iφaR (6.33)

with

φeL = φe1− σ3

2; φeR = φe

1 + σ3

2(6.34)

φnL = φn1− σ3

2; φnR = φn

1 + σ3

2(6.35)

φpL = φp1 + σ3

2; φpR = φp

1− σ3

2(6.36)

φaL = φa1 + σ3

2; φaR = φa

1− σ3

2(6.37)

which gives

BP0(Ψ) =

(0 B

B 0

)(p0(φe) p0(φn)

p0(φa)σ1 p0(φp)σ1

)

= i

(BφaRσ1 −B(2φpL − φpR)σ1

B(2φeR − φeL) −BφnL

). (6.38)

71

(6.25)

which gives

φp =√2(ηp −iσ2ξ

∗p

); φp =

√2(ξp −iσ2η

∗p

)(6.5)

φa =√2(ηa −iσ2ξ

∗a

); φa =

√2(ξa −iσ2η

∗a

)(6.6)

ξ1p = η∗2e, ξ2p = −η∗1e; η1p = −ξ∗2e; η2p = ξ∗1e

ξ1a = η∗2n, ξ2a = −η∗1n; η1a = −ξ∗2n; η2a = ξ∗1n. (6.7)

We used in [7] a wave Ψ function of the space-time with value into the Cl2,3 =M4(C) algebra. We disposed waves of particle on the above line and waves ofantiparticle on the second line to get correct transformations of left and rightwaves under Lorentz dilations, as we will see in 6.5. We used a σ1 factor whichwas a necessary factor exchanging ξ and η terms. This allows to get a wave forthese four particles of the electronic sector40 and with the link (2.125) betweenthe wave of the particle and the wave of the antiparticle we have

Ψ =

(φe φn

φaσ1 φpσ1

)=

(φe φn

φn φe

)(6.8)

Now with (6.4) and (6.8) the wave is a function of space-time with value in theClifford algebra of space-time. The Weinberg-Salam model uses ξe, ηe, ηn andsupposes ξn = 0. This hypothesis will be used further in 6.6. To separate ξe, ηeand ηn the Weinberg-Salam model uses projectors 1

2 (1 ± γ5), which read withour choice (1.75) of Dirac matrices:

1

2(1− γ5)ψ = ψL =

(0 00 I

)(ξη

)=

(0η

)(6.9)

1

2(1 + γ5)ψ = ψR =

(I 00 0

)(ξη

)=

(ξ0

). (6.10)

Then for particles left waves are η waves and right waves are ξ waves. This isCl∗3 invariant, consequently relativistic invariant, since under a Lorentz dilation

D defined by D : x → x′ = MxM† we have (1.30) : ξ′ = Mξ, η′ = Mη. Theγ5 matrix is not included in the space-time algebra41, but this is not a problemhere, because the projectors separating ξ and η are in space algebra 1

2 (1± σ3):

φR =√2(ξ 0

)= φ

(1 00 0

)= φ

1

2(1 + σ3)

φL =√2(0 −iσ2η

∗) = φ

(0 00 1

)= φ

1

2(1− σ3) (6.11)

φL =√2(η 0

)= φ

1

2(1 + σ3) ; φR = φ

1

2(1− σ3).

40We could exchange the places of φe and φn. With (6.8) the wave of the electron has valuein the even sub-algebra and the neutrino has value in the odd part of the algebra. The otherchoice is possible if we adapt the definition of projectors in (6.12) to (6.16)

41This was wrongly considered as a reason to forbid the use of space-time algebra.

69

We define now two projectors P± and four operators P0, P1, P2, P3 acting inthe space-time algebra as follows

P±(Ψ) =1

2(Ψ± iΨγ21) ; i = γ0123 (6.12)

P0(Ψ) = Ψγ21 +1

2Ψi+

1

2iΨγ30 = Ψγ21 + P−(Ψ)i (6.13)

P1(Ψ) =1

2(iΨγ0 +Ψγ012) = P+(Ψ)γ3i (6.14)

P2(Ψ) =1

2(Ψγ3 − iΨγ123) = P+(Ψ)γ3 (6.15)

P3(Ψ) =1

2(−Ψi+ iΨγ30) = P+(Ψ)(−i). (6.16)

Noting PµPν(Ψ) = Pµ[Pν(Ψ)] they satisfy

P1P2 = P3 = −P2P1

P2P3 = P1 = −P3P2

P3P1 = P2 = −P1P3 (6.17)

P 21 = P 2

2 = P 23 = −P+

P0Pj = PjP0 = −iPj , j = 1, 2, 3.

The Weinberg-Salam model replaces partial derivatives ∂µ by covariant deriva-tives

Dµ = ∂µ − ig1Y

2Bµ − ig2TjW

jµ (6.18)

with Tj =τj2 for a doublet of left-handed particles and Tj = 0 for a singlet of

right-handed particle. Y is the weak hypercharge, YL = −1, YR = −2 for theelectron. To transpose into space-time algebra, we let

D = σµDµ ; D = γµDµ =

(0 D

D 0

)(6.19)

B = σµBµ ; B = γµBµ =

(0 B

B 0

)(6.20)

W j = σµW jµ ; Wj = γµW j

µ =

(0 W j

W j 0

)(6.21)

We will prove now that (6.18) comes from

D = ∂∂∂ +g12BP0 +

g22(W1P1 +W2P2 +W3P3). (6.22)

Firstly we have in space-time algebra (see 1.4.1)

∂∂∂Ψ =

(0 ∇∇ 0

)(φe φn

φaσ1 φpσ1

)=

(∇φaσ1 ∇φpσ1

∇φe ∇φn

)(6.23)

70

We define now two projectors P± and four operators P0, P1, P2, P3 acting inthe space-time algebra as follows

P±(Ψ) =1

2(Ψ± iΨγ21) ; i = γ0123 (6.12)

P0(Ψ) = Ψγ21 +1

2Ψi+

1

2iΨγ30 = Ψγ21 + P−(Ψ)i (6.13)

P1(Ψ) =1

2(iΨγ0 +Ψγ012) = P+(Ψ)γ3i (6.14)

P2(Ψ) =1

2(Ψγ3 − iΨγ123) = P+(Ψ)γ3 (6.15)

P3(Ψ) =1

2(−Ψi+ iΨγ30) = P+(Ψ)(−i). (6.16)

Noting PµPν(Ψ) = Pµ[Pν(Ψ)] they satisfy

P1P2 = P3 = −P2P1

P2P3 = P1 = −P3P2

P3P1 = P2 = −P1P3 (6.17)

P 21 = P 2

2 = P 23 = −P+

P0Pj = PjP0 = −iPj , j = 1, 2, 3.

The Weinberg-Salam model replaces partial derivatives ∂µ by covariant deriva-tives

Dµ = ∂µ − ig1Y

2Bµ − ig2TjW

jµ (6.18)

with Tj =τj2 for a doublet of left-handed particles and Tj = 0 for a singlet of

right-handed particle. Y is the weak hypercharge, YL = −1, YR = −2 for theelectron. To transpose into space-time algebra, we let

D = σµDµ ; D = γµDµ =

(0 D

D 0

)(6.19)

B = σµBµ ; B = γµBµ =

(0 B

B 0

)(6.20)

W j = σµW jµ ; Wj = γµW j

µ =

(0 W j

W j 0

)(6.21)

We will prove now that (6.18) comes from

D = ∂∂∂ +g12BP0 +

g22(W1P1 +W2P2 +W3P3). (6.22)

Firstly we have in space-time algebra (see 1.4.1)

∂∂∂Ψ =

(0 ∇∇ 0

)(φe φn

φaσ1 φpσ1

)=

(∇φaσ1 ∇φpσ1

∇φe ∇φn

)(6.23)

70

24

Page 28: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201426

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

And we get

(6.26)

while we get with (6.19)

DΨ =

(0 D

D 0

)(φe φn

φaσ1 φpσ1

)=

(Dφaσ1 Dφpσ1

Dφe Dφn

). (6.24)

To compute P0(Ψ) we use

P0(Ψ) =

(p0(φe) p0(φn)

p0(φa)σ1 p0(φp)σ1

). (6.25)

And we get

Ψγ21 = i

(φeσ3 φnσ3

−φaσ3σ1 −φpσ3σ1

)(6.26)

1

2Ψi =

i

2

(φe −φn

φaσ1 −φpσ1

)(6.27)

1

2iΨγ30 =

i

2

(φeσ3 −φnσ3

φaσ3σ1 −φpσ3σ1

). (6.28)

Then we get

P0(Ψ) = i

(φe

1+3σ3

2 φn−1+σ3

2

φa1−σ3

2 σ1 φp−1−3σ3

2 σ1

)(6.29)

p0(φe) = iφe1 + 3σ3

2= i(2φeR − φeL) (6.30)

p0(φn) = iφn−1 + σ3

2= −iφnL (6.31)

p0(φp) = iφp−1− 3σ3

2= −i(2φpL − φpR) (6.32)

p0(φa) = iφa1− σ3

2= iφaR (6.33)

with

φeL = φe1− σ3

2; φeR = φe

1 + σ3

2(6.34)

φnL = φn1− σ3

2; φnR = φn

1 + σ3

2(6.35)

φpL = φp1 + σ3

2; φpR = φp

1− σ3

2(6.36)

φaL = φa1 + σ3

2; φaR = φa

1− σ3

2(6.37)

which gives

BP0(Ψ) =

(0 B

B 0

)(p0(φe) p0(φn)

p0(φa)σ1 p0(φp)σ1

)

= i

(BφaRσ1 −B(2φpL − φpR)σ1

B(2φeR − φeL) −BφnL

). (6.38)

71

(6.27)

(6.28)

Then we get

while we get with (6.19)

DΨ =

(0 D

D 0

)(φe φn

φaσ1 φpσ1

)=

(Dφaσ1 Dφpσ1

Dφe Dφn

). (6.24)

To compute P0(Ψ) we use

P0(Ψ) =

(p0(φe) p0(φn)

p0(φa)σ1 p0(φp)σ1

). (6.25)

And we get

Ψγ21 = i

(φeσ3 φnσ3

−φaσ3σ1 −φpσ3σ1

)(6.26)

1

2Ψi =

i

2

(φe −φn

φaσ1 −φpσ1

)(6.27)

1

2iΨγ30 =

i

2

(φeσ3 −φnσ3

φaσ3σ1 −φpσ3σ1

). (6.28)

Then we get

P0(Ψ) = i

(φe

1+3σ3

2 φn−1+σ3

2

φa1−σ3

2 σ1 φp−1−3σ3

2 σ1

)(6.29)

p0(φe) = iφe1 + 3σ3

2= i(2φeR − φeL) (6.30)

p0(φn) = iφn−1 + σ3

2= −iφnL (6.31)

p0(φp) = iφp−1− 3σ3

2= −i(2φpL − φpR) (6.32)

p0(φa) = iφa1− σ3

2= iφaR (6.33)

with

φeL = φe1− σ3

2; φeR = φe

1 + σ3

2(6.34)

φnL = φn1− σ3

2; φnR = φn

1 + σ3

2(6.35)

φpL = φp1 + σ3

2; φpR = φp

1− σ3

2(6.36)

φaL = φa1 + σ3

2; φaR = φa

1− σ3

2(6.37)

which gives

BP0(Ψ) =

(0 B

B 0

)(p0(φe) p0(φn)

p0(φa)σ1 p0(φp)σ1

)

= i

(BφaRσ1 −B(2φpL − φpR)σ1

B(2φeR − φeL) −BφnL

). (6.38)

71

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

with

while we get with (6.19)

DΨ =

(0 D

D 0

)(φe φn

φaσ1 φpσ1

)=

(Dφaσ1 Dφpσ1

Dφe Dφn

). (6.24)

To compute P0(Ψ) we use

P0(Ψ) =

(p0(φe) p0(φn)

p0(φa)σ1 p0(φp)σ1

). (6.25)

And we get

Ψγ21 = i

(φeσ3 φnσ3

−φaσ3σ1 −φpσ3σ1

)(6.26)

1

2Ψi =

i

2

(φe −φn

φaσ1 −φpσ1

)(6.27)

1

2iΨγ30 =

i

2

(φeσ3 −φnσ3

φaσ3σ1 −φpσ3σ1

). (6.28)

Then we get

P0(Ψ) = i

(φe

1+3σ3

2 φn−1+σ3

2

φa1−σ3

2 σ1 φp−1−3σ3

2 σ1

)(6.29)

p0(φe) = iφe1 + 3σ3

2= i(2φeR − φeL) (6.30)

p0(φn) = iφn−1 + σ3

2= −iφnL (6.31)

p0(φp) = iφp−1− 3σ3

2= −i(2φpL − φpR) (6.32)

p0(φa) = iφa1− σ3

2= iφaR (6.33)

with

φeL = φe1− σ3

2; φeR = φe

1 + σ3

2(6.34)

φnL = φn1− σ3

2; φnR = φn

1 + σ3

2(6.35)

φpL = φp1 + σ3

2; φpR = φp

1− σ3

2(6.36)

φaL = φa1 + σ3

2; φaR = φa

1− σ3

2(6.37)

which gives

BP0(Ψ) =

(0 B

B 0

)(p0(φe) p0(φn)

p0(φa)σ1 p0(φp)σ1

)

= i

(BφaRσ1 −B(2φpL − φpR)σ1

B(2φeR − φeL) −BφnL

). (6.38)

71

(6.34)

(6.35)

(6.36)

(6.37)

which gives

while we get with (6.19)

DΨ =

(0 D

D 0

)(φe φn

φaσ1 φpσ1

)=

(Dφaσ1 Dφpσ1

Dφe Dφn

). (6.24)

To compute P0(Ψ) we use

P0(Ψ) =

(p0(φe) p0(φn)

p0(φa)σ1 p0(φp)σ1

). (6.25)

And we get

Ψγ21 = i

(φeσ3 φnσ3

−φaσ3σ1 −φpσ3σ1

)(6.26)

1

2Ψi =

i

2

(φe −φn

φaσ1 −φpσ1

)(6.27)

1

2iΨγ30 =

i

2

(φeσ3 −φnσ3

φaσ3σ1 −φpσ3σ1

). (6.28)

Then we get

P0(Ψ) = i

(φe

1+3σ3

2 φn−1+σ3

2

φa1−σ3

2 σ1 φp−1−3σ3

2 σ1

)(6.29)

p0(φe) = iφe1 + 3σ3

2= i(2φeR − φeL) (6.30)

p0(φn) = iφn−1 + σ3

2= −iφnL (6.31)

p0(φp) = iφp−1− 3σ3

2= −i(2φpL − φpR) (6.32)

p0(φa) = iφa1− σ3

2= iφaR (6.33)

with

φeL = φe1− σ3

2; φeR = φe

1 + σ3

2(6.34)

φnL = φn1− σ3

2; φnR = φn

1 + σ3

2(6.35)

φpL = φp1 + σ3

2; φpR = φp

1− σ3

2(6.36)

φaL = φa1 + σ3

2; φaR = φa

1− σ3

2(6.37)

which gives

BP0(Ψ) =

(0 B

B 0

)(p0(φe) p0(φn)

p0(φa)σ1 p0(φp)σ1

)

= i

(BφaRσ1 −B(2φpL − φpR)σ1

B(2φeR − φeL) −BφnL

). (6.38)

71

(6.38)

Next we letNext we let

Pj(Ψ) =

(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

), j = 1, 2, 3. (6.39)

We get for j = 1

iΨγ0 = i

(φn φe

−φpσ1 −φaσ1

); Ψγ012 = i

(−φnσ3 −φeσ3

φpσ3σ1 φaσ3σ1

)

P1(Ψ) = i

(φn

1−σ3

2 φe1−σ3

2

φp−1+σ3

2 σ1 φa−1+σ3

2 σ1

)= i

(φnL φeL

−φpRσ1 −φaRσ1

)(6.40)

p1(φe) = iφnL ; p1(φn) = iφeL

p1(φa) = −iφpR ; p1(φp) = −iφaR. (6.41)

We get for j = 2

Ψγ3 =

(−φnσ3 φeσ3

φpσ3σ1 −φaσ3σ1

); − iΨγ123 =

(φn −φe

−φpσ1 φaσ1

)

P2(Ψ) =

(φn

1−σ3

2 φe−1+σ3

2

φp−1+σ3

2 σ1 φa1−σ3

2 σ1

)=

(φnL −φeL

−φpRσ1 φaRσ1

)(6.42)

p2(φe) = φnL ; p2(φn) = −φeL

p2(φa) = −φpR ; p2(φp) = φaR. (6.43)

We get for j = 3

−Ψi = i

(−φe φn

−φaσ1 φpσ1

); iΨγ30 = i

(φeσ3 −φnσ3

φaσ3σ1 −φpσ3σ1

)

P3(Ψ) = i

(φe

−1+σ3

2 φn1−σ3

2

φa−1+σ3

2 σ1 φp1−σ3

2 σ1

)= i

(−φeL φnL

−φaRσ1 φpRσ1

)(6.44)

p3(φe) = −iφeL ; p3(φn) = iφnL

p3(φa) = −iφaR ; p3(φp) = iφpR. (6.45)

We also have

WjPj(Ψ) =

(0 W j

W j 0

)(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

)

=

(W jpj(φa)σ1 W jpj(φp)σ1

W jpj(φe) W jpj(φn)

). (6.46)

72

(6.39)

We get for j = 1

Next we let

Pj(Ψ) =

(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

), j = 1, 2, 3. (6.39)

We get for j = 1

iΨγ0 = i

(φn φe

−φpσ1 −φaσ1

); Ψγ012 = i

(−φnσ3 −φeσ3

φpσ3σ1 φaσ3σ1

)

P1(Ψ) = i

(φn

1−σ3

2 φe1−σ3

2

φp−1+σ3

2 σ1 φa−1+σ3

2 σ1

)= i

(φnL φeL

−φpRσ1 −φaRσ1

)(6.40)

p1(φe) = iφnL ; p1(φn) = iφeL

p1(φa) = −iφpR ; p1(φp) = −iφaR. (6.41)

We get for j = 2

Ψγ3 =

(−φnσ3 φeσ3

φpσ3σ1 −φaσ3σ1

); − iΨγ123 =

(φn −φe

−φpσ1 φaσ1

)

P2(Ψ) =

(φn

1−σ3

2 φe−1+σ3

2

φp−1+σ3

2 σ1 φa1−σ3

2 σ1

)=

(φnL −φeL

−φpRσ1 φaRσ1

)(6.42)

p2(φe) = φnL ; p2(φn) = −φeL

p2(φa) = −φpR ; p2(φp) = φaR. (6.43)

We get for j = 3

−Ψi = i

(−φe φn

−φaσ1 φpσ1

); iΨγ30 = i

(φeσ3 −φnσ3

φaσ3σ1 −φpσ3σ1

)

P3(Ψ) = i

(φe

−1+σ3

2 φn1−σ3

2

φa−1+σ3

2 σ1 φp1−σ3

2 σ1

)= i

(−φeL φnL

−φaRσ1 φpRσ1

)(6.44)

p3(φe) = −iφeL ; p3(φn) = iφnL

p3(φa) = −iφaR ; p3(φp) = iφpR. (6.45)

We also have

WjPj(Ψ) =

(0 W j

W j 0

)(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

)

=

(W jpj(φa)σ1 W jpj(φp)σ1

W jpj(φe) W jpj(φn)

). (6.46)

72

Next we let

Pj(Ψ) =

(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

), j = 1, 2, 3. (6.39)

We get for j = 1

iΨγ0 = i

(φn φe

−φpσ1 −φaσ1

); Ψγ012 = i

(−φnσ3 −φeσ3

φpσ3σ1 φaσ3σ1

)

P1(Ψ) = i

(φn

1−σ3

2 φe1−σ3

2

φp−1+σ3

2 σ1 φa−1+σ3

2 σ1

)= i

(φnL φeL

−φpRσ1 −φaRσ1

)(6.40)

p1(φe) = iφnL ; p1(φn) = iφeL

p1(φa) = −iφpR ; p1(φp) = −iφaR. (6.41)

We get for j = 2

Ψγ3 =

(−φnσ3 φeσ3

φpσ3σ1 −φaσ3σ1

); − iΨγ123 =

(φn −φe

−φpσ1 φaσ1

)

P2(Ψ) =

(φn

1−σ3

2 φe−1+σ3

2

φp−1+σ3

2 σ1 φa1−σ3

2 σ1

)=

(φnL −φeL

−φpRσ1 φaRσ1

)(6.42)

p2(φe) = φnL ; p2(φn) = −φeL

p2(φa) = −φpR ; p2(φp) = φaR. (6.43)

We get for j = 3

−Ψi = i

(−φe φn

−φaσ1 φpσ1

); iΨγ30 = i

(φeσ3 −φnσ3

φaσ3σ1 −φpσ3σ1

)

P3(Ψ) = i

(φe

−1+σ3

2 φn1−σ3

2

φa−1+σ3

2 σ1 φp1−σ3

2 σ1

)= i

(−φeL φnL

−φaRσ1 φpRσ1

)(6.44)

p3(φe) = −iφeL ; p3(φn) = iφnL

p3(φa) = −iφaR ; p3(φp) = iφpR. (6.45)

We also have

WjPj(Ψ) =

(0 W j

W j 0

)(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

)

=

(W jpj(φa)σ1 W jpj(φp)σ1

W jpj(φe) W jpj(φn)

). (6.46)

72

; (6.40)

Next we let

Pj(Ψ) =

(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

), j = 1, 2, 3. (6.39)

We get for j = 1

iΨγ0 = i

(φn φe

−φpσ1 −φaσ1

); Ψγ012 = i

(−φnσ3 −φeσ3

φpσ3σ1 φaσ3σ1

)

P1(Ψ) = i

(φn

1−σ3

2 φe1−σ3

2

φp−1+σ3

2 σ1 φa−1+σ3

2 σ1

)= i

(φnL φeL

−φpRσ1 −φaRσ1

)(6.40)

p1(φe) = iφnL ; p1(φn) = iφeL

p1(φa) = −iφpR ; p1(φp) = −iφaR. (6.41)

We get for j = 2

Ψγ3 =

(−φnσ3 φeσ3

φpσ3σ1 −φaσ3σ1

); − iΨγ123 =

(φn −φe

−φpσ1 φaσ1

)

P2(Ψ) =

(φn

1−σ3

2 φe−1+σ3

2

φp−1+σ3

2 σ1 φa1−σ3

2 σ1

)=

(φnL −φeL

−φpRσ1 φaRσ1

)(6.42)

p2(φe) = φnL ; p2(φn) = −φeL

p2(φa) = −φpR ; p2(φp) = φaR. (6.43)

We get for j = 3

−Ψi = i

(−φe φn

−φaσ1 φpσ1

); iΨγ30 = i

(φeσ3 −φnσ3

φaσ3σ1 −φpσ3σ1

)

P3(Ψ) = i

(φe

−1+σ3

2 φn1−σ3

2

φa−1+σ3

2 σ1 φp1−σ3

2 σ1

)= i

(−φeL φnL

−φaRσ1 φpRσ1

)(6.44)

p3(φe) = −iφeL ; p3(φn) = iφnL

p3(φa) = −iφaR ; p3(φp) = iφpR. (6.45)

We also have

WjPj(Ψ) =

(0 W j

W j 0

)(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

)

=

(W jpj(φa)σ1 W jpj(φp)σ1

W jpj(φe) W jpj(φn)

). (6.46)

72

Next we let

Pj(Ψ) =

(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

), j = 1, 2, 3. (6.39)

We get for j = 1

iΨγ0 = i

(φn φe

−φpσ1 −φaσ1

); Ψγ012 = i

(−φnσ3 −φeσ3

φpσ3σ1 φaσ3σ1

)

P1(Ψ) = i

(φn

1−σ3

2 φe1−σ3

2

φp−1+σ3

2 σ1 φa−1+σ3

2 σ1

)= i

(φnL φeL

−φpRσ1 −φaRσ1

)(6.40)

p1(φe) = iφnL ; p1(φn) = iφeL

p1(φa) = −iφpR ; p1(φp) = −iφaR. (6.41)

We get for j = 2

Ψγ3 =

(−φnσ3 φeσ3

φpσ3σ1 −φaσ3σ1

); − iΨγ123 =

(φn −φe

−φpσ1 φaσ1

)

P2(Ψ) =

(φn

1−σ3

2 φe−1+σ3

2

φp−1+σ3

2 σ1 φa1−σ3

2 σ1

)=

(φnL −φeL

−φpRσ1 φaRσ1

)(6.42)

p2(φe) = φnL ; p2(φn) = −φeL

p2(φa) = −φpR ; p2(φp) = φaR. (6.43)

We get for j = 3

−Ψi = i

(−φe φn

−φaσ1 φpσ1

); iΨγ30 = i

(φeσ3 −φnσ3

φaσ3σ1 −φpσ3σ1

)

P3(Ψ) = i

(φe

−1+σ3

2 φn1−σ3

2

φa−1+σ3

2 σ1 φp1−σ3

2 σ1

)= i

(−φeL φnL

−φaRσ1 φpRσ1

)(6.44)

p3(φe) = −iφeL ; p3(φn) = iφnL

p3(φa) = −iφaR ; p3(φp) = iφpR. (6.45)

We also have

WjPj(Ψ) =

(0 W j

W j 0

)(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

)

=

(W jpj(φa)σ1 W jpj(φp)σ1

W jpj(φe) W jpj(φn)

). (6.46)

72

;

Next we let

Pj(Ψ) =

(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

), j = 1, 2, 3. (6.39)

We get for j = 1

iΨγ0 = i

(φn φe

−φpσ1 −φaσ1

); Ψγ012 = i

(−φnσ3 −φeσ3

φpσ3σ1 φaσ3σ1

)

P1(Ψ) = i

(φn

1−σ3

2 φe1−σ3

2

φp−1+σ3

2 σ1 φa−1+σ3

2 σ1

)= i

(φnL φeL

−φpRσ1 −φaRσ1

)(6.40)

p1(φe) = iφnL ; p1(φn) = iφeL

p1(φa) = −iφpR ; p1(φp) = −iφaR. (6.41)

We get for j = 2

Ψγ3 =

(−φnσ3 φeσ3

φpσ3σ1 −φaσ3σ1

); − iΨγ123 =

(φn −φe

−φpσ1 φaσ1

)

P2(Ψ) =

(φn

1−σ3

2 φe−1+σ3

2

φp−1+σ3

2 σ1 φa1−σ3

2 σ1

)=

(φnL −φeL

−φpRσ1 φaRσ1

)(6.42)

p2(φe) = φnL ; p2(φn) = −φeL

p2(φa) = −φpR ; p2(φp) = φaR. (6.43)

We get for j = 3

−Ψi = i

(−φe φn

−φaσ1 φpσ1

); iΨγ30 = i

(φeσ3 −φnσ3

φaσ3σ1 −φpσ3σ1

)

P3(Ψ) = i

(φe

−1+σ3

2 φn1−σ3

2

φa−1+σ3

2 σ1 φp1−σ3

2 σ1

)= i

(−φeL φnL

−φaRσ1 φpRσ1

)(6.44)

p3(φe) = −iφeL ; p3(φn) = iφnL

p3(φa) = −iφaR ; p3(φp) = iφpR. (6.45)

We also have

WjPj(Ψ) =

(0 W j

W j 0

)(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

)

=

(W jpj(φa)σ1 W jpj(φp)σ1

W jpj(φe) W jpj(φn)

). (6.46)

72

(6.41)

We get for j = 2

Next we let

Pj(Ψ) =

(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

), j = 1, 2, 3. (6.39)

We get for j = 1

iΨγ0 = i

(φn φe

−φpσ1 −φaσ1

); Ψγ012 = i

(−φnσ3 −φeσ3

φpσ3σ1 φaσ3σ1

)

P1(Ψ) = i

(φn

1−σ3

2 φe1−σ3

2

φp−1+σ3

2 σ1 φa−1+σ3

2 σ1

)= i

(φnL φeL

−φpRσ1 −φaRσ1

)(6.40)

p1(φe) = iφnL ; p1(φn) = iφeL

p1(φa) = −iφpR ; p1(φp) = −iφaR. (6.41)

We get for j = 2

Ψγ3 =

(−φnσ3 φeσ3

φpσ3σ1 −φaσ3σ1

); − iΨγ123 =

(φn −φe

−φpσ1 φaσ1

)

P2(Ψ) =

(φn

1−σ3

2 φe−1+σ3

2

φp−1+σ3

2 σ1 φa1−σ3

2 σ1

)=

(φnL −φeL

−φpRσ1 φaRσ1

)(6.42)

p2(φe) = φnL ; p2(φn) = −φeL

p2(φa) = −φpR ; p2(φp) = φaR. (6.43)

We get for j = 3

−Ψi = i

(−φe φn

−φaσ1 φpσ1

); iΨγ30 = i

(φeσ3 −φnσ3

φaσ3σ1 −φpσ3σ1

)

P3(Ψ) = i

(φe

−1+σ3

2 φn1−σ3

2

φa−1+σ3

2 σ1 φp1−σ3

2 σ1

)= i

(−φeL φnL

−φaRσ1 φpRσ1

)(6.44)

p3(φe) = −iφeL ; p3(φn) = iφnL

p3(φa) = −iφaR ; p3(φp) = iφpR. (6.45)

We also have

WjPj(Ψ) =

(0 W j

W j 0

)(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

)

=

(W jpj(φa)σ1 W jpj(φp)σ1

W jpj(φe) W jpj(φn)

). (6.46)

72

;

Next we let

Pj(Ψ) =

(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

), j = 1, 2, 3. (6.39)

We get for j = 1

iΨγ0 = i

(φn φe

−φpσ1 −φaσ1

); Ψγ012 = i

(−φnσ3 −φeσ3

φpσ3σ1 φaσ3σ1

)

P1(Ψ) = i

(φn

1−σ3

2 φe1−σ3

2

φp−1+σ3

2 σ1 φa−1+σ3

2 σ1

)= i

(φnL φeL

−φpRσ1 −φaRσ1

)(6.40)

p1(φe) = iφnL ; p1(φn) = iφeL

p1(φa) = −iφpR ; p1(φp) = −iφaR. (6.41)

We get for j = 2

Ψγ3 =

(−φnσ3 φeσ3

φpσ3σ1 −φaσ3σ1

); − iΨγ123 =

(φn −φe

−φpσ1 φaσ1

)

P2(Ψ) =

(φn

1−σ3

2 φe−1+σ3

2

φp−1+σ3

2 σ1 φa1−σ3

2 σ1

)=

(φnL −φeL

−φpRσ1 φaRσ1

)(6.42)

p2(φe) = φnL ; p2(φn) = −φeL

p2(φa) = −φpR ; p2(φp) = φaR. (6.43)

We get for j = 3

−Ψi = i

(−φe φn

−φaσ1 φpσ1

); iΨγ30 = i

(φeσ3 −φnσ3

φaσ3σ1 −φpσ3σ1

)

P3(Ψ) = i

(φe

−1+σ3

2 φn1−σ3

2

φa−1+σ3

2 σ1 φp1−σ3

2 σ1

)= i

(−φeL φnL

−φaRσ1 φpRσ1

)(6.44)

p3(φe) = −iφeL ; p3(φn) = iφnL

p3(φa) = −iφaR ; p3(φp) = iφpR. (6.45)

We also have

WjPj(Ψ) =

(0 W j

W j 0

)(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

)

=

(W jpj(φa)σ1 W jpj(φp)σ1

W jpj(φe) W jpj(φn)

). (6.46)

72

;

Next we let

Pj(Ψ) =

(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

), j = 1, 2, 3. (6.39)

We get for j = 1

iΨγ0 = i

(φn φe

−φpσ1 −φaσ1

); Ψγ012 = i

(−φnσ3 −φeσ3

φpσ3σ1 φaσ3σ1

)

P1(Ψ) = i

(φn

1−σ3

2 φe1−σ3

2

φp−1+σ3

2 σ1 φa−1+σ3

2 σ1

)= i

(φnL φeL

−φpRσ1 −φaRσ1

)(6.40)

p1(φe) = iφnL ; p1(φn) = iφeL

p1(φa) = −iφpR ; p1(φp) = −iφaR. (6.41)

We get for j = 2

Ψγ3 =

(−φnσ3 φeσ3

φpσ3σ1 −φaσ3σ1

); − iΨγ123 =

(φn −φe

−φpσ1 φaσ1

)

P2(Ψ) =

(φn

1−σ3

2 φe−1+σ3

2

φp−1+σ3

2 σ1 φa1−σ3

2 σ1

)=

(φnL −φeL

−φpRσ1 φaRσ1

)(6.42)

p2(φe) = φnL ; p2(φn) = −φeL

p2(φa) = −φpR ; p2(φp) = φaR. (6.43)

We get for j = 3

−Ψi = i

(−φe φn

−φaσ1 φpσ1

); iΨγ30 = i

(φeσ3 −φnσ3

φaσ3σ1 −φpσ3σ1

)

P3(Ψ) = i

(φe

−1+σ3

2 φn1−σ3

2

φa−1+σ3

2 σ1 φp1−σ3

2 σ1

)= i

(−φeL φnL

−φaRσ1 φpRσ1

)(6.44)

p3(φe) = −iφeL ; p3(φn) = iφnL

p3(φa) = −iφaR ; p3(φp) = iφpR. (6.45)

We also have

WjPj(Ψ) =

(0 W j

W j 0

)(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

)

=

(W jpj(φa)σ1 W jpj(φp)σ1

W jpj(φe) W jpj(φn)

). (6.46)

72

Next we let

Pj(Ψ) =

(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

), j = 1, 2, 3. (6.39)

We get for j = 1

iΨγ0 = i

(φn φe

−φpσ1 −φaσ1

); Ψγ012 = i

(−φnσ3 −φeσ3

φpσ3σ1 φaσ3σ1

)

P1(Ψ) = i

(φn

1−σ3

2 φe1−σ3

2

φp−1+σ3

2 σ1 φa−1+σ3

2 σ1

)= i

(φnL φeL

−φpRσ1 −φaRσ1

)(6.40)

p1(φe) = iφnL ; p1(φn) = iφeL

p1(φa) = −iφpR ; p1(φp) = −iφaR. (6.41)

We get for j = 2

Ψγ3 =

(−φnσ3 φeσ3

φpσ3σ1 −φaσ3σ1

); − iΨγ123 =

(φn −φe

−φpσ1 φaσ1

)

P2(Ψ) =

(φn

1−σ3

2 φe−1+σ3

2

φp−1+σ3

2 σ1 φa1−σ3

2 σ1

)=

(φnL −φeL

−φpRσ1 φaRσ1

)(6.42)

p2(φe) = φnL ; p2(φn) = −φeL

p2(φa) = −φpR ; p2(φp) = φaR. (6.43)

We get for j = 3

−Ψi = i

(−φe φn

−φaσ1 φpσ1

); iΨγ30 = i

(φeσ3 −φnσ3

φaσ3σ1 −φpσ3σ1

)

P3(Ψ) = i

(φe

−1+σ3

2 φn1−σ3

2

φa−1+σ3

2 σ1 φp1−σ3

2 σ1

)= i

(−φeL φnL

−φaRσ1 φpRσ1

)(6.44)

p3(φe) = −iφeL ; p3(φn) = iφnL

p3(φa) = −iφaR ; p3(φp) = iφpR. (6.45)

We also have

WjPj(Ψ) =

(0 W j

W j 0

)(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

)

=

(W jpj(φa)σ1 W jpj(φp)σ1

W jpj(φe) W jpj(φn)

). (6.46)

72

; (6.42)

Next we let

Pj(Ψ) =

(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

), j = 1, 2, 3. (6.39)

We get for j = 1

iΨγ0 = i

(φn φe

−φpσ1 −φaσ1

); Ψγ012 = i

(−φnσ3 −φeσ3

φpσ3σ1 φaσ3σ1

)

P1(Ψ) = i

(φn

1−σ3

2 φe1−σ3

2

φp−1+σ3

2 σ1 φa−1+σ3

2 σ1

)= i

(φnL φeL

−φpRσ1 −φaRσ1

)(6.40)

p1(φe) = iφnL ; p1(φn) = iφeL

p1(φa) = −iφpR ; p1(φp) = −iφaR. (6.41)

We get for j = 2

Ψγ3 =

(−φnσ3 φeσ3

φpσ3σ1 −φaσ3σ1

); − iΨγ123 =

(φn −φe

−φpσ1 φaσ1

)

P2(Ψ) =

(φn

1−σ3

2 φe−1+σ3

2

φp−1+σ3

2 σ1 φa1−σ3

2 σ1

)=

(φnL −φeL

−φpRσ1 φaRσ1

)(6.42)

p2(φe) = φnL ; p2(φn) = −φeL

p2(φa) = −φpR ; p2(φp) = φaR. (6.43)

We get for j = 3

−Ψi = i

(−φe φn

−φaσ1 φpσ1

); iΨγ30 = i

(φeσ3 −φnσ3

φaσ3σ1 −φpσ3σ1

)

P3(Ψ) = i

(φe

−1+σ3

2 φn1−σ3

2

φa−1+σ3

2 σ1 φp1−σ3

2 σ1

)= i

(−φeL φnL

−φaRσ1 φpRσ1

)(6.44)

p3(φe) = −iφeL ; p3(φn) = iφnL

p3(φa) = −iφaR ; p3(φp) = iφpR. (6.45)

We also have

WjPj(Ψ) =

(0 W j

W j 0

)(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

)

=

(W jpj(φa)σ1 W jpj(φp)σ1

W jpj(φe) W jpj(φn)

). (6.46)

72

(6.43)

We get for j = 3

Next we let

Pj(Ψ) =

(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

), j = 1, 2, 3. (6.39)

We get for j = 1

iΨγ0 = i

(φn φe

−φpσ1 −φaσ1

); Ψγ012 = i

(−φnσ3 −φeσ3

φpσ3σ1 φaσ3σ1

)

P1(Ψ) = i

(φn

1−σ3

2 φe1−σ3

2

φp−1+σ3

2 σ1 φa−1+σ3

2 σ1

)= i

(φnL φeL

−φpRσ1 −φaRσ1

)(6.40)

p1(φe) = iφnL ; p1(φn) = iφeL

p1(φa) = −iφpR ; p1(φp) = −iφaR. (6.41)

We get for j = 2

Ψγ3 =

(−φnσ3 φeσ3

φpσ3σ1 −φaσ3σ1

); − iΨγ123 =

(φn −φe

−φpσ1 φaσ1

)

P2(Ψ) =

(φn

1−σ3

2 φe−1+σ3

2

φp−1+σ3

2 σ1 φa1−σ3

2 σ1

)=

(φnL −φeL

−φpRσ1 φaRσ1

)(6.42)

p2(φe) = φnL ; p2(φn) = −φeL

p2(φa) = −φpR ; p2(φp) = φaR. (6.43)

We get for j = 3

−Ψi = i

(−φe φn

−φaσ1 φpσ1

); iΨγ30 = i

(φeσ3 −φnσ3

φaσ3σ1 −φpσ3σ1

)

P3(Ψ) = i

(φe

−1+σ3

2 φn1−σ3

2

φa−1+σ3

2 σ1 φp1−σ3

2 σ1

)= i

(−φeL φnL

−φaRσ1 φpRσ1

)(6.44)

p3(φe) = −iφeL ; p3(φn) = iφnL

p3(φa) = −iφaR ; p3(φp) = iφpR. (6.45)

We also have

WjPj(Ψ) =

(0 W j

W j 0

)(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

)

=

(W jpj(φa)σ1 W jpj(φp)σ1

W jpj(φe) W jpj(φn)

). (6.46)

72

;

Next we let

Pj(Ψ) =

(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

), j = 1, 2, 3. (6.39)

We get for j = 1

iΨγ0 = i

(φn φe

−φpσ1 −φaσ1

); Ψγ012 = i

(−φnσ3 −φeσ3

φpσ3σ1 φaσ3σ1

)

P1(Ψ) = i

(φn

1−σ3

2 φe1−σ3

2

φp−1+σ3

2 σ1 φa−1+σ3

2 σ1

)= i

(φnL φeL

−φpRσ1 −φaRσ1

)(6.40)

p1(φe) = iφnL ; p1(φn) = iφeL

p1(φa) = −iφpR ; p1(φp) = −iφaR. (6.41)

We get for j = 2

Ψγ3 =

(−φnσ3 φeσ3

φpσ3σ1 −φaσ3σ1

); − iΨγ123 =

(φn −φe

−φpσ1 φaσ1

)

P2(Ψ) =

(φn

1−σ3

2 φe−1+σ3

2

φp−1+σ3

2 σ1 φa1−σ3

2 σ1

)=

(φnL −φeL

−φpRσ1 φaRσ1

)(6.42)

p2(φe) = φnL ; p2(φn) = −φeL

p2(φa) = −φpR ; p2(φp) = φaR. (6.43)

We get for j = 3

−Ψi = i

(−φe φn

−φaσ1 φpσ1

); iΨγ30 = i

(φeσ3 −φnσ3

φaσ3σ1 −φpσ3σ1

)

P3(Ψ) = i

(φe

−1+σ3

2 φn1−σ3

2

φa−1+σ3

2 σ1 φp1−σ3

2 σ1

)= i

(−φeL φnL

−φaRσ1 φpRσ1

)(6.44)

p3(φe) = −iφeL ; p3(φn) = iφnL

p3(φa) = −iφaR ; p3(φp) = iφpR. (6.45)

We also have

WjPj(Ψ) =

(0 W j

W j 0

)(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

)

=

(W jpj(φa)σ1 W jpj(φp)σ1

W jpj(φe) W jpj(φn)

). (6.46)

72

;

Next we let

Pj(Ψ) =

(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

), j = 1, 2, 3. (6.39)

We get for j = 1

iΨγ0 = i

(φn φe

−φpσ1 −φaσ1

); Ψγ012 = i

(−φnσ3 −φeσ3

φpσ3σ1 φaσ3σ1

)

P1(Ψ) = i

(φn

1−σ3

2 φe1−σ3

2

φp−1+σ3

2 σ1 φa−1+σ3

2 σ1

)= i

(φnL φeL

−φpRσ1 −φaRσ1

)(6.40)

p1(φe) = iφnL ; p1(φn) = iφeL

p1(φa) = −iφpR ; p1(φp) = −iφaR. (6.41)

We get for j = 2

Ψγ3 =

(−φnσ3 φeσ3

φpσ3σ1 −φaσ3σ1

); − iΨγ123 =

(φn −φe

−φpσ1 φaσ1

)

P2(Ψ) =

(φn

1−σ3

2 φe−1+σ3

2

φp−1+σ3

2 σ1 φa1−σ3

2 σ1

)=

(φnL −φeL

−φpRσ1 φaRσ1

)(6.42)

p2(φe) = φnL ; p2(φn) = −φeL

p2(φa) = −φpR ; p2(φp) = φaR. (6.43)

We get for j = 3

−Ψi = i

(−φe φn

−φaσ1 φpσ1

); iΨγ30 = i

(φeσ3 −φnσ3

φaσ3σ1 −φpσ3σ1

)

P3(Ψ) = i

(φe

−1+σ3

2 φn1−σ3

2

φa−1+σ3

2 σ1 φp1−σ3

2 σ1

)= i

(−φeL φnL

−φaRσ1 φpRσ1

)(6.44)

p3(φe) = −iφeL ; p3(φn) = iφnL

p3(φa) = −iφaR ; p3(φp) = iφpR. (6.45)

We also have

WjPj(Ψ) =

(0 W j

W j 0

)(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

)

=

(W jpj(φa)σ1 W jpj(φp)σ1

W jpj(φe) W jpj(φn)

). (6.46)

72

Next we let

Pj(Ψ) =

(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

), j = 1, 2, 3. (6.39)

We get for j = 1

iΨγ0 = i

(φn φe

−φpσ1 −φaσ1

); Ψγ012 = i

(−φnσ3 −φeσ3

φpσ3σ1 φaσ3σ1

)

P1(Ψ) = i

(φn

1−σ3

2 φe1−σ3

2

φp−1+σ3

2 σ1 φa−1+σ3

2 σ1

)= i

(φnL φeL

−φpRσ1 −φaRσ1

)(6.40)

p1(φe) = iφnL ; p1(φn) = iφeL

p1(φa) = −iφpR ; p1(φp) = −iφaR. (6.41)

We get for j = 2

Ψγ3 =

(−φnσ3 φeσ3

φpσ3σ1 −φaσ3σ1

); − iΨγ123 =

(φn −φe

−φpσ1 φaσ1

)

P2(Ψ) =

(φn

1−σ3

2 φe−1+σ3

2

φp−1+σ3

2 σ1 φa1−σ3

2 σ1

)=

(φnL −φeL

−φpRσ1 φaRσ1

)(6.42)

p2(φe) = φnL ; p2(φn) = −φeL

p2(φa) = −φpR ; p2(φp) = φaR. (6.43)

We get for j = 3

−Ψi = i

(−φe φn

−φaσ1 φpσ1

); iΨγ30 = i

(φeσ3 −φnσ3

φaσ3σ1 −φpσ3σ1

)

P3(Ψ) = i

(φe

−1+σ3

2 φn1−σ3

2

φa−1+σ3

2 σ1 φp1−σ3

2 σ1

)= i

(−φeL φnL

−φaRσ1 φpRσ1

)(6.44)

p3(φe) = −iφeL ; p3(φn) = iφnL

p3(φa) = −iφaR ; p3(φp) = iφpR. (6.45)

We also have

WjPj(Ψ) =

(0 W j

W j 0

)(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

)

=

(W jpj(φa)σ1 W jpj(φp)σ1

W jpj(φe) W jpj(φn)

). (6.46)

72

; (6.44)

Next we let

Pj(Ψ) =

(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

), j = 1, 2, 3. (6.39)

We get for j = 1

iΨγ0 = i

(φn φe

−φpσ1 −φaσ1

); Ψγ012 = i

(−φnσ3 −φeσ3

φpσ3σ1 φaσ3σ1

)

P1(Ψ) = i

(φn

1−σ3

2 φe1−σ3

2

φp−1+σ3

2 σ1 φa−1+σ3

2 σ1

)= i

(φnL φeL

−φpRσ1 −φaRσ1

)(6.40)

p1(φe) = iφnL ; p1(φn) = iφeL

p1(φa) = −iφpR ; p1(φp) = −iφaR. (6.41)

We get for j = 2

Ψγ3 =

(−φnσ3 φeσ3

φpσ3σ1 −φaσ3σ1

); − iΨγ123 =

(φn −φe

−φpσ1 φaσ1

)

P2(Ψ) =

(φn

1−σ3

2 φe−1+σ3

2

φp−1+σ3

2 σ1 φa1−σ3

2 σ1

)=

(φnL −φeL

−φpRσ1 φaRσ1

)(6.42)

p2(φe) = φnL ; p2(φn) = −φeL

p2(φa) = −φpR ; p2(φp) = φaR. (6.43)

We get for j = 3

−Ψi = i

(−φe φn

−φaσ1 φpσ1

); iΨγ30 = i

(φeσ3 −φnσ3

φaσ3σ1 −φpσ3σ1

)

P3(Ψ) = i

(φe

−1+σ3

2 φn1−σ3

2

φa−1+σ3

2 σ1 φp1−σ3

2 σ1

)= i

(−φeL φnL

−φaRσ1 φpRσ1

)(6.44)

p3(φe) = −iφeL ; p3(φn) = iφnL

p3(φa) = −iφaR ; p3(φp) = iφpR. (6.45)

We also have

WjPj(Ψ) =

(0 W j

W j 0

)(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

)

=

(W jpj(φa)σ1 W jpj(φp)σ1

W jpj(φe) W jpj(φn)

). (6.46)

72

(6.45)

We also have

Next we let

Pj(Ψ) =

(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

), j = 1, 2, 3. (6.39)

We get for j = 1

iΨγ0 = i

(φn φe

−φpσ1 −φaσ1

); Ψγ012 = i

(−φnσ3 −φeσ3

φpσ3σ1 φaσ3σ1

)

P1(Ψ) = i

(φn

1−σ3

2 φe1−σ3

2

φp−1+σ3

2 σ1 φa−1+σ3

2 σ1

)= i

(φnL φeL

−φpRσ1 −φaRσ1

)(6.40)

p1(φe) = iφnL ; p1(φn) = iφeL

p1(φa) = −iφpR ; p1(φp) = −iφaR. (6.41)

We get for j = 2

Ψγ3 =

(−φnσ3 φeσ3

φpσ3σ1 −φaσ3σ1

); − iΨγ123 =

(φn −φe

−φpσ1 φaσ1

)

P2(Ψ) =

(φn

1−σ3

2 φe−1+σ3

2

φp−1+σ3

2 σ1 φa1−σ3

2 σ1

)=

(φnL −φeL

−φpRσ1 φaRσ1

)(6.42)

p2(φe) = φnL ; p2(φn) = −φeL

p2(φa) = −φpR ; p2(φp) = φaR. (6.43)

We get for j = 3

−Ψi = i

(−φe φn

−φaσ1 φpσ1

); iΨγ30 = i

(φeσ3 −φnσ3

φaσ3σ1 −φpσ3σ1

)

P3(Ψ) = i

(φe

−1+σ3

2 φn1−σ3

2

φa−1+σ3

2 σ1 φp1−σ3

2 σ1

)= i

(−φeL φnL

−φaRσ1 φpRσ1

)(6.44)

p3(φe) = −iφeL ; p3(φn) = iφnL

p3(φa) = −iφaR ; p3(φp) = iφpR. (6.45)

We also have

WjPj(Ψ) =

(0 W j

W j 0

)(pj(φe) pj(φn)

pj(φa)σ1 pj(φp)σ1

)

=

(W jpj(φa)σ1 W jpj(φp)σ1

W jpj(φe) W jpj(φn)

). (6.46)

72

(6.46)

Therefore (6.22) gives the system

(6.47)

(6.48)

(6.49)

(6.50)

Therefore (6.22) gives the system

Dφa = ∇φa +g12Bp0(φa) +

g22W jpj(φa) (6.47)

Dφp = ∇φp +g12Bp0(φp) +

g22W jpj(φp) (6.48)

Dφe = ∇φe +g12Bp0(φe) +

g22W jpj(φe) (6.49)

Dφn = ∇φn +g12Bp0(φn) +

g22W jpj(φn). (6.50)

With (6.30) to (6.33), (6.41), (6.43) and (6.45) this gives

Dφa = ∇φa + ig12BφaR +

g22[(−iW 1 −W 2)φpR − iW 3φaR] (6.51)

Dφp = ∇φp + ig12B(−2φpL + φpR) +

g22[(−iW 1 +W 2)φaR + iW 3φpR] (6.52)

Dφe = ∇φe + ig12B(2φeR − φeL) +

g22[(iW 1 + W 2)φnL − iW 3φeL] (6.53)

Dφn = ∇φn − ig12BφnL +

g22[(iW 1 − W 2)φeL + iW 3φnL]. (6.54)

Using the conjugation M → M in (6.53) and (6.54) this gives

Dφa = ∇φa + ig12BφaR + i

g22[(−W 1 + iW 2)φpR −W 3φaR] (6.55)

Dφp = ∇φp + ig12B(−2φpL + φpR) + i

g22[−(W 1 + iW 2)φaR +W 3φpR] (6.56)

Dφe = ∇φe + ig12B(−2φeR + φeL) + i

g22[−(W 1 + iW 2)φnL +W 3φeL] (6.57)

Dφn = ∇φn + ig12BφnL + i

g22[(−W 1 + iW 2)φeL −W 3φnL]. (6.58)

We study firstly the case of the electron and its neutrino. We have with (6.34)

φeL = φe1 + σ3

2; φeLσ3 = φeL (6.59)

φeR = φe1− σ3

2; φeRσ3 = −φeR (6.60)

−2φeR + 2φeL = 2(φeR + φeL)σ3 = 2φeσ3 (6.61)

and we get for (6.57) and (6.58)

Dφe = ∇φe + g1Bφeiσ3 +i

2(−g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL (6.62)

Dφn = ∇φn − i

2(−g1B + g2W

3)φnL + ig22(−W 1 + iW 2)φeL. (6.63)

73

27

Page 29: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 27

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

With (6.30) to (6.33), (6.41), (6.43) and (6.45) this gives

Therefore (6.22) gives the system

Dφa = ∇φa +g12Bp0(φa) +

g22W jpj(φa) (6.47)

Dφp = ∇φp +g12Bp0(φp) +

g22W jpj(φp) (6.48)

Dφe = ∇φe +g12Bp0(φe) +

g22W jpj(φe) (6.49)

Dφn = ∇φn +g12Bp0(φn) +

g22W jpj(φn). (6.50)

With (6.30) to (6.33), (6.41), (6.43) and (6.45) this gives

Dφa = ∇φa + ig12BφaR +

g22[(−iW 1 −W 2)φpR − iW 3φaR] (6.51)

Dφp = ∇φp + ig12B(−2φpL + φpR) +

g22[(−iW 1 +W 2)φaR + iW 3φpR] (6.52)

Dφe = ∇φe + ig12B(2φeR − φeL) +

g22[(iW 1 + W 2)φnL − iW 3φeL] (6.53)

Dφn = ∇φn − ig12BφnL +

g22[(iW 1 − W 2)φeL + iW 3φnL]. (6.54)

Using the conjugation M → M in (6.53) and (6.54) this gives

Dφa = ∇φa + ig12BφaR + i

g22[(−W 1 + iW 2)φpR −W 3φaR] (6.55)

Dφp = ∇φp + ig12B(−2φpL + φpR) + i

g22[−(W 1 + iW 2)φaR +W 3φpR] (6.56)

Dφe = ∇φe + ig12B(−2φeR + φeL) + i

g22[−(W 1 + iW 2)φnL +W 3φeL] (6.57)

Dφn = ∇φn + ig12BφnL + i

g22[(−W 1 + iW 2)φeL −W 3φnL]. (6.58)

We study firstly the case of the electron and its neutrino. We have with (6.34)

φeL = φe1 + σ3

2; φeLσ3 = φeL (6.59)

φeR = φe1− σ3

2; φeRσ3 = −φeR (6.60)

−2φeR + 2φeL = 2(φeR + φeL)σ3 = 2φeσ3 (6.61)

and we get for (6.57) and (6.58)

Dφe = ∇φe + g1Bφeiσ3 +i

2(−g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL (6.62)

Dφn = ∇φn − i

2(−g1B + g2W

3)φnL + ig22(−W 1 + iW 2)φeL. (6.63)

73

Therefore (6.22) gives the system

Dφa = ∇φa +g12Bp0(φa) +

g22W jpj(φa) (6.47)

Dφp = ∇φp +g12Bp0(φp) +

g22W jpj(φp) (6.48)

Dφe = ∇φe +g12Bp0(φe) +

g22W jpj(φe) (6.49)

Dφn = ∇φn +g12Bp0(φn) +

g22W jpj(φn). (6.50)

With (6.30) to (6.33), (6.41), (6.43) and (6.45) this gives

Dφa = ∇φa + ig12BφaR +

g22[(−iW 1 −W 2)φpR − iW 3φaR] (6.51)

Dφp = ∇φp + ig12B(−2φpL + φpR) +

g22[(−iW 1 +W 2)φaR + iW 3φpR] (6.52)

Dφe = ∇φe + ig12B(2φeR − φeL) +

g22[(iW 1 + W 2)φnL − iW 3φeL] (6.53)

Dφn = ∇φn − ig12BφnL +

g22[(iW 1 − W 2)φeL + iW 3φnL]. (6.54)

Using the conjugation M → M in (6.53) and (6.54) this gives

Dφa = ∇φa + ig12BφaR + i

g22[(−W 1 + iW 2)φpR −W 3φaR] (6.55)

Dφp = ∇φp + ig12B(−2φpL + φpR) + i

g22[−(W 1 + iW 2)φaR +W 3φpR] (6.56)

Dφe = ∇φe + ig12B(−2φeR + φeL) + i

g22[−(W 1 + iW 2)φnL +W 3φeL] (6.57)

Dφn = ∇φn + ig12BφnL + i

g22[(−W 1 + iW 2)φeL −W 3φnL]. (6.58)

We study firstly the case of the electron and its neutrino. We have with (6.34)

φeL = φe1 + σ3

2; φeLσ3 = φeL (6.59)

φeR = φe1− σ3

2; φeRσ3 = −φeR (6.60)

−2φeR + 2φeL = 2(φeR + φeL)σ3 = 2φeσ3 (6.61)

and we get for (6.57) and (6.58)

Dφe = ∇φe + g1Bφeiσ3 +i

2(−g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL (6.62)

Dφn = ∇φn − i

2(−g1B + g2W

3)φnL + ig22(−W 1 + iW 2)φeL. (6.63)

73

(6.51)

Therefore (6.22) gives the system

Dφa = ∇φa +g12Bp0(φa) +

g22W jpj(φa) (6.47)

Dφp = ∇φp +g12Bp0(φp) +

g22W jpj(φp) (6.48)

Dφe = ∇φe +g12Bp0(φe) +

g22W jpj(φe) (6.49)

Dφn = ∇φn +g12Bp0(φn) +

g22W jpj(φn). (6.50)

With (6.30) to (6.33), (6.41), (6.43) and (6.45) this gives

Dφa = ∇φa + ig12BφaR +

g22[(−iW 1 −W 2)φpR − iW 3φaR] (6.51)

Dφp = ∇φp + ig12B(−2φpL + φpR) +

g22[(−iW 1 +W 2)φaR + iW 3φpR] (6.52)

Dφe = ∇φe + ig12B(2φeR − φeL) +

g22[(iW 1 + W 2)φnL − iW 3φeL] (6.53)

Dφn = ∇φn − ig12BφnL +

g22[(iW 1 − W 2)φeL + iW 3φnL]. (6.54)

Using the conjugation M → M in (6.53) and (6.54) this gives

Dφa = ∇φa + ig12BφaR + i

g22[(−W 1 + iW 2)φpR −W 3φaR] (6.55)

Dφp = ∇φp + ig12B(−2φpL + φpR) + i

g22[−(W 1 + iW 2)φaR +W 3φpR] (6.56)

Dφe = ∇φe + ig12B(−2φeR + φeL) + i

g22[−(W 1 + iW 2)φnL +W 3φeL] (6.57)

Dφn = ∇φn + ig12BφnL + i

g22[(−W 1 + iW 2)φeL −W 3φnL]. (6.58)

We study firstly the case of the electron and its neutrino. We have with (6.34)

φeL = φe1 + σ3

2; φeLσ3 = φeL (6.59)

φeR = φe1− σ3

2; φeRσ3 = −φeR (6.60)

−2φeR + 2φeL = 2(φeR + φeL)σ3 = 2φeσ3 (6.61)

and we get for (6.57) and (6.58)

Dφe = ∇φe + g1Bφeiσ3 +i

2(−g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL (6.62)

Dφn = ∇φn − i

2(−g1B + g2W

3)φnL + ig22(−W 1 + iW 2)φeL. (6.63)

73

Therefore (6.22) gives the system

Dφa = ∇φa +g12Bp0(φa) +

g22W jpj(φa) (6.47)

Dφp = ∇φp +g12Bp0(φp) +

g22W jpj(φp) (6.48)

Dφe = ∇φe +g12Bp0(φe) +

g22W jpj(φe) (6.49)

Dφn = ∇φn +g12Bp0(φn) +

g22W jpj(φn). (6.50)

With (6.30) to (6.33), (6.41), (6.43) and (6.45) this gives

Dφa = ∇φa + ig12BφaR +

g22[(−iW 1 −W 2)φpR − iW 3φaR] (6.51)

Dφp = ∇φp + ig12B(−2φpL + φpR) +

g22[(−iW 1 +W 2)φaR + iW 3φpR] (6.52)

Dφe = ∇φe + ig12B(2φeR − φeL) +

g22[(iW 1 + W 2)φnL − iW 3φeL] (6.53)

Dφn = ∇φn − ig12BφnL +

g22[(iW 1 − W 2)φeL + iW 3φnL]. (6.54)

Using the conjugation M → M in (6.53) and (6.54) this gives

Dφa = ∇φa + ig12BφaR + i

g22[(−W 1 + iW 2)φpR −W 3φaR] (6.55)

Dφp = ∇φp + ig12B(−2φpL + φpR) + i

g22[−(W 1 + iW 2)φaR +W 3φpR] (6.56)

Dφe = ∇φe + ig12B(−2φeR + φeL) + i

g22[−(W 1 + iW 2)φnL +W 3φeL] (6.57)

Dφn = ∇φn + ig12BφnL + i

g22[(−W 1 + iW 2)φeL −W 3φnL]. (6.58)

We study firstly the case of the electron and its neutrino. We have with (6.34)

φeL = φe1 + σ3

2; φeLσ3 = φeL (6.59)

φeR = φe1− σ3

2; φeRσ3 = −φeR (6.60)

−2φeR + 2φeL = 2(φeR + φeL)σ3 = 2φeσ3 (6.61)

and we get for (6.57) and (6.58)

Dφe = ∇φe + g1Bφeiσ3 +i

2(−g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL (6.62)

Dφn = ∇φn − i

2(−g1B + g2W

3)φnL + ig22(−W 1 + iW 2)φeL. (6.63)

73

(6.52)

Therefore (6.22) gives the system

Dφa = ∇φa +g12Bp0(φa) +

g22W jpj(φa) (6.47)

Dφp = ∇φp +g12Bp0(φp) +

g22W jpj(φp) (6.48)

Dφe = ∇φe +g12Bp0(φe) +

g22W jpj(φe) (6.49)

Dφn = ∇φn +g12Bp0(φn) +

g22W jpj(φn). (6.50)

With (6.30) to (6.33), (6.41), (6.43) and (6.45) this gives

Dφa = ∇φa + ig12BφaR +

g22[(−iW 1 −W 2)φpR − iW 3φaR] (6.51)

Dφp = ∇φp + ig12B(−2φpL + φpR) +

g22[(−iW 1 +W 2)φaR + iW 3φpR] (6.52)

Dφe = ∇φe + ig12B(2φeR − φeL) +

g22[(iW 1 + W 2)φnL − iW 3φeL] (6.53)

Dφn = ∇φn − ig12BφnL +

g22[(iW 1 − W 2)φeL + iW 3φnL]. (6.54)

Using the conjugation M → M in (6.53) and (6.54) this gives

Dφa = ∇φa + ig12BφaR + i

g22[(−W 1 + iW 2)φpR −W 3φaR] (6.55)

Dφp = ∇φp + ig12B(−2φpL + φpR) + i

g22[−(W 1 + iW 2)φaR +W 3φpR] (6.56)

Dφe = ∇φe + ig12B(−2φeR + φeL) + i

g22[−(W 1 + iW 2)φnL +W 3φeL] (6.57)

Dφn = ∇φn + ig12BφnL + i

g22[(−W 1 + iW 2)φeL −W 3φnL]. (6.58)

We study firstly the case of the electron and its neutrino. We have with (6.34)

φeL = φe1 + σ3

2; φeLσ3 = φeL (6.59)

φeR = φe1− σ3

2; φeRσ3 = −φeR (6.60)

−2φeR + 2φeL = 2(φeR + φeL)σ3 = 2φeσ3 (6.61)

and we get for (6.57) and (6.58)

Dφe = ∇φe + g1Bφeiσ3 +i

2(−g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL (6.62)

Dφn = ∇φn − i

2(−g1B + g2W

3)φnL + ig22(−W 1 + iW 2)φeL. (6.63)

73

Therefore (6.22) gives the system

Dφa = ∇φa +g12Bp0(φa) +

g22W jpj(φa) (6.47)

Dφp = ∇φp +g12Bp0(φp) +

g22W jpj(φp) (6.48)

Dφe = ∇φe +g12Bp0(φe) +

g22W jpj(φe) (6.49)

Dφn = ∇φn +g12Bp0(φn) +

g22W jpj(φn). (6.50)

With (6.30) to (6.33), (6.41), (6.43) and (6.45) this gives

Dφa = ∇φa + ig12BφaR +

g22[(−iW 1 −W 2)φpR − iW 3φaR] (6.51)

Dφp = ∇φp + ig12B(−2φpL + φpR) +

g22[(−iW 1 +W 2)φaR + iW 3φpR] (6.52)

Dφe = ∇φe + ig12B(2φeR − φeL) +

g22[(iW 1 + W 2)φnL − iW 3φeL] (6.53)

Dφn = ∇φn − ig12BφnL +

g22[(iW 1 − W 2)φeL + iW 3φnL]. (6.54)

Using the conjugation M → M in (6.53) and (6.54) this gives

Dφa = ∇φa + ig12BφaR + i

g22[(−W 1 + iW 2)φpR −W 3φaR] (6.55)

Dφp = ∇φp + ig12B(−2φpL + φpR) + i

g22[−(W 1 + iW 2)φaR +W 3φpR] (6.56)

Dφe = ∇φe + ig12B(−2φeR + φeL) + i

g22[−(W 1 + iW 2)φnL +W 3φeL] (6.57)

Dφn = ∇φn + ig12BφnL + i

g22[(−W 1 + iW 2)φeL −W 3φnL]. (6.58)

We study firstly the case of the electron and its neutrino. We have with (6.34)

φeL = φe1 + σ3

2; φeLσ3 = φeL (6.59)

φeR = φe1− σ3

2; φeRσ3 = −φeR (6.60)

−2φeR + 2φeL = 2(φeR + φeL)σ3 = 2φeσ3 (6.61)

and we get for (6.57) and (6.58)

Dφe = ∇φe + g1Bφeiσ3 +i

2(−g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL (6.62)

Dφn = ∇φn − i

2(−g1B + g2W

3)φnL + ig22(−W 1 + iW 2)φeL. (6.63)

73

(6.53)

Therefore (6.22) gives the system

Dφa = ∇φa +g12Bp0(φa) +

g22W jpj(φa) (6.47)

Dφp = ∇φp +g12Bp0(φp) +

g22W jpj(φp) (6.48)

Dφe = ∇φe +g12Bp0(φe) +

g22W jpj(φe) (6.49)

Dφn = ∇φn +g12Bp0(φn) +

g22W jpj(φn). (6.50)

With (6.30) to (6.33), (6.41), (6.43) and (6.45) this gives

Dφa = ∇φa + ig12BφaR +

g22[(−iW 1 −W 2)φpR − iW 3φaR] (6.51)

Dφp = ∇φp + ig12B(−2φpL + φpR) +

g22[(−iW 1 +W 2)φaR + iW 3φpR] (6.52)

Dφe = ∇φe + ig12B(2φeR − φeL) +

g22[(iW 1 + W 2)φnL − iW 3φeL] (6.53)

Dφn = ∇φn − ig12BφnL +

g22[(iW 1 − W 2)φeL + iW 3φnL]. (6.54)

Using the conjugation M → M in (6.53) and (6.54) this gives

Dφa = ∇φa + ig12BφaR + i

g22[(−W 1 + iW 2)φpR −W 3φaR] (6.55)

Dφp = ∇φp + ig12B(−2φpL + φpR) + i

g22[−(W 1 + iW 2)φaR +W 3φpR] (6.56)

Dφe = ∇φe + ig12B(−2φeR + φeL) + i

g22[−(W 1 + iW 2)φnL +W 3φeL] (6.57)

Dφn = ∇φn + ig12BφnL + i

g22[(−W 1 + iW 2)φeL −W 3φnL]. (6.58)

We study firstly the case of the electron and its neutrino. We have with (6.34)

φeL = φe1 + σ3

2; φeLσ3 = φeL (6.59)

φeR = φe1− σ3

2; φeRσ3 = −φeR (6.60)

−2φeR + 2φeL = 2(φeR + φeL)σ3 = 2φeσ3 (6.61)

and we get for (6.57) and (6.58)

Dφe = ∇φe + g1Bφeiσ3 +i

2(−g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL (6.62)

Dφn = ∇φn − i

2(−g1B + g2W

3)φnL + ig22(−W 1 + iW 2)φeL. (6.63)

73

Therefore (6.22) gives the system

Dφa = ∇φa +g12Bp0(φa) +

g22W jpj(φa) (6.47)

Dφp = ∇φp +g12Bp0(φp) +

g22W jpj(φp) (6.48)

Dφe = ∇φe +g12Bp0(φe) +

g22W jpj(φe) (6.49)

Dφn = ∇φn +g12Bp0(φn) +

g22W jpj(φn). (6.50)

With (6.30) to (6.33), (6.41), (6.43) and (6.45) this gives

Dφa = ∇φa + ig12BφaR +

g22[(−iW 1 −W 2)φpR − iW 3φaR] (6.51)

Dφp = ∇φp + ig12B(−2φpL + φpR) +

g22[(−iW 1 +W 2)φaR + iW 3φpR] (6.52)

Dφe = ∇φe + ig12B(2φeR − φeL) +

g22[(iW 1 + W 2)φnL − iW 3φeL] (6.53)

Dφn = ∇φn − ig12BφnL +

g22[(iW 1 − W 2)φeL + iW 3φnL]. (6.54)

Using the conjugation M → M in (6.53) and (6.54) this gives

Dφa = ∇φa + ig12BφaR + i

g22[(−W 1 + iW 2)φpR −W 3φaR] (6.55)

Dφp = ∇φp + ig12B(−2φpL + φpR) + i

g22[−(W 1 + iW 2)φaR +W 3φpR] (6.56)

Dφe = ∇φe + ig12B(−2φeR + φeL) + i

g22[−(W 1 + iW 2)φnL +W 3φeL] (6.57)

Dφn = ∇φn + ig12BφnL + i

g22[(−W 1 + iW 2)φeL −W 3φnL]. (6.58)

We study firstly the case of the electron and its neutrino. We have with (6.34)

φeL = φe1 + σ3

2; φeLσ3 = φeL (6.59)

φeR = φe1− σ3

2; φeRσ3 = −φeR (6.60)

−2φeR + 2φeL = 2(φeR + φeL)σ3 = 2φeσ3 (6.61)

and we get for (6.57) and (6.58)

Dφe = ∇φe + g1Bφeiσ3 +i

2(−g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL (6.62)

Dφn = ∇φn − i

2(−g1B + g2W

3)φnL + ig22(−W 1 + iW 2)φeL. (6.63)

73

(6.54)

Using the conjugation

Therefore (6.22) gives the system

Dφa = ∇φa +g12Bp0(φa) +

g22W jpj(φa) (6.47)

Dφp = ∇φp +g12Bp0(φp) +

g22W jpj(φp) (6.48)

Dφe = ∇φe +g12Bp0(φe) +

g22W jpj(φe) (6.49)

Dφn = ∇φn +g12Bp0(φn) +

g22W jpj(φn). (6.50)

With (6.30) to (6.33), (6.41), (6.43) and (6.45) this gives

Dφa = ∇φa + ig12BφaR +

g22[(−iW 1 −W 2)φpR − iW 3φaR] (6.51)

Dφp = ∇φp + ig12B(−2φpL + φpR) +

g22[(−iW 1 +W 2)φaR + iW 3φpR] (6.52)

Dφe = ∇φe + ig12B(2φeR − φeL) +

g22[(iW 1 + W 2)φnL − iW 3φeL] (6.53)

Dφn = ∇φn − ig12BφnL +

g22[(iW 1 − W 2)φeL + iW 3φnL]. (6.54)

Using the conjugation M → M in (6.53) and (6.54) this gives

Dφa = ∇φa + ig12BφaR + i

g22[(−W 1 + iW 2)φpR −W 3φaR] (6.55)

Dφp = ∇φp + ig12B(−2φpL + φpR) + i

g22[−(W 1 + iW 2)φaR +W 3φpR] (6.56)

Dφe = ∇φe + ig12B(−2φeR + φeL) + i

g22[−(W 1 + iW 2)φnL +W 3φeL] (6.57)

Dφn = ∇φn + ig12BφnL + i

g22[(−W 1 + iW 2)φeL −W 3φnL]. (6.58)

We study firstly the case of the electron and its neutrino. We have with (6.34)

φeL = φe1 + σ3

2; φeLσ3 = φeL (6.59)

φeR = φe1− σ3

2; φeRσ3 = −φeR (6.60)

−2φeR + 2φeL = 2(φeR + φeL)σ3 = 2φeσ3 (6.61)

and we get for (6.57) and (6.58)

Dφe = ∇φe + g1Bφeiσ3 +i

2(−g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL (6.62)

Dφn = ∇φn − i

2(−g1B + g2W

3)φnL + ig22(−W 1 + iW 2)φeL. (6.63)

73

in (6.53) and (6.54) this gives

Therefore (6.22) gives the system

Dφa = ∇φa +g12Bp0(φa) +

g22W jpj(φa) (6.47)

Dφp = ∇φp +g12Bp0(φp) +

g22W jpj(φp) (6.48)

Dφe = ∇φe +g12Bp0(φe) +

g22W jpj(φe) (6.49)

Dφn = ∇φn +g12Bp0(φn) +

g22W jpj(φn). (6.50)

With (6.30) to (6.33), (6.41), (6.43) and (6.45) this gives

Dφa = ∇φa + ig12BφaR +

g22[(−iW 1 −W 2)φpR − iW 3φaR] (6.51)

Dφp = ∇φp + ig12B(−2φpL + φpR) +

g22[(−iW 1 +W 2)φaR + iW 3φpR] (6.52)

Dφe = ∇φe + ig12B(2φeR − φeL) +

g22[(iW 1 + W 2)φnL − iW 3φeL] (6.53)

Dφn = ∇φn − ig12BφnL +

g22[(iW 1 − W 2)φeL + iW 3φnL]. (6.54)

Using the conjugation M → M in (6.53) and (6.54) this gives

Dφa = ∇φa + ig12BφaR + i

g22[(−W 1 + iW 2)φpR −W 3φaR] (6.55)

Dφp = ∇φp + ig12B(−2φpL + φpR) + i

g22[−(W 1 + iW 2)φaR +W 3φpR] (6.56)

Dφe = ∇φe + ig12B(−2φeR + φeL) + i

g22[−(W 1 + iW 2)φnL +W 3φeL] (6.57)

Dφn = ∇φn + ig12BφnL + i

g22[(−W 1 + iW 2)φeL −W 3φnL]. (6.58)

We study firstly the case of the electron and its neutrino. We have with (6.34)

φeL = φe1 + σ3

2; φeLσ3 = φeL (6.59)

φeR = φe1− σ3

2; φeRσ3 = −φeR (6.60)

−2φeR + 2φeL = 2(φeR + φeL)σ3 = 2φeσ3 (6.61)

and we get for (6.57) and (6.58)

Dφe = ∇φe + g1Bφeiσ3 +i

2(−g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL (6.62)

Dφn = ∇φn − i

2(−g1B + g2W

3)φnL + ig22(−W 1 + iW 2)φeL. (6.63)

73

Therefore (6.22) gives the system

Dφa = ∇φa +g12Bp0(φa) +

g22W jpj(φa) (6.47)

Dφp = ∇φp +g12Bp0(φp) +

g22W jpj(φp) (6.48)

Dφe = ∇φe +g12Bp0(φe) +

g22W jpj(φe) (6.49)

Dφn = ∇φn +g12Bp0(φn) +

g22W jpj(φn). (6.50)

With (6.30) to (6.33), (6.41), (6.43) and (6.45) this gives

Dφa = ∇φa + ig12BφaR +

g22[(−iW 1 −W 2)φpR − iW 3φaR] (6.51)

Dφp = ∇φp + ig12B(−2φpL + φpR) +

g22[(−iW 1 +W 2)φaR + iW 3φpR] (6.52)

Dφe = ∇φe + ig12B(2φeR − φeL) +

g22[(iW 1 + W 2)φnL − iW 3φeL] (6.53)

Dφn = ∇φn − ig12BφnL +

g22[(iW 1 − W 2)φeL + iW 3φnL]. (6.54)

Using the conjugation M → M in (6.53) and (6.54) this gives

Dφa = ∇φa + ig12BφaR + i

g22[(−W 1 + iW 2)φpR −W 3φaR] (6.55)

Dφp = ∇φp + ig12B(−2φpL + φpR) + i

g22[−(W 1 + iW 2)φaR +W 3φpR] (6.56)

Dφe = ∇φe + ig12B(−2φeR + φeL) + i

g22[−(W 1 + iW 2)φnL +W 3φeL] (6.57)

Dφn = ∇φn + ig12BφnL + i

g22[(−W 1 + iW 2)φeL −W 3φnL]. (6.58)

We study firstly the case of the electron and its neutrino. We have with (6.34)

φeL = φe1 + σ3

2; φeLσ3 = φeL (6.59)

φeR = φe1− σ3

2; φeRσ3 = −φeR (6.60)

−2φeR + 2φeL = 2(φeR + φeL)σ3 = 2φeσ3 (6.61)

and we get for (6.57) and (6.58)

Dφe = ∇φe + g1Bφeiσ3 +i

2(−g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL (6.62)

Dφn = ∇φn − i

2(−g1B + g2W

3)φnL + ig22(−W 1 + iW 2)φeL. (6.63)

73

, (6.55)

Therefore (6.22) gives the system

Dφa = ∇φa +g12Bp0(φa) +

g22W jpj(φa) (6.47)

Dφp = ∇φp +g12Bp0(φp) +

g22W jpj(φp) (6.48)

Dφe = ∇φe +g12Bp0(φe) +

g22W jpj(φe) (6.49)

Dφn = ∇φn +g12Bp0(φn) +

g22W jpj(φn). (6.50)

With (6.30) to (6.33), (6.41), (6.43) and (6.45) this gives

Dφa = ∇φa + ig12BφaR +

g22[(−iW 1 −W 2)φpR − iW 3φaR] (6.51)

Dφp = ∇φp + ig12B(−2φpL + φpR) +

g22[(−iW 1 +W 2)φaR + iW 3φpR] (6.52)

Dφe = ∇φe + ig12B(2φeR − φeL) +

g22[(iW 1 + W 2)φnL − iW 3φeL] (6.53)

Dφn = ∇φn − ig12BφnL +

g22[(iW 1 − W 2)φeL + iW 3φnL]. (6.54)

Using the conjugation M → M in (6.53) and (6.54) this gives

Dφa = ∇φa + ig12BφaR + i

g22[(−W 1 + iW 2)φpR −W 3φaR] (6.55)

Dφp = ∇φp + ig12B(−2φpL + φpR) + i

g22[−(W 1 + iW 2)φaR +W 3φpR] (6.56)

Dφe = ∇φe + ig12B(−2φeR + φeL) + i

g22[−(W 1 + iW 2)φnL +W 3φeL] (6.57)

Dφn = ∇φn + ig12BφnL + i

g22[(−W 1 + iW 2)φeL −W 3φnL]. (6.58)

We study firstly the case of the electron and its neutrino. We have with (6.34)

φeL = φe1 + σ3

2; φeLσ3 = φeL (6.59)

φeR = φe1− σ3

2; φeRσ3 = −φeR (6.60)

−2φeR + 2φeL = 2(φeR + φeL)σ3 = 2φeσ3 (6.61)

and we get for (6.57) and (6.58)

Dφe = ∇φe + g1Bφeiσ3 +i

2(−g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL (6.62)

Dφn = ∇φn − i

2(−g1B + g2W

3)φnL + ig22(−W 1 + iW 2)φeL. (6.63)

73

Therefore (6.22) gives the system

Dφa = ∇φa +g12Bp0(φa) +

g22W jpj(φa) (6.47)

Dφp = ∇φp +g12Bp0(φp) +

g22W jpj(φp) (6.48)

Dφe = ∇φe +g12Bp0(φe) +

g22W jpj(φe) (6.49)

Dφn = ∇φn +g12Bp0(φn) +

g22W jpj(φn). (6.50)

With (6.30) to (6.33), (6.41), (6.43) and (6.45) this gives

Dφa = ∇φa + ig12BφaR +

g22[(−iW 1 −W 2)φpR − iW 3φaR] (6.51)

Dφp = ∇φp + ig12B(−2φpL + φpR) +

g22[(−iW 1 +W 2)φaR + iW 3φpR] (6.52)

Dφe = ∇φe + ig12B(2φeR − φeL) +

g22[(iW 1 + W 2)φnL − iW 3φeL] (6.53)

Dφn = ∇φn − ig12BφnL +

g22[(iW 1 − W 2)φeL + iW 3φnL]. (6.54)

Using the conjugation M → M in (6.53) and (6.54) this gives

Dφa = ∇φa + ig12BφaR + i

g22[(−W 1 + iW 2)φpR −W 3φaR] (6.55)

Dφp = ∇φp + ig12B(−2φpL + φpR) + i

g22[−(W 1 + iW 2)φaR +W 3φpR] (6.56)

Dφe = ∇φe + ig12B(−2φeR + φeL) + i

g22[−(W 1 + iW 2)φnL +W 3φeL] (6.57)

Dφn = ∇φn + ig12BφnL + i

g22[(−W 1 + iW 2)φeL −W 3φnL]. (6.58)

We study firstly the case of the electron and its neutrino. We have with (6.34)

φeL = φe1 + σ3

2; φeLσ3 = φeL (6.59)

φeR = φe1− σ3

2; φeRσ3 = −φeR (6.60)

−2φeR + 2φeL = 2(φeR + φeL)σ3 = 2φeσ3 (6.61)

and we get for (6.57) and (6.58)

Dφe = ∇φe + g1Bφeiσ3 +i

2(−g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL (6.62)

Dφn = ∇φn − i

2(−g1B + g2W

3)φnL + ig22(−W 1 + iW 2)φeL. (6.63)

73

, (6.56)

Therefore (6.22) gives the system

Dφa = ∇φa +g12Bp0(φa) +

g22W jpj(φa) (6.47)

Dφp = ∇φp +g12Bp0(φp) +

g22W jpj(φp) (6.48)

Dφe = ∇φe +g12Bp0(φe) +

g22W jpj(φe) (6.49)

Dφn = ∇φn +g12Bp0(φn) +

g22W jpj(φn). (6.50)

With (6.30) to (6.33), (6.41), (6.43) and (6.45) this gives

Dφa = ∇φa + ig12BφaR +

g22[(−iW 1 −W 2)φpR − iW 3φaR] (6.51)

Dφp = ∇φp + ig12B(−2φpL + φpR) +

g22[(−iW 1 +W 2)φaR + iW 3φpR] (6.52)

Dφe = ∇φe + ig12B(2φeR − φeL) +

g22[(iW 1 + W 2)φnL − iW 3φeL] (6.53)

Dφn = ∇φn − ig12BφnL +

g22[(iW 1 − W 2)φeL + iW 3φnL]. (6.54)

Using the conjugation M → M in (6.53) and (6.54) this gives

Dφa = ∇φa + ig12BφaR + i

g22[(−W 1 + iW 2)φpR −W 3φaR] (6.55)

Dφp = ∇φp + ig12B(−2φpL + φpR) + i

g22[−(W 1 + iW 2)φaR +W 3φpR] (6.56)

Dφe = ∇φe + ig12B(−2φeR + φeL) + i

g22[−(W 1 + iW 2)φnL +W 3φeL] (6.57)

Dφn = ∇φn + ig12BφnL + i

g22[(−W 1 + iW 2)φeL −W 3φnL]. (6.58)

We study firstly the case of the electron and its neutrino. We have with (6.34)

φeL = φe1 + σ3

2; φeLσ3 = φeL (6.59)

φeR = φe1− σ3

2; φeRσ3 = −φeR (6.60)

−2φeR + 2φeL = 2(φeR + φeL)σ3 = 2φeσ3 (6.61)

and we get for (6.57) and (6.58)

Dφe = ∇φe + g1Bφeiσ3 +i

2(−g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL (6.62)

Dφn = ∇φn − i

2(−g1B + g2W

3)φnL + ig22(−W 1 + iW 2)φeL. (6.63)

73

Therefore (6.22) gives the system

Dφa = ∇φa +g12Bp0(φa) +

g22W jpj(φa) (6.47)

Dφp = ∇φp +g12Bp0(φp) +

g22W jpj(φp) (6.48)

Dφe = ∇φe +g12Bp0(φe) +

g22W jpj(φe) (6.49)

Dφn = ∇φn +g12Bp0(φn) +

g22W jpj(φn). (6.50)

With (6.30) to (6.33), (6.41), (6.43) and (6.45) this gives

Dφa = ∇φa + ig12BφaR +

g22[(−iW 1 −W 2)φpR − iW 3φaR] (6.51)

Dφp = ∇φp + ig12B(−2φpL + φpR) +

g22[(−iW 1 +W 2)φaR + iW 3φpR] (6.52)

Dφe = ∇φe + ig12B(2φeR − φeL) +

g22[(iW 1 + W 2)φnL − iW 3φeL] (6.53)

Dφn = ∇φn − ig12BφnL +

g22[(iW 1 − W 2)φeL + iW 3φnL]. (6.54)

Using the conjugation M → M in (6.53) and (6.54) this gives

Dφa = ∇φa + ig12BφaR + i

g22[(−W 1 + iW 2)φpR −W 3φaR] (6.55)

Dφp = ∇φp + ig12B(−2φpL + φpR) + i

g22[−(W 1 + iW 2)φaR +W 3φpR] (6.56)

Dφe = ∇φe + ig12B(−2φeR + φeL) + i

g22[−(W 1 + iW 2)φnL +W 3φeL] (6.57)

Dφn = ∇φn + ig12BφnL + i

g22[(−W 1 + iW 2)φeL −W 3φnL]. (6.58)

We study firstly the case of the electron and its neutrino. We have with (6.34)

φeL = φe1 + σ3

2; φeLσ3 = φeL (6.59)

φeR = φe1− σ3

2; φeRσ3 = −φeR (6.60)

−2φeR + 2φeL = 2(φeR + φeL)σ3 = 2φeσ3 (6.61)

and we get for (6.57) and (6.58)

Dφe = ∇φe + g1Bφeiσ3 +i

2(−g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL (6.62)

Dφn = ∇φn − i

2(−g1B + g2W

3)φnL + ig22(−W 1 + iW 2)φeL. (6.63)

73

, (6.57)

Therefore (6.22) gives the system

Dφa = ∇φa +g12Bp0(φa) +

g22W jpj(φa) (6.47)

Dφp = ∇φp +g12Bp0(φp) +

g22W jpj(φp) (6.48)

Dφe = ∇φe +g12Bp0(φe) +

g22W jpj(φe) (6.49)

Dφn = ∇φn +g12Bp0(φn) +

g22W jpj(φn). (6.50)

With (6.30) to (6.33), (6.41), (6.43) and (6.45) this gives

Dφa = ∇φa + ig12BφaR +

g22[(−iW 1 −W 2)φpR − iW 3φaR] (6.51)

Dφp = ∇φp + ig12B(−2φpL + φpR) +

g22[(−iW 1 +W 2)φaR + iW 3φpR] (6.52)

Dφe = ∇φe + ig12B(2φeR − φeL) +

g22[(iW 1 + W 2)φnL − iW 3φeL] (6.53)

Dφn = ∇φn − ig12BφnL +

g22[(iW 1 − W 2)φeL + iW 3φnL]. (6.54)

Using the conjugation M → M in (6.53) and (6.54) this gives

Dφa = ∇φa + ig12BφaR + i

g22[(−W 1 + iW 2)φpR −W 3φaR] (6.55)

Dφp = ∇φp + ig12B(−2φpL + φpR) + i

g22[−(W 1 + iW 2)φaR +W 3φpR] (6.56)

Dφe = ∇φe + ig12B(−2φeR + φeL) + i

g22[−(W 1 + iW 2)φnL +W 3φeL] (6.57)

Dφn = ∇φn + ig12BφnL + i

g22[(−W 1 + iW 2)φeL −W 3φnL]. (6.58)

We study firstly the case of the electron and its neutrino. We have with (6.34)

φeL = φe1 + σ3

2; φeLσ3 = φeL (6.59)

φeR = φe1− σ3

2; φeRσ3 = −φeR (6.60)

−2φeR + 2φeL = 2(φeR + φeL)σ3 = 2φeσ3 (6.61)

and we get for (6.57) and (6.58)

Dφe = ∇φe + g1Bφeiσ3 +i

2(−g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL (6.62)

Dφn = ∇φn − i

2(−g1B + g2W

3)φnL + ig22(−W 1 + iW 2)φeL. (6.63)

73

Therefore (6.22) gives the system

Dφa = ∇φa +g12Bp0(φa) +

g22W jpj(φa) (6.47)

Dφp = ∇φp +g12Bp0(φp) +

g22W jpj(φp) (6.48)

Dφe = ∇φe +g12Bp0(φe) +

g22W jpj(φe) (6.49)

Dφn = ∇φn +g12Bp0(φn) +

g22W jpj(φn). (6.50)

With (6.30) to (6.33), (6.41), (6.43) and (6.45) this gives

Dφa = ∇φa + ig12BφaR +

g22[(−iW 1 −W 2)φpR − iW 3φaR] (6.51)

Dφp = ∇φp + ig12B(−2φpL + φpR) +

g22[(−iW 1 +W 2)φaR + iW 3φpR] (6.52)

Dφe = ∇φe + ig12B(2φeR − φeL) +

g22[(iW 1 + W 2)φnL − iW 3φeL] (6.53)

Dφn = ∇φn − ig12BφnL +

g22[(iW 1 − W 2)φeL + iW 3φnL]. (6.54)

Using the conjugation M → M in (6.53) and (6.54) this gives

Dφa = ∇φa + ig12BφaR + i

g22[(−W 1 + iW 2)φpR −W 3φaR] (6.55)

Dφp = ∇φp + ig12B(−2φpL + φpR) + i

g22[−(W 1 + iW 2)φaR +W 3φpR] (6.56)

Dφe = ∇φe + ig12B(−2φeR + φeL) + i

g22[−(W 1 + iW 2)φnL +W 3φeL] (6.57)

Dφn = ∇φn + ig12BφnL + i

g22[(−W 1 + iW 2)φeL −W 3φnL]. (6.58)

We study firstly the case of the electron and its neutrino. We have with (6.34)

φeL = φe1 + σ3

2; φeLσ3 = φeL (6.59)

φeR = φe1− σ3

2; φeRσ3 = −φeR (6.60)

−2φeR + 2φeL = 2(φeR + φeL)σ3 = 2φeσ3 (6.61)

and we get for (6.57) and (6.58)

Dφe = ∇φe + g1Bφeiσ3 +i

2(−g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL (6.62)

Dφn = ∇φn − i

2(−g1B + g2W

3)φnL + ig22(−W 1 + iW 2)φeL. (6.63)

73

(6.58)

We study firstly the case of the electron and its neu-trino. We have with (6.34)

(6.59)

Therefore (6.22) gives the system

Dφa = ∇φa +g12Bp0(φa) +

g22W jpj(φa) (6.47)

Dφp = ∇φp +g12Bp0(φp) +

g22W jpj(φp) (6.48)

Dφe = ∇φe +g12Bp0(φe) +

g22W jpj(φe) (6.49)

Dφn = ∇φn +g12Bp0(φn) +

g22W jpj(φn). (6.50)

With (6.30) to (6.33), (6.41), (6.43) and (6.45) this gives

Dφa = ∇φa + ig12BφaR +

g22[(−iW 1 −W 2)φpR − iW 3φaR] (6.51)

Dφp = ∇φp + ig12B(−2φpL + φpR) +

g22[(−iW 1 +W 2)φaR + iW 3φpR] (6.52)

Dφe = ∇φe + ig12B(2φeR − φeL) +

g22[(iW 1 + W 2)φnL − iW 3φeL] (6.53)

Dφn = ∇φn − ig12BφnL +

g22[(iW 1 − W 2)φeL + iW 3φnL]. (6.54)

Using the conjugation M → M in (6.53) and (6.54) this gives

Dφa = ∇φa + ig12BφaR + i

g22[(−W 1 + iW 2)φpR −W 3φaR] (6.55)

Dφp = ∇φp + ig12B(−2φpL + φpR) + i

g22[−(W 1 + iW 2)φaR +W 3φpR] (6.56)

Dφe = ∇φe + ig12B(−2φeR + φeL) + i

g22[−(W 1 + iW 2)φnL +W 3φeL] (6.57)

Dφn = ∇φn + ig12BφnL + i

g22[(−W 1 + iW 2)φeL −W 3φnL]. (6.58)

We study firstly the case of the electron and its neutrino. We have with (6.34)

φeL = φe1 + σ3

2; φeLσ3 = φeL (6.59)

φeR = φe1− σ3

2; φeRσ3 = −φeR (6.60)

−2φeR + 2φeL = 2(φeR + φeL)σ3 = 2φeσ3 (6.61)

and we get for (6.57) and (6.58)

Dφe = ∇φe + g1Bφeiσ3 +i

2(−g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL (6.62)

Dφn = ∇φn − i

2(−g1B + g2W

3)φnL + ig22(−W 1 + iW 2)φeL. (6.63)

73

(6.60)

(6.61)

and we get for (6.57) and (6.58)

Therefore (6.22) gives the system

Dφa = ∇φa +g12Bp0(φa) +

g22W jpj(φa) (6.47)

Dφp = ∇φp +g12Bp0(φp) +

g22W jpj(φp) (6.48)

Dφe = ∇φe +g12Bp0(φe) +

g22W jpj(φe) (6.49)

Dφn = ∇φn +g12Bp0(φn) +

g22W jpj(φn). (6.50)

With (6.30) to (6.33), (6.41), (6.43) and (6.45) this gives

Dφa = ∇φa + ig12BφaR +

g22[(−iW 1 −W 2)φpR − iW 3φaR] (6.51)

Dφp = ∇φp + ig12B(−2φpL + φpR) +

g22[(−iW 1 +W 2)φaR + iW 3φpR] (6.52)

Dφe = ∇φe + ig12B(2φeR − φeL) +

g22[(iW 1 + W 2)φnL − iW 3φeL] (6.53)

Dφn = ∇φn − ig12BφnL +

g22[(iW 1 − W 2)φeL + iW 3φnL]. (6.54)

Using the conjugation M → M in (6.53) and (6.54) this gives

Dφa = ∇φa + ig12BφaR + i

g22[(−W 1 + iW 2)φpR −W 3φaR] (6.55)

Dφp = ∇φp + ig12B(−2φpL + φpR) + i

g22[−(W 1 + iW 2)φaR +W 3φpR] (6.56)

Dφe = ∇φe + ig12B(−2φeR + φeL) + i

g22[−(W 1 + iW 2)φnL +W 3φeL] (6.57)

Dφn = ∇φn + ig12BφnL + i

g22[(−W 1 + iW 2)φeL −W 3φnL]. (6.58)

We study firstly the case of the electron and its neutrino. We have with (6.34)

φeL = φe1 + σ3

2; φeLσ3 = φeL (6.59)

φeR = φe1− σ3

2; φeRσ3 = −φeR (6.60)

−2φeR + 2φeL = 2(φeR + φeL)σ3 = 2φeσ3 (6.61)

and we get for (6.57) and (6.58)

Dφe = ∇φe + g1Bφeiσ3 +i

2(−g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL (6.62)

Dφn = ∇φn − i

2(−g1B + g2W

3)φnL + ig22(−W 1 + iW 2)φeL. (6.63)

73

Therefore (6.22) gives the system

Dφa = ∇φa +g12Bp0(φa) +

g22W jpj(φa) (6.47)

Dφp = ∇φp +g12Bp0(φp) +

g22W jpj(φp) (6.48)

Dφe = ∇φe +g12Bp0(φe) +

g22W jpj(φe) (6.49)

Dφn = ∇φn +g12Bp0(φn) +

g22W jpj(φn). (6.50)

With (6.30) to (6.33), (6.41), (6.43) and (6.45) this gives

Dφa = ∇φa + ig12BφaR +

g22[(−iW 1 −W 2)φpR − iW 3φaR] (6.51)

Dφp = ∇φp + ig12B(−2φpL + φpR) +

g22[(−iW 1 +W 2)φaR + iW 3φpR] (6.52)

Dφe = ∇φe + ig12B(2φeR − φeL) +

g22[(iW 1 + W 2)φnL − iW 3φeL] (6.53)

Dφn = ∇φn − ig12BφnL +

g22[(iW 1 − W 2)φeL + iW 3φnL]. (6.54)

Using the conjugation M → M in (6.53) and (6.54) this gives

Dφa = ∇φa + ig12BφaR + i

g22[(−W 1 + iW 2)φpR −W 3φaR] (6.55)

Dφp = ∇φp + ig12B(−2φpL + φpR) + i

g22[−(W 1 + iW 2)φaR +W 3φpR] (6.56)

Dφe = ∇φe + ig12B(−2φeR + φeL) + i

g22[−(W 1 + iW 2)φnL +W 3φeL] (6.57)

Dφn = ∇φn + ig12BφnL + i

g22[(−W 1 + iW 2)φeL −W 3φnL]. (6.58)

We study firstly the case of the electron and its neutrino. We have with (6.34)

φeL = φe1 + σ3

2; φeLσ3 = φeL (6.59)

φeR = φe1− σ3

2; φeRσ3 = −φeR (6.60)

−2φeR + 2φeL = 2(φeR + φeL)σ3 = 2φeσ3 (6.61)

and we get for (6.57) and (6.58)

Dφe = ∇φe + g1Bφeiσ3 +i

2(−g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL (6.62)

Dφn = ∇φn − i

2(−g1B + g2W

3)φnL + ig22(−W 1 + iW 2)φeL. (6.63)

73

(6.62)

Therefore (6.22) gives the system

Dφa = ∇φa +g12Bp0(φa) +

g22W jpj(φa) (6.47)

Dφp = ∇φp +g12Bp0(φp) +

g22W jpj(φp) (6.48)

Dφe = ∇φe +g12Bp0(φe) +

g22W jpj(φe) (6.49)

Dφn = ∇φn +g12Bp0(φn) +

g22W jpj(φn). (6.50)

With (6.30) to (6.33), (6.41), (6.43) and (6.45) this gives

Dφa = ∇φa + ig12BφaR +

g22[(−iW 1 −W 2)φpR − iW 3φaR] (6.51)

Dφp = ∇φp + ig12B(−2φpL + φpR) +

g22[(−iW 1 +W 2)φaR + iW 3φpR] (6.52)

Dφe = ∇φe + ig12B(2φeR − φeL) +

g22[(iW 1 + W 2)φnL − iW 3φeL] (6.53)

Dφn = ∇φn − ig12BφnL +

g22[(iW 1 − W 2)φeL + iW 3φnL]. (6.54)

Using the conjugation M → M in (6.53) and (6.54) this gives

Dφa = ∇φa + ig12BφaR + i

g22[(−W 1 + iW 2)φpR −W 3φaR] (6.55)

Dφp = ∇φp + ig12B(−2φpL + φpR) + i

g22[−(W 1 + iW 2)φaR +W 3φpR] (6.56)

Dφe = ∇φe + ig12B(−2φeR + φeL) + i

g22[−(W 1 + iW 2)φnL +W 3φeL] (6.57)

Dφn = ∇φn + ig12BφnL + i

g22[(−W 1 + iW 2)φeL −W 3φnL]. (6.58)

We study firstly the case of the electron and its neutrino. We have with (6.34)

φeL = φe1 + σ3

2; φeLσ3 = φeL (6.59)

φeR = φe1− σ3

2; φeRσ3 = −φeR (6.60)

−2φeR + 2φeL = 2(φeR + φeL)σ3 = 2φeσ3 (6.61)

and we get for (6.57) and (6.58)

Dφe = ∇φe + g1Bφeiσ3 +i

2(−g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL (6.62)

Dφn = ∇φn − i

2(−g1B + g2W

3)φnL + ig22(−W 1 + iW 2)φeL. (6.63)

73

Therefore (6.22) gives the system

Dφa = ∇φa +g12Bp0(φa) +

g22W jpj(φa) (6.47)

Dφp = ∇φp +g12Bp0(φp) +

g22W jpj(φp) (6.48)

Dφe = ∇φe +g12Bp0(φe) +

g22W jpj(φe) (6.49)

Dφn = ∇φn +g12Bp0(φn) +

g22W jpj(φn). (6.50)

With (6.30) to (6.33), (6.41), (6.43) and (6.45) this gives

Dφa = ∇φa + ig12BφaR +

g22[(−iW 1 −W 2)φpR − iW 3φaR] (6.51)

Dφp = ∇φp + ig12B(−2φpL + φpR) +

g22[(−iW 1 +W 2)φaR + iW 3φpR] (6.52)

Dφe = ∇φe + ig12B(2φeR − φeL) +

g22[(iW 1 + W 2)φnL − iW 3φeL] (6.53)

Dφn = ∇φn − ig12BφnL +

g22[(iW 1 − W 2)φeL + iW 3φnL]. (6.54)

Using the conjugation M → M in (6.53) and (6.54) this gives

Dφa = ∇φa + ig12BφaR + i

g22[(−W 1 + iW 2)φpR −W 3φaR] (6.55)

Dφp = ∇φp + ig12B(−2φpL + φpR) + i

g22[−(W 1 + iW 2)φaR +W 3φpR] (6.56)

Dφe = ∇φe + ig12B(−2φeR + φeL) + i

g22[−(W 1 + iW 2)φnL +W 3φeL] (6.57)

Dφn = ∇φn + ig12BφnL + i

g22[(−W 1 + iW 2)φeL −W 3φnL]. (6.58)

We study firstly the case of the electron and its neutrino. We have with (6.34)

φeL = φe1 + σ3

2; φeLσ3 = φeL (6.59)

φeR = φe1− σ3

2; φeRσ3 = −φeR (6.60)

−2φeR + 2φeL = 2(φeR + φeL)σ3 = 2φeσ3 (6.61)

and we get for (6.57) and (6.58)

Dφe = ∇φe + g1Bφeiσ3 +i

2(−g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL (6.62)

Dφn = ∇φn − i

2(−g1B + g2W

3)φnL + ig22(−W 1 + iW 2)φeL. (6.63)

73

(6.63)

We separate left and right parts of the wave:We separate left and right parts of the wave:

DφnR = ∇φnR ; DφnR = ∇φnR (6.64)

DφnL = ∇φnL +i

2(g1B − g2W

3)φnL + ig22(−W 1 + iW 2)φeL (6.65)

DφeR = ∇φeR − ig1BφeR ; DφeR = ∇φeR + ig1BφeR (6.66)

DφeL = ∇φeL +i

2(g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL. (6.67)

which is equivalent to42

Dµξn = ∂µξn (6.68)

Dµηn = ∂µηn + ig12Bµηn − i

g22[(W 1

µ − iW 2µ)ηe +W 3

µηn] (6.69)

Dµξe = ∂µξe + ig1Bµξe (6.70)

Dµηe = ∂µηe + ig12Bµηe − i

g22[(W 1

µ + iW 2µ)ηn −W 3

µηe]. (6.71)

(6.69) and (6.71) give for the “lepton doublet” ψL =

(ηnηe

)with weak isospin

Y = −1 :

DµψL = ∂µψL − ig1Y

2BµψL − i

g22W j

µτjψL

τ1 = γ0 ; τ2 = γ123 ; τ3 = γ5 (6.72)

With (6.68) we see that the right part of the wave of the neutrino does notinteract. (6.70) is interpreted as a SU(2) singlet ψR = ξ with weak isospinY = −2 :

DµψR = ∂µψR − ig1Y

2BµψR (6.73)

Finally we see here that all features of weak interactions, with a doublet ofleft waves, a singlet of right wave, a non-interacting right neutrino, a chargeconjugation exchanging right and left waves are obtained here from simple hy-pothesis :

1 - The wave of all components of the lepton sector, electron, positron,electronic neutrino and anti-neutrino, is the function (6.8) of space-time withvalue into the Clifford algebra of the space-time.

2 - Four operators P0, P1, P2, P3 are defined by (6.13) to (6.16).3 - A covariant derivative is defined by (6.22).It is now easy to use the system (6.55) to (6.58) to get all other features of

the Weinberg-Salam model. It considers the “charged currents” W+ and W−

defined by

W+µ = W 1

µ + iW 2µ ; W−

µ = −W 1µ + iW 2

µ

W+ = W 1 + iW 2 ; W− = −W 1 + iW 2 (6.74)

42Since φeR =√2(ξe 0) we must use the second equality (6.66) to get (6.70).

74

(6.64)We separate left and right parts of the wave:

DφnR = ∇φnR ; DφnR = ∇φnR (6.64)

DφnL = ∇φnL +i

2(g1B − g2W

3)φnL + ig22(−W 1 + iW 2)φeL (6.65)

DφeR = ∇φeR − ig1BφeR ; DφeR = ∇φeR + ig1BφeR (6.66)

DφeL = ∇φeL +i

2(g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL. (6.67)

which is equivalent to42

Dµξn = ∂µξn (6.68)

Dµηn = ∂µηn + ig12Bµηn − i

g22[(W 1

µ − iW 2µ)ηe +W 3

µηn] (6.69)

Dµξe = ∂µξe + ig1Bµξe (6.70)

Dµηe = ∂µηe + ig12Bµηe − i

g22[(W 1

µ + iW 2µ)ηn −W 3

µηe]. (6.71)

(6.69) and (6.71) give for the “lepton doublet” ψL =

(ηnηe

)with weak isospin

Y = −1 :

DµψL = ∂µψL − ig1Y

2BµψL − i

g22W j

µτjψL

τ1 = γ0 ; τ2 = γ123 ; τ3 = γ5 (6.72)

With (6.68) we see that the right part of the wave of the neutrino does notinteract. (6.70) is interpreted as a SU(2) singlet ψR = ξ with weak isospinY = −2 :

DµψR = ∂µψR − ig1Y

2BµψR (6.73)

Finally we see here that all features of weak interactions, with a doublet ofleft waves, a singlet of right wave, a non-interacting right neutrino, a chargeconjugation exchanging right and left waves are obtained here from simple hy-pothesis :

1 - The wave of all components of the lepton sector, electron, positron,electronic neutrino and anti-neutrino, is the function (6.8) of space-time withvalue into the Clifford algebra of the space-time.

2 - Four operators P0, P1, P2, P3 are defined by (6.13) to (6.16).3 - A covariant derivative is defined by (6.22).It is now easy to use the system (6.55) to (6.58) to get all other features of

the Weinberg-Salam model. It considers the “charged currents” W+ and W−

defined by

W+µ = W 1

µ + iW 2µ ; W−

µ = −W 1µ + iW 2

µ

W+ = W 1 + iW 2 ; W− = −W 1 + iW 2 (6.74)

42Since φeR =√2(ξe 0) we must use the second equality (6.66) to get (6.70).

74

We separate left and right parts of the wave:

DφnR = ∇φnR ; DφnR = ∇φnR (6.64)

DφnL = ∇φnL +i

2(g1B − g2W

3)φnL + ig22(−W 1 + iW 2)φeL (6.65)

DφeR = ∇φeR − ig1BφeR ; DφeR = ∇φeR + ig1BφeR (6.66)

DφeL = ∇φeL +i

2(g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL. (6.67)

which is equivalent to42

Dµξn = ∂µξn (6.68)

Dµηn = ∂µηn + ig12Bµηn − i

g22[(W 1

µ − iW 2µ)ηe +W 3

µηn] (6.69)

Dµξe = ∂µξe + ig1Bµξe (6.70)

Dµηe = ∂µηe + ig12Bµηe − i

g22[(W 1

µ + iW 2µ)ηn −W 3

µηe]. (6.71)

(6.69) and (6.71) give for the “lepton doublet” ψL =

(ηnηe

)with weak isospin

Y = −1 :

DµψL = ∂µψL − ig1Y

2BµψL − i

g22W j

µτjψL

τ1 = γ0 ; τ2 = γ123 ; τ3 = γ5 (6.72)

With (6.68) we see that the right part of the wave of the neutrino does notinteract. (6.70) is interpreted as a SU(2) singlet ψR = ξ with weak isospinY = −2 :

DµψR = ∂µψR − ig1Y

2BµψR (6.73)

Finally we see here that all features of weak interactions, with a doublet ofleft waves, a singlet of right wave, a non-interacting right neutrino, a chargeconjugation exchanging right and left waves are obtained here from simple hy-pothesis :

1 - The wave of all components of the lepton sector, electron, positron,electronic neutrino and anti-neutrino, is the function (6.8) of space-time withvalue into the Clifford algebra of the space-time.

2 - Four operators P0, P1, P2, P3 are defined by (6.13) to (6.16).3 - A covariant derivative is defined by (6.22).It is now easy to use the system (6.55) to (6.58) to get all other features of

the Weinberg-Salam model. It considers the “charged currents” W+ and W−

defined by

W+µ = W 1

µ + iW 2µ ; W−

µ = −W 1µ + iW 2

µ

W+ = W 1 + iW 2 ; W− = −W 1 + iW 2 (6.74)

42Since φeR =√2(ξe 0) we must use the second equality (6.66) to get (6.70).

74

(6.65)

We separate left and right parts of the wave:

DφnR = ∇φnR ; DφnR = ∇φnR (6.64)

DφnL = ∇φnL +i

2(g1B − g2W

3)φnL + ig22(−W 1 + iW 2)φeL (6.65)

DφeR = ∇φeR − ig1BφeR ; DφeR = ∇φeR + ig1BφeR (6.66)

DφeL = ∇φeL +i

2(g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL. (6.67)

which is equivalent to42

Dµξn = ∂µξn (6.68)

Dµηn = ∂µηn + ig12Bµηn − i

g22[(W 1

µ − iW 2µ)ηe +W 3

µηn] (6.69)

Dµξe = ∂µξe + ig1Bµξe (6.70)

Dµηe = ∂µηe + ig12Bµηe − i

g22[(W 1

µ + iW 2µ)ηn −W 3

µηe]. (6.71)

(6.69) and (6.71) give for the “lepton doublet” ψL =

(ηnηe

)with weak isospin

Y = −1 :

DµψL = ∂µψL − ig1Y

2BµψL − i

g22W j

µτjψL

τ1 = γ0 ; τ2 = γ123 ; τ3 = γ5 (6.72)

With (6.68) we see that the right part of the wave of the neutrino does notinteract. (6.70) is interpreted as a SU(2) singlet ψR = ξ with weak isospinY = −2 :

DµψR = ∂µψR − ig1Y

2BµψR (6.73)

Finally we see here that all features of weak interactions, with a doublet ofleft waves, a singlet of right wave, a non-interacting right neutrino, a chargeconjugation exchanging right and left waves are obtained here from simple hy-pothesis :

1 - The wave of all components of the lepton sector, electron, positron,electronic neutrino and anti-neutrino, is the function (6.8) of space-time withvalue into the Clifford algebra of the space-time.

2 - Four operators P0, P1, P2, P3 are defined by (6.13) to (6.16).3 - A covariant derivative is defined by (6.22).It is now easy to use the system (6.55) to (6.58) to get all other features of

the Weinberg-Salam model. It considers the “charged currents” W+ and W−

defined by

W+µ = W 1

µ + iW 2µ ; W−

µ = −W 1µ + iW 2

µ

W+ = W 1 + iW 2 ; W− = −W 1 + iW 2 (6.74)

42Since φeR =√2(ξe 0) we must use the second equality (6.66) to get (6.70).

74

We separate left and right parts of the wave:

DφnR = ∇φnR ; DφnR = ∇φnR (6.64)

DφnL = ∇φnL +i

2(g1B − g2W

3)φnL + ig22(−W 1 + iW 2)φeL (6.65)

DφeR = ∇φeR − ig1BφeR ; DφeR = ∇φeR + ig1BφeR (6.66)

DφeL = ∇φeL +i

2(g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL. (6.67)

which is equivalent to42

Dµξn = ∂µξn (6.68)

Dµηn = ∂µηn + ig12Bµηn − i

g22[(W 1

µ − iW 2µ)ηe +W 3

µηn] (6.69)

Dµξe = ∂µξe + ig1Bµξe (6.70)

Dµηe = ∂µηe + ig12Bµηe − i

g22[(W 1

µ + iW 2µ)ηn −W 3

µηe]. (6.71)

(6.69) and (6.71) give for the “lepton doublet” ψL =

(ηnηe

)with weak isospin

Y = −1 :

DµψL = ∂µψL − ig1Y

2BµψL − i

g22W j

µτjψL

τ1 = γ0 ; τ2 = γ123 ; τ3 = γ5 (6.72)

With (6.68) we see that the right part of the wave of the neutrino does notinteract. (6.70) is interpreted as a SU(2) singlet ψR = ξ with weak isospinY = −2 :

DµψR = ∂µψR − ig1Y

2BµψR (6.73)

Finally we see here that all features of weak interactions, with a doublet ofleft waves, a singlet of right wave, a non-interacting right neutrino, a chargeconjugation exchanging right and left waves are obtained here from simple hy-pothesis :

1 - The wave of all components of the lepton sector, electron, positron,electronic neutrino and anti-neutrino, is the function (6.8) of space-time withvalue into the Clifford algebra of the space-time.

2 - Four operators P0, P1, P2, P3 are defined by (6.13) to (6.16).3 - A covariant derivative is defined by (6.22).It is now easy to use the system (6.55) to (6.58) to get all other features of

the Weinberg-Salam model. It considers the “charged currents” W+ and W−

defined by

W+µ = W 1

µ + iW 2µ ; W−

µ = −W 1µ + iW 2

µ

W+ = W 1 + iW 2 ; W− = −W 1 + iW 2 (6.74)

42Since φeR =√2(ξe 0) we must use the second equality (6.66) to get (6.70).

74

; (6.66)

We separate left and right parts of the wave:

DφnR = ∇φnR ; DφnR = ∇φnR (6.64)

DφnL = ∇φnL +i

2(g1B − g2W

3)φnL + ig22(−W 1 + iW 2)φeL (6.65)

DφeR = ∇φeR − ig1BφeR ; DφeR = ∇φeR + ig1BφeR (6.66)

DφeL = ∇φeL +i

2(g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL. (6.67)

which is equivalent to42

Dµξn = ∂µξn (6.68)

Dµηn = ∂µηn + ig12Bµηn − i

g22[(W 1

µ − iW 2µ)ηe +W 3

µηn] (6.69)

Dµξe = ∂µξe + ig1Bµξe (6.70)

Dµηe = ∂µηe + ig12Bµηe − i

g22[(W 1

µ + iW 2µ)ηn −W 3

µηe]. (6.71)

(6.69) and (6.71) give for the “lepton doublet” ψL =

(ηnηe

)with weak isospin

Y = −1 :

DµψL = ∂µψL − ig1Y

2BµψL − i

g22W j

µτjψL

τ1 = γ0 ; τ2 = γ123 ; τ3 = γ5 (6.72)

With (6.68) we see that the right part of the wave of the neutrino does notinteract. (6.70) is interpreted as a SU(2) singlet ψR = ξ with weak isospinY = −2 :

DµψR = ∂µψR − ig1Y

2BµψR (6.73)

Finally we see here that all features of weak interactions, with a doublet ofleft waves, a singlet of right wave, a non-interacting right neutrino, a chargeconjugation exchanging right and left waves are obtained here from simple hy-pothesis :

1 - The wave of all components of the lepton sector, electron, positron,electronic neutrino and anti-neutrino, is the function (6.8) of space-time withvalue into the Clifford algebra of the space-time.

2 - Four operators P0, P1, P2, P3 are defined by (6.13) to (6.16).3 - A covariant derivative is defined by (6.22).It is now easy to use the system (6.55) to (6.58) to get all other features of

the Weinberg-Salam model. It considers the “charged currents” W+ and W−

defined by

W+µ = W 1

µ + iW 2µ ; W−

µ = −W 1µ + iW 2

µ

W+ = W 1 + iW 2 ; W− = −W 1 + iW 2 (6.74)

42Since φeR =√2(ξe 0) we must use the second equality (6.66) to get (6.70).

74

We separate left and right parts of the wave:

DφnR = ∇φnR ; DφnR = ∇φnR (6.64)

DφnL = ∇φnL +i

2(g1B − g2W

3)φnL + ig22(−W 1 + iW 2)φeL (6.65)

DφeR = ∇φeR − ig1BφeR ; DφeR = ∇φeR + ig1BφeR (6.66)

DφeL = ∇φeL +i

2(g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL. (6.67)

which is equivalent to42

Dµξn = ∂µξn (6.68)

Dµηn = ∂µηn + ig12Bµηn − i

g22[(W 1

µ − iW 2µ)ηe +W 3

µηn] (6.69)

Dµξe = ∂µξe + ig1Bµξe (6.70)

Dµηe = ∂µηe + ig12Bµηe − i

g22[(W 1

µ + iW 2µ)ηn −W 3

µηe]. (6.71)

(6.69) and (6.71) give for the “lepton doublet” ψL =

(ηnηe

)with weak isospin

Y = −1 :

DµψL = ∂µψL − ig1Y

2BµψL − i

g22W j

µτjψL

τ1 = γ0 ; τ2 = γ123 ; τ3 = γ5 (6.72)

With (6.68) we see that the right part of the wave of the neutrino does notinteract. (6.70) is interpreted as a SU(2) singlet ψR = ξ with weak isospinY = −2 :

DµψR = ∂µψR − ig1Y

2BµψR (6.73)

Finally we see here that all features of weak interactions, with a doublet ofleft waves, a singlet of right wave, a non-interacting right neutrino, a chargeconjugation exchanging right and left waves are obtained here from simple hy-pothesis :

1 - The wave of all components of the lepton sector, electron, positron,electronic neutrino and anti-neutrino, is the function (6.8) of space-time withvalue into the Clifford algebra of the space-time.

2 - Four operators P0, P1, P2, P3 are defined by (6.13) to (6.16).3 - A covariant derivative is defined by (6.22).It is now easy to use the system (6.55) to (6.58) to get all other features of

the Weinberg-Salam model. It considers the “charged currents” W+ and W−

defined by

W+µ = W 1

µ + iW 2µ ; W−

µ = −W 1µ + iW 2

µ

W+ = W 1 + iW 2 ; W− = −W 1 + iW 2 (6.74)

42Since φeR =√2(ξe 0) we must use the second equality (6.66) to get (6.70).

74

(6.67)

which is equivalent to42

We separate left and right parts of the wave:

DφnR = ∇φnR ; DφnR = ∇φnR (6.64)

DφnL = ∇φnL +i

2(g1B − g2W

3)φnL + ig22(−W 1 + iW 2)φeL (6.65)

DφeR = ∇φeR − ig1BφeR ; DφeR = ∇φeR + ig1BφeR (6.66)

DφeL = ∇φeL +i

2(g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL. (6.67)

which is equivalent to42

Dµξn = ∂µξn (6.68)

Dµηn = ∂µηn + ig12Bµηn − i

g22[(W 1

µ − iW 2µ)ηe +W 3

µηn] (6.69)

Dµξe = ∂µξe + ig1Bµξe (6.70)

Dµηe = ∂µηe + ig12Bµηe − i

g22[(W 1

µ + iW 2µ)ηn −W 3

µηe]. (6.71)

(6.69) and (6.71) give for the “lepton doublet” ψL =

(ηnηe

)with weak isospin

Y = −1 :

DµψL = ∂µψL − ig1Y

2BµψL − i

g22W j

µτjψL

τ1 = γ0 ; τ2 = γ123 ; τ3 = γ5 (6.72)

With (6.68) we see that the right part of the wave of the neutrino does notinteract. (6.70) is interpreted as a SU(2) singlet ψR = ξ with weak isospinY = −2 :

DµψR = ∂µψR − ig1Y

2BµψR (6.73)

Finally we see here that all features of weak interactions, with a doublet ofleft waves, a singlet of right wave, a non-interacting right neutrino, a chargeconjugation exchanging right and left waves are obtained here from simple hy-pothesis :

1 - The wave of all components of the lepton sector, electron, positron,electronic neutrino and anti-neutrino, is the function (6.8) of space-time withvalue into the Clifford algebra of the space-time.

2 - Four operators P0, P1, P2, P3 are defined by (6.13) to (6.16).3 - A covariant derivative is defined by (6.22).It is now easy to use the system (6.55) to (6.58) to get all other features of

the Weinberg-Salam model. It considers the “charged currents” W+ and W−

defined by

W+µ = W 1

µ + iW 2µ ; W−

µ = −W 1µ + iW 2

µ

W+ = W 1 + iW 2 ; W− = −W 1 + iW 2 (6.74)

42Since φeR =√2(ξe 0) we must use the second equality (6.66) to get (6.70).

74

; (6.68)

We separate left and right parts of the wave:

DφnR = ∇φnR ; DφnR = ∇φnR (6.64)

DφnL = ∇φnL +i

2(g1B − g2W

3)φnL + ig22(−W 1 + iW 2)φeL (6.65)

DφeR = ∇φeR − ig1BφeR ; DφeR = ∇φeR + ig1BφeR (6.66)

DφeL = ∇φeL +i

2(g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL. (6.67)

which is equivalent to42

Dµξn = ∂µξn (6.68)

Dµηn = ∂µηn + ig12Bµηn − i

g22[(W 1

µ − iW 2µ)ηe +W 3

µηn] (6.69)

Dµξe = ∂µξe + ig1Bµξe (6.70)

Dµηe = ∂µηe + ig12Bµηe − i

g22[(W 1

µ + iW 2µ)ηn −W 3

µηe]. (6.71)

(6.69) and (6.71) give for the “lepton doublet” ψL =

(ηnηe

)with weak isospin

Y = −1 :

DµψL = ∂µψL − ig1Y

2BµψL − i

g22W j

µτjψL

τ1 = γ0 ; τ2 = γ123 ; τ3 = γ5 (6.72)

With (6.68) we see that the right part of the wave of the neutrino does notinteract. (6.70) is interpreted as a SU(2) singlet ψR = ξ with weak isospinY = −2 :

DµψR = ∂µψR − ig1Y

2BµψR (6.73)

Finally we see here that all features of weak interactions, with a doublet ofleft waves, a singlet of right wave, a non-interacting right neutrino, a chargeconjugation exchanging right and left waves are obtained here from simple hy-pothesis :

1 - The wave of all components of the lepton sector, electron, positron,electronic neutrino and anti-neutrino, is the function (6.8) of space-time withvalue into the Clifford algebra of the space-time.

2 - Four operators P0, P1, P2, P3 are defined by (6.13) to (6.16).3 - A covariant derivative is defined by (6.22).It is now easy to use the system (6.55) to (6.58) to get all other features of

the Weinberg-Salam model. It considers the “charged currents” W+ and W−

defined by

W+µ = W 1

µ + iW 2µ ; W−

µ = −W 1µ + iW 2

µ

W+ = W 1 + iW 2 ; W− = −W 1 + iW 2 (6.74)

42Since φeR =√2(ξe 0) we must use the second equality (6.66) to get (6.70).

74

We separate left and right parts of the wave:

DφnR = ∇φnR ; DφnR = ∇φnR (6.64)

DφnL = ∇φnL +i

2(g1B − g2W

3)φnL + ig22(−W 1 + iW 2)φeL (6.65)

DφeR = ∇φeR − ig1BφeR ; DφeR = ∇φeR + ig1BφeR (6.66)

DφeL = ∇φeL +i

2(g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL. (6.67)

which is equivalent to42

Dµξn = ∂µξn (6.68)

Dµηn = ∂µηn + ig12Bµηn − i

g22[(W 1

µ − iW 2µ)ηe +W 3

µηn] (6.69)

Dµξe = ∂µξe + ig1Bµξe (6.70)

Dµηe = ∂µηe + ig12Bµηe − i

g22[(W 1

µ + iW 2µ)ηn −W 3

µηe]. (6.71)

(6.69) and (6.71) give for the “lepton doublet” ψL =

(ηnηe

)with weak isospin

Y = −1 :

DµψL = ∂µψL − ig1Y

2BµψL − i

g22W j

µτjψL

τ1 = γ0 ; τ2 = γ123 ; τ3 = γ5 (6.72)

With (6.68) we see that the right part of the wave of the neutrino does notinteract. (6.70) is interpreted as a SU(2) singlet ψR = ξ with weak isospinY = −2 :

DµψR = ∂µψR − ig1Y

2BµψR (6.73)

Finally we see here that all features of weak interactions, with a doublet ofleft waves, a singlet of right wave, a non-interacting right neutrino, a chargeconjugation exchanging right and left waves are obtained here from simple hy-pothesis :

1 - The wave of all components of the lepton sector, electron, positron,electronic neutrino and anti-neutrino, is the function (6.8) of space-time withvalue into the Clifford algebra of the space-time.

2 - Four operators P0, P1, P2, P3 are defined by (6.13) to (6.16).3 - A covariant derivative is defined by (6.22).It is now easy to use the system (6.55) to (6.58) to get all other features of

the Weinberg-Salam model. It considers the “charged currents” W+ and W−

defined by

W+µ = W 1

µ + iW 2µ ; W−

µ = −W 1µ + iW 2

µ

W+ = W 1 + iW 2 ; W− = −W 1 + iW 2 (6.74)

42Since φeR =√2(ξe 0) we must use the second equality (6.66) to get (6.70).

74

; (6.69)

We separate left and right parts of the wave:

DφnR = ∇φnR ; DφnR = ∇φnR (6.64)

DφnL = ∇φnL +i

2(g1B − g2W

3)φnL + ig22(−W 1 + iW 2)φeL (6.65)

DφeR = ∇φeR − ig1BφeR ; DφeR = ∇φeR + ig1BφeR (6.66)

DφeL = ∇φeL +i

2(g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL. (6.67)

which is equivalent to42

Dµξn = ∂µξn (6.68)

Dµηn = ∂µηn + ig12Bµηn − i

g22[(W 1

µ − iW 2µ)ηe +W 3

µηn] (6.69)

Dµξe = ∂µξe + ig1Bµξe (6.70)

Dµηe = ∂µηe + ig12Bµηe − i

g22[(W 1

µ + iW 2µ)ηn −W 3

µηe]. (6.71)

(6.69) and (6.71) give for the “lepton doublet” ψL =

(ηnηe

)with weak isospin

Y = −1 :

DµψL = ∂µψL − ig1Y

2BµψL − i

g22W j

µτjψL

τ1 = γ0 ; τ2 = γ123 ; τ3 = γ5 (6.72)

With (6.68) we see that the right part of the wave of the neutrino does notinteract. (6.70) is interpreted as a SU(2) singlet ψR = ξ with weak isospinY = −2 :

DµψR = ∂µψR − ig1Y

2BµψR (6.73)

Finally we see here that all features of weak interactions, with a doublet ofleft waves, a singlet of right wave, a non-interacting right neutrino, a chargeconjugation exchanging right and left waves are obtained here from simple hy-pothesis :

1 - The wave of all components of the lepton sector, electron, positron,electronic neutrino and anti-neutrino, is the function (6.8) of space-time withvalue into the Clifford algebra of the space-time.

2 - Four operators P0, P1, P2, P3 are defined by (6.13) to (6.16).3 - A covariant derivative is defined by (6.22).It is now easy to use the system (6.55) to (6.58) to get all other features of

the Weinberg-Salam model. It considers the “charged currents” W+ and W−

defined by

W+µ = W 1

µ + iW 2µ ; W−

µ = −W 1µ + iW 2

µ

W+ = W 1 + iW 2 ; W− = −W 1 + iW 2 (6.74)

42Since φeR =√2(ξe 0) we must use the second equality (6.66) to get (6.70).

74

; (6.70)

We separate left and right parts of the wave:

DφnR = ∇φnR ; DφnR = ∇φnR (6.64)

DφnL = ∇φnL +i

2(g1B − g2W

3)φnL + ig22(−W 1 + iW 2)φeL (6.65)

DφeR = ∇φeR − ig1BφeR ; DφeR = ∇φeR + ig1BφeR (6.66)

DφeL = ∇φeL +i

2(g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL. (6.67)

which is equivalent to42

Dµξn = ∂µξn (6.68)

Dµηn = ∂µηn + ig12Bµηn − i

g22[(W 1

µ − iW 2µ)ηe +W 3

µηn] (6.69)

Dµξe = ∂µξe + ig1Bµξe (6.70)

Dµηe = ∂µηe + ig12Bµηe − i

g22[(W 1

µ + iW 2µ)ηn −W 3

µηe]. (6.71)

(6.69) and (6.71) give for the “lepton doublet” ψL =

(ηnηe

)with weak isospin

Y = −1 :

DµψL = ∂µψL − ig1Y

2BµψL − i

g22W j

µτjψL

τ1 = γ0 ; τ2 = γ123 ; τ3 = γ5 (6.72)

With (6.68) we see that the right part of the wave of the neutrino does notinteract. (6.70) is interpreted as a SU(2) singlet ψR = ξ with weak isospinY = −2 :

DµψR = ∂µψR − ig1Y

2BµψR (6.73)

Finally we see here that all features of weak interactions, with a doublet ofleft waves, a singlet of right wave, a non-interacting right neutrino, a chargeconjugation exchanging right and left waves are obtained here from simple hy-pothesis :

1 - The wave of all components of the lepton sector, electron, positron,electronic neutrino and anti-neutrino, is the function (6.8) of space-time withvalue into the Clifford algebra of the space-time.

2 - Four operators P0, P1, P2, P3 are defined by (6.13) to (6.16).3 - A covariant derivative is defined by (6.22).It is now easy to use the system (6.55) to (6.58) to get all other features of

the Weinberg-Salam model. It considers the “charged currents” W+ and W−

defined by

W+µ = W 1

µ + iW 2µ ; W−

µ = −W 1µ + iW 2

µ

W+ = W 1 + iW 2 ; W− = −W 1 + iW 2 (6.74)

42Since φeR =√2(ξe 0) we must use the second equality (6.66) to get (6.70).

74

We separate left and right parts of the wave:

DφnR = ∇φnR ; DφnR = ∇φnR (6.64)

DφnL = ∇φnL +i

2(g1B − g2W

3)φnL + ig22(−W 1 + iW 2)φeL (6.65)

DφeR = ∇φeR − ig1BφeR ; DφeR = ∇φeR + ig1BφeR (6.66)

DφeL = ∇φeL +i

2(g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL. (6.67)

which is equivalent to42

Dµξn = ∂µξn (6.68)

Dµηn = ∂µηn + ig12Bµηn − i

g22[(W 1

µ − iW 2µ)ηe +W 3

µηn] (6.69)

Dµξe = ∂µξe + ig1Bµξe (6.70)

Dµηe = ∂µηe + ig12Bµηe − i

g22[(W 1

µ + iW 2µ)ηn −W 3

µηe]. (6.71)

(6.69) and (6.71) give for the “lepton doublet” ψL =

(ηnηe

)with weak isospin

Y = −1 :

DµψL = ∂µψL − ig1Y

2BµψL − i

g22W j

µτjψL

τ1 = γ0 ; τ2 = γ123 ; τ3 = γ5 (6.72)

With (6.68) we see that the right part of the wave of the neutrino does notinteract. (6.70) is interpreted as a SU(2) singlet ψR = ξ with weak isospinY = −2 :

DµψR = ∂µψR − ig1Y

2BµψR (6.73)

Finally we see here that all features of weak interactions, with a doublet ofleft waves, a singlet of right wave, a non-interacting right neutrino, a chargeconjugation exchanging right and left waves are obtained here from simple hy-pothesis :

1 - The wave of all components of the lepton sector, electron, positron,electronic neutrino and anti-neutrino, is the function (6.8) of space-time withvalue into the Clifford algebra of the space-time.

2 - Four operators P0, P1, P2, P3 are defined by (6.13) to (6.16).3 - A covariant derivative is defined by (6.22).It is now easy to use the system (6.55) to (6.58) to get all other features of

the Weinberg-Salam model. It considers the “charged currents” W+ and W−

defined by

W+µ = W 1

µ + iW 2µ ; W−

µ = −W 1µ + iW 2

µ

W+ = W 1 + iW 2 ; W− = −W 1 + iW 2 (6.74)

42Since φeR =√2(ξe 0) we must use the second equality (6.66) to get (6.70).

74

(6.71)

(6.69) and (6.71) give for the “lepton doublet”

We separate left and right parts of the wave:

DφnR = ∇φnR ; DφnR = ∇φnR (6.64)

DφnL = ∇φnL +i

2(g1B − g2W

3)φnL + ig22(−W 1 + iW 2)φeL (6.65)

DφeR = ∇φeR − ig1BφeR ; DφeR = ∇φeR + ig1BφeR (6.66)

DφeL = ∇φeL +i

2(g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL. (6.67)

which is equivalent to42

Dµξn = ∂µξn (6.68)

Dµηn = ∂µηn + ig12Bµηn − i

g22[(W 1

µ − iW 2µ)ηe +W 3

µηn] (6.69)

Dµξe = ∂µξe + ig1Bµξe (6.70)

Dµηe = ∂µηe + ig12Bµηe − i

g22[(W 1

µ + iW 2µ)ηn −W 3

µηe]. (6.71)

(6.69) and (6.71) give for the “lepton doublet” ψL =

(ηnηe

)with weak isospin

Y = −1 :

DµψL = ∂µψL − ig1Y

2BµψL − i

g22W j

µτjψL

τ1 = γ0 ; τ2 = γ123 ; τ3 = γ5 (6.72)

With (6.68) we see that the right part of the wave of the neutrino does notinteract. (6.70) is interpreted as a SU(2) singlet ψR = ξ with weak isospinY = −2 :

DµψR = ∂µψR − ig1Y

2BµψR (6.73)

Finally we see here that all features of weak interactions, with a doublet ofleft waves, a singlet of right wave, a non-interacting right neutrino, a chargeconjugation exchanging right and left waves are obtained here from simple hy-pothesis :

1 - The wave of all components of the lepton sector, electron, positron,electronic neutrino and anti-neutrino, is the function (6.8) of space-time withvalue into the Clifford algebra of the space-time.

2 - Four operators P0, P1, P2, P3 are defined by (6.13) to (6.16).3 - A covariant derivative is defined by (6.22).It is now easy to use the system (6.55) to (6.58) to get all other features of

the Weinberg-Salam model. It considers the “charged currents” W+ and W−

defined by

W+µ = W 1

µ + iW 2µ ; W−

µ = −W 1µ + iW 2

µ

W+ = W 1 + iW 2 ; W− = −W 1 + iW 2 (6.74)

42Since φeR =√2(ξe 0) we must use the second equality (6.66) to get (6.70).

74

with weak isospin Y = −1:

42 Since

We separate left and right parts of the wave:

DφnR = ∇φnR ; DφnR = ∇φnR (6.64)

DφnL = ∇φnL +i

2(g1B − g2W

3)φnL + ig22(−W 1 + iW 2)φeL (6.65)

DφeR = ∇φeR − ig1BφeR ; DφeR = ∇φeR + ig1BφeR (6.66)

DφeL = ∇φeL +i

2(g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL. (6.67)

which is equivalent to42

Dµξn = ∂µξn (6.68)

Dµηn = ∂µηn + ig12Bµηn − i

g22[(W 1

µ − iW 2µ)ηe +W 3

µηn] (6.69)

Dµξe = ∂µξe + ig1Bµξe (6.70)

Dµηe = ∂µηe + ig12Bµηe − i

g22[(W 1

µ + iW 2µ)ηn −W 3

µηe]. (6.71)

(6.69) and (6.71) give for the “lepton doublet” ψL =

(ηnηe

)with weak isospin

Y = −1 :

DµψL = ∂µψL − ig1Y

2BµψL − i

g22W j

µτjψL

τ1 = γ0 ; τ2 = γ123 ; τ3 = γ5 (6.72)

With (6.68) we see that the right part of the wave of the neutrino does notinteract. (6.70) is interpreted as a SU(2) singlet ψR = ξ with weak isospinY = −2 :

DµψR = ∂µψR − ig1Y

2BµψR (6.73)

Finally we see here that all features of weak interactions, with a doublet ofleft waves, a singlet of right wave, a non-interacting right neutrino, a chargeconjugation exchanging right and left waves are obtained here from simple hy-pothesis :

1 - The wave of all components of the lepton sector, electron, positron,electronic neutrino and anti-neutrino, is the function (6.8) of space-time withvalue into the Clifford algebra of the space-time.

2 - Four operators P0, P1, P2, P3 are defined by (6.13) to (6.16).3 - A covariant derivative is defined by (6.22).It is now easy to use the system (6.55) to (6.58) to get all other features of

the Weinberg-Salam model. It considers the “charged currents” W+ and W−

defined by

W+µ = W 1

µ + iW 2µ ; W−

µ = −W 1µ + iW 2

µ

W+ = W 1 + iW 2 ; W− = −W 1 + iW 2 (6.74)

42Since φeR =√2(ξe 0) we must use the second equality (6.66) to get (6.70).

74

we must use the second equality (6.66) to get (6.70).

26

Page 30: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201428

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

We separate left and right parts of the wave:

DφnR = ∇φnR ; DφnR = ∇φnR (6.64)

DφnL = ∇φnL +i

2(g1B − g2W

3)φnL + ig22(−W 1 + iW 2)φeL (6.65)

DφeR = ∇φeR − ig1BφeR ; DφeR = ∇φeR + ig1BφeR (6.66)

DφeL = ∇φeL +i

2(g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL. (6.67)

which is equivalent to42

Dµξn = ∂µξn (6.68)

Dµηn = ∂µηn + ig12Bµηn − i

g22[(W 1

µ − iW 2µ)ηe +W 3

µηn] (6.69)

Dµξe = ∂µξe + ig1Bµξe (6.70)

Dµηe = ∂µηe + ig12Bµηe − i

g22[(W 1

µ + iW 2µ)ηn −W 3

µηe]. (6.71)

(6.69) and (6.71) give for the “lepton doublet” ψL =

(ηnηe

)with weak isospin

Y = −1 :

DµψL = ∂µψL − ig1Y

2BµψL − i

g22W j

µτjψL

τ1 = γ0 ; τ2 = γ123 ; τ3 = γ5 (6.72)

With (6.68) we see that the right part of the wave of the neutrino does notinteract. (6.70) is interpreted as a SU(2) singlet ψR = ξ with weak isospinY = −2 :

DµψR = ∂µψR − ig1Y

2BµψR (6.73)

Finally we see here that all features of weak interactions, with a doublet ofleft waves, a singlet of right wave, a non-interacting right neutrino, a chargeconjugation exchanging right and left waves are obtained here from simple hy-pothesis :

1 - The wave of all components of the lepton sector, electron, positron,electronic neutrino and anti-neutrino, is the function (6.8) of space-time withvalue into the Clifford algebra of the space-time.

2 - Four operators P0, P1, P2, P3 are defined by (6.13) to (6.16).3 - A covariant derivative is defined by (6.22).It is now easy to use the system (6.55) to (6.58) to get all other features of

the Weinberg-Salam model. It considers the “charged currents” W+ and W−

defined by

W+µ = W 1

µ + iW 2µ ; W−

µ = −W 1µ + iW 2

µ

W+ = W 1 + iW 2 ; W− = −W 1 + iW 2 (6.74)

42Since φeR =√2(ξe 0) we must use the second equality (6.66) to get (6.70).

74

(6.72)

With (6.68) we see that the right part of the wave of the neutrino does not interact. (6.70) is interpreted as a SU(2) singlet ψR = ξ with weak isospin Y = −2:

We separate left and right parts of the wave:

DφnR = ∇φnR ; DφnR = ∇φnR (6.64)

DφnL = ∇φnL +i

2(g1B − g2W

3)φnL + ig22(−W 1 + iW 2)φeL (6.65)

DφeR = ∇φeR − ig1BφeR ; DφeR = ∇φeR + ig1BφeR (6.66)

DφeL = ∇φeL +i

2(g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL. (6.67)

which is equivalent to42

Dµξn = ∂µξn (6.68)

Dµηn = ∂µηn + ig12Bµηn − i

g22[(W 1

µ − iW 2µ)ηe +W 3

µηn] (6.69)

Dµξe = ∂µξe + ig1Bµξe (6.70)

Dµηe = ∂µηe + ig12Bµηe − i

g22[(W 1

µ + iW 2µ)ηn −W 3

µηe]. (6.71)

(6.69) and (6.71) give for the “lepton doublet” ψL =

(ηnηe

)with weak isospin

Y = −1 :

DµψL = ∂µψL − ig1Y

2BµψL − i

g22W j

µτjψL

τ1 = γ0 ; τ2 = γ123 ; τ3 = γ5 (6.72)

With (6.68) we see that the right part of the wave of the neutrino does notinteract. (6.70) is interpreted as a SU(2) singlet ψR = ξ with weak isospinY = −2 :

DµψR = ∂µψR − ig1Y

2BµψR (6.73)

Finally we see here that all features of weak interactions, with a doublet ofleft waves, a singlet of right wave, a non-interacting right neutrino, a chargeconjugation exchanging right and left waves are obtained here from simple hy-pothesis :

1 - The wave of all components of the lepton sector, electron, positron,electronic neutrino and anti-neutrino, is the function (6.8) of space-time withvalue into the Clifford algebra of the space-time.

2 - Four operators P0, P1, P2, P3 are defined by (6.13) to (6.16).3 - A covariant derivative is defined by (6.22).It is now easy to use the system (6.55) to (6.58) to get all other features of

the Weinberg-Salam model. It considers the “charged currents” W+ and W−

defined by

W+µ = W 1

µ + iW 2µ ; W−

µ = −W 1µ + iW 2

µ

W+ = W 1 + iW 2 ; W− = −W 1 + iW 2 (6.74)

42Since φeR =√2(ξe 0) we must use the second equality (6.66) to get (6.70).

74

(6.73)

Finally we see here that all features of weak inter-actions, with a doublet of left waves, a singlet of right wave, a non-interacting right neutrino, a charge conju-gation exchanging right and left waves are obtained here from simple hypothesis:

1 − The wave of all components of the lepton sec-tor, electron, positron, electronic neutrino and anti-neu-trino, is the function (6.8) of space-time with value into the Clifford algebra of the space-time.

2 − Four operators P0 , P1 , P2 , P3 are defined by (6.13) to (6.16).

3 − A covariant derivative is defined by (6.22).It is now easy to use the system (6.55) to (6.58) to get

all other features of the Weinberg-Salam model. It con-siders the “charged currents” W + and W −defined by

We separate left and right parts of the wave:

DφnR = ∇φnR ; DφnR = ∇φnR (6.64)

DφnL = ∇φnL +i

2(g1B − g2W

3)φnL + ig22(−W 1 + iW 2)φeL (6.65)

DφeR = ∇φeR − ig1BφeR ; DφeR = ∇φeR + ig1BφeR (6.66)

DφeL = ∇φeL +i

2(g1B + g2W

3)φeL − ig22(W 1 + iW 2)φnL. (6.67)

which is equivalent to42

Dµξn = ∂µξn (6.68)

Dµηn = ∂µηn + ig12Bµηn − i

g22[(W 1

µ − iW 2µ)ηe +W 3

µηn] (6.69)

Dµξe = ∂µξe + ig1Bµξe (6.70)

Dµηe = ∂µηe + ig12Bµηe − i

g22[(W 1

µ + iW 2µ)ηn −W 3

µηe]. (6.71)

(6.69) and (6.71) give for the “lepton doublet” ψL =

(ηnηe

)with weak isospin

Y = −1 :

DµψL = ∂µψL − ig1Y

2BµψL − i

g22W j

µτjψL

τ1 = γ0 ; τ2 = γ123 ; τ3 = γ5 (6.72)

With (6.68) we see that the right part of the wave of the neutrino does notinteract. (6.70) is interpreted as a SU(2) singlet ψR = ξ with weak isospinY = −2 :

DµψR = ∂µψR − ig1Y

2BµψR (6.73)

Finally we see here that all features of weak interactions, with a doublet ofleft waves, a singlet of right wave, a non-interacting right neutrino, a chargeconjugation exchanging right and left waves are obtained here from simple hy-pothesis :

1 - The wave of all components of the lepton sector, electron, positron,electronic neutrino and anti-neutrino, is the function (6.8) of space-time withvalue into the Clifford algebra of the space-time.

2 - Four operators P0, P1, P2, P3 are defined by (6.13) to (6.16).3 - A covariant derivative is defined by (6.22).It is now easy to use the system (6.55) to (6.58) to get all other features of

the Weinberg-Salam model. It considers the “charged currents” W+ and W−

defined by

W+µ = W 1

µ + iW 2µ ; W−

µ = −W 1µ + iW 2

µ

W+ = W 1 + iW 2 ; W− = −W 1 + iW 2 (6.74)

42Since φeR =√2(ξe 0) we must use the second equality (6.66) to get (6.70).

74

(6.74)

where i = σ123 is the generator of the chiral gauge43, not the i3 of the electric gauge. We will use (6.61) and similarly

where i = σ123 is the generator of the chiral gauge43, not the i3 of the electricgauge. We will use (6.61) and similarly

φpR = φp1− σ3

2; φpRσ3 = −φpR (6.75)

φpL = φp1 + σ3

2; φpLσ3 = φpL (6.76)

φpL − φpR = φpLσ3 + φpRσ3 = (φpL + φpR)σ3 = φpσ3. (6.77)

Then (6.55) to (6.58) reads

Dφa = ∇φa +i

2(g1B − g2W

3)φaR + ig22W−φpR (6.78)

Dφp = ∇φp + ig1B(φpR − φpL) +i

2(−g1B + g2W

3)φpR − ig22W+φaR (6.79)

Dφn = ∇φn +i

2(g1B − g2W

3)φnL +i

2g2W

−φeL (6.80)

Dφe = ∇φe + ig1B(φeL − φeR) +i

2(−g1B + g2W

3)φeL − i

2g2W

+φnL. (6.81)

The Weinberg-Salam model uses the electromagnetic potential A, a θW angleand a Z0 term satisfying44

g1 =q

cos(θW ); g2 =

q

sin(θW ); q =

e

c(6.82)

−g1B + g2W3 =

√g21 + g22Z

0 =2q

sin(2θW )Z0 (6.83)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A+ cos(θW )Z0 (6.84)

B + iW 3 = eiθW (A+ iZ0) ; A+ iZ0 = e−iθW (B + iW 3). (6.85)

Using (6.77) this gives for the system (6.78) to (6.81)

Dφa =∇φa −iq

sin(2θW )Z0φaR + i

g22W−φpR (6.86)

Dφp =∇φp − qAφpσ12

+ q tan(θW )Z0φpσ12 + iq

sin(2θW )Z0φpR − i

g22W+φaR (6.87)

Dφe =∇φe + qAφeσ12

− q tan(θW )Z0φeσ12 + iq

sin(2θW )Z0φeL − i

g22W+φnL (6.88)

Dφn =∇φn − iq

sin(2θW )Z0φnL + i

g22W−φeL. (6.89)

43This is another sufficient reason to abandon the formalism of Dirac matrices, which usesa unique i. It is therefore unable to discriminate the different gauges at work.

44(6.85) indicates that Z0 is similar to Cabibbo-Ferrari’s B of (4.36).

75

(6.75)

where i = σ123 is the generator of the chiral gauge43, not the i3 of the electricgauge. We will use (6.61) and similarly

φpR = φp1− σ3

2; φpRσ3 = −φpR (6.75)

φpL = φp1 + σ3

2; φpLσ3 = φpL (6.76)

φpL − φpR = φpLσ3 + φpRσ3 = (φpL + φpR)σ3 = φpσ3. (6.77)

Then (6.55) to (6.58) reads

Dφa = ∇φa +i

2(g1B − g2W

3)φaR + ig22W−φpR (6.78)

Dφp = ∇φp + ig1B(φpR − φpL) +i

2(−g1B + g2W

3)φpR − ig22W+φaR (6.79)

Dφn = ∇φn +i

2(g1B − g2W

3)φnL +i

2g2W

−φeL (6.80)

Dφe = ∇φe + ig1B(φeL − φeR) +i

2(−g1B + g2W

3)φeL − i

2g2W

+φnL. (6.81)

The Weinberg-Salam model uses the electromagnetic potential A, a θW angleand a Z0 term satisfying44

g1 =q

cos(θW ); g2 =

q

sin(θW ); q =

e

c(6.82)

−g1B + g2W3 =

√g21 + g22Z

0 =2q

sin(2θW )Z0 (6.83)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A+ cos(θW )Z0 (6.84)

B + iW 3 = eiθW (A+ iZ0) ; A+ iZ0 = e−iθW (B + iW 3). (6.85)

Using (6.77) this gives for the system (6.78) to (6.81)

Dφa =∇φa −iq

sin(2θW )Z0φaR + i

g22W−φpR (6.86)

Dφp =∇φp − qAφpσ12

+ q tan(θW )Z0φpσ12 + iq

sin(2θW )Z0φpR − i

g22W+φaR (6.87)

Dφe =∇φe + qAφeσ12

− q tan(θW )Z0φeσ12 + iq

sin(2θW )Z0φeL − i

g22W+φnL (6.88)

Dφn =∇φn − iq

sin(2θW )Z0φnL + i

g22W−φeL. (6.89)

43This is another sufficient reason to abandon the formalism of Dirac matrices, which usesa unique i. It is therefore unable to discriminate the different gauges at work.

44(6.85) indicates that Z0 is similar to Cabibbo-Ferrari’s B of (4.36).

75

(6.76)

where i = σ123 is the generator of the chiral gauge43, not the i3 of the electricgauge. We will use (6.61) and similarly

φpR = φp1− σ3

2; φpRσ3 = −φpR (6.75)

φpL = φp1 + σ3

2; φpLσ3 = φpL (6.76)

φpL − φpR = φpLσ3 + φpRσ3 = (φpL + φpR)σ3 = φpσ3. (6.77)

Then (6.55) to (6.58) reads

Dφa = ∇φa +i

2(g1B − g2W

3)φaR + ig22W−φpR (6.78)

Dφp = ∇φp + ig1B(φpR − φpL) +i

2(−g1B + g2W

3)φpR − ig22W+φaR (6.79)

Dφn = ∇φn +i

2(g1B − g2W

3)φnL +i

2g2W

−φeL (6.80)

Dφe = ∇φe + ig1B(φeL − φeR) +i

2(−g1B + g2W

3)φeL − i

2g2W

+φnL. (6.81)

The Weinberg-Salam model uses the electromagnetic potential A, a θW angleand a Z0 term satisfying44

g1 =q

cos(θW ); g2 =

q

sin(θW ); q =

e

c(6.82)

−g1B + g2W3 =

√g21 + g22Z

0 =2q

sin(2θW )Z0 (6.83)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A+ cos(θW )Z0 (6.84)

B + iW 3 = eiθW (A+ iZ0) ; A+ iZ0 = e−iθW (B + iW 3). (6.85)

Using (6.77) this gives for the system (6.78) to (6.81)

Dφa =∇φa −iq

sin(2θW )Z0φaR + i

g22W−φpR (6.86)

Dφp =∇φp − qAφpσ12

+ q tan(θW )Z0φpσ12 + iq

sin(2θW )Z0φpR − i

g22W+φaR (6.87)

Dφe =∇φe + qAφeσ12

− q tan(θW )Z0φeσ12 + iq

sin(2θW )Z0φeL − i

g22W+φnL (6.88)

Dφn =∇φn − iq

sin(2θW )Z0φnL + i

g22W−φeL. (6.89)

43This is another sufficient reason to abandon the formalism of Dirac matrices, which usesa unique i. It is therefore unable to discriminate the different gauges at work.

44(6.85) indicates that Z0 is similar to Cabibbo-Ferrari’s B of (4.36).

75

where i = σ123 is the generator of the chiral gauge43, not the i3 of the electricgauge. We will use (6.61) and similarly

φpR = φp1− σ3

2; φpRσ3 = −φpR (6.75)

φpL = φp1 + σ3

2; φpLσ3 = φpL (6.76)

φpL − φpR = φpLσ3 + φpRσ3 = (φpL + φpR)σ3 = φpσ3. (6.77)

Then (6.55) to (6.58) reads

Dφa = ∇φa +i

2(g1B − g2W

3)φaR + ig22W−φpR (6.78)

Dφp = ∇φp + ig1B(φpR − φpL) +i

2(−g1B + g2W

3)φpR − ig22W+φaR (6.79)

Dφn = ∇φn +i

2(g1B − g2W

3)φnL +i

2g2W

−φeL (6.80)

Dφe = ∇φe + ig1B(φeL − φeR) +i

2(−g1B + g2W

3)φeL − i

2g2W

+φnL. (6.81)

The Weinberg-Salam model uses the electromagnetic potential A, a θW angleand a Z0 term satisfying44

g1 =q

cos(θW ); g2 =

q

sin(θW ); q =

e

c(6.82)

−g1B + g2W3 =

√g21 + g22Z

0 =2q

sin(2θW )Z0 (6.83)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A+ cos(θW )Z0 (6.84)

B + iW 3 = eiθW (A+ iZ0) ; A+ iZ0 = e−iθW (B + iW 3). (6.85)

Using (6.77) this gives for the system (6.78) to (6.81)

Dφa =∇φa −iq

sin(2θW )Z0φaR + i

g22W−φpR (6.86)

Dφp =∇φp − qAφpσ12

+ q tan(θW )Z0φpσ12 + iq

sin(2θW )Z0φpR − i

g22W+φaR (6.87)

Dφe =∇φe + qAφeσ12

− q tan(θW )Z0φeσ12 + iq

sin(2θW )Z0φeL − i

g22W+φnL (6.88)

Dφn =∇φn − iq

sin(2θW )Z0φnL + i

g22W−φeL. (6.89)

43This is another sufficient reason to abandon the formalism of Dirac matrices, which usesa unique i. It is therefore unable to discriminate the different gauges at work.

44(6.85) indicates that Z0 is similar to Cabibbo-Ferrari’s B of (4.36).

75

(6.77)

Then (6.55) to (6.58) reads

where i = σ123 is the generator of the chiral gauge43, not the i3 of the electricgauge. We will use (6.61) and similarly

φpR = φp1− σ3

2; φpRσ3 = −φpR (6.75)

φpL = φp1 + σ3

2; φpLσ3 = φpL (6.76)

φpL − φpR = φpLσ3 + φpRσ3 = (φpL + φpR)σ3 = φpσ3. (6.77)

Then (6.55) to (6.58) reads

Dφa = ∇φa +i

2(g1B − g2W

3)φaR + ig22W−φpR (6.78)

Dφp = ∇φp + ig1B(φpR − φpL) +i

2(−g1B + g2W

3)φpR − ig22W+φaR (6.79)

Dφn = ∇φn +i

2(g1B − g2W

3)φnL +i

2g2W

−φeL (6.80)

Dφe = ∇φe + ig1B(φeL − φeR) +i

2(−g1B + g2W

3)φeL − i

2g2W

+φnL. (6.81)

The Weinberg-Salam model uses the electromagnetic potential A, a θW angleand a Z0 term satisfying44

g1 =q

cos(θW ); g2 =

q

sin(θW ); q =

e

c(6.82)

−g1B + g2W3 =

√g21 + g22Z

0 =2q

sin(2θW )Z0 (6.83)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A+ cos(θW )Z0 (6.84)

B + iW 3 = eiθW (A+ iZ0) ; A+ iZ0 = e−iθW (B + iW 3). (6.85)

Using (6.77) this gives for the system (6.78) to (6.81)

Dφa =∇φa −iq

sin(2θW )Z0φaR + i

g22W−φpR (6.86)

Dφp =∇φp − qAφpσ12

+ q tan(θW )Z0φpσ12 + iq

sin(2θW )Z0φpR − i

g22W+φaR (6.87)

Dφe =∇φe + qAφeσ12

− q tan(θW )Z0φeσ12 + iq

sin(2θW )Z0φeL − i

g22W+φnL (6.88)

Dφn =∇φn − iq

sin(2θW )Z0φnL + i

g22W−φeL. (6.89)

43This is another sufficient reason to abandon the formalism of Dirac matrices, which usesa unique i. It is therefore unable to discriminate the different gauges at work.

44(6.85) indicates that Z0 is similar to Cabibbo-Ferrari’s B of (4.36).

75

(6.78)

where i = σ123 is the generator of the chiral gauge43, not the i3 of the electricgauge. We will use (6.61) and similarly

φpR = φp1− σ3

2; φpRσ3 = −φpR (6.75)

φpL = φp1 + σ3

2; φpLσ3 = φpL (6.76)

φpL − φpR = φpLσ3 + φpRσ3 = (φpL + φpR)σ3 = φpσ3. (6.77)

Then (6.55) to (6.58) reads

Dφa = ∇φa +i

2(g1B − g2W

3)φaR + ig22W−φpR (6.78)

Dφp = ∇φp + ig1B(φpR − φpL) +i

2(−g1B + g2W

3)φpR − ig22W+φaR (6.79)

Dφn = ∇φn +i

2(g1B − g2W

3)φnL +i

2g2W

−φeL (6.80)

Dφe = ∇φe + ig1B(φeL − φeR) +i

2(−g1B + g2W

3)φeL − i

2g2W

+φnL. (6.81)

The Weinberg-Salam model uses the electromagnetic potential A, a θW angleand a Z0 term satisfying44

g1 =q

cos(θW ); g2 =

q

sin(θW ); q =

e

c(6.82)

−g1B + g2W3 =

√g21 + g22Z

0 =2q

sin(2θW )Z0 (6.83)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A+ cos(θW )Z0 (6.84)

B + iW 3 = eiθW (A+ iZ0) ; A+ iZ0 = e−iθW (B + iW 3). (6.85)

Using (6.77) this gives for the system (6.78) to (6.81)

Dφa =∇φa −iq

sin(2θW )Z0φaR + i

g22W−φpR (6.86)

Dφp =∇φp − qAφpσ12

+ q tan(θW )Z0φpσ12 + iq

sin(2θW )Z0φpR − i

g22W+φaR (6.87)

Dφe =∇φe + qAφeσ12

− q tan(θW )Z0φeσ12 + iq

sin(2θW )Z0φeL − i

g22W+φnL (6.88)

Dφn =∇φn − iq

sin(2θW )Z0φnL + i

g22W−φeL. (6.89)

43This is another sufficient reason to abandon the formalism of Dirac matrices, which usesa unique i. It is therefore unable to discriminate the different gauges at work.

44(6.85) indicates that Z0 is similar to Cabibbo-Ferrari’s B of (4.36).

75

where i = σ123 is the generator of the chiral gauge43, not the i3 of the electricgauge. We will use (6.61) and similarly

φpR = φp1− σ3

2; φpRσ3 = −φpR (6.75)

φpL = φp1 + σ3

2; φpLσ3 = φpL (6.76)

φpL − φpR = φpLσ3 + φpRσ3 = (φpL + φpR)σ3 = φpσ3. (6.77)

Then (6.55) to (6.58) reads

Dφa = ∇φa +i

2(g1B − g2W

3)φaR + ig22W−φpR (6.78)

Dφp = ∇φp + ig1B(φpR − φpL) +i

2(−g1B + g2W

3)φpR − ig22W+φaR (6.79)

Dφn = ∇φn +i

2(g1B − g2W

3)φnL +i

2g2W

−φeL (6.80)

Dφe = ∇φe + ig1B(φeL − φeR) +i

2(−g1B + g2W

3)φeL − i

2g2W

+φnL. (6.81)

The Weinberg-Salam model uses the electromagnetic potential A, a θW angleand a Z0 term satisfying44

g1 =q

cos(θW ); g2 =

q

sin(θW ); q =

e

c(6.82)

−g1B + g2W3 =

√g21 + g22Z

0 =2q

sin(2θW )Z0 (6.83)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A+ cos(θW )Z0 (6.84)

B + iW 3 = eiθW (A+ iZ0) ; A+ iZ0 = e−iθW (B + iW 3). (6.85)

Using (6.77) this gives for the system (6.78) to (6.81)

Dφa =∇φa −iq

sin(2θW )Z0φaR + i

g22W−φpR (6.86)

Dφp =∇φp − qAφpσ12

+ q tan(θW )Z0φpσ12 + iq

sin(2θW )Z0φpR − i

g22W+φaR (6.87)

Dφe =∇φe + qAφeσ12

− q tan(θW )Z0φeσ12 + iq

sin(2θW )Z0φeL − i

g22W+φnL (6.88)

Dφn =∇φn − iq

sin(2θW )Z0φnL + i

g22W−φeL. (6.89)

43This is another sufficient reason to abandon the formalism of Dirac matrices, which usesa unique i. It is therefore unable to discriminate the different gauges at work.

44(6.85) indicates that Z0 is similar to Cabibbo-Ferrari’s B of (4.36).

75

; (6.79)

where i = σ123 is the generator of the chiral gauge43, not the i3 of the electricgauge. We will use (6.61) and similarly

φpR = φp1− σ3

2; φpRσ3 = −φpR (6.75)

φpL = φp1 + σ3

2; φpLσ3 = φpL (6.76)

φpL − φpR = φpLσ3 + φpRσ3 = (φpL + φpR)σ3 = φpσ3. (6.77)

Then (6.55) to (6.58) reads

Dφa = ∇φa +i

2(g1B − g2W

3)φaR + ig22W−φpR (6.78)

Dφp = ∇φp + ig1B(φpR − φpL) +i

2(−g1B + g2W

3)φpR − ig22W+φaR (6.79)

Dφn = ∇φn +i

2(g1B − g2W

3)φnL +i

2g2W

−φeL (6.80)

Dφe = ∇φe + ig1B(φeL − φeR) +i

2(−g1B + g2W

3)φeL − i

2g2W

+φnL. (6.81)

The Weinberg-Salam model uses the electromagnetic potential A, a θW angleand a Z0 term satisfying44

g1 =q

cos(θW ); g2 =

q

sin(θW ); q =

e

c(6.82)

−g1B + g2W3 =

√g21 + g22Z

0 =2q

sin(2θW )Z0 (6.83)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A+ cos(θW )Z0 (6.84)

B + iW 3 = eiθW (A+ iZ0) ; A+ iZ0 = e−iθW (B + iW 3). (6.85)

Using (6.77) this gives for the system (6.78) to (6.81)

Dφa =∇φa −iq

sin(2θW )Z0φaR + i

g22W−φpR (6.86)

Dφp =∇φp − qAφpσ12

+ q tan(θW )Z0φpσ12 + iq

sin(2θW )Z0φpR − i

g22W+φaR (6.87)

Dφe =∇φe + qAφeσ12

− q tan(θW )Z0φeσ12 + iq

sin(2θW )Z0φeL − i

g22W+φnL (6.88)

Dφn =∇φn − iq

sin(2θW )Z0φnL + i

g22W−φeL. (6.89)

43This is another sufficient reason to abandon the formalism of Dirac matrices, which usesa unique i. It is therefore unable to discriminate the different gauges at work.

44(6.85) indicates that Z0 is similar to Cabibbo-Ferrari’s B of (4.36).

75

; (6.80)

43 This is another sufficient reason to abandon the formalism of Dirac matrices, which uses a unique i. It is therefore unable to discriminate the different gauges at work.

where i = σ123 is the generator of the chiral gauge43, not the i3 of the electricgauge. We will use (6.61) and similarly

φpR = φp1− σ3

2; φpRσ3 = −φpR (6.75)

φpL = φp1 + σ3

2; φpLσ3 = φpL (6.76)

φpL − φpR = φpLσ3 + φpRσ3 = (φpL + φpR)σ3 = φpσ3. (6.77)

Then (6.55) to (6.58) reads

Dφa = ∇φa +i

2(g1B − g2W

3)φaR + ig22W−φpR (6.78)

Dφp = ∇φp + ig1B(φpR − φpL) +i

2(−g1B + g2W

3)φpR − ig22W+φaR (6.79)

Dφn = ∇φn +i

2(g1B − g2W

3)φnL +i

2g2W

−φeL (6.80)

Dφe = ∇φe + ig1B(φeL − φeR) +i

2(−g1B + g2W

3)φeL − i

2g2W

+φnL. (6.81)

The Weinberg-Salam model uses the electromagnetic potential A, a θW angleand a Z0 term satisfying44

g1 =q

cos(θW ); g2 =

q

sin(θW ); q =

e

c(6.82)

−g1B + g2W3 =

√g21 + g22Z

0 =2q

sin(2θW )Z0 (6.83)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A+ cos(θW )Z0 (6.84)

B + iW 3 = eiθW (A+ iZ0) ; A+ iZ0 = e−iθW (B + iW 3). (6.85)

Using (6.77) this gives for the system (6.78) to (6.81)

Dφa =∇φa −iq

sin(2θW )Z0φaR + i

g22W−φpR (6.86)

Dφp =∇φp − qAφpσ12

+ q tan(θW )Z0φpσ12 + iq

sin(2θW )Z0φpR − i

g22W+φaR (6.87)

Dφe =∇φe + qAφeσ12

− q tan(θW )Z0φeσ12 + iq

sin(2θW )Z0φeL − i

g22W+φnL (6.88)

Dφn =∇φn − iq

sin(2θW )Z0φnL + i

g22W−φeL. (6.89)

43This is another sufficient reason to abandon the formalism of Dirac matrices, which usesa unique i. It is therefore unable to discriminate the different gauges at work.

44(6.85) indicates that Z0 is similar to Cabibbo-Ferrari’s B of (4.36).

75

where i = σ123 is the generator of the chiral gauge43, not the i3 of the electricgauge. We will use (6.61) and similarly

φpR = φp1− σ3

2; φpRσ3 = −φpR (6.75)

φpL = φp1 + σ3

2; φpLσ3 = φpL (6.76)

φpL − φpR = φpLσ3 + φpRσ3 = (φpL + φpR)σ3 = φpσ3. (6.77)

Then (6.55) to (6.58) reads

Dφa = ∇φa +i

2(g1B − g2W

3)φaR + ig22W−φpR (6.78)

Dφp = ∇φp + ig1B(φpR − φpL) +i

2(−g1B + g2W

3)φpR − ig22W+φaR (6.79)

Dφn = ∇φn +i

2(g1B − g2W

3)φnL +i

2g2W

−φeL (6.80)

Dφe = ∇φe + ig1B(φeL − φeR) +i

2(−g1B + g2W

3)φeL − i

2g2W

+φnL. (6.81)

The Weinberg-Salam model uses the electromagnetic potential A, a θW angleand a Z0 term satisfying44

g1 =q

cos(θW ); g2 =

q

sin(θW ); q =

e

c(6.82)

−g1B + g2W3 =

√g21 + g22Z

0 =2q

sin(2θW )Z0 (6.83)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A+ cos(θW )Z0 (6.84)

B + iW 3 = eiθW (A+ iZ0) ; A+ iZ0 = e−iθW (B + iW 3). (6.85)

Using (6.77) this gives for the system (6.78) to (6.81)

Dφa =∇φa −iq

sin(2θW )Z0φaR + i

g22W−φpR (6.86)

Dφp =∇φp − qAφpσ12

+ q tan(θW )Z0φpσ12 + iq

sin(2θW )Z0φpR − i

g22W+φaR (6.87)

Dφe =∇φe + qAφeσ12

− q tan(θW )Z0φeσ12 + iq

sin(2θW )Z0φeL − i

g22W+φnL (6.88)

Dφn =∇φn − iq

sin(2θW )Z0φnL + i

g22W−φeL. (6.89)

43This is another sufficient reason to abandon the formalism of Dirac matrices, which usesa unique i. It is therefore unable to discriminate the different gauges at work.

44(6.85) indicates that Z0 is similar to Cabibbo-Ferrari’s B of (4.36).

75

(6.81)

The Weinberg-Salam model uses the electromagnetic potential A, a θW angle and a Z 0 term satisfying44

where i = σ123 is the generator of the chiral gauge43, not the i3 of the electricgauge. We will use (6.61) and similarly

φpR = φp1− σ3

2; φpRσ3 = −φpR (6.75)

φpL = φp1 + σ3

2; φpLσ3 = φpL (6.76)

φpL − φpR = φpLσ3 + φpRσ3 = (φpL + φpR)σ3 = φpσ3. (6.77)

Then (6.55) to (6.58) reads

Dφa = ∇φa +i

2(g1B − g2W

3)φaR + ig22W−φpR (6.78)

Dφp = ∇φp + ig1B(φpR − φpL) +i

2(−g1B + g2W

3)φpR − ig22W+φaR (6.79)

Dφn = ∇φn +i

2(g1B − g2W

3)φnL +i

2g2W

−φeL (6.80)

Dφe = ∇φe + ig1B(φeL − φeR) +i

2(−g1B + g2W

3)φeL − i

2g2W

+φnL. (6.81)

The Weinberg-Salam model uses the electromagnetic potential A, a θW angleand a Z0 term satisfying44

g1 =q

cos(θW ); g2 =

q

sin(θW ); q =

e

c(6.82)

−g1B + g2W3 =

√g21 + g22Z

0 =2q

sin(2θW )Z0 (6.83)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A+ cos(θW )Z0 (6.84)

B + iW 3 = eiθW (A+ iZ0) ; A+ iZ0 = e−iθW (B + iW 3). (6.85)

Using (6.77) this gives for the system (6.78) to (6.81)

Dφa =∇φa −iq

sin(2θW )Z0φaR + i

g22W−φpR (6.86)

Dφp =∇φp − qAφpσ12

+ q tan(θW )Z0φpσ12 + iq

sin(2θW )Z0φpR − i

g22W+φaR (6.87)

Dφe =∇φe + qAφeσ12

− q tan(θW )Z0φeσ12 + iq

sin(2θW )Z0φeL − i

g22W+φnL (6.88)

Dφn =∇φn − iq

sin(2θW )Z0φnL + i

g22W−φeL. (6.89)

43This is another sufficient reason to abandon the formalism of Dirac matrices, which usesa unique i. It is therefore unable to discriminate the different gauges at work.

44(6.85) indicates that Z0 is similar to Cabibbo-Ferrari’s B of (4.36).

75

(6.82)

where i = σ123 is the generator of the chiral gauge43, not the i3 of the electricgauge. We will use (6.61) and similarly

φpR = φp1− σ3

2; φpRσ3 = −φpR (6.75)

φpL = φp1 + σ3

2; φpLσ3 = φpL (6.76)

φpL − φpR = φpLσ3 + φpRσ3 = (φpL + φpR)σ3 = φpσ3. (6.77)

Then (6.55) to (6.58) reads

Dφa = ∇φa +i

2(g1B − g2W

3)φaR + ig22W−φpR (6.78)

Dφp = ∇φp + ig1B(φpR − φpL) +i

2(−g1B + g2W

3)φpR − ig22W+φaR (6.79)

Dφn = ∇φn +i

2(g1B − g2W

3)φnL +i

2g2W

−φeL (6.80)

Dφe = ∇φe + ig1B(φeL − φeR) +i

2(−g1B + g2W

3)φeL − i

2g2W

+φnL. (6.81)

The Weinberg-Salam model uses the electromagnetic potential A, a θW angleand a Z0 term satisfying44

g1 =q

cos(θW ); g2 =

q

sin(θW ); q =

e

c(6.82)

−g1B + g2W3 =

√g21 + g22Z

0 =2q

sin(2θW )Z0 (6.83)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A+ cos(θW )Z0 (6.84)

B + iW 3 = eiθW (A+ iZ0) ; A+ iZ0 = e−iθW (B + iW 3). (6.85)

Using (6.77) this gives for the system (6.78) to (6.81)

Dφa =∇φa −iq

sin(2θW )Z0φaR + i

g22W−φpR (6.86)

Dφp =∇φp − qAφpσ12

+ q tan(θW )Z0φpσ12 + iq

sin(2θW )Z0φpR − i

g22W+φaR (6.87)

Dφe =∇φe + qAφeσ12

− q tan(θW )Z0φeσ12 + iq

sin(2θW )Z0φeL − i

g22W+φnL (6.88)

Dφn =∇φn − iq

sin(2θW )Z0φnL + i

g22W−φeL. (6.89)

43This is another sufficient reason to abandon the formalism of Dirac matrices, which usesa unique i. It is therefore unable to discriminate the different gauges at work.

44(6.85) indicates that Z0 is similar to Cabibbo-Ferrari’s B of (4.36).

75

(6.83)

where i = σ123 is the generator of the chiral gauge43, not the i3 of the electricgauge. We will use (6.61) and similarly

φpR = φp1− σ3

2; φpRσ3 = −φpR (6.75)

φpL = φp1 + σ3

2; φpLσ3 = φpL (6.76)

φpL − φpR = φpLσ3 + φpRσ3 = (φpL + φpR)σ3 = φpσ3. (6.77)

Then (6.55) to (6.58) reads

Dφa = ∇φa +i

2(g1B − g2W

3)φaR + ig22W−φpR (6.78)

Dφp = ∇φp + ig1B(φpR − φpL) +i

2(−g1B + g2W

3)φpR − ig22W+φaR (6.79)

Dφn = ∇φn +i

2(g1B − g2W

3)φnL +i

2g2W

−φeL (6.80)

Dφe = ∇φe + ig1B(φeL − φeR) +i

2(−g1B + g2W

3)φeL − i

2g2W

+φnL. (6.81)

The Weinberg-Salam model uses the electromagnetic potential A, a θW angleand a Z0 term satisfying44

g1 =q

cos(θW ); g2 =

q

sin(θW ); q =

e

c(6.82)

−g1B + g2W3 =

√g21 + g22Z

0 =2q

sin(2θW )Z0 (6.83)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A+ cos(θW )Z0 (6.84)

B + iW 3 = eiθW (A+ iZ0) ; A+ iZ0 = e−iθW (B + iW 3). (6.85)

Using (6.77) this gives for the system (6.78) to (6.81)

Dφa =∇φa −iq

sin(2θW )Z0φaR + i

g22W−φpR (6.86)

Dφp =∇φp − qAφpσ12

+ q tan(θW )Z0φpσ12 + iq

sin(2θW )Z0φpR − i

g22W+φaR (6.87)

Dφe =∇φe + qAφeσ12

− q tan(θW )Z0φeσ12 + iq

sin(2θW )Z0φeL − i

g22W+φnL (6.88)

Dφn =∇φn − iq

sin(2θW )Z0φnL + i

g22W−φeL. (6.89)

43This is another sufficient reason to abandon the formalism of Dirac matrices, which usesa unique i. It is therefore unable to discriminate the different gauges at work.

44(6.85) indicates that Z0 is similar to Cabibbo-Ferrari’s B of (4.36).

75

where i = σ123 is the generator of the chiral gauge43, not the i3 of the electricgauge. We will use (6.61) and similarly

φpR = φp1− σ3

2; φpRσ3 = −φpR (6.75)

φpL = φp1 + σ3

2; φpLσ3 = φpL (6.76)

φpL − φpR = φpLσ3 + φpRσ3 = (φpL + φpR)σ3 = φpσ3. (6.77)

Then (6.55) to (6.58) reads

Dφa = ∇φa +i

2(g1B − g2W

3)φaR + ig22W−φpR (6.78)

Dφp = ∇φp + ig1B(φpR − φpL) +i

2(−g1B + g2W

3)φpR − ig22W+φaR (6.79)

Dφn = ∇φn +i

2(g1B − g2W

3)φnL +i

2g2W

−φeL (6.80)

Dφe = ∇φe + ig1B(φeL − φeR) +i

2(−g1B + g2W

3)φeL − i

2g2W

+φnL. (6.81)

The Weinberg-Salam model uses the electromagnetic potential A, a θW angleand a Z0 term satisfying44

g1 =q

cos(θW ); g2 =

q

sin(θW ); q =

e

c(6.82)

−g1B + g2W3 =

√g21 + g22Z

0 =2q

sin(2θW )Z0 (6.83)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A+ cos(θW )Z0 (6.84)

B + iW 3 = eiθW (A+ iZ0) ; A+ iZ0 = e−iθW (B + iW 3). (6.85)

Using (6.77) this gives for the system (6.78) to (6.81)

Dφa =∇φa −iq

sin(2θW )Z0φaR + i

g22W−φpR (6.86)

Dφp =∇φp − qAφpσ12

+ q tan(θW )Z0φpσ12 + iq

sin(2θW )Z0φpR − i

g22W+φaR (6.87)

Dφe =∇φe + qAφeσ12

− q tan(θW )Z0φeσ12 + iq

sin(2θW )Z0φeL − i

g22W+φnL (6.88)

Dφn =∇φn − iq

sin(2θW )Z0φnL + i

g22W−φeL. (6.89)

43This is another sufficient reason to abandon the formalism of Dirac matrices, which usesa unique i. It is therefore unable to discriminate the different gauges at work.

44(6.85) indicates that Z0 is similar to Cabibbo-Ferrari’s B of (4.36).

75

(6.84)

where i = σ123 is the generator of the chiral gauge43, not the i3 of the electricgauge. We will use (6.61) and similarly

φpR = φp1− σ3

2; φpRσ3 = −φpR (6.75)

φpL = φp1 + σ3

2; φpLσ3 = φpL (6.76)

φpL − φpR = φpLσ3 + φpRσ3 = (φpL + φpR)σ3 = φpσ3. (6.77)

Then (6.55) to (6.58) reads

Dφa = ∇φa +i

2(g1B − g2W

3)φaR + ig22W−φpR (6.78)

Dφp = ∇φp + ig1B(φpR − φpL) +i

2(−g1B + g2W

3)φpR − ig22W+φaR (6.79)

Dφn = ∇φn +i

2(g1B − g2W

3)φnL +i

2g2W

−φeL (6.80)

Dφe = ∇φe + ig1B(φeL − φeR) +i

2(−g1B + g2W

3)φeL − i

2g2W

+φnL. (6.81)

The Weinberg-Salam model uses the electromagnetic potential A, a θW angleand a Z0 term satisfying44

g1 =q

cos(θW ); g2 =

q

sin(θW ); q =

e

c(6.82)

−g1B + g2W3 =

√g21 + g22Z

0 =2q

sin(2θW )Z0 (6.83)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A+ cos(θW )Z0 (6.84)

B + iW 3 = eiθW (A+ iZ0) ; A+ iZ0 = e−iθW (B + iW 3). (6.85)

Using (6.77) this gives for the system (6.78) to (6.81)

Dφa =∇φa −iq

sin(2θW )Z0φaR + i

g22W−φpR (6.86)

Dφp =∇φp − qAφpσ12

+ q tan(θW )Z0φpσ12 + iq

sin(2θW )Z0φpR − i

g22W+φaR (6.87)

Dφe =∇φe + qAφeσ12

− q tan(θW )Z0φeσ12 + iq

sin(2θW )Z0φeL − i

g22W+φnL (6.88)

Dφn =∇φn − iq

sin(2θW )Z0φnL + i

g22W−φeL. (6.89)

43This is another sufficient reason to abandon the formalism of Dirac matrices, which usesa unique i. It is therefore unable to discriminate the different gauges at work.

44(6.85) indicates that Z0 is similar to Cabibbo-Ferrari’s B of (4.36).

75

where i = σ123 is the generator of the chiral gauge43, not the i3 of the electricgauge. We will use (6.61) and similarly

φpR = φp1− σ3

2; φpRσ3 = −φpR (6.75)

φpL = φp1 + σ3

2; φpLσ3 = φpL (6.76)

φpL − φpR = φpLσ3 + φpRσ3 = (φpL + φpR)σ3 = φpσ3. (6.77)

Then (6.55) to (6.58) reads

Dφa = ∇φa +i

2(g1B − g2W

3)φaR + ig22W−φpR (6.78)

Dφp = ∇φp + ig1B(φpR − φpL) +i

2(−g1B + g2W

3)φpR − ig22W+φaR (6.79)

Dφn = ∇φn +i

2(g1B − g2W

3)φnL +i

2g2W

−φeL (6.80)

Dφe = ∇φe + ig1B(φeL − φeR) +i

2(−g1B + g2W

3)φeL − i

2g2W

+φnL. (6.81)

The Weinberg-Salam model uses the electromagnetic potential A, a θW angleand a Z0 term satisfying44

g1 =q

cos(θW ); g2 =

q

sin(θW ); q =

e

c(6.82)

−g1B + g2W3 =

√g21 + g22Z

0 =2q

sin(2θW )Z0 (6.83)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A+ cos(θW )Z0 (6.84)

B + iW 3 = eiθW (A+ iZ0) ; A+ iZ0 = e−iθW (B + iW 3). (6.85)

Using (6.77) this gives for the system (6.78) to (6.81)

Dφa =∇φa −iq

sin(2θW )Z0φaR + i

g22W−φpR (6.86)

Dφp =∇φp − qAφpσ12

+ q tan(θW )Z0φpσ12 + iq

sin(2θW )Z0φpR − i

g22W+φaR (6.87)

Dφe =∇φe + qAφeσ12

− q tan(θW )Z0φeσ12 + iq

sin(2θW )Z0φeL − i

g22W+φnL (6.88)

Dφn =∇φn − iq

sin(2θW )Z0φnL + i

g22W−φeL. (6.89)

43This is another sufficient reason to abandon the formalism of Dirac matrices, which usesa unique i. It is therefore unable to discriminate the different gauges at work.

44(6.85) indicates that Z0 is similar to Cabibbo-Ferrari’s B of (4.36).

75

(6.85)

Using (6.77) this gives for the system (6.78) to (6.81)

where i = σ123 is the generator of the chiral gauge43, not the i3 of the electricgauge. We will use (6.61) and similarly

φpR = φp1− σ3

2; φpRσ3 = −φpR (6.75)

φpL = φp1 + σ3

2; φpLσ3 = φpL (6.76)

φpL − φpR = φpLσ3 + φpRσ3 = (φpL + φpR)σ3 = φpσ3. (6.77)

Then (6.55) to (6.58) reads

Dφa = ∇φa +i

2(g1B − g2W

3)φaR + ig22W−φpR (6.78)

Dφp = ∇φp + ig1B(φpR − φpL) +i

2(−g1B + g2W

3)φpR − ig22W+φaR (6.79)

Dφn = ∇φn +i

2(g1B − g2W

3)φnL +i

2g2W

−φeL (6.80)

Dφe = ∇φe + ig1B(φeL − φeR) +i

2(−g1B + g2W

3)φeL − i

2g2W

+φnL. (6.81)

The Weinberg-Salam model uses the electromagnetic potential A, a θW angleand a Z0 term satisfying44

g1 =q

cos(θW ); g2 =

q

sin(θW ); q =

e

c(6.82)

−g1B + g2W3 =

√g21 + g22Z

0 =2q

sin(2θW )Z0 (6.83)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A+ cos(θW )Z0 (6.84)

B + iW 3 = eiθW (A+ iZ0) ; A+ iZ0 = e−iθW (B + iW 3). (6.85)

Using (6.77) this gives for the system (6.78) to (6.81)

Dφa =∇φa −iq

sin(2θW )Z0φaR + i

g22W−φpR (6.86)

Dφp =∇φp − qAφpσ12

+ q tan(θW )Z0φpσ12 + iq

sin(2θW )Z0φpR − i

g22W+φaR (6.87)

Dφe =∇φe + qAφeσ12

− q tan(θW )Z0φeσ12 + iq

sin(2θW )Z0φeL − i

g22W+φnL (6.88)

Dφn =∇φn − iq

sin(2θW )Z0φnL + i

g22W−φeL. (6.89)

43This is another sufficient reason to abandon the formalism of Dirac matrices, which usesa unique i. It is therefore unable to discriminate the different gauges at work.

44(6.85) indicates that Z0 is similar to Cabibbo-Ferrari’s B of (4.36).

75

; (6.86)

where i = σ123 is the generator of the chiral gauge43, not the i3 of the electricgauge. We will use (6.61) and similarly

φpR = φp1− σ3

2; φpRσ3 = −φpR (6.75)

φpL = φp1 + σ3

2; φpLσ3 = φpL (6.76)

φpL − φpR = φpLσ3 + φpRσ3 = (φpL + φpR)σ3 = φpσ3. (6.77)

Then (6.55) to (6.58) reads

Dφa = ∇φa +i

2(g1B − g2W

3)φaR + ig22W−φpR (6.78)

Dφp = ∇φp + ig1B(φpR − φpL) +i

2(−g1B + g2W

3)φpR − ig22W+φaR (6.79)

Dφn = ∇φn +i

2(g1B − g2W

3)φnL +i

2g2W

−φeL (6.80)

Dφe = ∇φe + ig1B(φeL − φeR) +i

2(−g1B + g2W

3)φeL − i

2g2W

+φnL. (6.81)

The Weinberg-Salam model uses the electromagnetic potential A, a θW angleand a Z0 term satisfying44

g1 =q

cos(θW ); g2 =

q

sin(θW ); q =

e

c(6.82)

−g1B + g2W3 =

√g21 + g22Z

0 =2q

sin(2θW )Z0 (6.83)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A+ cos(θW )Z0 (6.84)

B + iW 3 = eiθW (A+ iZ0) ; A+ iZ0 = e−iθW (B + iW 3). (6.85)

Using (6.77) this gives for the system (6.78) to (6.81)

Dφa =∇φa −iq

sin(2θW )Z0φaR + i

g22W−φpR (6.86)

Dφp =∇φp − qAφpσ12

+ q tan(θW )Z0φpσ12 + iq

sin(2θW )Z0φpR − i

g22W+φaR (6.87)

Dφe =∇φe + qAφeσ12

− q tan(θW )Z0φeσ12 + iq

sin(2θW )Z0φeL − i

g22W+φnL (6.88)

Dφn =∇φn − iq

sin(2θW )Z0φnL + i

g22W−φeL. (6.89)

43This is another sufficient reason to abandon the formalism of Dirac matrices, which usesa unique i. It is therefore unable to discriminate the different gauges at work.

44(6.85) indicates that Z0 is similar to Cabibbo-Ferrari’s B of (4.36).

75

where i = σ123 is the generator of the chiral gauge43, not the i3 of the electricgauge. We will use (6.61) and similarly

φpR = φp1− σ3

2; φpRσ3 = −φpR (6.75)

φpL = φp1 + σ3

2; φpLσ3 = φpL (6.76)

φpL − φpR = φpLσ3 + φpRσ3 = (φpL + φpR)σ3 = φpσ3. (6.77)

Then (6.55) to (6.58) reads

Dφa = ∇φa +i

2(g1B − g2W

3)φaR + ig22W−φpR (6.78)

Dφp = ∇φp + ig1B(φpR − φpL) +i

2(−g1B + g2W

3)φpR − ig22W+φaR (6.79)

Dφn = ∇φn +i

2(g1B − g2W

3)φnL +i

2g2W

−φeL (6.80)

Dφe = ∇φe + ig1B(φeL − φeR) +i

2(−g1B + g2W

3)φeL − i

2g2W

+φnL. (6.81)

The Weinberg-Salam model uses the electromagnetic potential A, a θW angleand a Z0 term satisfying44

g1 =q

cos(θW ); g2 =

q

sin(θW ); q =

e

c(6.82)

−g1B + g2W3 =

√g21 + g22Z

0 =2q

sin(2θW )Z0 (6.83)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A+ cos(θW )Z0 (6.84)

B + iW 3 = eiθW (A+ iZ0) ; A+ iZ0 = e−iθW (B + iW 3). (6.85)

Using (6.77) this gives for the system (6.78) to (6.81)

Dφa =∇φa −iq

sin(2θW )Z0φaR + i

g22W−φpR (6.86)

Dφp =∇φp − qAφpσ12

+ q tan(θW )Z0φpσ12 + iq

sin(2θW )Z0φpR − i

g22W+φaR (6.87)

Dφe =∇φe + qAφeσ12

− q tan(θW )Z0φeσ12 + iq

sin(2θW )Z0φeL − i

g22W+φnL (6.88)

Dφn =∇φn − iq

sin(2θW )Z0φnL + i

g22W−φeL. (6.89)

43This is another sufficient reason to abandon the formalism of Dirac matrices, which usesa unique i. It is therefore unable to discriminate the different gauges at work.

44(6.85) indicates that Z0 is similar to Cabibbo-Ferrari’s B of (4.36).

75

where i = σ123 is the generator of the chiral gauge43, not the i3 of the electricgauge. We will use (6.61) and similarly

φpR = φp1− σ3

2; φpRσ3 = −φpR (6.75)

φpL = φp1 + σ3

2; φpLσ3 = φpL (6.76)

φpL − φpR = φpLσ3 + φpRσ3 = (φpL + φpR)σ3 = φpσ3. (6.77)

Then (6.55) to (6.58) reads

Dφa = ∇φa +i

2(g1B − g2W

3)φaR + ig22W−φpR (6.78)

Dφp = ∇φp + ig1B(φpR − φpL) +i

2(−g1B + g2W

3)φpR − ig22W+φaR (6.79)

Dφn = ∇φn +i

2(g1B − g2W

3)φnL +i

2g2W

−φeL (6.80)

Dφe = ∇φe + ig1B(φeL − φeR) +i

2(−g1B + g2W

3)φeL − i

2g2W

+φnL. (6.81)

The Weinberg-Salam model uses the electromagnetic potential A, a θW angleand a Z0 term satisfying44

g1 =q

cos(θW ); g2 =

q

sin(θW ); q =

e

c(6.82)

−g1B + g2W3 =

√g21 + g22Z

0 =2q

sin(2θW )Z0 (6.83)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A+ cos(θW )Z0 (6.84)

B + iW 3 = eiθW (A+ iZ0) ; A+ iZ0 = e−iθW (B + iW 3). (6.85)

Using (6.77) this gives for the system (6.78) to (6.81)

Dφa =∇φa −iq

sin(2θW )Z0φaR + i

g22W−φpR (6.86)

Dφp =∇φp − qAφpσ12

+ q tan(θW )Z0φpσ12 + iq

sin(2θW )Z0φpR − i

g22W+φaR (6.87)

Dφe =∇φe + qAφeσ12

− q tan(θW )Z0φeσ12 + iq

sin(2θW )Z0φeL − i

g22W+φnL (6.88)

Dφn =∇φn − iq

sin(2θW )Z0φnL + i

g22W−φeL. (6.89)

43This is another sufficient reason to abandon the formalism of Dirac matrices, which usesa unique i. It is therefore unable to discriminate the different gauges at work.

44(6.85) indicates that Z0 is similar to Cabibbo-Ferrari’s B of (4.36).

75

; (6.87)

where i = σ123 is the generator of the chiral gauge43, not the i3 of the electricgauge. We will use (6.61) and similarly

φpR = φp1− σ3

2; φpRσ3 = −φpR (6.75)

φpL = φp1 + σ3

2; φpLσ3 = φpL (6.76)

φpL − φpR = φpLσ3 + φpRσ3 = (φpL + φpR)σ3 = φpσ3. (6.77)

Then (6.55) to (6.58) reads

Dφa = ∇φa +i

2(g1B − g2W

3)φaR + ig22W−φpR (6.78)

Dφp = ∇φp + ig1B(φpR − φpL) +i

2(−g1B + g2W

3)φpR − ig22W+φaR (6.79)

Dφn = ∇φn +i

2(g1B − g2W

3)φnL +i

2g2W

−φeL (6.80)

Dφe = ∇φe + ig1B(φeL − φeR) +i

2(−g1B + g2W

3)φeL − i

2g2W

+φnL. (6.81)

The Weinberg-Salam model uses the electromagnetic potential A, a θW angleand a Z0 term satisfying44

g1 =q

cos(θW ); g2 =

q

sin(θW ); q =

e

c(6.82)

−g1B + g2W3 =

√g21 + g22Z

0 =2q

sin(2θW )Z0 (6.83)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A+ cos(θW )Z0 (6.84)

B + iW 3 = eiθW (A+ iZ0) ; A+ iZ0 = e−iθW (B + iW 3). (6.85)

Using (6.77) this gives for the system (6.78) to (6.81)

Dφa =∇φa −iq

sin(2θW )Z0φaR + i

g22W−φpR (6.86)

Dφp =∇φp − qAφpσ12

+ q tan(θW )Z0φpσ12 + iq

sin(2θW )Z0φpR − i

g22W+φaR (6.87)

Dφe =∇φe + qAφeσ12

− q tan(θW )Z0φeσ12 + iq

sin(2θW )Z0φeL − i

g22W+φnL (6.88)

Dφn =∇φn − iq

sin(2θW )Z0φnL + i

g22W−φeL. (6.89)

43This is another sufficient reason to abandon the formalism of Dirac matrices, which usesa unique i. It is therefore unable to discriminate the different gauges at work.

44(6.85) indicates that Z0 is similar to Cabibbo-Ferrari’s B of (4.36).

75

where i = σ123 is the generator of the chiral gauge43, not the i3 of the electricgauge. We will use (6.61) and similarly

φpR = φp1− σ3

2; φpRσ3 = −φpR (6.75)

φpL = φp1 + σ3

2; φpLσ3 = φpL (6.76)

φpL − φpR = φpLσ3 + φpRσ3 = (φpL + φpR)σ3 = φpσ3. (6.77)

Then (6.55) to (6.58) reads

Dφa = ∇φa +i

2(g1B − g2W

3)φaR + ig22W−φpR (6.78)

Dφp = ∇φp + ig1B(φpR − φpL) +i

2(−g1B + g2W

3)φpR − ig22W+φaR (6.79)

Dφn = ∇φn +i

2(g1B − g2W

3)φnL +i

2g2W

−φeL (6.80)

Dφe = ∇φe + ig1B(φeL − φeR) +i

2(−g1B + g2W

3)φeL − i

2g2W

+φnL. (6.81)

The Weinberg-Salam model uses the electromagnetic potential A, a θW angleand a Z0 term satisfying44

g1 =q

cos(θW ); g2 =

q

sin(θW ); q =

e

c(6.82)

−g1B + g2W3 =

√g21 + g22Z

0 =2q

sin(2θW )Z0 (6.83)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A+ cos(θW )Z0 (6.84)

B + iW 3 = eiθW (A+ iZ0) ; A+ iZ0 = e−iθW (B + iW 3). (6.85)

Using (6.77) this gives for the system (6.78) to (6.81)

Dφa =∇φa −iq

sin(2θW )Z0φaR + i

g22W−φpR (6.86)

Dφp =∇φp − qAφpσ12

+ q tan(θW )Z0φpσ12 + iq

sin(2θW )Z0φpR − i

g22W+φaR (6.87)

Dφe =∇φe + qAφeσ12

− q tan(θW )Z0φeσ12 + iq

sin(2θW )Z0φeL − i

g22W+φnL (6.88)

Dφn =∇φn − iq

sin(2θW )Z0φnL + i

g22W−φeL. (6.89)

43This is another sufficient reason to abandon the formalism of Dirac matrices, which usesa unique i. It is therefore unable to discriminate the different gauges at work.

44(6.85) indicates that Z0 is similar to Cabibbo-Ferrari’s B of (4.36).

75

where i = σ123 is the generator of the chiral gauge43, not the i3 of the electricgauge. We will use (6.61) and similarly

φpR = φp1− σ3

2; φpRσ3 = −φpR (6.75)

φpL = φp1 + σ3

2; φpLσ3 = φpL (6.76)

φpL − φpR = φpLσ3 + φpRσ3 = (φpL + φpR)σ3 = φpσ3. (6.77)

Then (6.55) to (6.58) reads

Dφa = ∇φa +i

2(g1B − g2W

3)φaR + ig22W−φpR (6.78)

Dφp = ∇φp + ig1B(φpR − φpL) +i

2(−g1B + g2W

3)φpR − ig22W+φaR (6.79)

Dφn = ∇φn +i

2(g1B − g2W

3)φnL +i

2g2W

−φeL (6.80)

Dφe = ∇φe + ig1B(φeL − φeR) +i

2(−g1B + g2W

3)φeL − i

2g2W

+φnL. (6.81)

The Weinberg-Salam model uses the electromagnetic potential A, a θW angleand a Z0 term satisfying44

g1 =q

cos(θW ); g2 =

q

sin(θW ); q =

e

c(6.82)

−g1B + g2W3 =

√g21 + g22Z

0 =2q

sin(2θW )Z0 (6.83)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A+ cos(θW )Z0 (6.84)

B + iW 3 = eiθW (A+ iZ0) ; A+ iZ0 = e−iθW (B + iW 3). (6.85)

Using (6.77) this gives for the system (6.78) to (6.81)

Dφa =∇φa −iq

sin(2θW )Z0φaR + i

g22W−φpR (6.86)

Dφp =∇φp − qAφpσ12

+ q tan(θW )Z0φpσ12 + iq

sin(2θW )Z0φpR − i

g22W+φaR (6.87)

Dφe =∇φe + qAφeσ12

− q tan(θW )Z0φeσ12 + iq

sin(2θW )Z0φeL − i

g22W+φnL (6.88)

Dφn =∇φn − iq

sin(2θW )Z0φnL + i

g22W−φeL. (6.89)

43This is another sufficient reason to abandon the formalism of Dirac matrices, which usesa unique i. It is therefore unable to discriminate the different gauges at work.

44(6.85) indicates that Z0 is similar to Cabibbo-Ferrari’s B of (4.36).

75

; (6.88)

where i = σ123 is the generator of the chiral gauge43, not the i3 of the electricgauge. We will use (6.61) and similarly

φpR = φp1− σ3

2; φpRσ3 = −φpR (6.75)

φpL = φp1 + σ3

2; φpLσ3 = φpL (6.76)

φpL − φpR = φpLσ3 + φpRσ3 = (φpL + φpR)σ3 = φpσ3. (6.77)

Then (6.55) to (6.58) reads

Dφa = ∇φa +i

2(g1B − g2W

3)φaR + ig22W−φpR (6.78)

Dφp = ∇φp + ig1B(φpR − φpL) +i

2(−g1B + g2W

3)φpR − ig22W+φaR (6.79)

Dφn = ∇φn +i

2(g1B − g2W

3)φnL +i

2g2W

−φeL (6.80)

Dφe = ∇φe + ig1B(φeL − φeR) +i

2(−g1B + g2W

3)φeL − i

2g2W

+φnL. (6.81)

The Weinberg-Salam model uses the electromagnetic potential A, a θW angleand a Z0 term satisfying44

g1 =q

cos(θW ); g2 =

q

sin(θW ); q =

e

c(6.82)

−g1B + g2W3 =

√g21 + g22Z

0 =2q

sin(2θW )Z0 (6.83)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A+ cos(θW )Z0 (6.84)

B + iW 3 = eiθW (A+ iZ0) ; A+ iZ0 = e−iθW (B + iW 3). (6.85)

Using (6.77) this gives for the system (6.78) to (6.81)

Dφa =∇φa −iq

sin(2θW )Z0φaR + i

g22W−φpR (6.86)

Dφp =∇φp − qAφpσ12

+ q tan(θW )Z0φpσ12 + iq

sin(2θW )Z0φpR − i

g22W+φaR (6.87)

Dφe =∇φe + qAφeσ12

− q tan(θW )Z0φeσ12 + iq

sin(2θW )Z0φeL − i

g22W+φnL (6.88)

Dφn =∇φn − iq

sin(2θW )Z0φnL + i

g22W−φeL. (6.89)

43This is another sufficient reason to abandon the formalism of Dirac matrices, which usesa unique i. It is therefore unable to discriminate the different gauges at work.

44(6.85) indicates that Z0 is similar to Cabibbo-Ferrari’s B of (4.36).

75

(6.89)

Equation (6.88) contains first and second terms Equation (6.88) contains first and second terms ∇φ + qAφσ12 of the Diracequation, giving the electromagnetic interaction of the electron. Equation (6.87)

contains first and second terms −∇φ + qAφσ12 of the Dirac equation for apositron. There is no potential A term in (6.86) nor (6.89), since anti-neutrinoand neutrino have no electromagnetic interaction. As we have

φeσ12 = i(−φeR + φeL) (6.90)

we can read (6.89) and (6.88) as

DφnR = ∇φnR (6.91)

DφnL = ∇φnL − iq

sin(2θW )Z0φnL + i

q

2 sin(θW )W−φeL (6.92)

DφeR = ∇φeR + qAφeRσ12 + iq tan(θW )Z0φeR (6.93)

DφeL = ∇φeL + qAφeLσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φeL − i

q

2 sin(θW )W+φnL (6.94)

Terms containing W+ and W− which couple left electron to left neutrino gener-ate “charged currents”, terms containing Z0 generate “neutral currents”. TheZ0 boson is linked to φL, φnL and φR, not to φnR. Similarly we can read (6.86)and (6.87) as

DφaL = ∇φaL (6.95)

DφaR = ∇φaR − iq

sin(2θW )Z0φaR + i

q

2 sin(θW )W−φpR (6.96)

DφpL = ∇φpL − qAφpLσ12 + iq tan(θW )Z0φpL

(6.97)

DφpR = ∇φpR − qAφpRσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φpR − i

q

2 sin(θW )W+φaR. (6.98)

(6.95) signifies that the left anti-neutrino does not interact by electro-weakforces. The electric charge of the positron is opposite to the charge of theelectron. But the comparison with the same relation for the electron showsthat, contrarily to what is said about charge conjugation, thought as chang-ing the sign of any quantum number, only the exchange between left and rightwaves, plus the multiplication on the right by σ3 give a change of sign. Othercoefficients are conserved when passing from electron to positron or from neu-trino to anti-neutrino. Charge conjugation must be seen as a pure quantumtransformation acting only on the wave, as described in 3.5. 45 A similar resultwas obtained by G. Lochak [19] for the magnetic monopole: charge conjugationdoes not change the sign of magnetic charges, and there is no polarization of the

45More, if we try to build a charge conjugation changing other signs, we get instead of (6.17)relations which do not give a U(1)× SU(2) gauge invariance.

76

of the Dirac equation, giving the electro-magnetic interaction of the electron. Equation (6.87) con-tains first and second terms

Equation (6.88) contains first and second terms ∇φ + qAφσ12 of the Diracequation, giving the electromagnetic interaction of the electron. Equation (6.87)

contains first and second terms −∇φ + qAφσ12 of the Dirac equation for apositron. There is no potential A term in (6.86) nor (6.89), since anti-neutrinoand neutrino have no electromagnetic interaction. As we have

φeσ12 = i(−φeR + φeL) (6.90)

we can read (6.89) and (6.88) as

DφnR = ∇φnR (6.91)

DφnL = ∇φnL − iq

sin(2θW )Z0φnL + i

q

2 sin(θW )W−φeL (6.92)

DφeR = ∇φeR + qAφeRσ12 + iq tan(θW )Z0φeR (6.93)

DφeL = ∇φeL + qAφeLσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φeL − i

q

2 sin(θW )W+φnL (6.94)

Terms containing W+ and W− which couple left electron to left neutrino gener-ate “charged currents”, terms containing Z0 generate “neutral currents”. TheZ0 boson is linked to φL, φnL and φR, not to φnR. Similarly we can read (6.86)and (6.87) as

DφaL = ∇φaL (6.95)

DφaR = ∇φaR − iq

sin(2θW )Z0φaR + i

q

2 sin(θW )W−φpR (6.96)

DφpL = ∇φpL − qAφpLσ12 + iq tan(θW )Z0φpL

(6.97)

DφpR = ∇φpR − qAφpRσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φpR − i

q

2 sin(θW )W+φaR. (6.98)

(6.95) signifies that the left anti-neutrino does not interact by electro-weakforces. The electric charge of the positron is opposite to the charge of theelectron. But the comparison with the same relation for the electron showsthat, contrarily to what is said about charge conjugation, thought as chang-ing the sign of any quantum number, only the exchange between left and rightwaves, plus the multiplication on the right by σ3 give a change of sign. Othercoefficients are conserved when passing from electron to positron or from neu-trino to anti-neutrino. Charge conjugation must be seen as a pure quantumtransformation acting only on the wave, as described in 3.5. 45 A similar resultwas obtained by G. Lochak [19] for the magnetic monopole: charge conjugationdoes not change the sign of magnetic charges, and there is no polarization of the

45More, if we try to build a charge conjugation changing other signs, we get instead of (6.17)relations which do not give a U(1)× SU(2) gauge invariance.

76

of the Dirac equation for a positron. There is no potential A term in (6.86) nor (6.89), since anti-neutrino and neutrino have no electromagnetic interaction. As we have

Equation (6.88) contains first and second terms ∇φ + qAφσ12 of the Diracequation, giving the electromagnetic interaction of the electron. Equation (6.87)

contains first and second terms −∇φ + qAφσ12 of the Dirac equation for apositron. There is no potential A term in (6.86) nor (6.89), since anti-neutrinoand neutrino have no electromagnetic interaction. As we have

φeσ12 = i(−φeR + φeL) (6.90)

we can read (6.89) and (6.88) as

DφnR = ∇φnR (6.91)

DφnL = ∇φnL − iq

sin(2θW )Z0φnL + i

q

2 sin(θW )W−φeL (6.92)

DφeR = ∇φeR + qAφeRσ12 + iq tan(θW )Z0φeR (6.93)

DφeL = ∇φeL + qAφeLσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φeL − i

q

2 sin(θW )W+φnL (6.94)

Terms containing W+ and W− which couple left electron to left neutrino gener-ate “charged currents”, terms containing Z0 generate “neutral currents”. TheZ0 boson is linked to φL, φnL and φR, not to φnR. Similarly we can read (6.86)and (6.87) as

DφaL = ∇φaL (6.95)

DφaR = ∇φaR − iq

sin(2θW )Z0φaR + i

q

2 sin(θW )W−φpR (6.96)

DφpL = ∇φpL − qAφpLσ12 + iq tan(θW )Z0φpL

(6.97)

DφpR = ∇φpR − qAφpRσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φpR − i

q

2 sin(θW )W+φaR. (6.98)

(6.95) signifies that the left anti-neutrino does not interact by electro-weakforces. The electric charge of the positron is opposite to the charge of theelectron. But the comparison with the same relation for the electron showsthat, contrarily to what is said about charge conjugation, thought as chang-ing the sign of any quantum number, only the exchange between left and rightwaves, plus the multiplication on the right by σ3 give a change of sign. Othercoefficients are conserved when passing from electron to positron or from neu-trino to anti-neutrino. Charge conjugation must be seen as a pure quantumtransformation acting only on the wave, as described in 3.5. 45 A similar resultwas obtained by G. Lochak [19] for the magnetic monopole: charge conjugationdoes not change the sign of magnetic charges, and there is no polarization of the

45More, if we try to build a charge conjugation changing other signs, we get instead of (6.17)relations which do not give a U(1)× SU(2) gauge invariance.

76

(6.90)

we can read (6.89) and (6.88) as

Equation (6.88) contains first and second terms ∇φ + qAφσ12 of the Diracequation, giving the electromagnetic interaction of the electron. Equation (6.87)

contains first and second terms −∇φ + qAφσ12 of the Dirac equation for apositron. There is no potential A term in (6.86) nor (6.89), since anti-neutrinoand neutrino have no electromagnetic interaction. As we have

φeσ12 = i(−φeR + φeL) (6.90)

we can read (6.89) and (6.88) as

DφnR = ∇φnR (6.91)

DφnL = ∇φnL − iq

sin(2θW )Z0φnL + i

q

2 sin(θW )W−φeL (6.92)

DφeR = ∇φeR + qAφeRσ12 + iq tan(θW )Z0φeR (6.93)

DφeL = ∇φeL + qAφeLσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φeL − i

q

2 sin(θW )W+φnL (6.94)

Terms containing W+ and W− which couple left electron to left neutrino gener-ate “charged currents”, terms containing Z0 generate “neutral currents”. TheZ0 boson is linked to φL, φnL and φR, not to φnR. Similarly we can read (6.86)and (6.87) as

DφaL = ∇φaL (6.95)

DφaR = ∇φaR − iq

sin(2θW )Z0φaR + i

q

2 sin(θW )W−φpR (6.96)

DφpL = ∇φpL − qAφpLσ12 + iq tan(θW )Z0φpL

(6.97)

DφpR = ∇φpR − qAφpRσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φpR − i

q

2 sin(θW )W+φaR. (6.98)

(6.95) signifies that the left anti-neutrino does not interact by electro-weakforces. The electric charge of the positron is opposite to the charge of theelectron. But the comparison with the same relation for the electron showsthat, contrarily to what is said about charge conjugation, thought as chang-ing the sign of any quantum number, only the exchange between left and rightwaves, plus the multiplication on the right by σ3 give a change of sign. Othercoefficients are conserved when passing from electron to positron or from neu-trino to anti-neutrino. Charge conjugation must be seen as a pure quantumtransformation acting only on the wave, as described in 3.5. 45 A similar resultwas obtained by G. Lochak [19] for the magnetic monopole: charge conjugationdoes not change the sign of magnetic charges, and there is no polarization of the

45More, if we try to build a charge conjugation changing other signs, we get instead of (6.17)relations which do not give a U(1)× SU(2) gauge invariance.

76

(6.91)

44 (6.85) indicates that Z 0 is similar to Cabibbo-Ferrari’s B of (4.36).

29

Page 31: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 29

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

Equation (6.88) contains first and second terms ∇φ + qAφσ12 of the Diracequation, giving the electromagnetic interaction of the electron. Equation (6.87)

contains first and second terms −∇φ + qAφσ12 of the Dirac equation for apositron. There is no potential A term in (6.86) nor (6.89), since anti-neutrinoand neutrino have no electromagnetic interaction. As we have

φeσ12 = i(−φeR + φeL) (6.90)

we can read (6.89) and (6.88) as

DφnR = ∇φnR (6.91)

DφnL = ∇φnL − iq

sin(2θW )Z0φnL + i

q

2 sin(θW )W−φeL (6.92)

DφeR = ∇φeR + qAφeRσ12 + iq tan(θW )Z0φeR (6.93)

DφeL = ∇φeL + qAφeLσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φeL − i

q

2 sin(θW )W+φnL (6.94)

Terms containing W+ and W− which couple left electron to left neutrino gener-ate “charged currents”, terms containing Z0 generate “neutral currents”. TheZ0 boson is linked to φL, φnL and φR, not to φnR. Similarly we can read (6.86)and (6.87) as

DφaL = ∇φaL (6.95)

DφaR = ∇φaR − iq

sin(2θW )Z0φaR + i

q

2 sin(θW )W−φpR (6.96)

DφpL = ∇φpL − qAφpLσ12 + iq tan(θW )Z0φpL

(6.97)

DφpR = ∇φpR − qAφpRσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φpR − i

q

2 sin(θW )W+φaR. (6.98)

(6.95) signifies that the left anti-neutrino does not interact by electro-weakforces. The electric charge of the positron is opposite to the charge of theelectron. But the comparison with the same relation for the electron showsthat, contrarily to what is said about charge conjugation, thought as chang-ing the sign of any quantum number, only the exchange between left and rightwaves, plus the multiplication on the right by σ3 give a change of sign. Othercoefficients are conserved when passing from electron to positron or from neu-trino to anti-neutrino. Charge conjugation must be seen as a pure quantumtransformation acting only on the wave, as described in 3.5. 45 A similar resultwas obtained by G. Lochak [19] for the magnetic monopole: charge conjugationdoes not change the sign of magnetic charges, and there is no polarization of the

45More, if we try to build a charge conjugation changing other signs, we get instead of (6.17)relations which do not give a U(1)× SU(2) gauge invariance.

76

Equation (6.88) contains first and second terms ∇φ + qAφσ12 of the Diracequation, giving the electromagnetic interaction of the electron. Equation (6.87)

contains first and second terms −∇φ + qAφσ12 of the Dirac equation for apositron. There is no potential A term in (6.86) nor (6.89), since anti-neutrinoand neutrino have no electromagnetic interaction. As we have

φeσ12 = i(−φeR + φeL) (6.90)

we can read (6.89) and (6.88) as

DφnR = ∇φnR (6.91)

DφnL = ∇φnL − iq

sin(2θW )Z0φnL + i

q

2 sin(θW )W−φeL (6.92)

DφeR = ∇φeR + qAφeRσ12 + iq tan(θW )Z0φeR (6.93)

DφeL = ∇φeL + qAφeLσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φeL − i

q

2 sin(θW )W+φnL (6.94)

Terms containing W+ and W− which couple left electron to left neutrino gener-ate “charged currents”, terms containing Z0 generate “neutral currents”. TheZ0 boson is linked to φL, φnL and φR, not to φnR. Similarly we can read (6.86)and (6.87) as

DφaL = ∇φaL (6.95)

DφaR = ∇φaR − iq

sin(2θW )Z0φaR + i

q

2 sin(θW )W−φpR (6.96)

DφpL = ∇φpL − qAφpLσ12 + iq tan(θW )Z0φpL

(6.97)

DφpR = ∇φpR − qAφpRσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φpR − i

q

2 sin(θW )W+φaR. (6.98)

(6.95) signifies that the left anti-neutrino does not interact by electro-weakforces. The electric charge of the positron is opposite to the charge of theelectron. But the comparison with the same relation for the electron showsthat, contrarily to what is said about charge conjugation, thought as chang-ing the sign of any quantum number, only the exchange between left and rightwaves, plus the multiplication on the right by σ3 give a change of sign. Othercoefficients are conserved when passing from electron to positron or from neu-trino to anti-neutrino. Charge conjugation must be seen as a pure quantumtransformation acting only on the wave, as described in 3.5. 45 A similar resultwas obtained by G. Lochak [19] for the magnetic monopole: charge conjugationdoes not change the sign of magnetic charges, and there is no polarization of the

45More, if we try to build a charge conjugation changing other signs, we get instead of (6.17)relations which do not give a U(1)× SU(2) gauge invariance.

76

; (6.92)

Equation (6.88) contains first and second terms ∇φ + qAφσ12 of the Diracequation, giving the electromagnetic interaction of the electron. Equation (6.87)

contains first and second terms −∇φ + qAφσ12 of the Dirac equation for apositron. There is no potential A term in (6.86) nor (6.89), since anti-neutrinoand neutrino have no electromagnetic interaction. As we have

φeσ12 = i(−φeR + φeL) (6.90)

we can read (6.89) and (6.88) as

DφnR = ∇φnR (6.91)

DφnL = ∇φnL − iq

sin(2θW )Z0φnL + i

q

2 sin(θW )W−φeL (6.92)

DφeR = ∇φeR + qAφeRσ12 + iq tan(θW )Z0φeR (6.93)

DφeL = ∇φeL + qAφeLσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φeL − i

q

2 sin(θW )W+φnL (6.94)

Terms containing W+ and W− which couple left electron to left neutrino gener-ate “charged currents”, terms containing Z0 generate “neutral currents”. TheZ0 boson is linked to φL, φnL and φR, not to φnR. Similarly we can read (6.86)and (6.87) as

DφaL = ∇φaL (6.95)

DφaR = ∇φaR − iq

sin(2θW )Z0φaR + i

q

2 sin(θW )W−φpR (6.96)

DφpL = ∇φpL − qAφpLσ12 + iq tan(θW )Z0φpL

(6.97)

DφpR = ∇φpR − qAφpRσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φpR − i

q

2 sin(θW )W+φaR. (6.98)

(6.95) signifies that the left anti-neutrino does not interact by electro-weakforces. The electric charge of the positron is opposite to the charge of theelectron. But the comparison with the same relation for the electron showsthat, contrarily to what is said about charge conjugation, thought as chang-ing the sign of any quantum number, only the exchange between left and rightwaves, plus the multiplication on the right by σ3 give a change of sign. Othercoefficients are conserved when passing from electron to positron or from neu-trino to anti-neutrino. Charge conjugation must be seen as a pure quantumtransformation acting only on the wave, as described in 3.5. 45 A similar resultwas obtained by G. Lochak [19] for the magnetic monopole: charge conjugationdoes not change the sign of magnetic charges, and there is no polarization of the

45More, if we try to build a charge conjugation changing other signs, we get instead of (6.17)relations which do not give a U(1)× SU(2) gauge invariance.

76

; (6.93)

Equation (6.88) contains first and second terms ∇φ + qAφσ12 of the Diracequation, giving the electromagnetic interaction of the electron. Equation (6.87)

contains first and second terms −∇φ + qAφσ12 of the Dirac equation for apositron. There is no potential A term in (6.86) nor (6.89), since anti-neutrinoand neutrino have no electromagnetic interaction. As we have

φeσ12 = i(−φeR + φeL) (6.90)

we can read (6.89) and (6.88) as

DφnR = ∇φnR (6.91)

DφnL = ∇φnL − iq

sin(2θW )Z0φnL + i

q

2 sin(θW )W−φeL (6.92)

DφeR = ∇φeR + qAφeRσ12 + iq tan(θW )Z0φeR (6.93)

DφeL = ∇φeL + qAφeLσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φeL − i

q

2 sin(θW )W+φnL (6.94)

Terms containing W+ and W− which couple left electron to left neutrino gener-ate “charged currents”, terms containing Z0 generate “neutral currents”. TheZ0 boson is linked to φL, φnL and φR, not to φnR. Similarly we can read (6.86)and (6.87) as

DφaL = ∇φaL (6.95)

DφaR = ∇φaR − iq

sin(2θW )Z0φaR + i

q

2 sin(θW )W−φpR (6.96)

DφpL = ∇φpL − qAφpLσ12 + iq tan(θW )Z0φpL

(6.97)

DφpR = ∇φpR − qAφpRσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φpR − i

q

2 sin(θW )W+φaR. (6.98)

(6.95) signifies that the left anti-neutrino does not interact by electro-weakforces. The electric charge of the positron is opposite to the charge of theelectron. But the comparison with the same relation for the electron showsthat, contrarily to what is said about charge conjugation, thought as chang-ing the sign of any quantum number, only the exchange between left and rightwaves, plus the multiplication on the right by σ3 give a change of sign. Othercoefficients are conserved when passing from electron to positron or from neu-trino to anti-neutrino. Charge conjugation must be seen as a pure quantumtransformation acting only on the wave, as described in 3.5. 45 A similar resultwas obtained by G. Lochak [19] for the magnetic monopole: charge conjugationdoes not change the sign of magnetic charges, and there is no polarization of the

45More, if we try to build a charge conjugation changing other signs, we get instead of (6.17)relations which do not give a U(1)× SU(2) gauge invariance.

76

Equation (6.88) contains first and second terms ∇φ + qAφσ12 of the Diracequation, giving the electromagnetic interaction of the electron. Equation (6.87)

contains first and second terms −∇φ + qAφσ12 of the Dirac equation for apositron. There is no potential A term in (6.86) nor (6.89), since anti-neutrinoand neutrino have no electromagnetic interaction. As we have

φeσ12 = i(−φeR + φeL) (6.90)

we can read (6.89) and (6.88) as

DφnR = ∇φnR (6.91)

DφnL = ∇φnL − iq

sin(2θW )Z0φnL + i

q

2 sin(θW )W−φeL (6.92)

DφeR = ∇φeR + qAφeRσ12 + iq tan(θW )Z0φeR (6.93)

DφeL = ∇φeL + qAφeLσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φeL − i

q

2 sin(θW )W+φnL (6.94)

Terms containing W+ and W− which couple left electron to left neutrino gener-ate “charged currents”, terms containing Z0 generate “neutral currents”. TheZ0 boson is linked to φL, φnL and φR, not to φnR. Similarly we can read (6.86)and (6.87) as

DφaL = ∇φaL (6.95)

DφaR = ∇φaR − iq

sin(2θW )Z0φaR + i

q

2 sin(θW )W−φpR (6.96)

DφpL = ∇φpL − qAφpLσ12 + iq tan(θW )Z0φpL

(6.97)

DφpR = ∇φpR − qAφpRσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φpR − i

q

2 sin(θW )W+φaR. (6.98)

(6.95) signifies that the left anti-neutrino does not interact by electro-weakforces. The electric charge of the positron is opposite to the charge of theelectron. But the comparison with the same relation for the electron showsthat, contrarily to what is said about charge conjugation, thought as chang-ing the sign of any quantum number, only the exchange between left and rightwaves, plus the multiplication on the right by σ3 give a change of sign. Othercoefficients are conserved when passing from electron to positron or from neu-trino to anti-neutrino. Charge conjugation must be seen as a pure quantumtransformation acting only on the wave, as described in 3.5. 45 A similar resultwas obtained by G. Lochak [19] for the magnetic monopole: charge conjugationdoes not change the sign of magnetic charges, and there is no polarization of the

45More, if we try to build a charge conjugation changing other signs, we get instead of (6.17)relations which do not give a U(1)× SU(2) gauge invariance.

76

. (6.94)

Terms containing W + and W − which couple left elec-tron to left neutrino generate “charged currents”, terms containing Z 0 generate “neutral currents”. The Z 0 boson is linked to ϕL , ϕnL and ϕR , not to ϕnR . Similarly we can read (6.86) and (6.87) as

Equation (6.88) contains first and second terms ∇φ + qAφσ12 of the Diracequation, giving the electromagnetic interaction of the electron. Equation (6.87)

contains first and second terms −∇φ + qAφσ12 of the Dirac equation for apositron. There is no potential A term in (6.86) nor (6.89), since anti-neutrinoand neutrino have no electromagnetic interaction. As we have

φeσ12 = i(−φeR + φeL) (6.90)

we can read (6.89) and (6.88) as

DφnR = ∇φnR (6.91)

DφnL = ∇φnL − iq

sin(2θW )Z0φnL + i

q

2 sin(θW )W−φeL (6.92)

DφeR = ∇φeR + qAφeRσ12 + iq tan(θW )Z0φeR (6.93)

DφeL = ∇φeL + qAφeLσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φeL − i

q

2 sin(θW )W+φnL (6.94)

Terms containing W+ and W− which couple left electron to left neutrino gener-ate “charged currents”, terms containing Z0 generate “neutral currents”. TheZ0 boson is linked to φL, φnL and φR, not to φnR. Similarly we can read (6.86)and (6.87) as

DφaL = ∇φaL (6.95)

DφaR = ∇φaR − iq

sin(2θW )Z0φaR + i

q

2 sin(θW )W−φpR (6.96)

DφpL = ∇φpL − qAφpLσ12 + iq tan(θW )Z0φpL

(6.97)

DφpR = ∇φpR − qAφpRσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φpR − i

q

2 sin(θW )W+φaR. (6.98)

(6.95) signifies that the left anti-neutrino does not interact by electro-weakforces. The electric charge of the positron is opposite to the charge of theelectron. But the comparison with the same relation for the electron showsthat, contrarily to what is said about charge conjugation, thought as chang-ing the sign of any quantum number, only the exchange between left and rightwaves, plus the multiplication on the right by σ3 give a change of sign. Othercoefficients are conserved when passing from electron to positron or from neu-trino to anti-neutrino. Charge conjugation must be seen as a pure quantumtransformation acting only on the wave, as described in 3.5. 45 A similar resultwas obtained by G. Lochak [19] for the magnetic monopole: charge conjugationdoes not change the sign of magnetic charges, and there is no polarization of the

45More, if we try to build a charge conjugation changing other signs, we get instead of (6.17)relations which do not give a U(1)× SU(2) gauge invariance.

76

; (6.95)

Equation (6.88) contains first and second terms ∇φ + qAφσ12 of the Diracequation, giving the electromagnetic interaction of the electron. Equation (6.87)

contains first and second terms −∇φ + qAφσ12 of the Dirac equation for apositron. There is no potential A term in (6.86) nor (6.89), since anti-neutrinoand neutrino have no electromagnetic interaction. As we have

φeσ12 = i(−φeR + φeL) (6.90)

we can read (6.89) and (6.88) as

DφnR = ∇φnR (6.91)

DφnL = ∇φnL − iq

sin(2θW )Z0φnL + i

q

2 sin(θW )W−φeL (6.92)

DφeR = ∇φeR + qAφeRσ12 + iq tan(θW )Z0φeR (6.93)

DφeL = ∇φeL + qAφeLσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φeL − i

q

2 sin(θW )W+φnL (6.94)

Terms containing W+ and W− which couple left electron to left neutrino gener-ate “charged currents”, terms containing Z0 generate “neutral currents”. TheZ0 boson is linked to φL, φnL and φR, not to φnR. Similarly we can read (6.86)and (6.87) as

DφaL = ∇φaL (6.95)

DφaR = ∇φaR − iq

sin(2θW )Z0φaR + i

q

2 sin(θW )W−φpR (6.96)

DφpL = ∇φpL − qAφpLσ12 + iq tan(θW )Z0φpL

(6.97)

DφpR = ∇φpR − qAφpRσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φpR − i

q

2 sin(θW )W+φaR. (6.98)

(6.95) signifies that the left anti-neutrino does not interact by electro-weakforces. The electric charge of the positron is opposite to the charge of theelectron. But the comparison with the same relation for the electron showsthat, contrarily to what is said about charge conjugation, thought as chang-ing the sign of any quantum number, only the exchange between left and rightwaves, plus the multiplication on the right by σ3 give a change of sign. Othercoefficients are conserved when passing from electron to positron or from neu-trino to anti-neutrino. Charge conjugation must be seen as a pure quantumtransformation acting only on the wave, as described in 3.5. 45 A similar resultwas obtained by G. Lochak [19] for the magnetic monopole: charge conjugationdoes not change the sign of magnetic charges, and there is no polarization of the

45More, if we try to build a charge conjugation changing other signs, we get instead of (6.17)relations which do not give a U(1)× SU(2) gauge invariance.

76

Equation (6.88) contains first and second terms ∇φ + qAφσ12 of the Diracequation, giving the electromagnetic interaction of the electron. Equation (6.87)

contains first and second terms −∇φ + qAφσ12 of the Dirac equation for apositron. There is no potential A term in (6.86) nor (6.89), since anti-neutrinoand neutrino have no electromagnetic interaction. As we have

φeσ12 = i(−φeR + φeL) (6.90)

we can read (6.89) and (6.88) as

DφnR = ∇φnR (6.91)

DφnL = ∇φnL − iq

sin(2θW )Z0φnL + i

q

2 sin(θW )W−φeL (6.92)

DφeR = ∇φeR + qAφeRσ12 + iq tan(θW )Z0φeR (6.93)

DφeL = ∇φeL + qAφeLσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φeL − i

q

2 sin(θW )W+φnL (6.94)

Terms containing W+ and W− which couple left electron to left neutrino gener-ate “charged currents”, terms containing Z0 generate “neutral currents”. TheZ0 boson is linked to φL, φnL and φR, not to φnR. Similarly we can read (6.86)and (6.87) as

DφaL = ∇φaL (6.95)

DφaR = ∇φaR − iq

sin(2θW )Z0φaR + i

q

2 sin(θW )W−φpR (6.96)

DφpL = ∇φpL − qAφpLσ12 + iq tan(θW )Z0φpL

(6.97)

DφpR = ∇φpR − qAφpRσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φpR − i

q

2 sin(θW )W+φaR. (6.98)

(6.95) signifies that the left anti-neutrino does not interact by electro-weakforces. The electric charge of the positron is opposite to the charge of theelectron. But the comparison with the same relation for the electron showsthat, contrarily to what is said about charge conjugation, thought as chang-ing the sign of any quantum number, only the exchange between left and rightwaves, plus the multiplication on the right by σ3 give a change of sign. Othercoefficients are conserved when passing from electron to positron or from neu-trino to anti-neutrino. Charge conjugation must be seen as a pure quantumtransformation acting only on the wave, as described in 3.5. 45 A similar resultwas obtained by G. Lochak [19] for the magnetic monopole: charge conjugationdoes not change the sign of magnetic charges, and there is no polarization of the

45More, if we try to build a charge conjugation changing other signs, we get instead of (6.17)relations which do not give a U(1)× SU(2) gauge invariance.

76

; (6.96)

Equation (6.88) contains first and second terms ∇φ + qAφσ12 of the Diracequation, giving the electromagnetic interaction of the electron. Equation (6.87)

contains first and second terms −∇φ + qAφσ12 of the Dirac equation for apositron. There is no potential A term in (6.86) nor (6.89), since anti-neutrinoand neutrino have no electromagnetic interaction. As we have

φeσ12 = i(−φeR + φeL) (6.90)

we can read (6.89) and (6.88) as

DφnR = ∇φnR (6.91)

DφnL = ∇φnL − iq

sin(2θW )Z0φnL + i

q

2 sin(θW )W−φeL (6.92)

DφeR = ∇φeR + qAφeRσ12 + iq tan(θW )Z0φeR (6.93)

DφeL = ∇φeL + qAφeLσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φeL − i

q

2 sin(θW )W+φnL (6.94)

Terms containing W+ and W− which couple left electron to left neutrino gener-ate “charged currents”, terms containing Z0 generate “neutral currents”. TheZ0 boson is linked to φL, φnL and φR, not to φnR. Similarly we can read (6.86)and (6.87) as

DφaL = ∇φaL (6.95)

DφaR = ∇φaR − iq

sin(2θW )Z0φaR + i

q

2 sin(θW )W−φpR (6.96)

DφpL = ∇φpL − qAφpLσ12 + iq tan(θW )Z0φpL

(6.97)

DφpR = ∇φpR − qAφpRσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φpR − i

q

2 sin(θW )W+φaR. (6.98)

(6.95) signifies that the left anti-neutrino does not interact by electro-weakforces. The electric charge of the positron is opposite to the charge of theelectron. But the comparison with the same relation for the electron showsthat, contrarily to what is said about charge conjugation, thought as chang-ing the sign of any quantum number, only the exchange between left and rightwaves, plus the multiplication on the right by σ3 give a change of sign. Othercoefficients are conserved when passing from electron to positron or from neu-trino to anti-neutrino. Charge conjugation must be seen as a pure quantumtransformation acting only on the wave, as described in 3.5. 45 A similar resultwas obtained by G. Lochak [19] for the magnetic monopole: charge conjugationdoes not change the sign of magnetic charges, and there is no polarization of the

45More, if we try to build a charge conjugation changing other signs, we get instead of (6.17)relations which do not give a U(1)× SU(2) gauge invariance.

76

; (6.97)

Equation (6.88) contains first and second terms ∇φ + qAφσ12 of the Diracequation, giving the electromagnetic interaction of the electron. Equation (6.87)

contains first and second terms −∇φ + qAφσ12 of the Dirac equation for apositron. There is no potential A term in (6.86) nor (6.89), since anti-neutrinoand neutrino have no electromagnetic interaction. As we have

φeσ12 = i(−φeR + φeL) (6.90)

we can read (6.89) and (6.88) as

DφnR = ∇φnR (6.91)

DφnL = ∇φnL − iq

sin(2θW )Z0φnL + i

q

2 sin(θW )W−φeL (6.92)

DφeR = ∇φeR + qAφeRσ12 + iq tan(θW )Z0φeR (6.93)

DφeL = ∇φeL + qAφeLσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φeL − i

q

2 sin(θW )W+φnL (6.94)

Terms containing W+ and W− which couple left electron to left neutrino gener-ate “charged currents”, terms containing Z0 generate “neutral currents”. TheZ0 boson is linked to φL, φnL and φR, not to φnR. Similarly we can read (6.86)and (6.87) as

DφaL = ∇φaL (6.95)

DφaR = ∇φaR − iq

sin(2θW )Z0φaR + i

q

2 sin(θW )W−φpR (6.96)

DφpL = ∇φpL − qAφpLσ12 + iq tan(θW )Z0φpL

(6.97)

DφpR = ∇φpR − qAφpRσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φpR − i

q

2 sin(θW )W+φaR. (6.98)

(6.95) signifies that the left anti-neutrino does not interact by electro-weakforces. The electric charge of the positron is opposite to the charge of theelectron. But the comparison with the same relation for the electron showsthat, contrarily to what is said about charge conjugation, thought as chang-ing the sign of any quantum number, only the exchange between left and rightwaves, plus the multiplication on the right by σ3 give a change of sign. Othercoefficients are conserved when passing from electron to positron or from neu-trino to anti-neutrino. Charge conjugation must be seen as a pure quantumtransformation acting only on the wave, as described in 3.5. 45 A similar resultwas obtained by G. Lochak [19] for the magnetic monopole: charge conjugationdoes not change the sign of magnetic charges, and there is no polarization of the

45More, if we try to build a charge conjugation changing other signs, we get instead of (6.17)relations which do not give a U(1)× SU(2) gauge invariance.

76

Equation (6.88) contains first and second terms ∇φ + qAφσ12 of the Diracequation, giving the electromagnetic interaction of the electron. Equation (6.87)

contains first and second terms −∇φ + qAφσ12 of the Dirac equation for apositron. There is no potential A term in (6.86) nor (6.89), since anti-neutrinoand neutrino have no electromagnetic interaction. As we have

φeσ12 = i(−φeR + φeL) (6.90)

we can read (6.89) and (6.88) as

DφnR = ∇φnR (6.91)

DφnL = ∇φnL − iq

sin(2θW )Z0φnL + i

q

2 sin(θW )W−φeL (6.92)

DφeR = ∇φeR + qAφeRσ12 + iq tan(θW )Z0φeR (6.93)

DφeL = ∇φeL + qAφeLσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φeL − i

q

2 sin(θW )W+φnL (6.94)

Terms containing W+ and W− which couple left electron to left neutrino gener-ate “charged currents”, terms containing Z0 generate “neutral currents”. TheZ0 boson is linked to φL, φnL and φR, not to φnR. Similarly we can read (6.86)and (6.87) as

DφaL = ∇φaL (6.95)

DφaR = ∇φaR − iq

sin(2θW )Z0φaR + i

q

2 sin(θW )W−φpR (6.96)

DφpL = ∇φpL − qAφpLσ12 + iq tan(θW )Z0φpL

(6.97)

DφpR = ∇φpR − qAφpRσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φpR − i

q

2 sin(θW )W+φaR. (6.98)

(6.95) signifies that the left anti-neutrino does not interact by electro-weakforces. The electric charge of the positron is opposite to the charge of theelectron. But the comparison with the same relation for the electron showsthat, contrarily to what is said about charge conjugation, thought as chang-ing the sign of any quantum number, only the exchange between left and rightwaves, plus the multiplication on the right by σ3 give a change of sign. Othercoefficients are conserved when passing from electron to positron or from neu-trino to anti-neutrino. Charge conjugation must be seen as a pure quantumtransformation acting only on the wave, as described in 3.5. 45 A similar resultwas obtained by G. Lochak [19] for the magnetic monopole: charge conjugationdoes not change the sign of magnetic charges, and there is no polarization of the

45More, if we try to build a charge conjugation changing other signs, we get instead of (6.17)relations which do not give a U(1)× SU(2) gauge invariance.

76

Equation (6.88) contains first and second terms ∇φ + qAφσ12 of the Diracequation, giving the electromagnetic interaction of the electron. Equation (6.87)

contains first and second terms −∇φ + qAφσ12 of the Dirac equation for apositron. There is no potential A term in (6.86) nor (6.89), since anti-neutrinoand neutrino have no electromagnetic interaction. As we have

φeσ12 = i(−φeR + φeL) (6.90)

we can read (6.89) and (6.88) as

DφnR = ∇φnR (6.91)

DφnL = ∇φnL − iq

sin(2θW )Z0φnL + i

q

2 sin(θW )W−φeL (6.92)

DφeR = ∇φeR + qAφeRσ12 + iq tan(θW )Z0φeR (6.93)

DφeL = ∇φeL + qAφeLσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φeL − i

q

2 sin(θW )W+φnL (6.94)

Terms containing W+ and W− which couple left electron to left neutrino gener-ate “charged currents”, terms containing Z0 generate “neutral currents”. TheZ0 boson is linked to φL, φnL and φR, not to φnR. Similarly we can read (6.86)and (6.87) as

DφaL = ∇φaL (6.95)

DφaR = ∇φaR − iq

sin(2θW )Z0φaR + i

q

2 sin(θW )W−φpR (6.96)

DφpL = ∇φpL − qAφpLσ12 + iq tan(θW )Z0φpL

(6.97)

DφpR = ∇φpR − qAφpRσ12

+ iq[− tan(θW ) +1

sin(2θW )]Z0φpR − i

q

2 sin(θW )W+φaR. (6.98)

(6.95) signifies that the left anti-neutrino does not interact by electro-weakforces. The electric charge of the positron is opposite to the charge of theelectron. But the comparison with the same relation for the electron showsthat, contrarily to what is said about charge conjugation, thought as chang-ing the sign of any quantum number, only the exchange between left and rightwaves, plus the multiplication on the right by σ3 give a change of sign. Othercoefficients are conserved when passing from electron to positron or from neu-trino to anti-neutrino. Charge conjugation must be seen as a pure quantumtransformation acting only on the wave, as described in 3.5. 45 A similar resultwas obtained by G. Lochak [19] for the magnetic monopole: charge conjugationdoes not change the sign of magnetic charges, and there is no polarization of the

45More, if we try to build a charge conjugation changing other signs, we get instead of (6.17)relations which do not give a U(1)× SU(2) gauge invariance.

76

(6.98)

(6.95) signifies that the left anti-neutrino does not in-teract by electro-weak forces. The electric charge of the positron is opposite to the charge of the electron. But the comparison with the same relation for the elec-tron shows that, contrarily to what is said about charge conjugation, thought as changing the sign of any quan-tum number, only the exchange between left and right waves, plus the multiplication on the right by σ3 give a change of sign. Other coefficients are conserved when passing from electron to positron or from neutrino to anti-neutrino. Charge conjugation must be seen as a pure quantum transformation acting only on the wave, as described in 3.5.45 A similar result was obtained by G. Lochak [19] for the magnetic monopole: charge con-jugation does not change the sign of magnetic charges, and there is no polarization of the void resulting from spontaneous creation of pairs. It is the same for neutri-

45 More, if we try to build a charge conjugation changing other signs, we get instead of (6.17) relations which do not give a U (1) × SU (2) gauge invariance.

nos, there is no creation of pairs of neutrino-anti-neu-trino similar to the creation of pairs particle-antiparticle with opposite electric charges.46

6.2 Invariances

As with the electromagnetism, we can enlarge the rela-tivistic invariance to the greater group Cl*3. With the Lo-rentz dilation R defined by a M element in Cl*3 satisfying

void resulting from spontaneous creation of pairs. It is the same for neutrinos,there is no creation of pairs of neutrino-anti-neutrino similar to the creation ofpairs particle-antiparticle with opposite electric charges.46

6.2 Invariances

As with the electromagnetism, we can enlarge the relativistic invariance to thegreater group Cl∗3. With the Lorentz dilation R defined by a M element in Cl∗3satisfying x → x′ = MxM† we have

φ′e = Mφe ; φ′

n = Mφn ; φ′p = Mφp ; φ′

a = Mφa ; Ψ′ = NΨ

N =

(M 0

0 M

); N =

(M 00 M†

)(6.99)

We may consider g1B and g2Wj , linked to qA, as covariants vectors:

g1B = Mg′1B′M ; g2W

j = Mg′2Wj ′M

g1B = Ng′1B′N ; g2W

j = Ng′2Wj ′N. (6.100)

This allows D to be a covariant vector, varying as ∇ ;

D = MD′M ; ∇ = M∇′M

D = ND′N. (6.101)

That also gives for the Weinberg-Salam angle:

B′ + iW ′3 = eiθW (A′ + iZ ′0) (6.102)

which means that the θW angle is Cl∗3 invariant, then is a relativistic invariant.We get

Dφe = MD′φ′e ; Dφn = MD′φ′

n (6.103)

Dφp = MD′φ′p ; Dφa = MD′φ′

a (6.104)

DΨ = ND′Ψ′ (6.105)

and the Cl∗3 invariance of electro-weak interactions is completely similar to theinvariance of the electromagnetism.

Operators P0, P1, P2 and P3 are built from projectors and have no inverse.They are not directly elements of a gauge group. Nevertheless we can builda Yang-Mills gauge group by using the exponential function. With four realnumbers a0, a1, a2, a3, we define

exp(a0P0) =

∞∑n=0

(a0P0)n

n!(6.106)

exp(ajPj) =

∞∑n=0

(a1P1 + a2P2 + a3P3)n

n!(6.107)

46This is also consistent with (4.76)-(4.77) where charge conjugation in the neutrino casegives the same wave equation.

77

we have

void resulting from spontaneous creation of pairs. It is the same for neutrinos,there is no creation of pairs of neutrino-anti-neutrino similar to the creation ofpairs particle-antiparticle with opposite electric charges.46

6.2 Invariances

As with the electromagnetism, we can enlarge the relativistic invariance to thegreater group Cl∗3. With the Lorentz dilation R defined by a M element in Cl∗3satisfying x → x′ = MxM† we have

φ′e = Mφe ; φ′

n = Mφn ; φ′p = Mφp ; φ′

a = Mφa ; Ψ′ = NΨ

N =

(M 0

0 M

); N =

(M 00 M†

)(6.99)

We may consider g1B and g2Wj , linked to qA, as covariants vectors:

g1B = Mg′1B′M ; g2W

j = Mg′2Wj ′M

g1B = Ng′1B′N ; g2W

j = Ng′2Wj ′N. (6.100)

This allows D to be a covariant vector, varying as ∇ ;

D = MD′M ; ∇ = M∇′M

D = ND′N. (6.101)

That also gives for the Weinberg-Salam angle:

B′ + iW ′3 = eiθW (A′ + iZ ′0) (6.102)

which means that the θW angle is Cl∗3 invariant, then is a relativistic invariant.We get

Dφe = MD′φ′e ; Dφn = MD′φ′

n (6.103)

Dφp = MD′φ′p ; Dφa = MD′φ′

a (6.104)

DΨ = ND′Ψ′ (6.105)

and the Cl∗3 invariance of electro-weak interactions is completely similar to theinvariance of the electromagnetism.

Operators P0, P1, P2 and P3 are built from projectors and have no inverse.They are not directly elements of a gauge group. Nevertheless we can builda Yang-Mills gauge group by using the exponential function. With four realnumbers a0, a1, a2, a3, we define

exp(a0P0) =

∞∑n=0

(a0P0)n

n!(6.106)

exp(ajPj) =

∞∑n=0

(a1P1 + a2P2 + a3P3)n

n!(6.107)

46This is also consistent with (4.76)-(4.77) where charge conjugation in the neutrino casegives the same wave equation.

77

void resulting from spontaneous creation of pairs. It is the same for neutrinos,there is no creation of pairs of neutrino-anti-neutrino similar to the creation ofpairs particle-antiparticle with opposite electric charges.46

6.2 Invariances

As with the electromagnetism, we can enlarge the relativistic invariance to thegreater group Cl∗3. With the Lorentz dilation R defined by a M element in Cl∗3satisfying x → x′ = MxM† we have

φ′e = Mφe ; φ′

n = Mφn ; φ′p = Mφp ; φ′

a = Mφa ; Ψ′ = NΨ

N =

(M 0

0 M

); N =

(M 00 M†

)(6.99)

We may consider g1B and g2Wj , linked to qA, as covariants vectors:

g1B = Mg′1B′M ; g2W

j = Mg′2Wj ′M

g1B = Ng′1B′N ; g2W

j = Ng′2Wj ′N. (6.100)

This allows D to be a covariant vector, varying as ∇ ;

D = MD′M ; ∇ = M∇′M

D = ND′N. (6.101)

That also gives for the Weinberg-Salam angle:

B′ + iW ′3 = eiθW (A′ + iZ ′0) (6.102)

which means that the θW angle is Cl∗3 invariant, then is a relativistic invariant.We get

Dφe = MD′φ′e ; Dφn = MD′φ′

n (6.103)

Dφp = MD′φ′p ; Dφa = MD′φ′

a (6.104)

DΨ = ND′Ψ′ (6.105)

and the Cl∗3 invariance of electro-weak interactions is completely similar to theinvariance of the electromagnetism.

Operators P0, P1, P2 and P3 are built from projectors and have no inverse.They are not directly elements of a gauge group. Nevertheless we can builda Yang-Mills gauge group by using the exponential function. With four realnumbers a0, a1, a2, a3, we define

exp(a0P0) =

∞∑n=0

(a0P0)n

n!(6.106)

exp(ajPj) =

∞∑n=0

(a1P1 + a2P2 + a3P3)n

n!(6.107)

46This is also consistent with (4.76)-(4.77) where charge conjugation in the neutrino casegives the same wave equation.

77

void resulting from spontaneous creation of pairs. It is the same for neutrinos,there is no creation of pairs of neutrino-anti-neutrino similar to the creation ofpairs particle-antiparticle with opposite electric charges.46

6.2 Invariances

As with the electromagnetism, we can enlarge the relativistic invariance to thegreater group Cl∗3. With the Lorentz dilation R defined by a M element in Cl∗3satisfying x → x′ = MxM† we have

φ′e = Mφe ; φ′

n = Mφn ; φ′p = Mφp ; φ′

a = Mφa ; Ψ′ = NΨ

N =

(M 0

0 M

); N =

(M 00 M†

)(6.99)

We may consider g1B and g2Wj , linked to qA, as covariants vectors:

g1B = Mg′1B′M ; g2W

j = Mg′2Wj ′M

g1B = Ng′1B′N ; g2W

j = Ng′2Wj ′N. (6.100)

This allows D to be a covariant vector, varying as ∇ ;

D = MD′M ; ∇ = M∇′M

D = ND′N. (6.101)

That also gives for the Weinberg-Salam angle:

B′ + iW ′3 = eiθW (A′ + iZ ′0) (6.102)

which means that the θW angle is Cl∗3 invariant, then is a relativistic invariant.We get

Dφe = MD′φ′e ; Dφn = MD′φ′

n (6.103)

Dφp = MD′φ′p ; Dφa = MD′φ′

a (6.104)

DΨ = ND′Ψ′ (6.105)

and the Cl∗3 invariance of electro-weak interactions is completely similar to theinvariance of the electromagnetism.

Operators P0, P1, P2 and P3 are built from projectors and have no inverse.They are not directly elements of a gauge group. Nevertheless we can builda Yang-Mills gauge group by using the exponential function. With four realnumbers a0, a1, a2, a3, we define

exp(a0P0) =∞∑

n=0

(a0P0)n

n!(6.106)

exp(ajPj) =∞∑

n=0

(a1P1 + a2P2 + a3P3)n

n!(6.107)

46This is also consistent with (4.76)-(4.77) where charge conjugation in the neutrino casegives the same wave equation.

77

(6.99)

We may consider g1 B and g2 W j, linked to qA, as co-variants vectors:

void resulting from spontaneous creation of pairs. It is the same for neutrinos,there is no creation of pairs of neutrino-anti-neutrino similar to the creation ofpairs particle-antiparticle with opposite electric charges.46

6.2 Invariances

As with the electromagnetism, we can enlarge the relativistic invariance to thegreater group Cl∗3. With the Lorentz dilation R defined by a M element in Cl∗3satisfying x → x′ = MxM† we have

φ′e = Mφe ; φ′

n = Mφn ; φ′p = Mφp ; φ′

a = Mφa ; Ψ′ = NΨ

N =

(M 0

0 M

); N =

(M 00 M†

)(6.99)

We may consider g1B and g2Wj , linked to qA, as covariants vectors:

g1B = Mg′1B′M ; g2W

j = Mg′2Wj ′M

g1B = Ng′1B′N ; g2W

j = Ng′2Wj ′N. (6.100)

This allows D to be a covariant vector, varying as ∇ ;

D = MD′M ; ∇ = M∇′M

D = ND′N. (6.101)

That also gives for the Weinberg-Salam angle:

B′ + iW ′3 = eiθW (A′ + iZ ′0) (6.102)

which means that the θW angle is Cl∗3 invariant, then is a relativistic invariant.We get

Dφe = MD′φ′e ; Dφn = MD′φ′

n (6.103)

Dφp = MD′φ′p ; Dφa = MD′φ′

a (6.104)

DΨ = ND′Ψ′ (6.105)

and the Cl∗3 invariance of electro-weak interactions is completely similar to theinvariance of the electromagnetism.

Operators P0, P1, P2 and P3 are built from projectors and have no inverse.They are not directly elements of a gauge group. Nevertheless we can builda Yang-Mills gauge group by using the exponential function. With four realnumbers a0, a1, a2, a3, we define

exp(a0P0) =

∞∑n=0

(a0P0)n

n!(6.106)

exp(ajPj) =

∞∑n=0

(a1P1 + a2P2 + a3P3)n

n!(6.107)

46This is also consistent with (4.76)-(4.77) where charge conjugation in the neutrino casegives the same wave equation.

77

(6.100)

This allows D to be a covariant vector, varying as

void resulting from spontaneous creation of pairs. It is the same for neutrinos,there is no creation of pairs of neutrino-anti-neutrino similar to the creation ofpairs particle-antiparticle with opposite electric charges.46

6.2 Invariances

As with the electromagnetism, we can enlarge the relativistic invariance to thegreater group Cl∗3. With the Lorentz dilation R defined by a M element in Cl∗3satisfying x → x′ = MxM† we have

φ′e = Mφe ; φ′

n = Mφn ; φ′p = Mφp ; φ′

a = Mφa ; Ψ′ = NΨ

N =

(M 0

0 M

); N =

(M 00 M†

)(6.99)

We may consider g1B and g2Wj , linked to qA, as covariants vectors:

g1B = Mg′1B′M ; g2W

j = Mg′2Wj ′M

g1B = Ng′1B′N ; g2W

j = Ng′2Wj ′N. (6.100)

This allows D to be a covariant vector, varying as ∇ ;

D = MD′M ; ∇ = M∇′M

D = ND′N. (6.101)

That also gives for the Weinberg-Salam angle:

B′ + iW ′3 = eiθW (A′ + iZ ′0) (6.102)

which means that the θW angle is Cl∗3 invariant, then is a relativistic invariant.We get

Dφe = MD′φ′e ; Dφn = MD′φ′

n (6.103)

Dφp = MD′φ′p ; Dφa = MD′φ′

a (6.104)

DΨ = ND′Ψ′ (6.105)

and the Cl∗3 invariance of electro-weak interactions is completely similar to theinvariance of the electromagnetism.

Operators P0, P1, P2 and P3 are built from projectors and have no inverse.They are not directly elements of a gauge group. Nevertheless we can builda Yang-Mills gauge group by using the exponential function. With four realnumbers a0, a1, a2, a3, we define

exp(a0P0) =

∞∑n=0

(a0P0)n

n!(6.106)

exp(ajPj) =

∞∑n=0

(a1P1 + a2P2 + a3P3)n

n!(6.107)

46This is also consistent with (4.76)-(4.77) where charge conjugation in the neutrino casegives the same wave equation.

77

;

void resulting from spontaneous creation of pairs. It is the same for neutrinos,there is no creation of pairs of neutrino-anti-neutrino similar to the creation ofpairs particle-antiparticle with opposite electric charges.46

6.2 Invariances

As with the electromagnetism, we can enlarge the relativistic invariance to thegreater group Cl∗3. With the Lorentz dilation R defined by a M element in Cl∗3satisfying x → x′ = MxM† we have

φ′e = Mφe ; φ′

n = Mφn ; φ′p = Mφp ; φ′

a = Mφa ; Ψ′ = NΨ

N =

(M 0

0 M

); N =

(M 00 M†

)(6.99)

We may consider g1B and g2Wj , linked to qA, as covariants vectors:

g1B = Mg′1B′M ; g2W

j = Mg′2Wj ′M

g1B = Ng′1B′N ; g2W

j = Ng′2Wj ′N. (6.100)

This allows D to be a covariant vector, varying as ∇ ;

D = MD′M ; ∇ = M∇′M

D = ND′N. (6.101)

That also gives for the Weinberg-Salam angle:

B′ + iW ′3 = eiθW (A′ + iZ ′0) (6.102)

which means that the θW angle is Cl∗3 invariant, then is a relativistic invariant.We get

Dφe = MD′φ′e ; Dφn = MD′φ′

n (6.103)

Dφp = MD′φ′p ; Dφa = MD′φ′

a (6.104)

DΨ = ND′Ψ′ (6.105)

and the Cl∗3 invariance of electro-weak interactions is completely similar to theinvariance of the electromagnetism.

Operators P0, P1, P2 and P3 are built from projectors and have no inverse.They are not directly elements of a gauge group. Nevertheless we can builda Yang-Mills gauge group by using the exponential function. With four realnumbers a0, a1, a2, a3, we define

exp(a0P0) =

∞∑n=0

(a0P0)n

n!(6.106)

exp(ajPj) =

∞∑n=0

(a1P1 + a2P2 + a3P3)n

n!(6.107)

46This is also consistent with (4.76)-(4.77) where charge conjugation in the neutrino casegives the same wave equation.

77

(6.101)

That also gives for the Weinberg-Salam angle:

void resulting from spontaneous creation of pairs. It is the same for neutrinos,there is no creation of pairs of neutrino-anti-neutrino similar to the creation ofpairs particle-antiparticle with opposite electric charges.46

6.2 Invariances

As with the electromagnetism, we can enlarge the relativistic invariance to thegreater group Cl∗3. With the Lorentz dilation R defined by a M element in Cl∗3satisfying x → x′ = MxM† we have

φ′e = Mφe ; φ′

n = Mφn ; φ′p = Mφp ; φ′

a = Mφa ; Ψ′ = NΨ

N =

(M 0

0 M

); N =

(M 00 M†

)(6.99)

We may consider g1B and g2Wj , linked to qA, as covariants vectors:

g1B = Mg′1B′M ; g2W

j = Mg′2Wj ′M

g1B = Ng′1B′N ; g2W

j = Ng′2Wj ′N. (6.100)

This allows D to be a covariant vector, varying as ∇ ;

D = MD′M ; ∇ = M∇′M

D = ND′N. (6.101)

That also gives for the Weinberg-Salam angle:

B′ + iW ′3 = eiθW (A′ + iZ ′0) (6.102)

which means that the θW angle is Cl∗3 invariant, then is a relativistic invariant.We get

Dφe = MD′φ′e ; Dφn = MD′φ′

n (6.103)

Dφp = MD′φ′p ; Dφa = MD′φ′

a (6.104)

DΨ = ND′Ψ′ (6.105)

and the Cl∗3 invariance of electro-weak interactions is completely similar to theinvariance of the electromagnetism.

Operators P0, P1, P2 and P3 are built from projectors and have no inverse.They are not directly elements of a gauge group. Nevertheless we can builda Yang-Mills gauge group by using the exponential function. With four realnumbers a0, a1, a2, a3, we define

exp(a0P0) =

∞∑n=0

(a0P0)n

n!(6.106)

exp(ajPj) =

∞∑n=0

(a1P1 + a2P2 + a3P3)n

n!(6.107)

46This is also consistent with (4.76)-(4.77) where charge conjugation in the neutrino casegives the same wave equation.

77

(6.102)

which means that the θW angle is Cl*3 invariant, then is a relativistic invariant.

We get

(6.103)

void resulting from spontaneous creation of pairs. It is the same for neutrinos,there is no creation of pairs of neutrino-anti-neutrino similar to the creation ofpairs particle-antiparticle with opposite electric charges.46

6.2 Invariances

As with the electromagnetism, we can enlarge the relativistic invariance to thegreater group Cl∗3. With the Lorentz dilation R defined by a M element in Cl∗3satisfying x → x′ = MxM† we have

φ′e = Mφe ; φ′

n = Mφn ; φ′p = Mφp ; φ′

a = Mφa ; Ψ′ = NΨ

N =

(M 0

0 M

); N =

(M 00 M†

)(6.99)

We may consider g1B and g2Wj , linked to qA, as covariants vectors:

g1B = Mg′1B′M ; g2W

j = Mg′2Wj ′M

g1B = Ng′1B′N ; g2W

j = Ng′2Wj ′N. (6.100)

This allows D to be a covariant vector, varying as ∇ ;

D = MD′M ; ∇ = M∇′M

D = ND′N. (6.101)

That also gives for the Weinberg-Salam angle:

B′ + iW ′3 = eiθW (A′ + iZ ′0) (6.102)

which means that the θW angle is Cl∗3 invariant, then is a relativistic invariant.We get

Dφe = MD′φ′e ; Dφn = MD′φ′

n (6.103)

Dφp = MD′φ′p ; Dφa = MD′φ′

a (6.104)

DΨ = ND′Ψ′ (6.105)

and the Cl∗3 invariance of electro-weak interactions is completely similar to theinvariance of the electromagnetism.

Operators P0, P1, P2 and P3 are built from projectors and have no inverse.They are not directly elements of a gauge group. Nevertheless we can builda Yang-Mills gauge group by using the exponential function. With four realnumbers a0, a1, a2, a3, we define

exp(a0P0) =

∞∑n=0

(a0P0)n

n!(6.106)

exp(ajPj) =

∞∑n=0

(a1P1 + a2P2 + a3P3)n

n!(6.107)

46This is also consistent with (4.76)-(4.77) where charge conjugation in the neutrino casegives the same wave equation.

77

(6.104) (6.105)

and the Cl*3 invariance of electro-weak interactions is com-pletely similar to the invariance of the electromagnetism.

Operators P0 , P1 , P2 and P3 are built from projectors and have no inverse. They are not directly elements of a gauge group. Nevertheless we can build a Yang-Mills gauge group by using the exponential function. With four real numbers a0 , a1 , a2 , a3 , we define

void resulting from spontaneous creation of pairs. It is the same for neutrinos,there is no creation of pairs of neutrino-anti-neutrino similar to the creation ofpairs particle-antiparticle with opposite electric charges.46

6.2 Invariances

As with the electromagnetism, we can enlarge the relativistic invariance to thegreater group Cl∗3. With the Lorentz dilation R defined by a M element in Cl∗3satisfying x → x′ = MxM† we have

φ′e = Mφe ; φ′

n = Mφn ; φ′p = Mφp ; φ′

a = Mφa ; Ψ′ = NΨ

N =

(M 0

0 M

); N =

(M 00 M†

)(6.99)

We may consider g1B and g2Wj , linked to qA, as covariants vectors:

g1B = Mg′1B′M ; g2W

j = Mg′2Wj ′M

g1B = Ng′1B′N ; g2W

j = Ng′2Wj ′N. (6.100)

This allows D to be a covariant vector, varying as ∇ ;

D = MD′M ; ∇ = M∇′M

D = ND′N. (6.101)

That also gives for the Weinberg-Salam angle:

B′ + iW ′3 = eiθW (A′ + iZ ′0) (6.102)

which means that the θW angle is Cl∗3 invariant, then is a relativistic invariant.We get

Dφe = MD′φ′e ; Dφn = MD′φ′

n (6.103)

Dφp = MD′φ′p ; Dφa = MD′φ′

a (6.104)

DΨ = ND′Ψ′ (6.105)

and the Cl∗3 invariance of electro-weak interactions is completely similar to theinvariance of the electromagnetism.

Operators P0, P1, P2 and P3 are built from projectors and have no inverse.They are not directly elements of a gauge group. Nevertheless we can builda Yang-Mills gauge group by using the exponential function. With four realnumbers a0, a1, a2, a3, we define

exp(a0P0) =

∞∑n=0

(a0P0)n

n!(6.106)

exp(ajPj) =

∞∑n=0

(a1P1 + a2P2 + a3P3)n

n!(6.107)

46This is also consistent with (4.76)-(4.77) where charge conjugation in the neutrino casegives the same wave equation.

77

(6.106)

(6.107)

46 This is also consistent with (4.76)–(4.77) where charge conjuga-tion in the neutrino case gives the same wave equation.

28

Page 32: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201430

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

We get with (6.25), (6.30) to (6.33)We get with (6.25), (6.30) to (6.33)

exp(a0P0)(Ψ) =

(exp(a0p0)(φe) exp(a0p0)(φn)

exp(a0p0)(φa)σ1 exp(a0p0)(φp)σ1

)(6.108)

exp(a0p0)(φnL) = e−ia0

φnL ; exp(a0p0)(φnR) = φnR (6.109)

exp(a0p0)(φeL) = e−ia0

φeL ; exp(a0p0)(φeR) = e2ia0

φeR (6.110)

exp(a0p0)(φaR) = eia0

φaR ; exp(a0p0)(φaL) = φaL (6.111)

exp(a0p0)(φpR) = eia0

φpR ; exp(a0p0)(φpL) = e−2ia0

φpL (6.112)

exp(−a0P0) = [exp(a0P0)]−1 (6.113)

Next we let

a =√(a1)2 + (a2)2 + (a3)2 ; S = ajPj (6.114)

and we get

[exp(S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ) +sin(a)

aS(Ψ) (6.115)

[exp(−S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ)− sin(a)

aS(Ψ) (6.116)

which gives

exp(−S) = [exp(S)]−1. (6.117)

Since P0 commutes with S (see (6.16)) we get

exp(a0P0 + S) = exp(a0P0) exp(S) = exp(S) exp(a0P0) (6.118)

The set of the operators exp(a0P0 + S) is a U(1)× SU(2) Lie group. The localgauge invariance under this group comes from the derivation of products. If weuse

Ψ′ = [exp(a0P0 + S)](Ψ) ; D = γµDµ (6.119)

then DµΨ is replaced by D′µΨ

′ where

D′µΨ

′ = exp(a0P0 + S)DµΨ (6.120)

B′µ = Bµ − 2

g1∂µa

0 (6.121)

W ′jµPj =

[exp(S)W j

µPj −2

g2∂µ[exp(S)]

]exp(−S). (6.122)

6.3 The quark sector

For the first generation of fundamental fermions the standard model includes16 fermions, 8 particles and their antiparticles. We studied previously the case

78

We get with (6.25), (6.30) to (6.33)

exp(a0P0)(Ψ) =

(exp(a0p0)(φe) exp(a0p0)(φn)

exp(a0p0)(φa)σ1 exp(a0p0)(φp)σ1

)(6.108)

exp(a0p0)(φnL) = e−ia0

φnL ; exp(a0p0)(φnR) = φnR (6.109)

exp(a0p0)(φeL) = e−ia0

φeL ; exp(a0p0)(φeR) = e2ia0

φeR (6.110)

exp(a0p0)(φaR) = eia0

φaR ; exp(a0p0)(φaL) = φaL (6.111)

exp(a0p0)(φpR) = eia0

φpR ; exp(a0p0)(φpL) = e−2ia0

φpL (6.112)

exp(−a0P0) = [exp(a0P0)]−1 (6.113)

Next we let

a =√(a1)2 + (a2)2 + (a3)2 ; S = ajPj (6.114)

and we get

[exp(S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ) +sin(a)

aS(Ψ) (6.115)

[exp(−S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ)− sin(a)

aS(Ψ) (6.116)

which gives

exp(−S) = [exp(S)]−1. (6.117)

Since P0 commutes with S (see (6.16)) we get

exp(a0P0 + S) = exp(a0P0) exp(S) = exp(S) exp(a0P0) (6.118)

The set of the operators exp(a0P0 + S) is a U(1)× SU(2) Lie group. The localgauge invariance under this group comes from the derivation of products. If weuse

Ψ′ = [exp(a0P0 + S)](Ψ) ; D = γµDµ (6.119)

then DµΨ is replaced by D′µΨ

′ where

D′µΨ

′ = exp(a0P0 + S)DµΨ (6.120)

B′µ = Bµ − 2

g1∂µa

0 (6.121)

W ′jµPj =

[exp(S)W j

µPj −2

g2∂µ[exp(S)]

]exp(−S). (6.122)

6.3 The quark sector

For the first generation of fundamental fermions the standard model includes16 fermions, 8 particles and their antiparticles. We studied previously the case

78

; (6.108)

We get with (6.25), (6.30) to (6.33)

exp(a0P0)(Ψ) =

(exp(a0p0)(φe) exp(a0p0)(φn)

exp(a0p0)(φa)σ1 exp(a0p0)(φp)σ1

)(6.108)

exp(a0p0)(φnL) = e−ia0

φnL ; exp(a0p0)(φnR) = φnR (6.109)

exp(a0p0)(φeL) = e−ia0

φeL ; exp(a0p0)(φeR) = e2ia0

φeR (6.110)

exp(a0p0)(φaR) = eia0

φaR ; exp(a0p0)(φaL) = φaL (6.111)

exp(a0p0)(φpR) = eia0

φpR ; exp(a0p0)(φpL) = e−2ia0

φpL (6.112)

exp(−a0P0) = [exp(a0P0)]−1 (6.113)

Next we let

a =√(a1)2 + (a2)2 + (a3)2 ; S = ajPj (6.114)

and we get

[exp(S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ) +sin(a)

aS(Ψ) (6.115)

[exp(−S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ)− sin(a)

aS(Ψ) (6.116)

which gives

exp(−S) = [exp(S)]−1. (6.117)

Since P0 commutes with S (see (6.16)) we get

exp(a0P0 + S) = exp(a0P0) exp(S) = exp(S) exp(a0P0) (6.118)

The set of the operators exp(a0P0 + S) is a U(1)× SU(2) Lie group. The localgauge invariance under this group comes from the derivation of products. If weuse

Ψ′ = [exp(a0P0 + S)](Ψ) ; D = γµDµ (6.119)

then DµΨ is replaced by D′µΨ

′ where

D′µΨ

′ = exp(a0P0 + S)DµΨ (6.120)

B′µ = Bµ − 2

g1∂µa

0 (6.121)

W ′jµPj =

[exp(S)W j

µPj −2

g2∂µ[exp(S)]

]exp(−S). (6.122)

6.3 The quark sector

For the first generation of fundamental fermions the standard model includes16 fermions, 8 particles and their antiparticles. We studied previously the case

78

We get with (6.25), (6.30) to (6.33)

exp(a0P0)(Ψ) =

(exp(a0p0)(φe) exp(a0p0)(φn)

exp(a0p0)(φa)σ1 exp(a0p0)(φp)σ1

)(6.108)

exp(a0p0)(φnL) = e−ia0

φnL ; exp(a0p0)(φnR) = φnR (6.109)

exp(a0p0)(φeL) = e−ia0

φeL ; exp(a0p0)(φeR) = e2ia0

φeR (6.110)

exp(a0p0)(φaR) = eia0

φaR ; exp(a0p0)(φaL) = φaL (6.111)

exp(a0p0)(φpR) = eia0

φpR ; exp(a0p0)(φpL) = e−2ia0

φpL (6.112)

exp(−a0P0) = [exp(a0P0)]−1 (6.113)

Next we let

a =√(a1)2 + (a2)2 + (a3)2 ; S = ajPj (6.114)

and we get

[exp(S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ) +sin(a)

aS(Ψ) (6.115)

[exp(−S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ)− sin(a)

aS(Ψ) (6.116)

which gives

exp(−S) = [exp(S)]−1. (6.117)

Since P0 commutes with S (see (6.16)) we get

exp(a0P0 + S) = exp(a0P0) exp(S) = exp(S) exp(a0P0) (6.118)

The set of the operators exp(a0P0 + S) is a U(1)× SU(2) Lie group. The localgauge invariance under this group comes from the derivation of products. If weuse

Ψ′ = [exp(a0P0 + S)](Ψ) ; D = γµDµ (6.119)

then DµΨ is replaced by D′µΨ

′ where

D′µΨ

′ = exp(a0P0 + S)DµΨ (6.120)

B′µ = Bµ − 2

g1∂µa

0 (6.121)

W ′jµPj =

[exp(S)W j

µPj −2

g2∂µ[exp(S)]

]exp(−S). (6.122)

6.3 The quark sector

For the first generation of fundamental fermions the standard model includes16 fermions, 8 particles and their antiparticles. We studied previously the case

78

We get with (6.25), (6.30) to (6.33)

exp(a0P0)(Ψ) =

(exp(a0p0)(φe) exp(a0p0)(φn)

exp(a0p0)(φa)σ1 exp(a0p0)(φp)σ1

)(6.108)

exp(a0p0)(φnL) = e−ia0

φnL ; exp(a0p0)(φnR) = φnR (6.109)

exp(a0p0)(φeL) = e−ia0

φeL ; exp(a0p0)(φeR) = e2ia0

φeR (6.110)

exp(a0p0)(φaR) = eia0

φaR ; exp(a0p0)(φaL) = φaL (6.111)

exp(a0p0)(φpR) = eia0

φpR ; exp(a0p0)(φpL) = e−2ia0

φpL (6.112)

exp(−a0P0) = [exp(a0P0)]−1 (6.113)

Next we let

a =√(a1)2 + (a2)2 + (a3)2 ; S = ajPj (6.114)

and we get

[exp(S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ) +sin(a)

aS(Ψ) (6.115)

[exp(−S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ)− sin(a)

aS(Ψ) (6.116)

which gives

exp(−S) = [exp(S)]−1. (6.117)

Since P0 commutes with S (see (6.16)) we get

exp(a0P0 + S) = exp(a0P0) exp(S) = exp(S) exp(a0P0) (6.118)

The set of the operators exp(a0P0 + S) is a U(1)× SU(2) Lie group. The localgauge invariance under this group comes from the derivation of products. If weuse

Ψ′ = [exp(a0P0 + S)](Ψ) ; D = γµDµ (6.119)

then DµΨ is replaced by D′µΨ

′ where

D′µΨ

′ = exp(a0P0 + S)DµΨ (6.120)

B′µ = Bµ − 2

g1∂µa

0 (6.121)

W ′jµPj =

[exp(S)W j

µPj −2

g2∂µ[exp(S)]

]exp(−S). (6.122)

6.3 The quark sector

For the first generation of fundamental fermions the standard model includes16 fermions, 8 particles and their antiparticles. We studied previously the case

78

We get with (6.25), (6.30) to (6.33)

exp(a0P0)(Ψ) =

(exp(a0p0)(φe) exp(a0p0)(φn)

exp(a0p0)(φa)σ1 exp(a0p0)(φp)σ1

)(6.108)

exp(a0p0)(φnL) = e−ia0

φnL ; exp(a0p0)(φnR) = φnR (6.109)

exp(a0p0)(φeL) = e−ia0

φeL ; exp(a0p0)(φeR) = e2ia0

φeR (6.110)

exp(a0p0)(φaR) = eia0

φaR ; exp(a0p0)(φaL) = φaL (6.111)

exp(a0p0)(φpR) = eia0

φpR ; exp(a0p0)(φpL) = e−2ia0

φpL (6.112)

exp(−a0P0) = [exp(a0P0)]−1 (6.113)

Next we let

a =√(a1)2 + (a2)2 + (a3)2 ; S = ajPj (6.114)

and we get

[exp(S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ) +sin(a)

aS(Ψ) (6.115)

[exp(−S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ)− sin(a)

aS(Ψ) (6.116)

which gives

exp(−S) = [exp(S)]−1. (6.117)

Since P0 commutes with S (see (6.16)) we get

exp(a0P0 + S) = exp(a0P0) exp(S) = exp(S) exp(a0P0) (6.118)

The set of the operators exp(a0P0 + S) is a U(1)× SU(2) Lie group. The localgauge invariance under this group comes from the derivation of products. If weuse

Ψ′ = [exp(a0P0 + S)](Ψ) ; D = γµDµ (6.119)

then DµΨ is replaced by D′µΨ

′ where

D′µΨ

′ = exp(a0P0 + S)DµΨ (6.120)

B′µ = Bµ − 2

g1∂µa

0 (6.121)

W ′jµPj =

[exp(S)W j

µPj −2

g2∂µ[exp(S)]

]exp(−S). (6.122)

6.3 The quark sector

For the first generation of fundamental fermions the standard model includes16 fermions, 8 particles and their antiparticles. We studied previously the case

78

We get with (6.25), (6.30) to (6.33)

exp(a0P0)(Ψ) =

(exp(a0p0)(φe) exp(a0p0)(φn)

exp(a0p0)(φa)σ1 exp(a0p0)(φp)σ1

)(6.108)

exp(a0p0)(φnL) = e−ia0

φnL ; exp(a0p0)(φnR) = φnR (6.109)

exp(a0p0)(φeL) = e−ia0

φeL ; exp(a0p0)(φeR) = e2ia0

φeR (6.110)

exp(a0p0)(φaR) = eia0

φaR ; exp(a0p0)(φaL) = φaL (6.111)

exp(a0p0)(φpR) = eia0

φpR ; exp(a0p0)(φpL) = e−2ia0

φpL (6.112)

exp(−a0P0) = [exp(a0P0)]−1 (6.113)

Next we let

a =√(a1)2 + (a2)2 + (a3)2 ; S = ajPj (6.114)

and we get

[exp(S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ) +sin(a)

aS(Ψ) (6.115)

[exp(−S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ)− sin(a)

aS(Ψ) (6.116)

which gives

exp(−S) = [exp(S)]−1. (6.117)

Since P0 commutes with S (see (6.16)) we get

exp(a0P0 + S) = exp(a0P0) exp(S) = exp(S) exp(a0P0) (6.118)

The set of the operators exp(a0P0 + S) is a U(1)× SU(2) Lie group. The localgauge invariance under this group comes from the derivation of products. If weuse

Ψ′ = [exp(a0P0 + S)](Ψ) ; D = γµDµ (6.119)

then DµΨ is replaced by D′µΨ

′ where

D′µΨ

′ = exp(a0P0 + S)DµΨ (6.120)

B′µ = Bµ − 2

g1∂µa

0 (6.121)

W ′jµPj =

[exp(S)W j

µPj −2

g2∂µ[exp(S)]

]exp(−S). (6.122)

6.3 The quark sector

For the first generation of fundamental fermions the standard model includes16 fermions, 8 particles and their antiparticles. We studied previously the case

78

We get with (6.25), (6.30) to (6.33)

exp(a0P0)(Ψ) =

(exp(a0p0)(φe) exp(a0p0)(φn)

exp(a0p0)(φa)σ1 exp(a0p0)(φp)σ1

)(6.108)

exp(a0p0)(φnL) = e−ia0

φnL ; exp(a0p0)(φnR) = φnR (6.109)

exp(a0p0)(φeL) = e−ia0

φeL ; exp(a0p0)(φeR) = e2ia0

φeR (6.110)

exp(a0p0)(φaR) = eia0

φaR ; exp(a0p0)(φaL) = φaL (6.111)

exp(a0p0)(φpR) = eia0

φpR ; exp(a0p0)(φpL) = e−2ia0

φpL (6.112)

exp(−a0P0) = [exp(a0P0)]−1 (6.113)

Next we let

a =√(a1)2 + (a2)2 + (a3)2 ; S = ajPj (6.114)

and we get

[exp(S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ) +sin(a)

aS(Ψ) (6.115)

[exp(−S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ)− sin(a)

aS(Ψ) (6.116)

which gives

exp(−S) = [exp(S)]−1. (6.117)

Since P0 commutes with S (see (6.16)) we get

exp(a0P0 + S) = exp(a0P0) exp(S) = exp(S) exp(a0P0) (6.118)

The set of the operators exp(a0P0 + S) is a U(1)× SU(2) Lie group. The localgauge invariance under this group comes from the derivation of products. If weuse

Ψ′ = [exp(a0P0 + S)](Ψ) ; D = γµDµ (6.119)

then DµΨ is replaced by D′µΨ

′ where

D′µΨ

′ = exp(a0P0 + S)DµΨ (6.120)

B′µ = Bµ − 2

g1∂µa

0 (6.121)

W ′jµPj =

[exp(S)W j

µPj −2

g2∂µ[exp(S)]

]exp(−S). (6.122)

6.3 The quark sector

For the first generation of fundamental fermions the standard model includes16 fermions, 8 particles and their antiparticles. We studied previously the case

78

We get with (6.25), (6.30) to (6.33)

exp(a0P0)(Ψ) =

(exp(a0p0)(φe) exp(a0p0)(φn)

exp(a0p0)(φa)σ1 exp(a0p0)(φp)σ1

)(6.108)

exp(a0p0)(φnL) = e−ia0

φnL ; exp(a0p0)(φnR) = φnR (6.109)

exp(a0p0)(φeL) = e−ia0

φeL ; exp(a0p0)(φeR) = e2ia0

φeR (6.110)

exp(a0p0)(φaR) = eia0

φaR ; exp(a0p0)(φaL) = φaL (6.111)

exp(a0p0)(φpR) = eia0

φpR ; exp(a0p0)(φpL) = e−2ia0

φpL (6.112)

exp(−a0P0) = [exp(a0P0)]−1 (6.113)

Next we let

a =√(a1)2 + (a2)2 + (a3)2 ; S = ajPj (6.114)

and we get

[exp(S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ) +sin(a)

aS(Ψ) (6.115)

[exp(−S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ)− sin(a)

aS(Ψ) (6.116)

which gives

exp(−S) = [exp(S)]−1. (6.117)

Since P0 commutes with S (see (6.16)) we get

exp(a0P0 + S) = exp(a0P0) exp(S) = exp(S) exp(a0P0) (6.118)

The set of the operators exp(a0P0 + S) is a U(1)× SU(2) Lie group. The localgauge invariance under this group comes from the derivation of products. If weuse

Ψ′ = [exp(a0P0 + S)](Ψ) ; D = γµDµ (6.119)

then DµΨ is replaced by D′µΨ

′ where

D′µΨ

′ = exp(a0P0 + S)DµΨ (6.120)

B′µ = Bµ − 2

g1∂µa

0 (6.121)

W ′jµPj =

[exp(S)W j

µPj −2

g2∂µ[exp(S)]

]exp(−S). (6.122)

6.3 The quark sector

For the first generation of fundamental fermions the standard model includes16 fermions, 8 particles and their antiparticles. We studied previously the case

78

We get with (6.25), (6.30) to (6.33)

exp(a0P0)(Ψ) =

(exp(a0p0)(φe) exp(a0p0)(φn)

exp(a0p0)(φa)σ1 exp(a0p0)(φp)σ1

)(6.108)

exp(a0p0)(φnL) = e−ia0

φnL ; exp(a0p0)(φnR) = φnR (6.109)

exp(a0p0)(φeL) = e−ia0

φeL ; exp(a0p0)(φeR) = e2ia0

φeR (6.110)

exp(a0p0)(φaR) = eia0

φaR ; exp(a0p0)(φaL) = φaL (6.111)

exp(a0p0)(φpR) = eia0

φpR ; exp(a0p0)(φpL) = e−2ia0

φpL (6.112)

exp(−a0P0) = [exp(a0P0)]−1 (6.113)

Next we let

a =√(a1)2 + (a2)2 + (a3)2 ; S = ajPj (6.114)

and we get

[exp(S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ) +sin(a)

aS(Ψ) (6.115)

[exp(−S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ)− sin(a)

aS(Ψ) (6.116)

which gives

exp(−S) = [exp(S)]−1. (6.117)

Since P0 commutes with S (see (6.16)) we get

exp(a0P0 + S) = exp(a0P0) exp(S) = exp(S) exp(a0P0) (6.118)

The set of the operators exp(a0P0 + S) is a U(1)× SU(2) Lie group. The localgauge invariance under this group comes from the derivation of products. If weuse

Ψ′ = [exp(a0P0 + S)](Ψ) ; D = γµDµ (6.119)

then DµΨ is replaced by D′µΨ

′ where

D′µΨ

′ = exp(a0P0 + S)DµΨ (6.120)

B′µ = Bµ − 2

g1∂µa

0 (6.121)

W ′jµPj =

[exp(S)W j

µPj −2

g2∂µ[exp(S)]

]exp(−S). (6.122)

6.3 The quark sector

For the first generation of fundamental fermions the standard model includes16 fermions, 8 particles and their antiparticles. We studied previously the case

78

(6.109)

(6.110)

(6.111)

(6.112)

We get with (6.25), (6.30) to (6.33)

exp(a0P0)(Ψ) =

(exp(a0p0)(φe) exp(a0p0)(φn)

exp(a0p0)(φa)σ1 exp(a0p0)(φp)σ1

)(6.108)

exp(a0p0)(φnL) = e−ia0

φnL ; exp(a0p0)(φnR) = φnR (6.109)

exp(a0p0)(φeL) = e−ia0

φeL ; exp(a0p0)(φeR) = e2ia0

φeR (6.110)

exp(a0p0)(φaR) = eia0

φaR ; exp(a0p0)(φaL) = φaL (6.111)

exp(a0p0)(φpR) = eia0

φpR ; exp(a0p0)(φpL) = e−2ia0

φpL (6.112)

exp(−a0P0) = [exp(a0P0)]−1 (6.113)

Next we let

a =√(a1)2 + (a2)2 + (a3)2 ; S = ajPj (6.114)

and we get

[exp(S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ) +sin(a)

aS(Ψ) (6.115)

[exp(−S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ)− sin(a)

aS(Ψ) (6.116)

which gives

exp(−S) = [exp(S)]−1. (6.117)

Since P0 commutes with S (see (6.16)) we get

exp(a0P0 + S) = exp(a0P0) exp(S) = exp(S) exp(a0P0) (6.118)

The set of the operators exp(a0P0 + S) is a U(1)× SU(2) Lie group. The localgauge invariance under this group comes from the derivation of products. If weuse

Ψ′ = [exp(a0P0 + S)](Ψ) ; D = γµDµ (6.119)

then DµΨ is replaced by D′µΨ

′ where

D′µΨ

′ = exp(a0P0 + S)DµΨ (6.120)

B′µ = Bµ − 2

g1∂µa

0 (6.121)

W ′jµPj =

[exp(S)W j

µPj −2

g2∂µ[exp(S)]

]exp(−S). (6.122)

6.3 The quark sector

For the first generation of fundamental fermions the standard model includes16 fermions, 8 particles and their antiparticles. We studied previously the case

78

(6.113)

Next we let

We get with (6.25), (6.30) to (6.33)

exp(a0P0)(Ψ) =

(exp(a0p0)(φe) exp(a0p0)(φn)

exp(a0p0)(φa)σ1 exp(a0p0)(φp)σ1

)(6.108)

exp(a0p0)(φnL) = e−ia0

φnL ; exp(a0p0)(φnR) = φnR (6.109)

exp(a0p0)(φeL) = e−ia0

φeL ; exp(a0p0)(φeR) = e2ia0

φeR (6.110)

exp(a0p0)(φaR) = eia0

φaR ; exp(a0p0)(φaL) = φaL (6.111)

exp(a0p0)(φpR) = eia0

φpR ; exp(a0p0)(φpL) = e−2ia0

φpL (6.112)

exp(−a0P0) = [exp(a0P0)]−1 (6.113)

Next we let

a =√

(a1)2 + (a2)2 + (a3)2 ; S = ajPj (6.114)

and we get

[exp(S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ) +sin(a)

aS(Ψ) (6.115)

[exp(−S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ)− sin(a)

aS(Ψ) (6.116)

which gives

exp(−S) = [exp(S)]−1. (6.117)

Since P0 commutes with S (see (6.16)) we get

exp(a0P0 + S) = exp(a0P0) exp(S) = exp(S) exp(a0P0) (6.118)

The set of the operators exp(a0P0 + S) is a U(1)× SU(2) Lie group. The localgauge invariance under this group comes from the derivation of products. If weuse

Ψ′ = [exp(a0P0 + S)](Ψ) ; D = γµDµ (6.119)

then DµΨ is replaced by D′µΨ

′ where

D′µΨ

′ = exp(a0P0 + S)DµΨ (6.120)

B′µ = Bµ − 2

g1∂µa

0 (6.121)

W ′jµPj =

[exp(S)W j

µPj −2

g2∂µ[exp(S)]

]exp(−S). (6.122)

6.3 The quark sector

For the first generation of fundamental fermions the standard model includes16 fermions, 8 particles and their antiparticles. We studied previously the case

78

(6.114)

and we get

We get with (6.25), (6.30) to (6.33)

exp(a0P0)(Ψ) =

(exp(a0p0)(φe) exp(a0p0)(φn)

exp(a0p0)(φa)σ1 exp(a0p0)(φp)σ1

)(6.108)

exp(a0p0)(φnL) = e−ia0

φnL ; exp(a0p0)(φnR) = φnR (6.109)

exp(a0p0)(φeL) = e−ia0

φeL ; exp(a0p0)(φeR) = e2ia0

φeR (6.110)

exp(a0p0)(φaR) = eia0

φaR ; exp(a0p0)(φaL) = φaL (6.111)

exp(a0p0)(φpR) = eia0

φpR ; exp(a0p0)(φpL) = e−2ia0

φpL (6.112)

exp(−a0P0) = [exp(a0P0)]−1 (6.113)

Next we let

a =√(a1)2 + (a2)2 + (a3)2 ; S = ajPj (6.114)

and we get

[exp(S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ) +sin(a)

aS(Ψ) (6.115)

[exp(−S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ)− sin(a)

aS(Ψ) (6.116)

which gives

exp(−S) = [exp(S)]−1. (6.117)

Since P0 commutes with S (see (6.16)) we get

exp(a0P0 + S) = exp(a0P0) exp(S) = exp(S) exp(a0P0) (6.118)

The set of the operators exp(a0P0 + S) is a U(1)× SU(2) Lie group. The localgauge invariance under this group comes from the derivation of products. If weuse

Ψ′ = [exp(a0P0 + S)](Ψ) ; D = γµDµ (6.119)

then DµΨ is replaced by D′µΨ

′ where

D′µΨ

′ = exp(a0P0 + S)DµΨ (6.120)

B′µ = Bµ − 2

g1∂µa

0 (6.121)

W ′jµPj =

[exp(S)W j

µPj −2

g2∂µ[exp(S)]

]exp(−S). (6.122)

6.3 The quark sector

For the first generation of fundamental fermions the standard model includes16 fermions, 8 particles and their antiparticles. We studied previously the case

78

(6.115)

We get with (6.25), (6.30) to (6.33)

exp(a0P0)(Ψ) =

(exp(a0p0)(φe) exp(a0p0)(φn)

exp(a0p0)(φa)σ1 exp(a0p0)(φp)σ1

)(6.108)

exp(a0p0)(φnL) = e−ia0

φnL ; exp(a0p0)(φnR) = φnR (6.109)

exp(a0p0)(φeL) = e−ia0

φeL ; exp(a0p0)(φeR) = e2ia0

φeR (6.110)

exp(a0p0)(φaR) = eia0

φaR ; exp(a0p0)(φaL) = φaL (6.111)

exp(a0p0)(φpR) = eia0

φpR ; exp(a0p0)(φpL) = e−2ia0

φpL (6.112)

exp(−a0P0) = [exp(a0P0)]−1 (6.113)

Next we let

a =√(a1)2 + (a2)2 + (a3)2 ; S = ajPj (6.114)

and we get

[exp(S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ) +sin(a)

aS(Ψ) (6.115)

[exp(−S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ)− sin(a)

aS(Ψ) (6.116)

which gives

exp(−S) = [exp(S)]−1. (6.117)

Since P0 commutes with S (see (6.16)) we get

exp(a0P0 + S) = exp(a0P0) exp(S) = exp(S) exp(a0P0) (6.118)

The set of the operators exp(a0P0 + S) is a U(1)× SU(2) Lie group. The localgauge invariance under this group comes from the derivation of products. If weuse

Ψ′ = [exp(a0P0 + S)](Ψ) ; D = γµDµ (6.119)

then DµΨ is replaced by D′µΨ

′ where

D′µΨ

′ = exp(a0P0 + S)DµΨ (6.120)

B′µ = Bµ − 2

g1∂µa

0 (6.121)

W ′jµPj =

[exp(S)W j

µPj −2

g2∂µ[exp(S)]

]exp(−S). (6.122)

6.3 The quark sector

For the first generation of fundamental fermions the standard model includes16 fermions, 8 particles and their antiparticles. We studied previously the case

78

(6.116)

which gives

We get with (6.25), (6.30) to (6.33)

exp(a0P0)(Ψ) =

(exp(a0p0)(φe) exp(a0p0)(φn)

exp(a0p0)(φa)σ1 exp(a0p0)(φp)σ1

)(6.108)

exp(a0p0)(φnL) = e−ia0

φnL ; exp(a0p0)(φnR) = φnR (6.109)

exp(a0p0)(φeL) = e−ia0

φeL ; exp(a0p0)(φeR) = e2ia0

φeR (6.110)

exp(a0p0)(φaR) = eia0

φaR ; exp(a0p0)(φaL) = φaL (6.111)

exp(a0p0)(φpR) = eia0

φpR ; exp(a0p0)(φpL) = e−2ia0

φpL (6.112)

exp(−a0P0) = [exp(a0P0)]−1 (6.113)

Next we let

a =√(a1)2 + (a2)2 + (a3)2 ; S = ajPj (6.114)

and we get

[exp(S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ) +sin(a)

aS(Ψ) (6.115)

[exp(−S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ)− sin(a)

aS(Ψ) (6.116)

which gives

exp(−S) = [exp(S)]−1. (6.117)

Since P0 commutes with S (see (6.16)) we get

exp(a0P0 + S) = exp(a0P0) exp(S) = exp(S) exp(a0P0) (6.118)

The set of the operators exp(a0P0 + S) is a U(1)× SU(2) Lie group. The localgauge invariance under this group comes from the derivation of products. If weuse

Ψ′ = [exp(a0P0 + S)](Ψ) ; D = γµDµ (6.119)

then DµΨ is replaced by D′µΨ

′ where

D′µΨ

′ = exp(a0P0 + S)DµΨ (6.120)

B′µ = Bµ − 2

g1∂µa

0 (6.121)

W ′jµPj =

[exp(S)W j

µPj −2

g2∂µ[exp(S)]

]exp(−S). (6.122)

6.3 The quark sector

For the first generation of fundamental fermions the standard model includes16 fermions, 8 particles and their antiparticles. We studied previously the case

78

(6.117)

Since P0 commutes with S (see (6.16)) we get

We get with (6.25), (6.30) to (6.33)

exp(a0P0)(Ψ) =

(exp(a0p0)(φe) exp(a0p0)(φn)

exp(a0p0)(φa)σ1 exp(a0p0)(φp)σ1

)(6.108)

exp(a0p0)(φnL) = e−ia0

φnL ; exp(a0p0)(φnR) = φnR (6.109)

exp(a0p0)(φeL) = e−ia0

φeL ; exp(a0p0)(φeR) = e2ia0

φeR (6.110)

exp(a0p0)(φaR) = eia0

φaR ; exp(a0p0)(φaL) = φaL (6.111)

exp(a0p0)(φpR) = eia0

φpR ; exp(a0p0)(φpL) = e−2ia0

φpL (6.112)

exp(−a0P0) = [exp(a0P0)]−1 (6.113)

Next we let

a =√(a1)2 + (a2)2 + (a3)2 ; S = ajPj (6.114)

and we get

[exp(S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ) +sin(a)

aS(Ψ) (6.115)

[exp(−S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ)− sin(a)

aS(Ψ) (6.116)

which gives

exp(−S) = [exp(S)]−1. (6.117)

Since P0 commutes with S (see (6.16)) we get

exp(a0P0 + S) = exp(a0P0) exp(S) = exp(S) exp(a0P0) (6.118)

The set of the operators exp(a0P0 + S) is a U(1)× SU(2) Lie group. The localgauge invariance under this group comes from the derivation of products. If weuse

Ψ′ = [exp(a0P0 + S)](Ψ) ; D = γµDµ (6.119)

then DµΨ is replaced by D′µΨ

′ where

D′µΨ

′ = exp(a0P0 + S)DµΨ (6.120)

B′µ = Bµ − 2

g1∂µa

0 (6.121)

W ′jµPj =

[exp(S)W j

µPj −2

g2∂µ[exp(S)]

]exp(−S). (6.122)

6.3 The quark sector

For the first generation of fundamental fermions the standard model includes16 fermions, 8 particles and their antiparticles. We studied previously the case

78

We get with (6.25), (6.30) to (6.33)

exp(a0P0)(Ψ) =

(exp(a0p0)(φe) exp(a0p0)(φn)

exp(a0p0)(φa)σ1 exp(a0p0)(φp)σ1

)(6.108)

exp(a0p0)(φnL) = e−ia0

φnL ; exp(a0p0)(φnR) = φnR (6.109)

exp(a0p0)(φeL) = e−ia0

φeL ; exp(a0p0)(φeR) = e2ia0

φeR (6.110)

exp(a0p0)(φaR) = eia0

φaR ; exp(a0p0)(φaL) = φaL (6.111)

exp(a0p0)(φpR) = eia0

φpR ; exp(a0p0)(φpL) = e−2ia0

φpL (6.112)

exp(−a0P0) = [exp(a0P0)]−1 (6.113)

Next we let

a =√(a1)2 + (a2)2 + (a3)2 ; S = ajPj (6.114)

and we get

[exp(S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ) +sin(a)

aS(Ψ) (6.115)

[exp(−S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ)− sin(a)

aS(Ψ) (6.116)

which gives

exp(−S) = [exp(S)]−1. (6.117)

Since P0 commutes with S (see (6.16)) we get

exp(a0P0 + S) = exp(a0P0) exp(S) = exp(S) exp(a0P0) (6.118)

The set of the operators exp(a0P0 + S) is a U(1)× SU(2) Lie group. The localgauge invariance under this group comes from the derivation of products. If weuse

Ψ′ = [exp(a0P0 + S)](Ψ) ; D = γµDµ (6.119)

then DµΨ is replaced by D′µΨ

′ where

D′µΨ

′ = exp(a0P0 + S)DµΨ (6.120)

B′µ = Bµ − 2

g1∂µa

0 (6.121)

W ′jµPj =

[exp(S)W j

µPj −2

g2∂µ[exp(S)]

]exp(−S). (6.122)

6.3 The quark sector

For the first generation of fundamental fermions the standard model includes16 fermions, 8 particles and their antiparticles. We studied previously the case

78

. (6.118)

The set of the operators exp (a0 P0 + S) is a U (1) × SU (2) Lie group. The local gauge invariance un-der this group comes from the derivation of products. If we use

We get with (6.25), (6.30) to (6.33)

exp(a0P0)(Ψ) =

(exp(a0p0)(φe) exp(a0p0)(φn)

exp(a0p0)(φa)σ1 exp(a0p0)(φp)σ1

)(6.108)

exp(a0p0)(φnL) = e−ia0

φnL ; exp(a0p0)(φnR) = φnR (6.109)

exp(a0p0)(φeL) = e−ia0

φeL ; exp(a0p0)(φeR) = e2ia0

φeR (6.110)

exp(a0p0)(φaR) = eia0

φaR ; exp(a0p0)(φaL) = φaL (6.111)

exp(a0p0)(φpR) = eia0

φpR ; exp(a0p0)(φpL) = e−2ia0

φpL (6.112)

exp(−a0P0) = [exp(a0P0)]−1 (6.113)

Next we let

a =√(a1)2 + (a2)2 + (a3)2 ; S = ajPj (6.114)

and we get

[exp(S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ) +sin(a)

aS(Ψ) (6.115)

[exp(−S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ)− sin(a)

aS(Ψ) (6.116)

which gives

exp(−S) = [exp(S)]−1. (6.117)

Since P0 commutes with S (see (6.16)) we get

exp(a0P0 + S) = exp(a0P0) exp(S) = exp(S) exp(a0P0) (6.118)

The set of the operators exp(a0P0 + S) is a U(1)× SU(2) Lie group. The localgauge invariance under this group comes from the derivation of products. If weuse

Ψ′ = [exp(a0P0 + S)](Ψ) ; D = γµDµ (6.119)

then DµΨ is replaced by D′µΨ

′ where

D′µΨ

′ = exp(a0P0 + S)DµΨ (6.120)

B′µ = Bµ − 2

g1∂µa

0 (6.121)

W ′jµPj =

[exp(S)W j

µPj −2

g2∂µ[exp(S)]

]exp(−S). (6.122)

6.3 The quark sector

For the first generation of fundamental fermions the standard model includes16 fermions, 8 particles and their antiparticles. We studied previously the case

78

(6.119)

then Dµ Ψ is replaced by Dµwhere ׳Ψ ׳

We get with (6.25), (6.30) to (6.33)

exp(a0P0)(Ψ) =

(exp(a0p0)(φe) exp(a0p0)(φn)

exp(a0p0)(φa)σ1 exp(a0p0)(φp)σ1

)(6.108)

exp(a0p0)(φnL) = e−ia0

φnL ; exp(a0p0)(φnR) = φnR (6.109)

exp(a0p0)(φeL) = e−ia0

φeL ; exp(a0p0)(φeR) = e2ia0

φeR (6.110)

exp(a0p0)(φaR) = eia0

φaR ; exp(a0p0)(φaL) = φaL (6.111)

exp(a0p0)(φpR) = eia0

φpR ; exp(a0p0)(φpL) = e−2ia0

φpL (6.112)

exp(−a0P0) = [exp(a0P0)]−1 (6.113)

Next we let

a =√(a1)2 + (a2)2 + (a3)2 ; S = ajPj (6.114)

and we get

[exp(S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ) +sin(a)

aS(Ψ) (6.115)

[exp(−S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ)− sin(a)

aS(Ψ) (6.116)

which gives

exp(−S) = [exp(S)]−1. (6.117)

Since P0 commutes with S (see (6.16)) we get

exp(a0P0 + S) = exp(a0P0) exp(S) = exp(S) exp(a0P0) (6.118)

The set of the operators exp(a0P0 + S) is a U(1)× SU(2) Lie group. The localgauge invariance under this group comes from the derivation of products. If weuse

Ψ′ = [exp(a0P0 + S)](Ψ) ; D = γµDµ (6.119)

then DµΨ is replaced by D′µΨ

′ where

D′µΨ

′ = exp(a0P0 + S)DµΨ (6.120)

B′µ = Bµ − 2

g1∂µa

0 (6.121)

W ′jµPj =

[exp(S)W j

µPj −2

g2∂µ[exp(S)]

]exp(−S). (6.122)

6.3 The quark sector

For the first generation of fundamental fermions the standard model includes16 fermions, 8 particles and their antiparticles. We studied previously the case

78

(6.120)

We get with (6.25), (6.30) to (6.33)

exp(a0P0)(Ψ) =

(exp(a0p0)(φe) exp(a0p0)(φn)

exp(a0p0)(φa)σ1 exp(a0p0)(φp)σ1

)(6.108)

exp(a0p0)(φnL) = e−ia0

φnL ; exp(a0p0)(φnR) = φnR (6.109)

exp(a0p0)(φeL) = e−ia0

φeL ; exp(a0p0)(φeR) = e2ia0

φeR (6.110)

exp(a0p0)(φaR) = eia0

φaR ; exp(a0p0)(φaL) = φaL (6.111)

exp(a0p0)(φpR) = eia0

φpR ; exp(a0p0)(φpL) = e−2ia0

φpL (6.112)

exp(−a0P0) = [exp(a0P0)]−1 (6.113)

Next we let

a =√(a1)2 + (a2)2 + (a3)2 ; S = ajPj (6.114)

and we get

[exp(S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ) +sin(a)

aS(Ψ) (6.115)

[exp(−S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ)− sin(a)

aS(Ψ) (6.116)

which gives

exp(−S) = [exp(S)]−1. (6.117)

Since P0 commutes with S (see (6.16)) we get

exp(a0P0 + S) = exp(a0P0) exp(S) = exp(S) exp(a0P0) (6.118)

The set of the operators exp(a0P0 + S) is a U(1)× SU(2) Lie group. The localgauge invariance under this group comes from the derivation of products. If weuse

Ψ′ = [exp(a0P0 + S)](Ψ) ; D = γµDµ (6.119)

then DµΨ is replaced by D′µΨ

′ where

D′µΨ

′ = exp(a0P0 + S)DµΨ (6.120)

B′µ = Bµ − 2

g1∂µa

0 (6.121)

W ′jµPj =

[exp(S)W j

µPj −2

g2∂µ[exp(S)]

]exp(−S). (6.122)

6.3 The quark sector

For the first generation of fundamental fermions the standard model includes16 fermions, 8 particles and their antiparticles. We studied previously the case

78

(6.121)

We get with (6.25), (6.30) to (6.33)

exp(a0P0)(Ψ) =

(exp(a0p0)(φe) exp(a0p0)(φn)

exp(a0p0)(φa)σ1 exp(a0p0)(φp)σ1

)(6.108)

exp(a0p0)(φnL) = e−ia0

φnL ; exp(a0p0)(φnR) = φnR (6.109)

exp(a0p0)(φeL) = e−ia0

φeL ; exp(a0p0)(φeR) = e2ia0

φeR (6.110)

exp(a0p0)(φaR) = eia0

φaR ; exp(a0p0)(φaL) = φaL (6.111)

exp(a0p0)(φpR) = eia0

φpR ; exp(a0p0)(φpL) = e−2ia0

φpL (6.112)

exp(−a0P0) = [exp(a0P0)]−1 (6.113)

Next we let

a =√(a1)2 + (a2)2 + (a3)2 ; S = ajPj (6.114)

and we get

[exp(S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ) +sin(a)

aS(Ψ) (6.115)

[exp(−S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ)− sin(a)

aS(Ψ) (6.116)

which gives

exp(−S) = [exp(S)]−1. (6.117)

Since P0 commutes with S (see (6.16)) we get

exp(a0P0 + S) = exp(a0P0) exp(S) = exp(S) exp(a0P0) (6.118)

The set of the operators exp(a0P0 + S) is a U(1)× SU(2) Lie group. The localgauge invariance under this group comes from the derivation of products. If weuse

Ψ′ = [exp(a0P0 + S)](Ψ) ; D = γµDµ (6.119)

then DµΨ is replaced by D′µΨ

′ where

D′µΨ

′ = exp(a0P0 + S)DµΨ (6.120)

B′µ = Bµ − 2

g1∂µa

0 (6.121)

W ′jµPj =

[exp(S)W j

µPj −2

g2∂µ[exp(S)]

]exp(−S). (6.122)

6.3 The quark sector

For the first generation of fundamental fermions the standard model includes16 fermions, 8 particles and their antiparticles. We studied previously the case

78

(6.122)

6.3 The quark sector

For the first generation of fundamental fermions the standard model includes16 fermions, 8 particles and their antiparticles. We studied previously the case of the electron, its neutrino, its antiparticle the positron and its anti-neutrino. We put these waves into a unique wave (6.8) that will be named now as Ψl . Each generation in-cludes also two quarks with three states, so we get six waves similar to ϕe or ϕn . Quarks of the first genera-tion are named u and d and the couple d-u is similar to n-e for electro-weak interactions but with differences since the electric charge of u is

of the electron, its neutrino, its antiparticle the positron and its anti-neutrino.We put these waves into a unique wave (6.8) that will be named now as Ψl.Each generation includes also two quarks with three states, so we get six wavessimilar to φe or φn. Quarks of the first generation are named u and d and thecouple d-u is similar to n-e for electro-weak interactions but with differencessince the electric charge of u is 2

3 |e|, the charge of d is − 13 |e|. Similarly to the

lepton sector, electric charges of antiparticles are opposite to charges of particles.Three states of “color” are named r, g, b (red, green, blue). So we build a wavewith all fermions of the first generation as

Ψ =

(Ψl Ψr

Ψg Ψb

)(6.123)

where Ψl is defined by (6.8) and Ψr, Ψg, Ψb are defined on the same model:

Ψr =

(φdr φur

φurσ1 φdrσ1

)=

(φdr φur

φur φdr

)(6.124)

Ψg =

(φdg φug

φugσ1 φdgσ1

)=

(φdg φug

φug φdg

)(6.125)

Ψb =

(φdb φub

φubσ1 φdbσ1

)=

(φdb φub

φub φdb

). (6.126)

The wave is a function of space-time with value into Cl5,1 which is a sub-algebraof Cl5,2 = M8(C) (see 1.5). As previously, electro-weak interactions are obtainedby replacing partial derivatives by covariant derivatives. Now we use notationsof 1.5 and we let

W j = ΛµW jµ, j = 1, 2, 3 ; D = ΛµDµ ; Λ0 = −Λ0 ; Λj = Λj (6.127)

for j = 1, 2, 3. The covariant derivative reads now

D(Ψ) = ∂(Ψ) +g12B P 0(Ψ) +

g22W jP j(Ψ). (6.128)

We use two projectors P± satisfying

P±(Ψ) =1

2(Ψ∓ iΨΛ21) ; i = Λ0123 (6.129)

Three operators act on the quark sector as on the lepton sector :

P 1 = P+(Ψ)Λ53 (6.130)

P 2 = P+(Ψ)Λ0125 (6.131)

P 3 = P+(Ψ)Λ0132. (6.132)

79

, the charge of d is

of the electron, its neutrino, its antiparticle the positron and its anti-neutrino.We put these waves into a unique wave (6.8) that will be named now as Ψl.Each generation includes also two quarks with three states, so we get six wavessimilar to φe or φn. Quarks of the first generation are named u and d and thecouple d-u is similar to n-e for electro-weak interactions but with differencessince the electric charge of u is 2

3 |e|, the charge of d is − 13 |e|. Similarly to the

lepton sector, electric charges of antiparticles are opposite to charges of particles.Three states of “color” are named r, g, b (red, green, blue). So we build a wavewith all fermions of the first generation as

Ψ =

(Ψl Ψr

Ψg Ψb

)(6.123)

where Ψl is defined by (6.8) and Ψr, Ψg, Ψb are defined on the same model:

Ψr =

(φdr φur

φurσ1 φdrσ1

)=

(φdr φur

φur φdr

)(6.124)

Ψg =

(φdg φug

φugσ1 φdgσ1

)=

(φdg φug

φug φdg

)(6.125)

Ψb =

(φdb φub

φubσ1 φdbσ1

)=

(φdb φub

φub φdb

). (6.126)

The wave is a function of space-time with value into Cl5,1 which is a sub-algebraof Cl5,2 = M8(C) (see 1.5). As previously, electro-weak interactions are obtainedby replacing partial derivatives by covariant derivatives. Now we use notationsof 1.5 and we let

W j = ΛµW jµ, j = 1, 2, 3 ; D = ΛµDµ ; Λ0 = −Λ0 ; Λj = Λj (6.127)

for j = 1, 2, 3. The covariant derivative reads now

D(Ψ) = ∂(Ψ) +g12B P 0(Ψ) +

g22W jP j(Ψ). (6.128)

We use two projectors P± satisfying

P±(Ψ) =1

2(Ψ∓ iΨΛ21) ; i = Λ0123 (6.129)

Three operators act on the quark sector as on the lepton sector :

P 1 = P+(Ψ)Λ53 (6.130)

P 2 = P+(Ψ)Λ0125 (6.131)

P 3 = P+(Ψ)Λ0132. (6.132)

79

. Similarly to the lepton sector, electric charges of antiparticles are opposite to charges of particles. Three states of “color” are named r, g, b (red, green, blue). So we build a wave with all fermions of the first genera-tion as

of the electron, its neutrino, its antiparticle the positron and its anti-neutrino.We put these waves into a unique wave (6.8) that will be named now as Ψl.Each generation includes also two quarks with three states, so we get six wavessimilar to φe or φn. Quarks of the first generation are named u and d and thecouple d-u is similar to n-e for electro-weak interactions but with differencessince the electric charge of u is 2

3 |e|, the charge of d is − 13 |e|. Similarly to the

lepton sector, electric charges of antiparticles are opposite to charges of particles.Three states of “color” are named r, g, b (red, green, blue). So we build a wavewith all fermions of the first generation as

Ψ =

(Ψl Ψr

Ψg Ψb

)(6.123)

where Ψl is defined by (6.8) and Ψr, Ψg, Ψb are defined on the same model:

Ψr =

(φdr φur

φurσ1 φdrσ1

)=

(φdr φur

φur φdr

)(6.124)

Ψg =

(φdg φug

φugσ1 φdgσ1

)=

(φdg φug

φug φdg

)(6.125)

Ψb =

(φdb φub

φubσ1 φdbσ1

)=

(φdb φub

φub φdb

). (6.126)

The wave is a function of space-time with value into Cl5,1 which is a sub-algebraof Cl5,2 = M8(C) (see 1.5). As previously, electro-weak interactions are obtainedby replacing partial derivatives by covariant derivatives. Now we use notationsof 1.5 and we let

W j = ΛµW jµ, j = 1, 2, 3 ; D = ΛµDµ ; Λ0 = −Λ0 ; Λj = Λj (6.127)

for j = 1, 2, 3. The covariant derivative reads now

D(Ψ) = ∂(Ψ) +g12B P 0(Ψ) +

g22W jP j(Ψ). (6.128)

We use two projectors P± satisfying

P±(Ψ) =1

2(Ψ∓ iΨΛ21) ; i = Λ0123 (6.129)

Three operators act on the quark sector as on the lepton sector :

P 1 = P+(Ψ)Λ53 (6.130)

P 2 = P+(Ψ)Λ0125 (6.131)

P 3 = P+(Ψ)Λ0132. (6.132)

79

(6.123)

where Ψl is defined by (6.8) and Ψr , Ψg , Ψb are defined on the same model:

of the electron, its neutrino, its antiparticle the positron and its anti-neutrino.We put these waves into a unique wave (6.8) that will be named now as Ψl.Each generation includes also two quarks with three states, so we get six wavessimilar to φe or φn. Quarks of the first generation are named u and d and thecouple d-u is similar to n-e for electro-weak interactions but with differencessince the electric charge of u is 2

3 |e|, the charge of d is − 13 |e|. Similarly to the

lepton sector, electric charges of antiparticles are opposite to charges of particles.Three states of “color” are named r, g, b (red, green, blue). So we build a wavewith all fermions of the first generation as

Ψ =

(Ψl Ψr

Ψg Ψb

)(6.123)

where Ψl is defined by (6.8) and Ψr, Ψg, Ψb are defined on the same model:

Ψr =

(φdr φur

φurσ1 φdrσ1

)=

(φdr φur

φur φdr

)(6.124)

Ψg =

(φdg φug

φugσ1 φdgσ1

)=

(φdg φug

φug φdg

)(6.125)

Ψb =

(φdb φub

φubσ1 φdbσ1

)=

(φdb φub

φub φdb

). (6.126)

The wave is a function of space-time with value into Cl5,1 which is a sub-algebraof Cl5,2 = M8(C) (see 1.5). As previously, electro-weak interactions are obtainedby replacing partial derivatives by covariant derivatives. Now we use notationsof 1.5 and we let

W j = ΛµW jµ, j = 1, 2, 3 ; D = ΛµDµ ; Λ0 = −Λ0 ; Λj = Λj (6.127)

for j = 1, 2, 3. The covariant derivative reads now

D(Ψ) = ∂(Ψ) +g12B P 0(Ψ) +

g22W jP j(Ψ). (6.128)

We use two projectors P± satisfying

P±(Ψ) =1

2(Ψ∓ iΨΛ21) ; i = Λ0123 (6.129)

Three operators act on the quark sector as on the lepton sector :

P 1 = P+(Ψ)Λ53 (6.130)

P 2 = P+(Ψ)Λ0125 (6.131)

P 3 = P+(Ψ)Λ0132. (6.132)

79

(6.124)

(6.125)

(6.126)

The wave is a function of space-time with value into C l5,1 which is a sub-algebra of C l5,2 = M8

which gives

φp =√2(ηp −iσ2ξ

∗p

); φp =

√2(ξp −iσ2η

∗p

)(6.5)

φa =√2(ηa −iσ2ξ

∗a

); φa =

√2(ξa −iσ2η

∗a

)(6.6)

ξ1p = η∗2e, ξ2p = −η∗1e; η1p = −ξ∗2e; η2p = ξ∗1e

ξ1a = η∗2n, ξ2a = −η∗1n; η1a = −ξ∗2n; η2a = ξ∗1n. (6.7)

We used in [7] a wave Ψ function of the space-time with value into the Cl2,3 =M4(C) algebra. We disposed waves of particle on the above line and waves ofantiparticle on the second line to get correct transformations of left and rightwaves under Lorentz dilations, as we will see in 6.5. We used a σ1 factor whichwas a necessary factor exchanging ξ and η terms. This allows to get a wave forthese four particles of the electronic sector40 and with the link (2.125) betweenthe wave of the particle and the wave of the antiparticle we have

Ψ =

(φe φn

φaσ1 φpσ1

)=

(φe φn

φn φe

)(6.8)

Now with (6.4) and (6.8) the wave is a function of space-time with value in theClifford algebra of space-time. The Weinberg-Salam model uses ξe, ηe, ηn andsupposes ξn = 0. This hypothesis will be used further in 6.6. To separate ξe, ηeand ηn the Weinberg-Salam model uses projectors 1

2 (1 ± γ5), which read withour choice (1.75) of Dirac matrices:

1

2(1− γ5)ψ = ψL =

(0 00 I

)(ξη

)=

(0η

)(6.9)

1

2(1 + γ5)ψ = ψR =

(I 00 0

)(ξη

)=

(ξ0

). (6.10)

Then for particles left waves are η waves and right waves are ξ waves. This isCl∗3 invariant, consequently relativistic invariant, since under a Lorentz dilation

D defined by D : x → x′ = MxM† we have (1.30) : ξ′ = Mξ, η′ = Mη. Theγ5 matrix is not included in the space-time algebra41, but this is not a problemhere, because the projectors separating ξ and η are in space algebra 1

2 (1± σ3):

φR =√2(ξ 0

)= φ

(1 00 0

)= φ

1

2(1 + σ3)

φL =√2(0 −iσ2η

∗) = φ

(0 00 1

)= φ

1

2(1− σ3) (6.11)

φL =√2(η 0

)= φ

1

2(1 + σ3) ; φR = φ

1

2(1− σ3).

40We could exchange the places of φe and φn. With (6.8) the wave of the electron has valuein the even sub-algebra and the neutrino has value in the odd part of the algebra. The otherchoice is possible if we adapt the definition of projectors in (6.12) to (6.16)

41This was wrongly considered as a reason to forbid the use of space-time algebra.

69

(see 1.5). As previously, electro-weak interactions are obtained by re-placing partial derivatives by covariant derivatives. Now we use notations of 1.5 and we let

of the electron, its neutrino, its antiparticle the positron and its anti-neutrino.We put these waves into a unique wave (6.8) that will be named now as Ψl.Each generation includes also two quarks with three states, so we get six wavessimilar to φe or φn. Quarks of the first generation are named u and d and thecouple d-u is similar to n-e for electro-weak interactions but with differencessince the electric charge of u is 2

3 |e|, the charge of d is − 13 |e|. Similarly to the

lepton sector, electric charges of antiparticles are opposite to charges of particles.Three states of “color” are named r, g, b (red, green, blue). So we build a wavewith all fermions of the first generation as

Ψ =

(Ψl Ψr

Ψg Ψb

)(6.123)

where Ψl is defined by (6.8) and Ψr, Ψg, Ψb are defined on the same model:

Ψr =

(φdr φur

φurσ1 φdrσ1

)=

(φdr φur

φur φdr

)(6.124)

Ψg =

(φdg φug

φugσ1 φdgσ1

)=

(φdg φug

φug φdg

)(6.125)

Ψb =

(φdb φub

φubσ1 φdbσ1

)=

(φdb φub

φub φdb

). (6.126)

The wave is a function of space-time with value into Cl5,1 which is a sub-algebraof Cl5,2 = M8(C) (see 1.5). As previously, electro-weak interactions are obtainedby replacing partial derivatives by covariant derivatives. Now we use notationsof 1.5 and we let

W j = ΛµW jµ, j = 1, 2, 3 ; D = ΛµDµ ; Λ0 = −Λ0 ; Λj = Λj (6.127)

for j = 1, 2, 3. The covariant derivative reads now

D(Ψ) = ∂(Ψ) +g12B P 0(Ψ) +

g22W jP j(Ψ). (6.128)

We use two projectors P± satisfying

P±(Ψ) =1

2(Ψ∓ iΨΛ21) ; i = Λ0123 (6.129)

Three operators act on the quark sector as on the lepton sector :

P 1 = P+(Ψ)Λ53 (6.130)

P 2 = P+(Ψ)Λ0125 (6.131)

P 3 = P+(Ψ)Λ0132. (6.132)

79

of the electron, its neutrino, its antiparticle the positron and its anti-neutrino.We put these waves into a unique wave (6.8) that will be named now as Ψl.Each generation includes also two quarks with three states, so we get six wavessimilar to φe or φn. Quarks of the first generation are named u and d and thecouple d-u is similar to n-e for electro-weak interactions but with differencessince the electric charge of u is 2

3 |e|, the charge of d is − 13 |e|. Similarly to the

lepton sector, electric charges of antiparticles are opposite to charges of particles.Three states of “color” are named r, g, b (red, green, blue). So we build a wavewith all fermions of the first generation as

Ψ =

(Ψl Ψr

Ψg Ψb

)(6.123)

where Ψl is defined by (6.8) and Ψr, Ψg, Ψb are defined on the same model:

Ψr =

(φdr φur

φurσ1 φdrσ1

)=

(φdr φur

φur φdr

)(6.124)

Ψg =

(φdg φug

φugσ1 φdgσ1

)=

(φdg φug

φug φdg

)(6.125)

Ψb =

(φdb φub

φubσ1 φdbσ1

)=

(φdb φub

φub φdb

). (6.126)

The wave is a function of space-time with value into Cl5,1 which is a sub-algebraof Cl5,2 = M8(C) (see 1.5). As previously, electro-weak interactions are obtainedby replacing partial derivatives by covariant derivatives. Now we use notationsof 1.5 and we let

W j = ΛµW jµ, j = 1, 2, 3 ; D = ΛµDµ ; Λ0 = −Λ0 ; Λj = Λj (6.127)

for j = 1, 2, 3. The covariant derivative reads now

D(Ψ) = ∂(Ψ) +g12B P 0(Ψ) +

g22W jP j(Ψ). (6.128)

We use two projectors P± satisfying

P±(Ψ) =1

2(Ψ∓ iΨΛ21) ; i = Λ0123 (6.129)

Three operators act on the quark sector as on the lepton sector :

P 1 = P+(Ψ)Λ53 (6.130)

P 2 = P+(Ψ)Λ0125 (6.131)

P 3 = P+(Ψ)Λ0132. (6.132)

79

(6.127)

for j = 1, 2, 3. The covariant derivative reads now

of the electron, its neutrino, its antiparticle the positron and its anti-neutrino.We put these waves into a unique wave (6.8) that will be named now as Ψl.Each generation includes also two quarks with three states, so we get six wavessimilar to φe or φn. Quarks of the first generation are named u and d and thecouple d-u is similar to n-e for electro-weak interactions but with differencessince the electric charge of u is 2

3 |e|, the charge of d is − 13 |e|. Similarly to the

lepton sector, electric charges of antiparticles are opposite to charges of particles.Three states of “color” are named r, g, b (red, green, blue). So we build a wavewith all fermions of the first generation as

Ψ =

(Ψl Ψr

Ψg Ψb

)(6.123)

where Ψl is defined by (6.8) and Ψr, Ψg, Ψb are defined on the same model:

Ψr =

(φdr φur

φurσ1 φdrσ1

)=

(φdr φur

φur φdr

)(6.124)

Ψg =

(φdg φug

φugσ1 φdgσ1

)=

(φdg φug

φug φdg

)(6.125)

Ψb =

(φdb φub

φubσ1 φdbσ1

)=

(φdb φub

φub φdb

). (6.126)

The wave is a function of space-time with value into Cl5,1 which is a sub-algebraof Cl5,2 = M8(C) (see 1.5). As previously, electro-weak interactions are obtainedby replacing partial derivatives by covariant derivatives. Now we use notationsof 1.5 and we let

W j = ΛµW jµ, j = 1, 2, 3 ; D = ΛµDµ ; Λ0 = −Λ0 ; Λj = Λj (6.127)

for j = 1, 2, 3. The covariant derivative reads now

D(Ψ) = ∂(Ψ) +g12B P 0(Ψ) +

g22W jP j(Ψ). (6.128)

We use two projectors P± satisfying

P±(Ψ) =1

2(Ψ∓ iΨΛ21) ; i = Λ0123 (6.129)

Three operators act on the quark sector as on the lepton sector :

P 1 = P+(Ψ)Λ53 (6.130)

P 2 = P+(Ψ)Λ0125 (6.131)

P 3 = P+(Ψ)Λ0132. (6.132)

79

(6.128)

We use two projectors P± satisfying

of the electron, its neutrino, its antiparticle the positron and its anti-neutrino.We put these waves into a unique wave (6.8) that will be named now as Ψl.Each generation includes also two quarks with three states, so we get six wavessimilar to φe or φn. Quarks of the first generation are named u and d and thecouple d-u is similar to n-e for electro-weak interactions but with differencessince the electric charge of u is 2

3 |e|, the charge of d is − 13 |e|. Similarly to the

lepton sector, electric charges of antiparticles are opposite to charges of particles.Three states of “color” are named r, g, b (red, green, blue). So we build a wavewith all fermions of the first generation as

Ψ =

(Ψl Ψr

Ψg Ψb

)(6.123)

where Ψl is defined by (6.8) and Ψr, Ψg, Ψb are defined on the same model:

Ψr =

(φdr φur

φurσ1 φdrσ1

)=

(φdr φur

φur φdr

)(6.124)

Ψg =

(φdg φug

φugσ1 φdgσ1

)=

(φdg φug

φug φdg

)(6.125)

Ψb =

(φdb φub

φubσ1 φdbσ1

)=

(φdb φub

φub φdb

). (6.126)

The wave is a function of space-time with value into Cl5,1 which is a sub-algebraof Cl5,2 = M8(C) (see 1.5). As previously, electro-weak interactions are obtainedby replacing partial derivatives by covariant derivatives. Now we use notationsof 1.5 and we let

W j = ΛµW jµ, j = 1, 2, 3 ; D = ΛµDµ ; Λ0 = −Λ0 ; Λj = Λj (6.127)

for j = 1, 2, 3. The covariant derivative reads now

D(Ψ) = ∂(Ψ) +g12B P 0(Ψ) +

g22W jP j(Ψ). (6.128)

We use two projectors P± satisfying

P±(Ψ) =1

2(Ψ∓ iΨΛ21) ; i = Λ0123 (6.129)

Three operators act on the quark sector as on the lepton sector :

P 1 = P+(Ψ)Λ53 (6.130)

P 2 = P+(Ψ)Λ0125 (6.131)

P 3 = P+(Ψ)Λ0132. (6.132)

79

(6.129)

Three operators act on the quark sector as on the lep-ton sector:

of the electron, its neutrino, its antiparticle the positron and its anti-neutrino.We put these waves into a unique wave (6.8) that will be named now as Ψl.Each generation includes also two quarks with three states, so we get six wavessimilar to φe or φn. Quarks of the first generation are named u and d and thecouple d-u is similar to n-e for electro-weak interactions but with differencessince the electric charge of u is 2

3 |e|, the charge of d is − 13 |e|. Similarly to the

lepton sector, electric charges of antiparticles are opposite to charges of particles.Three states of “color” are named r, g, b (red, green, blue). So we build a wavewith all fermions of the first generation as

Ψ =

(Ψl Ψr

Ψg Ψb

)(6.123)

where Ψl is defined by (6.8) and Ψr, Ψg, Ψb are defined on the same model:

Ψr =

(φdr φur

φurσ1 φdrσ1

)=

(φdr φur

φur φdr

)(6.124)

Ψg =

(φdg φug

φugσ1 φdgσ1

)=

(φdg φug

φug φdg

)(6.125)

Ψb =

(φdb φub

φubσ1 φdbσ1

)=

(φdb φub

φub φdb

). (6.126)

The wave is a function of space-time with value into Cl5,1 which is a sub-algebraof Cl5,2 = M8(C) (see 1.5). As previously, electro-weak interactions are obtainedby replacing partial derivatives by covariant derivatives. Now we use notationsof 1.5 and we let

W j = ΛµW jµ, j = 1, 2, 3 ; D = ΛµDµ ; Λ0 = −Λ0 ; Λj = Λj (6.127)

for j = 1, 2, 3. The covariant derivative reads now

D(Ψ) = ∂(Ψ) +g12B P 0(Ψ) +

g22W jP j(Ψ). (6.128)

We use two projectors P± satisfying

P±(Ψ) =1

2(Ψ∓ iΨΛ21) ; i = Λ0123 (6.129)

Three operators act on the quark sector as on the lepton sector :

P 1 = P+(Ψ)Λ53 (6.130)

P 2 = P+(Ψ)Λ0125 (6.131)

P 3 = P+(Ψ)Λ0132. (6.132)

79

(6.130)(6.131)(6.132)

31

Page 33: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 31

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

The fourth operator acts differently on the lepton wave and on the quark sector 47:

The fourth operator acts differently on the lepton wave and on the quark sec-tor47 :

P 0 =

(P0(Ψl) P ′

0(Ψr)P ′

0(Ψg) P ′0(Ψb)

)(6.133)

P0(Ψl) = Ψlγ21 + P−(Ψl)i = Ψlγ21 +1

2(Ψli+ iΨlγ30) (6.134)

P ′0(Ψr) = −1

3Ψrγ21 + P−(Ψr)i = −1

3Ψrγ21 +

1

2(Ψri+ iΨrγ30) (6.135)

And we get two identical formulas by replacing r index by g and b. Now we canabbreviate and we remove indexes r, g, b to study the electro-weak covariantderivative. We let

P ′0(Ψ) =

(p′0(φd) p′0(φu)

p′0(φu)σ1 p′0(φd)σ1

)(6.136)

which gives with (6.135):

P ′0(Ψ) =− i

3

(φdσ3 φuσ3

−φuσ3σ1 −φdσ3σ1

)

+i

2

(φd −φu

φuσ1 −φdσ1

)+

i

2

(φdσ3 −φuσ3

φuσ3σ1 −φdσ3σ1

)(6.137)

We then get the system :

p′0(φd) =− i

3φdσ3 +

i

2φd +

i

2φdσ3 =

i

3(2φdR + φdL)

p′0(φu) =− i

3φuσ3 −

i

2φu − i

2φuσ3 =

i

3(−4φuR + φuL)

p′0(φu) =i

3φuσ3 +

i

2φu +

i

2φuσ3 =

i

3(4φuL − φuR) (6.138)

p′0(φd) =i

3φdσ3 −

i

2φd −

i

2φdσ3 =

i

3(−2φdL − φdR).

Since P1, P2 and P3 are unchanged in the quark sector, we get from (6.41),(6.43) and (6.45)

p1(φd) = iφuL ; p1(φu) = iφdL ; p1(φu) = −iφdR ; p1(φd) = −iφuR (6.139)

p2(φd) = φuL ; p2(φu) = −φdL ; p2(φu) = −φdR ; p2(φd) = φuR (6.140)

p3(φd) = −iφdL ; p3(φu) = iφuL ; p3(φu) = −iφuR ; p3(φd) = iφdR. (6.141)

Now (6.129) gives

DΨr = ∂∂∂Ψr +g12BP ′

0(Ψr) +g22WjPj(Ψr) (6.142)

47This is very important, since it is the reason explaining how a lepton is not a quark. If allfour operators were identical, we should get four states and a SU(4) group for chromodynamicsand the electron should be sensitive to strong interactions. Since only three parts of the waveare similar, we will get in the next paragraph a SU(3) group for chromodynamics.

80

; (6.133)

The fourth operator acts differently on the lepton wave and on the quark sec-tor47 :

P 0 =

(P0(Ψl) P ′

0(Ψr)P ′

0(Ψg) P ′0(Ψb)

)(6.133)

P0(Ψl) = Ψlγ21 + P−(Ψl)i = Ψlγ21 +1

2(Ψli+ iΨlγ30) (6.134)

P ′0(Ψr) = −1

3Ψrγ21 + P−(Ψr)i = −1

3Ψrγ21 +

1

2(Ψri+ iΨrγ30) (6.135)

And we get two identical formulas by replacing r index by g and b. Now we canabbreviate and we remove indexes r, g, b to study the electro-weak covariantderivative. We let

P ′0(Ψ) =

(p′0(φd) p′0(φu)

p′0(φu)σ1 p′0(φd)σ1

)(6.136)

which gives with (6.135):

P ′0(Ψ) =− i

3

(φdσ3 φuσ3

−φuσ3σ1 −φdσ3σ1

)

+i

2

(φd −φu

φuσ1 −φdσ1

)+

i

2

(φdσ3 −φuσ3

φuσ3σ1 −φdσ3σ1

)(6.137)

We then get the system :

p′0(φd) =− i

3φdσ3 +

i

2φd +

i

2φdσ3 =

i

3(2φdR + φdL)

p′0(φu) =− i

3φuσ3 −

i

2φu − i

2φuσ3 =

i

3(−4φuR + φuL)

p′0(φu) =i

3φuσ3 +

i

2φu +

i

2φuσ3 =

i

3(4φuL − φuR) (6.138)

p′0(φd) =i

3φdσ3 −

i

2φd −

i

2φdσ3 =

i

3(−2φdL − φdR).

Since P1, P2 and P3 are unchanged in the quark sector, we get from (6.41),(6.43) and (6.45)

p1(φd) = iφuL ; p1(φu) = iφdL ; p1(φu) = −iφdR ; p1(φd) = −iφuR (6.139)

p2(φd) = φuL ; p2(φu) = −φdL ; p2(φu) = −φdR ; p2(φd) = φuR (6.140)

p3(φd) = −iφdL ; p3(φu) = iφuL ; p3(φu) = −iφuR ; p3(φd) = iφdR. (6.141)

Now (6.129) gives

DΨr = ∂∂∂Ψr +g12BP ′

0(Ψr) +g22WjPj(Ψr) (6.142)

47This is very important, since it is the reason explaining how a lepton is not a quark. If allfour operators were identical, we should get four states and a SU(4) group for chromodynamicsand the electron should be sensitive to strong interactions. Since only three parts of the waveare similar, we will get in the next paragraph a SU(3) group for chromodynamics.

80

The fourth operator acts differently on the lepton wave and on the quark sec-tor47 :

P 0 =

(P0(Ψl) P ′

0(Ψr)P ′

0(Ψg) P ′0(Ψb)

)(6.133)

P0(Ψl) = Ψlγ21 + P−(Ψl)i = Ψlγ21 +1

2(Ψli+ iΨlγ30) (6.134)

P ′0(Ψr) = −1

3Ψrγ21 + P−(Ψr)i = −1

3Ψrγ21 +

1

2(Ψri+ iΨrγ30) (6.135)

And we get two identical formulas by replacing r index by g and b. Now we canabbreviate and we remove indexes r, g, b to study the electro-weak covariantderivative. We let

P ′0(Ψ) =

(p′0(φd) p′0(φu)

p′0(φu)σ1 p′0(φd)σ1

)(6.136)

which gives with (6.135):

P ′0(Ψ) =− i

3

(φdσ3 φuσ3

−φuσ3σ1 −φdσ3σ1

)

+i

2

(φd −φu

φuσ1 −φdσ1

)+

i

2

(φdσ3 −φuσ3

φuσ3σ1 −φdσ3σ1

)(6.137)

We then get the system :

p′0(φd) =− i

3φdσ3 +

i

2φd +

i

2φdσ3 =

i

3(2φdR + φdL)

p′0(φu) =− i

3φuσ3 −

i

2φu − i

2φuσ3 =

i

3(−4φuR + φuL)

p′0(φu) =i

3φuσ3 +

i

2φu +

i

2φuσ3 =

i

3(4φuL − φuR) (6.138)

p′0(φd) =i

3φdσ3 −

i

2φd −

i

2φdσ3 =

i

3(−2φdL − φdR).

Since P1, P2 and P3 are unchanged in the quark sector, we get from (6.41),(6.43) and (6.45)

p1(φd) = iφuL ; p1(φu) = iφdL ; p1(φu) = −iφdR ; p1(φd) = −iφuR (6.139)

p2(φd) = φuL ; p2(φu) = −φdL ; p2(φu) = −φdR ; p2(φd) = φuR (6.140)

p3(φd) = −iφdL ; p3(φu) = iφuL ; p3(φu) = −iφuR ; p3(φd) = iφdR. (6.141)

Now (6.129) gives

DΨr = ∂∂∂Ψr +g12BP ′

0(Ψr) +g22WjPj(Ψr) (6.142)

47This is very important, since it is the reason explaining how a lepton is not a quark. If allfour operators were identical, we should get four states and a SU(4) group for chromodynamicsand the electron should be sensitive to strong interactions. Since only three parts of the waveare similar, we will get in the next paragraph a SU(3) group for chromodynamics.

80

; (6.134)

The fourth operator acts differently on the lepton wave and on the quark sec-tor47 :

P 0 =

(P0(Ψl) P ′

0(Ψr)P ′

0(Ψg) P ′0(Ψb)

)(6.133)

P0(Ψl) = Ψlγ21 + P−(Ψl)i = Ψlγ21 +1

2(Ψli+ iΨlγ30) (6.134)

P ′0(Ψr) = −1

3Ψrγ21 + P−(Ψr)i = −1

3Ψrγ21 +

1

2(Ψri+ iΨrγ30) (6.135)

And we get two identical formulas by replacing r index by g and b. Now we canabbreviate and we remove indexes r, g, b to study the electro-weak covariantderivative. We let

P ′0(Ψ) =

(p′0(φd) p′0(φu)

p′0(φu)σ1 p′0(φd)σ1

)(6.136)

which gives with (6.135):

P ′0(Ψ) =− i

3

(φdσ3 φuσ3

−φuσ3σ1 −φdσ3σ1

)

+i

2

(φd −φu

φuσ1 −φdσ1

)+

i

2

(φdσ3 −φuσ3

φuσ3σ1 −φdσ3σ1

)(6.137)

We then get the system :

p′0(φd) =− i

3φdσ3 +

i

2φd +

i

2φdσ3 =

i

3(2φdR + φdL)

p′0(φu) =− i

3φuσ3 −

i

2φu − i

2φuσ3 =

i

3(−4φuR + φuL)

p′0(φu) =i

3φuσ3 +

i

2φu +

i

2φuσ3 =

i

3(4φuL − φuR) (6.138)

p′0(φd) =i

3φdσ3 −

i

2φd −

i

2φdσ3 =

i

3(−2φdL − φdR).

Since P1, P2 and P3 are unchanged in the quark sector, we get from (6.41),(6.43) and (6.45)

p1(φd) = iφuL ; p1(φu) = iφdL ; p1(φu) = −iφdR ; p1(φd) = −iφuR (6.139)

p2(φd) = φuL ; p2(φu) = −φdL ; p2(φu) = −φdR ; p2(φd) = φuR (6.140)

p3(φd) = −iφdL ; p3(φu) = iφuL ; p3(φu) = −iφuR ; p3(φd) = iφdR. (6.141)

Now (6.129) gives

DΨr = ∂∂∂Ψr +g12BP ′

0(Ψr) +g22WjPj(Ψr) (6.142)

47This is very important, since it is the reason explaining how a lepton is not a quark. If allfour operators were identical, we should get four states and a SU(4) group for chromodynamicsand the electron should be sensitive to strong interactions. Since only three parts of the waveare similar, we will get in the next paragraph a SU(3) group for chromodynamics.

80

The fourth operator acts differently on the lepton wave and on the quark sec-tor47 :

P 0 =

(P0(Ψl) P ′

0(Ψr)P ′

0(Ψg) P ′0(Ψb)

)(6.133)

P0(Ψl) = Ψlγ21 + P−(Ψl)i = Ψlγ21 +1

2(Ψli+ iΨlγ30) (6.134)

P ′0(Ψr) = −1

3Ψrγ21 + P−(Ψr)i = −1

3Ψrγ21 +

1

2(Ψri+ iΨrγ30) (6.135)

And we get two identical formulas by replacing r index by g and b. Now we canabbreviate and we remove indexes r, g, b to study the electro-weak covariantderivative. We let

P ′0(Ψ) =

(p′0(φd) p′0(φu)

p′0(φu)σ1 p′0(φd)σ1

)(6.136)

which gives with (6.135):

P ′0(Ψ) =− i

3

(φdσ3 φuσ3

−φuσ3σ1 −φdσ3σ1

)

+i

2

(φd −φu

φuσ1 −φdσ1

)+

i

2

(φdσ3 −φuσ3

φuσ3σ1 −φdσ3σ1

)(6.137)

We then get the system :

p′0(φd) =− i

3φdσ3 +

i

2φd +

i

2φdσ3 =

i

3(2φdR + φdL)

p′0(φu) =− i

3φuσ3 −

i

2φu − i

2φuσ3 =

i

3(−4φuR + φuL)

p′0(φu) =i

3φuσ3 +

i

2φu +

i

2φuσ3 =

i

3(4φuL − φuR) (6.138)

p′0(φd) =i

3φdσ3 −

i

2φd −

i

2φdσ3 =

i

3(−2φdL − φdR).

Since P1, P2 and P3 are unchanged in the quark sector, we get from (6.41),(6.43) and (6.45)

p1(φd) = iφuL ; p1(φu) = iφdL ; p1(φu) = −iφdR ; p1(φd) = −iφuR (6.139)

p2(φd) = φuL ; p2(φu) = −φdL ; p2(φu) = −φdR ; p2(φd) = φuR (6.140)

p3(φd) = −iφdL ; p3(φu) = iφuL ; p3(φu) = −iφuR ; p3(φd) = iφdR. (6.141)

Now (6.129) gives

DΨr = ∂∂∂Ψr +g12BP ′

0(Ψr) +g22WjPj(Ψr) (6.142)

47This is very important, since it is the reason explaining how a lepton is not a quark. If allfour operators were identical, we should get four states and a SU(4) group for chromodynamicsand the electron should be sensitive to strong interactions. Since only three parts of the waveare similar, we will get in the next paragraph a SU(3) group for chromodynamics.

80

. (6.135)

And we get two identical formulas by replacing r in-dex by g and b. Now we can abbreviate and we remove indexes r, g, b to study the electro-weak covariant deriva-tive. We let

The fourth operator acts differently on the lepton wave and on the quark sec-tor47 :

P 0 =

(P0(Ψl) P ′

0(Ψr)P ′

0(Ψg) P ′0(Ψb)

)(6.133)

P0(Ψl) = Ψlγ21 + P−(Ψl)i = Ψlγ21 +1

2(Ψli+ iΨlγ30) (6.134)

P ′0(Ψr) = −1

3Ψrγ21 + P−(Ψr)i = −1

3Ψrγ21 +

1

2(Ψri+ iΨrγ30) (6.135)

And we get two identical formulas by replacing r index by g and b. Now we canabbreviate and we remove indexes r, g, b to study the electro-weak covariantderivative. We let

P ′0(Ψ) =

(p′0(φd) p′0(φu)

p′0(φu)σ1 p′0(φd)σ1

)(6.136)

which gives with (6.135):

P ′0(Ψ) =− i

3

(φdσ3 φuσ3

−φuσ3σ1 −φdσ3σ1

)

+i

2

(φd −φu

φuσ1 −φdσ1

)+

i

2

(φdσ3 −φuσ3

φuσ3σ1 −φdσ3σ1

)(6.137)

We then get the system :

p′0(φd) =− i

3φdσ3 +

i

2φd +

i

2φdσ3 =

i

3(2φdR + φdL)

p′0(φu) =− i

3φuσ3 −

i

2φu − i

2φuσ3 =

i

3(−4φuR + φuL)

p′0(φu) =i

3φuσ3 +

i

2φu +

i

2φuσ3 =

i

3(4φuL − φuR) (6.138)

p′0(φd) =i

3φdσ3 −

i

2φd −

i

2φdσ3 =

i

3(−2φdL − φdR).

Since P1, P2 and P3 are unchanged in the quark sector, we get from (6.41),(6.43) and (6.45)

p1(φd) = iφuL ; p1(φu) = iφdL ; p1(φu) = −iφdR ; p1(φd) = −iφuR (6.139)

p2(φd) = φuL ; p2(φu) = −φdL ; p2(φu) = −φdR ; p2(φd) = φuR (6.140)

p3(φd) = −iφdL ; p3(φu) = iφuL ; p3(φu) = −iφuR ; p3(φd) = iφdR. (6.141)

Now (6.129) gives

DΨr = ∂∂∂Ψr +g12BP ′

0(Ψr) +g22WjPj(Ψr) (6.142)

47This is very important, since it is the reason explaining how a lepton is not a quark. If allfour operators were identical, we should get four states and a SU(4) group for chromodynamicsand the electron should be sensitive to strong interactions. Since only three parts of the waveare similar, we will get in the next paragraph a SU(3) group for chromodynamics.

80

(6.136)

which gives with (6.135):

The fourth operator acts differently on the lepton wave and on the quark sec-tor47 :

P 0 =

(P0(Ψl) P ′

0(Ψr)P ′

0(Ψg) P ′0(Ψb)

)(6.133)

P0(Ψl) = Ψlγ21 + P−(Ψl)i = Ψlγ21 +1

2(Ψli+ iΨlγ30) (6.134)

P ′0(Ψr) = −1

3Ψrγ21 + P−(Ψr)i = −1

3Ψrγ21 +

1

2(Ψri+ iΨrγ30) (6.135)

And we get two identical formulas by replacing r index by g and b. Now we canabbreviate and we remove indexes r, g, b to study the electro-weak covariantderivative. We let

P ′0(Ψ) =

(p′0(φd) p′0(φu)

p′0(φu)σ1 p′0(φd)σ1

)(6.136)

which gives with (6.135):

P ′0(Ψ) =− i

3

(φdσ3 φuσ3

−φuσ3σ1 −φdσ3σ1

)

+i

2

(φd −φu

φuσ1 −φdσ1

)+

i

2

(φdσ3 −φuσ3

φuσ3σ1 −φdσ3σ1

)(6.137)

We then get the system :

p′0(φd) =− i

3φdσ3 +

i

2φd +

i

2φdσ3 =

i

3(2φdR + φdL)

p′0(φu) =− i

3φuσ3 −

i

2φu − i

2φuσ3 =

i

3(−4φuR + φuL)

p′0(φu) =i

3φuσ3 +

i

2φu +

i

2φuσ3 =

i

3(4φuL − φuR) (6.138)

p′0(φd) =i

3φdσ3 −

i

2φd −

i

2φdσ3 =

i

3(−2φdL − φdR).

Since P1, P2 and P3 are unchanged in the quark sector, we get from (6.41),(6.43) and (6.45)

p1(φd) = iφuL ; p1(φu) = iφdL ; p1(φu) = −iφdR ; p1(φd) = −iφuR (6.139)

p2(φd) = φuL ; p2(φu) = −φdL ; p2(φu) = −φdR ; p2(φd) = φuR (6.140)

p3(φd) = −iφdL ; p3(φu) = iφuL ; p3(φu) = −iφuR ; p3(φd) = iφdR. (6.141)

Now (6.129) gives

DΨr = ∂∂∂Ψr +g12BP ′

0(Ψr) +g22WjPj(Ψr) (6.142)

47This is very important, since it is the reason explaining how a lepton is not a quark. If allfour operators were identical, we should get four states and a SU(4) group for chromodynamicsand the electron should be sensitive to strong interactions. Since only three parts of the waveare similar, we will get in the next paragraph a SU(3) group for chromodynamics.

80

+

The fourth operator acts differently on the lepton wave and on the quark sec-tor47 :

P 0 =

(P0(Ψl) P ′

0(Ψr)P ′

0(Ψg) P ′0(Ψb)

)(6.133)

P0(Ψl) = Ψlγ21 + P−(Ψl)i = Ψlγ21 +1

2(Ψli+ iΨlγ30) (6.134)

P ′0(Ψr) = −1

3Ψrγ21 + P−(Ψr)i = −1

3Ψrγ21 +

1

2(Ψri+ iΨrγ30) (6.135)

And we get two identical formulas by replacing r index by g and b. Now we canabbreviate and we remove indexes r, g, b to study the electro-weak covariantderivative. We let

P ′0(Ψ) =

(p′0(φd) p′0(φu)

p′0(φu)σ1 p′0(φd)σ1

)(6.136)

which gives with (6.135):

P ′0(Ψ) =− i

3

(φdσ3 φuσ3

−φuσ3σ1 −φdσ3σ1

)

+i

2

(φd −φu

φuσ1 −φdσ1

)+

i

2

(φdσ3 −φuσ3

φuσ3σ1 −φdσ3σ1

)(6.137)

We then get the system :

p′0(φd) =− i

3φdσ3 +

i

2φd +

i

2φdσ3 =

i

3(2φdR + φdL)

p′0(φu) =− i

3φuσ3 −

i

2φu − i

2φuσ3 =

i

3(−4φuR + φuL)

p′0(φu) =i

3φuσ3 +

i

2φu +

i

2φuσ3 =

i

3(4φuL − φuR) (6.138)

p′0(φd) =i

3φdσ3 −

i

2φd −

i

2φdσ3 =

i

3(−2φdL − φdR).

Since P1, P2 and P3 are unchanged in the quark sector, we get from (6.41),(6.43) and (6.45)

p1(φd) = iφuL ; p1(φu) = iφdL ; p1(φu) = −iφdR ; p1(φd) = −iφuR (6.139)

p2(φd) = φuL ; p2(φu) = −φdL ; p2(φu) = −φdR ; p2(φd) = φuR (6.140)

p3(φd) = −iφdL ; p3(φu) = iφuL ; p3(φu) = −iφuR ; p3(φd) = iφdR. (6.141)

Now (6.129) gives

DΨr = ∂∂∂Ψr +g12BP ′

0(Ψr) +g22WjPj(Ψr) (6.142)

47This is very important, since it is the reason explaining how a lepton is not a quark. If allfour operators were identical, we should get four states and a SU(4) group for chromodynamicsand the electron should be sensitive to strong interactions. Since only three parts of the waveare similar, we will get in the next paragraph a SU(3) group for chromodynamics.

80

(6.137)

We then get the system:

The fourth operator acts differently on the lepton wave and on the quark sec-tor47 :

P 0 =

(P0(Ψl) P ′

0(Ψr)P ′

0(Ψg) P ′0(Ψb)

)(6.133)

P0(Ψl) = Ψlγ21 + P−(Ψl)i = Ψlγ21 +1

2(Ψli+ iΨlγ30) (6.134)

P ′0(Ψr) = −1

3Ψrγ21 + P−(Ψr)i = −1

3Ψrγ21 +

1

2(Ψri+ iΨrγ30) (6.135)

And we get two identical formulas by replacing r index by g and b. Now we canabbreviate and we remove indexes r, g, b to study the electro-weak covariantderivative. We let

P ′0(Ψ) =

(p′0(φd) p′0(φu)

p′0(φu)σ1 p′0(φd)σ1

)(6.136)

which gives with (6.135):

P ′0(Ψ) =− i

3

(φdσ3 φuσ3

−φuσ3σ1 −φdσ3σ1

)

+i

2

(φd −φu

φuσ1 −φdσ1

)+

i

2

(φdσ3 −φuσ3

φuσ3σ1 −φdσ3σ1

)(6.137)

We then get the system :

p′0(φd) =− i

3φdσ3 +

i

2φd +

i

2φdσ3 =

i

3(2φdR + φdL)

p′0(φu) =− i

3φuσ3 −

i

2φu − i

2φuσ3 =

i

3(−4φuR + φuL)

p′0(φu) =i

3φuσ3 +

i

2φu +

i

2φuσ3 =

i

3(4φuL − φuR) (6.138)

p′0(φd) =i

3φdσ3 −

i

2φd −

i

2φdσ3 =

i

3(−2φdL − φdR).

Since P1, P2 and P3 are unchanged in the quark sector, we get from (6.41),(6.43) and (6.45)

p1(φd) = iφuL ; p1(φu) = iφdL ; p1(φu) = −iφdR ; p1(φd) = −iφuR (6.139)

p2(φd) = φuL ; p2(φu) = −φdL ; p2(φu) = −φdR ; p2(φd) = φuR (6.140)

p3(φd) = −iφdL ; p3(φu) = iφuL ; p3(φu) = −iφuR ; p3(φd) = iφdR. (6.141)

Now (6.129) gives

DΨr = ∂∂∂Ψr +g12BP ′

0(Ψr) +g22WjPj(Ψr) (6.142)

47This is very important, since it is the reason explaining how a lepton is not a quark. If allfour operators were identical, we should get four states and a SU(4) group for chromodynamicsand the electron should be sensitive to strong interactions. Since only three parts of the waveare similar, we will get in the next paragraph a SU(3) group for chromodynamics.

80

(6.138)

Since P1 , P2 and P3 are unchanged in the quark sector, we get from (6.41), (6.43) and (6.45)

The fourth operator acts differently on the lepton wave and on the quark sec-tor47 :

P 0 =

(P0(Ψl) P ′

0(Ψr)P ′

0(Ψg) P ′0(Ψb)

)(6.133)

P0(Ψl) = Ψlγ21 + P−(Ψl)i = Ψlγ21 +1

2(Ψli+ iΨlγ30) (6.134)

P ′0(Ψr) = −1

3Ψrγ21 + P−(Ψr)i = −1

3Ψrγ21 +

1

2(Ψri+ iΨrγ30) (6.135)

And we get two identical formulas by replacing r index by g and b. Now we canabbreviate and we remove indexes r, g, b to study the electro-weak covariantderivative. We let

P ′0(Ψ) =

(p′0(φd) p′0(φu)

p′0(φu)σ1 p′0(φd)σ1

)(6.136)

which gives with (6.135):

P ′0(Ψ) =− i

3

(φdσ3 φuσ3

−φuσ3σ1 −φdσ3σ1

)

+i

2

(φd −φu

φuσ1 −φdσ1

)+

i

2

(φdσ3 −φuσ3

φuσ3σ1 −φdσ3σ1

)(6.137)

We then get the system :

p′0(φd) =− i

3φdσ3 +

i

2φd +

i

2φdσ3 =

i

3(2φdR + φdL)

p′0(φu) =− i

3φuσ3 −

i

2φu − i

2φuσ3 =

i

3(−4φuR + φuL)

p′0(φu) =i

3φuσ3 +

i

2φu +

i

2φuσ3 =

i

3(4φuL − φuR) (6.138)

p′0(φd) =i

3φdσ3 −

i

2φd −

i

2φdσ3 =

i

3(−2φdL − φdR).

Since P1, P2 and P3 are unchanged in the quark sector, we get from (6.41),(6.43) and (6.45)

p1(φd) = iφuL ; p1(φu) = iφdL ; p1(φu) = −iφdR ; p1(φd) = −iφuR (6.139)

p2(φd) = φuL ; p2(φu) = −φdL ; p2(φu) = −φdR ; p2(φd) = φuR (6.140)

p3(φd) = −iφdL ; p3(φu) = iφuL ; p3(φu) = −iφuR ; p3(φd) = iφdR. (6.141)

Now (6.129) gives

DΨr = ∂∂∂Ψr +g12BP ′

0(Ψr) +g22WjPj(Ψr) (6.142)

47This is very important, since it is the reason explaining how a lepton is not a quark. If allfour operators were identical, we should get four states and a SU(4) group for chromodynamicsand the electron should be sensitive to strong interactions. Since only three parts of the waveare similar, we will get in the next paragraph a SU(3) group for chromodynamics.

80

The fourth operator acts differently on the lepton wave and on the quark sec-tor47 :

P 0 =

(P0(Ψl) P ′

0(Ψr)P ′

0(Ψg) P ′0(Ψb)

)(6.133)

P0(Ψl) = Ψlγ21 + P−(Ψl)i = Ψlγ21 +1

2(Ψli+ iΨlγ30) (6.134)

P ′0(Ψr) = −1

3Ψrγ21 + P−(Ψr)i = −1

3Ψrγ21 +

1

2(Ψri+ iΨrγ30) (6.135)

And we get two identical formulas by replacing r index by g and b. Now we canabbreviate and we remove indexes r, g, b to study the electro-weak covariantderivative. We let

P ′0(Ψ) =

(p′0(φd) p′0(φu)

p′0(φu)σ1 p′0(φd)σ1

)(6.136)

which gives with (6.135):

P ′0(Ψ) =− i

3

(φdσ3 φuσ3

−φuσ3σ1 −φdσ3σ1

)

+i

2

(φd −φu

φuσ1 −φdσ1

)+

i

2

(φdσ3 −φuσ3

φuσ3σ1 −φdσ3σ1

)(6.137)

We then get the system :

p′0(φd) =− i

3φdσ3 +

i

2φd +

i

2φdσ3 =

i

3(2φdR + φdL)

p′0(φu) =− i

3φuσ3 −

i

2φu − i

2φuσ3 =

i

3(−4φuR + φuL)

p′0(φu) =i

3φuσ3 +

i

2φu +

i

2φuσ3 =

i

3(4φuL − φuR) (6.138)

p′0(φd) =i

3φdσ3 −

i

2φd −

i

2φdσ3 =

i

3(−2φdL − φdR).

Since P1, P2 and P3 are unchanged in the quark sector, we get from (6.41),(6.43) and (6.45)

p1(φd) = iφuL ; p1(φu) = iφdL ; p1(φu) = −iφdR ; p1(φd) = −iφuR (6.139)

p2(φd) = φuL ; p2(φu) = −φdL ; p2(φu) = −φdR ; p2(φd) = φuR (6.140)

p3(φd) = −iφdL ; p3(φu) = iφuL ; p3(φu) = −iφuR ; p3(φd) = iφdR. (6.141)

Now (6.129) gives

DΨr = ∂∂∂Ψr +g12BP ′

0(Ψr) +g22WjPj(Ψr) (6.142)

47This is very important, since it is the reason explaining how a lepton is not a quark. If allfour operators were identical, we should get four states and a SU(4) group for chromodynamicsand the electron should be sensitive to strong interactions. Since only three parts of the waveare similar, we will get in the next paragraph a SU(3) group for chromodynamics.

80

(6.139)

The fourth operator acts differently on the lepton wave and on the quark sec-tor47 :

P 0 =

(P0(Ψl) P ′

0(Ψr)P ′

0(Ψg) P ′0(Ψb)

)(6.133)

P0(Ψl) = Ψlγ21 + P−(Ψl)i = Ψlγ21 +1

2(Ψli+ iΨlγ30) (6.134)

P ′0(Ψr) = −1

3Ψrγ21 + P−(Ψr)i = −1

3Ψrγ21 +

1

2(Ψri+ iΨrγ30) (6.135)

And we get two identical formulas by replacing r index by g and b. Now we canabbreviate and we remove indexes r, g, b to study the electro-weak covariantderivative. We let

P ′0(Ψ) =

(p′0(φd) p′0(φu)

p′0(φu)σ1 p′0(φd)σ1

)(6.136)

which gives with (6.135):

P ′0(Ψ) =− i

3

(φdσ3 φuσ3

−φuσ3σ1 −φdσ3σ1

)

+i

2

(φd −φu

φuσ1 −φdσ1

)+

i

2

(φdσ3 −φuσ3

φuσ3σ1 −φdσ3σ1

)(6.137)

We then get the system :

p′0(φd) =− i

3φdσ3 +

i

2φd +

i

2φdσ3 =

i

3(2φdR + φdL)

p′0(φu) =− i

3φuσ3 −

i

2φu − i

2φuσ3 =

i

3(−4φuR + φuL)

p′0(φu) =i

3φuσ3 +

i

2φu +

i

2φuσ3 =

i

3(4φuL − φuR) (6.138)

p′0(φd) =i

3φdσ3 −

i

2φd −

i

2φdσ3 =

i

3(−2φdL − φdR).

Since P1, P2 and P3 are unchanged in the quark sector, we get from (6.41),(6.43) and (6.45)

p1(φd) = iφuL ; p1(φu) = iφdL ; p1(φu) = −iφdR ; p1(φd) = −iφuR (6.139)

p2(φd) = φuL ; p2(φu) = −φdL ; p2(φu) = −φdR ; p2(φd) = φuR (6.140)

p3(φd) = −iφdL ; p3(φu) = iφuL ; p3(φu) = −iφuR ; p3(φd) = iφdR. (6.141)

Now (6.129) gives

DΨr = ∂∂∂Ψr +g12BP ′

0(Ψr) +g22WjPj(Ψr) (6.142)

47This is very important, since it is the reason explaining how a lepton is not a quark. If allfour operators were identical, we should get four states and a SU(4) group for chromodynamicsand the electron should be sensitive to strong interactions. Since only three parts of the waveare similar, we will get in the next paragraph a SU(3) group for chromodynamics.

80

The fourth operator acts differently on the lepton wave and on the quark sec-tor47 :

P 0 =

(P0(Ψl) P ′

0(Ψr)P ′

0(Ψg) P ′0(Ψb)

)(6.133)

P0(Ψl) = Ψlγ21 + P−(Ψl)i = Ψlγ21 +1

2(Ψli+ iΨlγ30) (6.134)

P ′0(Ψr) = −1

3Ψrγ21 + P−(Ψr)i = −1

3Ψrγ21 +

1

2(Ψri+ iΨrγ30) (6.135)

And we get two identical formulas by replacing r index by g and b. Now we canabbreviate and we remove indexes r, g, b to study the electro-weak covariantderivative. We let

P ′0(Ψ) =

(p′0(φd) p′0(φu)

p′0(φu)σ1 p′0(φd)σ1

)(6.136)

which gives with (6.135):

P ′0(Ψ) =− i

3

(φdσ3 φuσ3

−φuσ3σ1 −φdσ3σ1

)

+i

2

(φd −φu

φuσ1 −φdσ1

)+

i

2

(φdσ3 −φuσ3

φuσ3σ1 −φdσ3σ1

)(6.137)

We then get the system :

p′0(φd) =− i

3φdσ3 +

i

2φd +

i

2φdσ3 =

i

3(2φdR + φdL)

p′0(φu) =− i

3φuσ3 −

i

2φu − i

2φuσ3 =

i

3(−4φuR + φuL)

p′0(φu) =i

3φuσ3 +

i

2φu +

i

2φuσ3 =

i

3(4φuL − φuR) (6.138)

p′0(φd) =i

3φdσ3 −

i

2φd −

i

2φdσ3 =

i

3(−2φdL − φdR).

Since P1, P2 and P3 are unchanged in the quark sector, we get from (6.41),(6.43) and (6.45)

p1(φd) = iφuL ; p1(φu) = iφdL ; p1(φu) = −iφdR ; p1(φd) = −iφuR (6.139)

p2(φd) = φuL ; p2(φu) = −φdL ; p2(φu) = −φdR ; p2(φd) = φuR (6.140)

p3(φd) = −iφdL ; p3(φu) = iφuL ; p3(φu) = −iφuR ; p3(φd) = iφdR. (6.141)

Now (6.129) gives

DΨr = ∂∂∂Ψr +g12BP ′

0(Ψr) +g22WjPj(Ψr) (6.142)

47This is very important, since it is the reason explaining how a lepton is not a quark. If allfour operators were identical, we should get four states and a SU(4) group for chromodynamicsand the electron should be sensitive to strong interactions. Since only three parts of the waveare similar, we will get in the next paragraph a SU(3) group for chromodynamics.

80

(6.140)

47 This is very important, since it is the reason explaining how a lepton is not a quark. If all four operators were identical, we should get four states and a SU(4) group for chromodynamics and the electron should be sensitive to strong interactions. Since only three parts of the wave are similar, we will get in the next paragraph a SU(3) group for chromodynamics.

The fourth operator acts differently on the lepton wave and on the quark sec-tor47 :

P 0 =

(P0(Ψl) P ′

0(Ψr)P ′

0(Ψg) P ′0(Ψb)

)(6.133)

P0(Ψl) = Ψlγ21 + P−(Ψl)i = Ψlγ21 +1

2(Ψli+ iΨlγ30) (6.134)

P ′0(Ψr) = −1

3Ψrγ21 + P−(Ψr)i = −1

3Ψrγ21 +

1

2(Ψri+ iΨrγ30) (6.135)

And we get two identical formulas by replacing r index by g and b. Now we canabbreviate and we remove indexes r, g, b to study the electro-weak covariantderivative. We let

P ′0(Ψ) =

(p′0(φd) p′0(φu)

p′0(φu)σ1 p′0(φd)σ1

)(6.136)

which gives with (6.135):

P ′0(Ψ) =− i

3

(φdσ3 φuσ3

−φuσ3σ1 −φdσ3σ1

)

+i

2

(φd −φu

φuσ1 −φdσ1

)+

i

2

(φdσ3 −φuσ3

φuσ3σ1 −φdσ3σ1

)(6.137)

We then get the system :

p′0(φd) =− i

3φdσ3 +

i

2φd +

i

2φdσ3 =

i

3(2φdR + φdL)

p′0(φu) =− i

3φuσ3 −

i

2φu − i

2φuσ3 =

i

3(−4φuR + φuL)

p′0(φu) =i

3φuσ3 +

i

2φu +

i

2φuσ3 =

i

3(4φuL − φuR) (6.138)

p′0(φd) =i

3φdσ3 −

i

2φd −

i

2φdσ3 =

i

3(−2φdL − φdR).

Since P1, P2 and P3 are unchanged in the quark sector, we get from (6.41),(6.43) and (6.45)

p1(φd) = iφuL ; p1(φu) = iφdL ; p1(φu) = −iφdR ; p1(φd) = −iφuR (6.139)

p2(φd) = φuL ; p2(φu) = −φdL ; p2(φu) = −φdR ; p2(φd) = φuR (6.140)

p3(φd) = −iφdL ; p3(φu) = iφuL ; p3(φu) = −iφuR ; p3(φd) = iφdR. (6.141)

Now (6.129) gives

DΨr = ∂∂∂Ψr +g12BP ′

0(Ψr) +g22WjPj(Ψr) (6.142)

47This is very important, since it is the reason explaining how a lepton is not a quark. If allfour operators were identical, we should get four states and a SU(4) group for chromodynamicsand the electron should be sensitive to strong interactions. Since only three parts of the waveare similar, we will get in the next paragraph a SU(3) group for chromodynamics.

80

The fourth operator acts differently on the lepton wave and on the quark sec-tor47 :

P 0 =

(P0(Ψl) P ′

0(Ψr)P ′

0(Ψg) P ′0(Ψb)

)(6.133)

P0(Ψl) = Ψlγ21 + P−(Ψl)i = Ψlγ21 +1

2(Ψli+ iΨlγ30) (6.134)

P ′0(Ψr) = −1

3Ψrγ21 + P−(Ψr)i = −1

3Ψrγ21 +

1

2(Ψri+ iΨrγ30) (6.135)

And we get two identical formulas by replacing r index by g and b. Now we canabbreviate and we remove indexes r, g, b to study the electro-weak covariantderivative. We let

P ′0(Ψ) =

(p′0(φd) p′0(φu)

p′0(φu)σ1 p′0(φd)σ1

)(6.136)

which gives with (6.135):

P ′0(Ψ) =− i

3

(φdσ3 φuσ3

−φuσ3σ1 −φdσ3σ1

)

+i

2

(φd −φu

φuσ1 −φdσ1

)+

i

2

(φdσ3 −φuσ3

φuσ3σ1 −φdσ3σ1

)(6.137)

We then get the system :

p′0(φd) =− i

3φdσ3 +

i

2φd +

i

2φdσ3 =

i

3(2φdR + φdL)

p′0(φu) =− i

3φuσ3 −

i

2φu − i

2φuσ3 =

i

3(−4φuR + φuL)

p′0(φu) =i

3φuσ3 +

i

2φu +

i

2φuσ3 =

i

3(4φuL − φuR) (6.138)

p′0(φd) =i

3φdσ3 −

i

2φd −

i

2φdσ3 =

i

3(−2φdL − φdR).

Since P1, P2 and P3 are unchanged in the quark sector, we get from (6.41),(6.43) and (6.45)

p1(φd) = iφuL ; p1(φu) = iφdL ; p1(φu) = −iφdR ; p1(φd) = −iφuR (6.139)

p2(φd) = φuL ; p2(φu) = −φdL ; p2(φu) = −φdR ; p2(φd) = φuR (6.140)

p3(φd) = −iφdL ; p3(φu) = iφuL ; p3(φu) = −iφuR ; p3(φd) = iφdR. (6.141)

Now (6.129) gives

DΨr = ∂∂∂Ψr +g12BP ′

0(Ψr) +g22WjPj(Ψr) (6.142)

47This is very important, since it is the reason explaining how a lepton is not a quark. If allfour operators were identical, we should get four states and a SU(4) group for chromodynamicsand the electron should be sensitive to strong interactions. Since only three parts of the waveare similar, we will get in the next paragraph a SU(3) group for chromodynamics.

80

(6.141)

Now (6.129) gives

The fourth operator acts differently on the lepton wave and on the quark sec-tor47 :

P 0 =

(P0(Ψl) P ′

0(Ψr)P ′

0(Ψg) P ′0(Ψb)

)(6.133)

P0(Ψl) = Ψlγ21 + P−(Ψl)i = Ψlγ21 +1

2(Ψli+ iΨlγ30) (6.134)

P ′0(Ψr) = −1

3Ψrγ21 + P−(Ψr)i = −1

3Ψrγ21 +

1

2(Ψri+ iΨrγ30) (6.135)

And we get two identical formulas by replacing r index by g and b. Now we canabbreviate and we remove indexes r, g, b to study the electro-weak covariantderivative. We let

P ′0(Ψ) =

(p′0(φd) p′0(φu)

p′0(φu)σ1 p′0(φd)σ1

)(6.136)

which gives with (6.135):

P ′0(Ψ) =− i

3

(φdσ3 φuσ3

−φuσ3σ1 −φdσ3σ1

)

+i

2

(φd −φu

φuσ1 −φdσ1

)+

i

2

(φdσ3 −φuσ3

φuσ3σ1 −φdσ3σ1

)(6.137)

We then get the system :

p′0(φd) =− i

3φdσ3 +

i

2φd +

i

2φdσ3 =

i

3(2φdR + φdL)

p′0(φu) =− i

3φuσ3 −

i

2φu − i

2φuσ3 =

i

3(−4φuR + φuL)

p′0(φu) =i

3φuσ3 +

i

2φu +

i

2φuσ3 =

i

3(4φuL − φuR) (6.138)

p′0(φd) =i

3φdσ3 −

i

2φd −

i

2φdσ3 =

i

3(−2φdL − φdR).

Since P1, P2 and P3 are unchanged in the quark sector, we get from (6.41),(6.43) and (6.45)

p1(φd) = iφuL ; p1(φu) = iφdL ; p1(φu) = −iφdR ; p1(φd) = −iφuR (6.139)

p2(φd) = φuL ; p2(φu) = −φdL ; p2(φu) = −φdR ; p2(φd) = φuR (6.140)

p3(φd) = −iφdL ; p3(φu) = iφuL ; p3(φu) = −iφuR ; p3(φd) = iφdR. (6.141)

Now (6.129) gives

DΨr = ∂∂∂Ψr +g12BP ′

0(Ψr) +g22WjPj(Ψr) (6.142)

47This is very important, since it is the reason explaining how a lepton is not a quark. If allfour operators were identical, we should get four states and a SU(4) group for chromodynamicsand the electron should be sensitive to strong interactions. Since only three parts of the waveare similar, we will get in the next paragraph a SU(3) group for chromodynamics.

80

(6.142)

and we get, similarly to (6.47) to (6.50)and we get, similarly to (6.47) to (6.50)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu) (6.143)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.144)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.145)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu). (6.146)

With (6.138) to (6.141) this gives

Dφu = ∇φu +g12B

i

3(4φuL − φuR)

+g22[W 1(−iφdR) +W 2(−φdR) +W 3(−iφuR)] (6.147)

Dφd = ∇φd +g12B

i

3(−2φdL − φdR)

+g22[W 1(−iφuR) +W 2φuR) +W 3iφdR] (6.148)

Dφd = ∇φd +g12B

i

3(2φdR + φdL)

+g22[W 1(iφuL) + W 2(φuL) + W 3(−iφdL)] (6.149)

Dφu = ∇φu +g12B

i

3(−4φuR + φuL)

+g22[W 1(iφdL) + W 2(−φdL) + W 3(iφuL)] (6.150)

We separate right and left waves, this gives

DφuL = ∇φuL − i(−2

3)g1BφuL ; Dµηu = ∂µηu − i(−2

3)g1Bµηu (6.151)

DφdL = ∇φdL − i(+1

3)g1BφdL ; Dµηd = ∂µηd − i(+

1

3)g1Bµηd (6.152)

DφdR = ∇φdR − i(−1

3)g1BφdR ; Dµξd = ∂µξd − i(−1

3)g1Bµξd (6.153)

DφuR = ∇φuR − i(+2

3)g1BφuR ; Dµξu = ∂µξu − i(+

2

3)g1Bµξu. (6.154)

Comparison with 6.1 shows that quarks and anti-quarks have awaited electriccharges : − 2

3 |e| for anti-quark u, + 13 |e| for anti-quark d, + 2

3 |e| for the u quarkand − 1

3 |e| for the d quark.48 Separation of right and left waves from (6.147) to

48Another mechanism giving the ± e3and ± 2e

3charges of quarks was proposed in 5.3 of [5].

81

(6.143)

(6.144)

(6.145)

(6.146)

With (6.138) to (6.141) this gives

and we get, similarly to (6.47) to (6.50)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu) (6.143)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.144)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.145)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu). (6.146)

With (6.138) to (6.141) this gives

Dφu = ∇φu +g12B

i

3(4φuL − φuR)

+g22[W 1(−iφdR) +W 2(−φdR) +W 3(−iφuR)] (6.147)

Dφd = ∇φd +g12B

i

3(−2φdL − φdR)

+g22[W 1(−iφuR) +W 2φuR) +W 3iφdR] (6.148)

Dφd = ∇φd +g12B

i

3(2φdR + φdL)

+g22[W 1(iφuL) + W 2(φuL) + W 3(−iφdL)] (6.149)

Dφu = ∇φu +g12B

i

3(−4φuR + φuL)

+g22[W 1(iφdL) + W 2(−φdL) + W 3(iφuL)] (6.150)

We separate right and left waves, this gives

DφuL = ∇φuL − i(−2

3)g1BφuL ; Dµηu = ∂µηu − i(−2

3)g1Bµηu (6.151)

DφdL = ∇φdL − i(+1

3)g1BφdL ; Dµηd = ∂µηd − i(+

1

3)g1Bµηd (6.152)

DφdR = ∇φdR − i(−1

3)g1BφdR ; Dµξd = ∂µξd − i(−1

3)g1Bµξd (6.153)

DφuR = ∇φuR − i(+2

3)g1BφuR ; Dµξu = ∂µξu − i(+

2

3)g1Bµξu. (6.154)

Comparison with 6.1 shows that quarks and anti-quarks have awaited electriccharges : − 2

3 |e| for anti-quark u, + 13 |e| for anti-quark d, + 2

3 |e| for the u quarkand − 1

3 |e| for the d quark.48 Separation of right and left waves from (6.147) to

48Another mechanism giving the ± e3and ± 2e

3charges of quarks was proposed in 5.3 of [5].

81

(6.147)

and we get, similarly to (6.47) to (6.50)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu) (6.143)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.144)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.145)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu). (6.146)

With (6.138) to (6.141) this gives

Dφu = ∇φu +g12B

i

3(4φuL − φuR)

+g22[W 1(−iφdR) +W 2(−φdR) +W 3(−iφuR)] (6.147)

Dφd = ∇φd +g12B

i

3(−2φdL − φdR)

+g22[W 1(−iφuR) +W 2φuR) +W 3iφdR] (6.148)

Dφd = ∇φd +g12B

i

3(2φdR + φdL)

+g22[W 1(iφuL) + W 2(φuL) + W 3(−iφdL)] (6.149)

Dφu = ∇φu +g12B

i

3(−4φuR + φuL)

+g22[W 1(iφdL) + W 2(−φdL) + W 3(iφuL)] (6.150)

We separate right and left waves, this gives

DφuL = ∇φuL − i(−2

3)g1BφuL ; Dµηu = ∂µηu − i(−2

3)g1Bµηu (6.151)

DφdL = ∇φdL − i(+1

3)g1BφdL ; Dµηd = ∂µηd − i(+

1

3)g1Bµηd (6.152)

DφdR = ∇φdR − i(−1

3)g1BφdR ; Dµξd = ∂µξd − i(−1

3)g1Bµξd (6.153)

DφuR = ∇φuR − i(+2

3)g1BφuR ; Dµξu = ∂µξu − i(+

2

3)g1Bµξu. (6.154)

Comparison with 6.1 shows that quarks and anti-quarks have awaited electriccharges : − 2

3 |e| for anti-quark u, + 13 |e| for anti-quark d, + 2

3 |e| for the u quarkand − 1

3 |e| for the d quark.48 Separation of right and left waves from (6.147) to

48Another mechanism giving the ± e3and ± 2e

3charges of quarks was proposed in 5.3 of [5].

81

(6.148)

and we get, similarly to (6.47) to (6.50)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu) (6.143)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.144)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.145)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu). (6.146)

With (6.138) to (6.141) this gives

Dφu = ∇φu +g12B

i

3(4φuL − φuR)

+g22[W 1(−iφdR) +W 2(−φdR) +W 3(−iφuR)] (6.147)

Dφd = ∇φd +g12B

i

3(−2φdL − φdR)

+g22[W 1(−iφuR) +W 2φuR) +W 3iφdR] (6.148)

Dφd = ∇φd +g12B

i

3(2φdR + φdL)

+g22[W 1(iφuL) + W 2(φuL) + W 3(−iφdL)] (6.149)

Dφu = ∇φu +g12B

i

3(−4φuR + φuL)

+g22[W 1(iφdL) + W 2(−φdL) + W 3(iφuL)] (6.150)

We separate right and left waves, this gives

DφuL = ∇φuL − i(−2

3)g1BφuL ; Dµηu = ∂µηu − i(−2

3)g1Bµηu (6.151)

DφdL = ∇φdL − i(+1

3)g1BφdL ; Dµηd = ∂µηd − i(+

1

3)g1Bµηd (6.152)

DφdR = ∇φdR − i(−1

3)g1BφdR ; Dµξd = ∂µξd − i(−1

3)g1Bµξd (6.153)

DφuR = ∇φuR − i(+2

3)g1BφuR ; Dµξu = ∂µξu − i(+

2

3)g1Bµξu. (6.154)

Comparison with 6.1 shows that quarks and anti-quarks have awaited electriccharges : − 2

3 |e| for anti-quark u, + 13 |e| for anti-quark d, + 2

3 |e| for the u quarkand − 1

3 |e| for the d quark.48 Separation of right and left waves from (6.147) to

48Another mechanism giving the ± e3and ± 2e

3charges of quarks was proposed in 5.3 of [5].

81

(6.149)

and we get, similarly to (6.47) to (6.50)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu) (6.143)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.144)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.145)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu). (6.146)

With (6.138) to (6.141) this gives

Dφu = ∇φu +g12B

i

3(4φuL − φuR)

+g22[W 1(−iφdR) +W 2(−φdR) +W 3(−iφuR)] (6.147)

Dφd = ∇φd +g12B

i

3(−2φdL − φdR)

+g22[W 1(−iφuR) +W 2φuR) +W 3iφdR] (6.148)

Dφd = ∇φd +g12B

i

3(2φdR + φdL)

+g22[W 1(iφuL) + W 2(φuL) + W 3(−iφdL)] (6.149)

Dφu = ∇φu +g12B

i

3(−4φuR + φuL)

+g22[W 1(iφdL) + W 2(−φdL) + W 3(iφuL)] (6.150)

We separate right and left waves, this gives

DφuL = ∇φuL − i(−2

3)g1BφuL ; Dµηu = ∂µηu − i(−2

3)g1Bµηu (6.151)

DφdL = ∇φdL − i(+1

3)g1BφdL ; Dµηd = ∂µηd − i(+

1

3)g1Bµηd (6.152)

DφdR = ∇φdR − i(−1

3)g1BφdR ; Dµξd = ∂µξd − i(−1

3)g1Bµξd (6.153)

DφuR = ∇φuR − i(+2

3)g1BφuR ; Dµξu = ∂µξu − i(+

2

3)g1Bµξu. (6.154)

Comparison with 6.1 shows that quarks and anti-quarks have awaited electriccharges : − 2

3 |e| for anti-quark u, + 13 |e| for anti-quark d, + 2

3 |e| for the u quarkand − 1

3 |e| for the d quark.48 Separation of right and left waves from (6.147) to

48Another mechanism giving the ± e3and ± 2e

3charges of quarks was proposed in 5.3 of [5].

81

(6.150)

We separate right and left waves, this gives

and we get, similarly to (6.47) to (6.50)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu) (6.143)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.144)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.145)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu). (6.146)

With (6.138) to (6.141) this gives

Dφu = ∇φu +g12B

i

3(4φuL − φuR)

+g22[W 1(−iφdR) +W 2(−φdR) +W 3(−iφuR)] (6.147)

Dφd = ∇φd +g12B

i

3(−2φdL − φdR)

+g22[W 1(−iφuR) +W 2φuR) +W 3iφdR] (6.148)

Dφd = ∇φd +g12B

i

3(2φdR + φdL)

+g22[W 1(iφuL) + W 2(φuL) + W 3(−iφdL)] (6.149)

Dφu = ∇φu +g12B

i

3(−4φuR + φuL)

+g22[W 1(iφdL) + W 2(−φdL) + W 3(iφuL)] (6.150)

We separate right and left waves, this gives

DφuL = ∇φuL − i(−2

3)g1BφuL ; Dµηu = ∂µηu − i(−2

3)g1Bµηu (6.151)

DφdL = ∇φdL − i(+1

3)g1BφdL ; Dµηd = ∂µηd − i(+

1

3)g1Bµηd (6.152)

DφdR = ∇φdR − i(−1

3)g1BφdR ; Dµξd = ∂µξd − i(−1

3)g1Bµξd (6.153)

DφuR = ∇φuR − i(+2

3)g1BφuR ; Dµξu = ∂µξu − i(+

2

3)g1Bµξu. (6.154)

Comparison with 6.1 shows that quarks and anti-quarks have awaited electriccharges : − 2

3 |e| for anti-quark u, + 13 |e| for anti-quark d, + 2

3 |e| for the u quarkand − 1

3 |e| for the d quark.48 Separation of right and left waves from (6.147) to

48Another mechanism giving the ± e3and ± 2e

3charges of quarks was proposed in 5.3 of [5].

81

and we get, similarly to (6.47) to (6.50)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu) (6.143)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.144)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.145)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu). (6.146)

With (6.138) to (6.141) this gives

Dφu = ∇φu +g12B

i

3(4φuL − φuR)

+g22[W 1(−iφdR) +W 2(−φdR) +W 3(−iφuR)] (6.147)

Dφd = ∇φd +g12B

i

3(−2φdL − φdR)

+g22[W 1(−iφuR) +W 2φuR) +W 3iφdR] (6.148)

Dφd = ∇φd +g12B

i

3(2φdR + φdL)

+g22[W 1(iφuL) + W 2(φuL) + W 3(−iφdL)] (6.149)

Dφu = ∇φu +g12B

i

3(−4φuR + φuL)

+g22[W 1(iφdL) + W 2(−φdL) + W 3(iφuL)] (6.150)

We separate right and left waves, this gives

DφuL = ∇φuL − i(−2

3)g1BφuL ; Dµηu = ∂µηu − i(−2

3)g1Bµηu (6.151)

DφdL = ∇φdL − i(+1

3)g1BφdL ; Dµηd = ∂µηd − i(+

1

3)g1Bµηd (6.152)

DφdR = ∇φdR − i(−1

3)g1BφdR ; Dµξd = ∂µξd − i(−1

3)g1Bµξd (6.153)

DφuR = ∇φuR − i(+2

3)g1BφuR ; Dµξu = ∂µξu − i(+

2

3)g1Bµξu. (6.154)

Comparison with 6.1 shows that quarks and anti-quarks have awaited electriccharges : − 2

3 |e| for anti-quark u, + 13 |e| for anti-quark d, + 2

3 |e| for the u quarkand − 1

3 |e| for the d quark.48 Separation of right and left waves from (6.147) to

48Another mechanism giving the ± e3and ± 2e

3charges of quarks was proposed in 5.3 of [5].

81

(6.151)

and we get, similarly to (6.47) to (6.50)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu) (6.143)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.144)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.145)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu). (6.146)

With (6.138) to (6.141) this gives

Dφu = ∇φu +g12B

i

3(4φuL − φuR)

+g22[W 1(−iφdR) +W 2(−φdR) +W 3(−iφuR)] (6.147)

Dφd = ∇φd +g12B

i

3(−2φdL − φdR)

+g22[W 1(−iφuR) +W 2φuR) +W 3iφdR] (6.148)

Dφd = ∇φd +g12B

i

3(2φdR + φdL)

+g22[W 1(iφuL) + W 2(φuL) + W 3(−iφdL)] (6.149)

Dφu = ∇φu +g12B

i

3(−4φuR + φuL)

+g22[W 1(iφdL) + W 2(−φdL) + W 3(iφuL)] (6.150)

We separate right and left waves, this gives

DφuL = ∇φuL − i(−2

3)g1BφuL ; Dµηu = ∂µηu − i(−2

3)g1Bµηu (6.151)

DφdL = ∇φdL − i(+1

3)g1BφdL ; Dµηd = ∂µηd − i(+

1

3)g1Bµηd (6.152)

DφdR = ∇φdR − i(−1

3)g1BφdR ; Dµξd = ∂µξd − i(−1

3)g1Bµξd (6.153)

DφuR = ∇φuR − i(+2

3)g1BφuR ; Dµξu = ∂µξu − i(+

2

3)g1Bµξu. (6.154)

Comparison with 6.1 shows that quarks and anti-quarks have awaited electriccharges : − 2

3 |e| for anti-quark u, + 13 |e| for anti-quark d, + 2

3 |e| for the u quarkand − 1

3 |e| for the d quark.48 Separation of right and left waves from (6.147) to

48Another mechanism giving the ± e3and ± 2e

3charges of quarks was proposed in 5.3 of [5].

81

and we get, similarly to (6.47) to (6.50)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu) (6.143)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.144)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.145)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu). (6.146)

With (6.138) to (6.141) this gives

Dφu = ∇φu +g12B

i

3(4φuL − φuR)

+g22[W 1(−iφdR) +W 2(−φdR) +W 3(−iφuR)] (6.147)

Dφd = ∇φd +g12B

i

3(−2φdL − φdR)

+g22[W 1(−iφuR) +W 2φuR) +W 3iφdR] (6.148)

Dφd = ∇φd +g12B

i

3(2φdR + φdL)

+g22[W 1(iφuL) + W 2(φuL) + W 3(−iφdL)] (6.149)

Dφu = ∇φu +g12B

i

3(−4φuR + φuL)

+g22[W 1(iφdL) + W 2(−φdL) + W 3(iφuL)] (6.150)

We separate right and left waves, this gives

DφuL = ∇φuL − i(−2

3)g1BφuL ; Dµηu = ∂µηu − i(−2

3)g1Bµηu (6.151)

DφdL = ∇φdL − i(+1

3)g1BφdL ; Dµηd = ∂µηd − i(+

1

3)g1Bµηd (6.152)

DφdR = ∇φdR − i(−1

3)g1BφdR ; Dµξd = ∂µξd − i(−1

3)g1Bµξd (6.153)

DφuR = ∇φuR − i(+2

3)g1BφuR ; Dµξu = ∂µξu − i(+

2

3)g1Bµξu. (6.154)

Comparison with 6.1 shows that quarks and anti-quarks have awaited electriccharges : − 2

3 |e| for anti-quark u, + 13 |e| for anti-quark d, + 2

3 |e| for the u quarkand − 1

3 |e| for the d quark.48 Separation of right and left waves from (6.147) to

48Another mechanism giving the ± e3and ± 2e

3charges of quarks was proposed in 5.3 of [5].

81

(6.152)

and we get, similarly to (6.47) to (6.50)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu) (6.143)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.144)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.145)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu). (6.146)

With (6.138) to (6.141) this gives

Dφu = ∇φu +g12B

i

3(4φuL − φuR)

+g22[W 1(−iφdR) +W 2(−φdR) +W 3(−iφuR)] (6.147)

Dφd = ∇φd +g12B

i

3(−2φdL − φdR)

+g22[W 1(−iφuR) +W 2φuR) +W 3iφdR] (6.148)

Dφd = ∇φd +g12B

i

3(2φdR + φdL)

+g22[W 1(iφuL) + W 2(φuL) + W 3(−iφdL)] (6.149)

Dφu = ∇φu +g12B

i

3(−4φuR + φuL)

+g22[W 1(iφdL) + W 2(−φdL) + W 3(iφuL)] (6.150)

We separate right and left waves, this gives

DφuL = ∇φuL − i(−2

3)g1BφuL ; Dµηu = ∂µηu − i(−2

3)g1Bµηu (6.151)

DφdL = ∇φdL − i(+1

3)g1BφdL ; Dµηd = ∂µηd − i(+

1

3)g1Bµηd (6.152)

DφdR = ∇φdR − i(−1

3)g1BφdR ; Dµξd = ∂µξd − i(−1

3)g1Bµξd (6.153)

DφuR = ∇φuR − i(+2

3)g1BφuR ; Dµξu = ∂µξu − i(+

2

3)g1Bµξu. (6.154)

Comparison with 6.1 shows that quarks and anti-quarks have awaited electriccharges : − 2

3 |e| for anti-quark u, + 13 |e| for anti-quark d, + 2

3 |e| for the u quarkand − 1

3 |e| for the d quark.48 Separation of right and left waves from (6.147) to

48Another mechanism giving the ± e3and ± 2e

3charges of quarks was proposed in 5.3 of [5].

81

and we get, similarly to (6.47) to (6.50)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu) (6.143)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.144)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.145)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu). (6.146)

With (6.138) to (6.141) this gives

Dφu = ∇φu +g12B

i

3(4φuL − φuR)

+g22[W 1(−iφdR) +W 2(−φdR) +W 3(−iφuR)] (6.147)

Dφd = ∇φd +g12B

i

3(−2φdL − φdR)

+g22[W 1(−iφuR) +W 2φuR) +W 3iφdR] (6.148)

Dφd = ∇φd +g12B

i

3(2φdR + φdL)

+g22[W 1(iφuL) + W 2(φuL) + W 3(−iφdL)] (6.149)

Dφu = ∇φu +g12B

i

3(−4φuR + φuL)

+g22[W 1(iφdL) + W 2(−φdL) + W 3(iφuL)] (6.150)

We separate right and left waves, this gives

DφuL = ∇φuL − i(−2

3)g1BφuL ; Dµηu = ∂µηu − i(−2

3)g1Bµηu (6.151)

DφdL = ∇φdL − i(+1

3)g1BφdL ; Dµηd = ∂µηd − i(+

1

3)g1Bµηd (6.152)

DφdR = ∇φdR − i(−1

3)g1BφdR ; Dµξd = ∂µξd − i(−1

3)g1Bµξd (6.153)

DφuR = ∇φuR − i(+2

3)g1BφuR ; Dµξu = ∂µξu − i(+

2

3)g1Bµξu. (6.154)

Comparison with 6.1 shows that quarks and anti-quarks have awaited electriccharges : − 2

3 |e| for anti-quark u, + 13 |e| for anti-quark d, + 2

3 |e| for the u quarkand − 1

3 |e| for the d quark.48 Separation of right and left waves from (6.147) to

48Another mechanism giving the ± e3and ± 2e

3charges of quarks was proposed in 5.3 of [5].

81

(6.153)

30

Page 34: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201432

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

and we get, similarly to (6.47) to (6.50)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu) (6.143)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.144)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.145)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu). (6.146)

With (6.138) to (6.141) this gives

Dφu = ∇φu +g12B

i

3(4φuL − φuR)

+g22[W 1(−iφdR) +W 2(−φdR) +W 3(−iφuR)] (6.147)

Dφd = ∇φd +g12B

i

3(−2φdL − φdR)

+g22[W 1(−iφuR) +W 2φuR) +W 3iφdR] (6.148)

Dφd = ∇φd +g12B

i

3(2φdR + φdL)

+g22[W 1(iφuL) + W 2(φuL) + W 3(−iφdL)] (6.149)

Dφu = ∇φu +g12B

i

3(−4φuR + φuL)

+g22[W 1(iφdL) + W 2(−φdL) + W 3(iφuL)] (6.150)

We separate right and left waves, this gives

DφuL = ∇φuL − i(−2

3)g1BφuL ; Dµηu = ∂µηu − i(−2

3)g1Bµηu (6.151)

DφdL = ∇φdL − i(+1

3)g1BφdL ; Dµηd = ∂µηd − i(+

1

3)g1Bµηd (6.152)

DφdR = ∇φdR − i(−1

3)g1BφdR ; Dµξd = ∂µξd − i(−1

3)g1Bµξd (6.153)

DφuR = ∇φuR − i(+2

3)g1BφuR ; Dµξu = ∂µξu − i(+

2

3)g1Bµξu. (6.154)

Comparison with 6.1 shows that quarks and anti-quarks have awaited electriccharges : − 2

3 |e| for anti-quark u, + 13 |e| for anti-quark d, + 2

3 |e| for the u quarkand − 1

3 |e| for the d quark.48 Separation of right and left waves from (6.147) to

48Another mechanism giving the ± e3and ± 2e

3charges of quarks was proposed in 5.3 of [5].

81

and we get, similarly to (6.47) to (6.50)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu) (6.143)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.144)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.145)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu). (6.146)

With (6.138) to (6.141) this gives

Dφu = ∇φu +g12B

i

3(4φuL − φuR)

+g22[W 1(−iφdR) +W 2(−φdR) +W 3(−iφuR)] (6.147)

Dφd = ∇φd +g12B

i

3(−2φdL − φdR)

+g22[W 1(−iφuR) +W 2φuR) +W 3iφdR] (6.148)

Dφd = ∇φd +g12B

i

3(2φdR + φdL)

+g22[W 1(iφuL) + W 2(φuL) + W 3(−iφdL)] (6.149)

Dφu = ∇φu +g12B

i

3(−4φuR + φuL)

+g22[W 1(iφdL) + W 2(−φdL) + W 3(iφuL)] (6.150)

We separate right and left waves, this gives

DφuL = ∇φuL − i(−2

3)g1BφuL ; Dµηu = ∂µηu − i(−2

3)g1Bµηu (6.151)

DφdL = ∇φdL − i(+1

3)g1BφdL ; Dµηd = ∂µηd − i(+

1

3)g1Bµηd (6.152)

DφdR = ∇φdR − i(−1

3)g1BφdR ; Dµξd = ∂µξd − i(−1

3)g1Bµξd (6.153)

DφuR = ∇φuR − i(+2

3)g1BφuR ; Dµξu = ∂µξu − i(+

2

3)g1Bµξu. (6.154)

Comparison with 6.1 shows that quarks and anti-quarks have awaited electriccharges : − 2

3 |e| for anti-quark u, + 13 |e| for anti-quark d, + 2

3 |e| for the u quarkand − 1

3 |e| for the d quark.48 Separation of right and left waves from (6.147) to

48Another mechanism giving the ± e3and ± 2e

3charges of quarks was proposed in 5.3 of [5].

81

(6.154)

Comparison with 6.1 shows that quarks and an-ti-quarks have awaited electric charges:

and we get, similarly to (6.47) to (6.50)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu) (6.143)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.144)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.145)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu). (6.146)

With (6.138) to (6.141) this gives

Dφu = ∇φu +g12B

i

3(4φuL − φuR)

+g22[W 1(−iφdR) +W 2(−φdR) +W 3(−iφuR)] (6.147)

Dφd = ∇φd +g12B

i

3(−2φdL − φdR)

+g22[W 1(−iφuR) +W 2φuR) +W 3iφdR] (6.148)

Dφd = ∇φd +g12B

i

3(2φdR + φdL)

+g22[W 1(iφuL) + W 2(φuL) + W 3(−iφdL)] (6.149)

Dφu = ∇φu +g12B

i

3(−4φuR + φuL)

+g22[W 1(iφdL) + W 2(−φdL) + W 3(iφuL)] (6.150)

We separate right and left waves, this gives

DφuL = ∇φuL − i(−2

3)g1BφuL ; Dµηu = ∂µηu − i(−2

3)g1Bµηu (6.151)

DφdL = ∇φdL − i(+1

3)g1BφdL ; Dµηd = ∂µηd − i(+

1

3)g1Bµηd (6.152)

DφdR = ∇φdR − i(−1

3)g1BφdR ; Dµξd = ∂µξd − i(−1

3)g1Bµξd (6.153)

DφuR = ∇φuR − i(+2

3)g1BφuR ; Dµξu = ∂µξu − i(+

2

3)g1Bµξu. (6.154)

Comparison with 6.1 shows that quarks and anti-quarks have awaited electriccharges : − 2

3 |e| for anti-quark u, + 13 |e| for anti-quark d, + 2

3 |e| for the u quarkand − 1

3 |e| for the d quark.48 Separation of right and left waves from (6.147) to

48Another mechanism giving the ± e3and ± 2e

3charges of quarks was proposed in 5.3 of [5].

81

for anti-quark

and we get, similarly to (6.47) to (6.50)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu) (6.143)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.144)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.145)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu). (6.146)

With (6.138) to (6.141) this gives

Dφu = ∇φu +g12B

i

3(4φuL − φuR)

+g22[W 1(−iφdR) +W 2(−φdR) +W 3(−iφuR)] (6.147)

Dφd = ∇φd +g12B

i

3(−2φdL − φdR)

+g22[W 1(−iφuR) +W 2φuR) +W 3iφdR] (6.148)

Dφd = ∇φd +g12B

i

3(2φdR + φdL)

+g22[W 1(iφuL) + W 2(φuL) + W 3(−iφdL)] (6.149)

Dφu = ∇φu +g12B

i

3(−4φuR + φuL)

+g22[W 1(iφdL) + W 2(−φdL) + W 3(iφuL)] (6.150)

We separate right and left waves, this gives

DφuL = ∇φuL − i(−2

3)g1BφuL ; Dµηu = ∂µηu − i(−2

3)g1Bµηu (6.151)

DφdL = ∇φdL − i(+1

3)g1BφdL ; Dµηd = ∂µηd − i(+

1

3)g1Bµηd (6.152)

DφdR = ∇φdR − i(−1

3)g1BφdR ; Dµξd = ∂µξd − i(−1

3)g1Bµξd (6.153)

DφuR = ∇φuR − i(+2

3)g1BφuR ; Dµξu = ∂µξu − i(+

2

3)g1Bµξu. (6.154)

Comparison with 6.1 shows that quarks and anti-quarks have awaited electriccharges : − 2

3 |e| for anti-quark u, + 13 |e| for anti-quark d, + 2

3 |e| for the u quarkand − 1

3 |e| for the d quark.48 Separation of right and left waves from (6.147) to

48Another mechanism giving the ± e3and ± 2e

3charges of quarks was proposed in 5.3 of [5].

81

for anti-quark

and we get, similarly to (6.47) to (6.50)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu) (6.143)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.144)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.145)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu). (6.146)

With (6.138) to (6.141) this gives

Dφu = ∇φu +g12B

i

3(4φuL − φuR)

+g22[W 1(−iφdR) +W 2(−φdR) +W 3(−iφuR)] (6.147)

Dφd = ∇φd +g12B

i

3(−2φdL − φdR)

+g22[W 1(−iφuR) +W 2φuR) +W 3iφdR] (6.148)

Dφd = ∇φd +g12B

i

3(2φdR + φdL)

+g22[W 1(iφuL) + W 2(φuL) + W 3(−iφdL)] (6.149)

Dφu = ∇φu +g12B

i

3(−4φuR + φuL)

+g22[W 1(iφdL) + W 2(−φdL) + W 3(iφuL)] (6.150)

We separate right and left waves, this gives

DφuL = ∇φuL − i(−2

3)g1BφuL ; Dµηu = ∂µηu − i(−2

3)g1Bµηu (6.151)

DφdL = ∇φdL − i(+1

3)g1BφdL ; Dµηd = ∂µηd − i(+

1

3)g1Bµηd (6.152)

DφdR = ∇φdR − i(−1

3)g1BφdR ; Dµξd = ∂µξd − i(−1

3)g1Bµξd (6.153)

DφuR = ∇φuR − i(+2

3)g1BφuR ; Dµξu = ∂µξu − i(+

2

3)g1Bµξu. (6.154)

Comparison with 6.1 shows that quarks and anti-quarks have awaited electriccharges : − 2

3 |e| for anti-quark u, + 13 |e| for anti-quark d, + 2

3 |e| for the u quarkand − 1

3 |e| for the d quark.48 Separation of right and left waves from (6.147) to

48Another mechanism giving the ± e3and ± 2e

3charges of quarks was proposed in 5.3 of [5].

81

for the u quark and

and we get, similarly to (6.47) to (6.50)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu) (6.143)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.144)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.145)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu). (6.146)

With (6.138) to (6.141) this gives

Dφu = ∇φu +g12B

i

3(4φuL − φuR)

+g22[W 1(−iφdR) +W 2(−φdR) +W 3(−iφuR)] (6.147)

Dφd = ∇φd +g12B

i

3(−2φdL − φdR)

+g22[W 1(−iφuR) +W 2φuR) +W 3iφdR] (6.148)

Dφd = ∇φd +g12B

i

3(2φdR + φdL)

+g22[W 1(iφuL) + W 2(φuL) + W 3(−iφdL)] (6.149)

Dφu = ∇φu +g12B

i

3(−4φuR + φuL)

+g22[W 1(iφdL) + W 2(−φdL) + W 3(iφuL)] (6.150)

We separate right and left waves, this gives

DφuL = ∇φuL − i(−2

3)g1BφuL ; Dµηu = ∂µηu − i(−2

3)g1Bµηu (6.151)

DφdL = ∇φdL − i(+1

3)g1BφdL ; Dµηd = ∂µηd − i(+

1

3)g1Bµηd (6.152)

DφdR = ∇φdR − i(−1

3)g1BφdR ; Dµξd = ∂µξd − i(−1

3)g1Bµξd (6.153)

DφuR = ∇φuR − i(+2

3)g1BφuR ; Dµξu = ∂µξu − i(+

2

3)g1Bµξu. (6.154)

Comparison with 6.1 shows that quarks and anti-quarks have awaited electriccharges : − 2

3 |e| for anti-quark u, + 13 |e| for anti-quark d, + 2

3 |e| for the u quarkand − 1

3 |e| for the d quark.48 Separation of right and left waves from (6.147) to

48Another mechanism giving the ± e3and ± 2e

3charges of quarks was proposed in 5.3 of [5].

81

for the d quark.48 Separation of right and left waves from (6.147) to (6.150) gives also(6.150) gives also

DφuR = ∇φuR − ig16BφuR +

g22[−iW 1φdR)−W 2φdR − iW 3φuR] (6.155)

DφdR = ∇φdR − ig16BφdR +

g22[−iW 1φuR) +W 2φuR) + iW 3φdR] (6.156)

DφdL = ∇φdL + ig16BφdL +

g22[iW 1φuL) + W 2φuL − iW 3φdL] (6.157)

DφuL = ∇φuL + ig16BφuL +

g22[iW 1φdL)− W 2φdL + iW 3φuL]. (6.158)

Using the conjugation φ → φ we get

DφuR = ∇φuR + ig16BφuR +

g22[+iW 1φdR)− W 2φdR + iW 3φuR] (6.159)

DφdR = ∇φdR + ig16BφdR +

g22[+iW 1φuR) + W 2φuR)− iW 3φdR] (6.160)

DφdL = ∇φdL − ig16BφdL +

g22[−iW 1φuL) +W 2φuL + iW 3φdL] (6.161)

DφuL = ∇φuL − ig16BφuL +

g22[−iW 1φdL)−W 2φdL − iW 3φuL]. (6.162)

This gives a left doublet of particles and a right doublet of antiparticle. With(6.72) and

ψL =

(ηuηd

); ψR =

(ξuξd

)(6.163)

we get

DµψL = ∂µψL − ig16BµψL − i

g22(W 1

µτ1 +W 2µτ2 +W 3

µτ3)ψL (6.164)

DµψR = ∂µψR + ig16BµψR − i

g22(W 1

µτ1 −W 2µτ2 +W 3

µτ3)ψR. (6.165)

We can then say that charge conjugation is not only a changing of signs ofelectric charges, but it exchanges the right and the left waves. It also changesthe orientation of the space of the τj , where a direct basis (τ1, τ2, τ3), is replacedby an inverse basis (τ1, −τ2, τ3). We encounter this basis both here and in thewave of antiparticle (3.44) used by de Broglie.

82

(6.150) gives also

DφuR = ∇φuR − ig16BφuR +

g22[−iW 1φdR)−W 2φdR − iW 3φuR] (6.155)

DφdR = ∇φdR − ig16BφdR +

g22[−iW 1φuR) +W 2φuR) + iW 3φdR] (6.156)

DφdL = ∇φdL + ig16BφdL +

g22[iW 1φuL) + W 2φuL − iW 3φdL] (6.157)

DφuL = ∇φuL + ig16BφuL +

g22[iW 1φdL)− W 2φdL + iW 3φuL]. (6.158)

Using the conjugation φ → φ we get

DφuR = ∇φuR + ig16BφuR +

g22[+iW 1φdR)− W 2φdR + iW 3φuR] (6.159)

DφdR = ∇φdR + ig16BφdR +

g22[+iW 1φuR) + W 2φuR)− iW 3φdR] (6.160)

DφdL = ∇φdL − ig16BφdL +

g22[−iW 1φuL) +W 2φuL + iW 3φdL] (6.161)

DφuL = ∇φuL − ig16BφuL +

g22[−iW 1φdL)−W 2φdL − iW 3φuL]. (6.162)

This gives a left doublet of particles and a right doublet of antiparticle. With(6.72) and

ψL =

(ηuηd

); ψR =

(ξuξd

)(6.163)

we get

DµψL = ∂µψL − ig16BµψL − i

g22(W 1

µτ1 +W 2µτ2 +W 3

µτ3)ψL (6.164)

DµψR = ∂µψR + ig16BµψR − i

g22(W 1

µτ1 −W 2µτ2 +W 3

µτ3)ψR. (6.165)

We can then say that charge conjugation is not only a changing of signs ofelectric charges, but it exchanges the right and the left waves. It also changesthe orientation of the space of the τj , where a direct basis (τ1, τ2, τ3), is replacedby an inverse basis (τ1, −τ2, τ3). We encounter this basis both here and in thewave of antiparticle (3.44) used by de Broglie.

82

(6.155)(6.150) gives also

DφuR = ∇φuR − ig16BφuR +

g22[−iW 1φdR)−W 2φdR − iW 3φuR] (6.155)

DφdR = ∇φdR − ig16BφdR +

g22[−iW 1φuR) +W 2φuR) + iW 3φdR] (6.156)

DφdL = ∇φdL + ig16BφdL +

g22[iW 1φuL) + W 2φuL − iW 3φdL] (6.157)

DφuL = ∇φuL + ig16BφuL +

g22[iW 1φdL)− W 2φdL + iW 3φuL]. (6.158)

Using the conjugation φ → φ we get

DφuR = ∇φuR + ig16BφuR +

g22[+iW 1φdR)− W 2φdR + iW 3φuR] (6.159)

DφdR = ∇φdR + ig16BφdR +

g22[+iW 1φuR) + W 2φuR)− iW 3φdR] (6.160)

DφdL = ∇φdL − ig16BφdL +

g22[−iW 1φuL) +W 2φuL + iW 3φdL] (6.161)

DφuL = ∇φuL − ig16BφuL +

g22[−iW 1φdL)−W 2φdL − iW 3φuL]. (6.162)

This gives a left doublet of particles and a right doublet of antiparticle. With(6.72) and

ψL =

(ηuηd

); ψR =

(ξuξd

)(6.163)

we get

DµψL = ∂µψL − ig16BµψL − i

g22(W 1

µτ1 +W 2µτ2 +W 3

µτ3)ψL (6.164)

DµψR = ∂µψR + ig16BµψR − i

g22(W 1

µτ1 −W 2µτ2 +W 3

µτ3)ψR. (6.165)

We can then say that charge conjugation is not only a changing of signs ofelectric charges, but it exchanges the right and the left waves. It also changesthe orientation of the space of the τj , where a direct basis (τ1, τ2, τ3), is replacedby an inverse basis (τ1, −τ2, τ3). We encounter this basis both here and in thewave of antiparticle (3.44) used by de Broglie.

82

(6.150) gives also

DφuR = ∇φuR − ig16BφuR +

g22[−iW 1φdR)−W 2φdR − iW 3φuR] (6.155)

DφdR = ∇φdR − ig16BφdR +

g22[−iW 1φuR) +W 2φuR) + iW 3φdR] (6.156)

DφdL = ∇φdL + ig16BφdL +

g22[iW 1φuL) + W 2φuL − iW 3φdL] (6.157)

DφuL = ∇φuL + ig16BφuL +

g22[iW 1φdL)− W 2φdL + iW 3φuL]. (6.158)

Using the conjugation φ → φ we get

DφuR = ∇φuR + ig16BφuR +

g22[+iW 1φdR)− W 2φdR + iW 3φuR] (6.159)

DφdR = ∇φdR + ig16BφdR +

g22[+iW 1φuR) + W 2φuR)− iW 3φdR] (6.160)

DφdL = ∇φdL − ig16BφdL +

g22[−iW 1φuL) +W 2φuL + iW 3φdL] (6.161)

DφuL = ∇φuL − ig16BφuL +

g22[−iW 1φdL)−W 2φdL − iW 3φuL]. (6.162)

This gives a left doublet of particles and a right doublet of antiparticle. With(6.72) and

ψL =

(ηuηd

); ψR =

(ξuξd

)(6.163)

we get

DµψL = ∂µψL − ig16BµψL − i

g22(W 1

µτ1 +W 2µτ2 +W 3

µτ3)ψL (6.164)

DµψR = ∂µψR + ig16BµψR − i

g22(W 1

µτ1 −W 2µτ2 +W 3

µτ3)ψR. (6.165)

We can then say that charge conjugation is not only a changing of signs ofelectric charges, but it exchanges the right and the left waves. It also changesthe orientation of the space of the τj , where a direct basis (τ1, τ2, τ3), is replacedby an inverse basis (τ1, −τ2, τ3). We encounter this basis both here and in thewave of antiparticle (3.44) used by de Broglie.

82

(6.156)(6.150) gives also

DφuR = ∇φuR − ig16BφuR +

g22[−iW 1φdR)−W 2φdR − iW 3φuR] (6.155)

DφdR = ∇φdR − ig16BφdR +

g22[−iW 1φuR) +W 2φuR) + iW 3φdR] (6.156)

DφdL = ∇φdL + ig16BφdL +

g22[iW 1φuL) + W 2φuL − iW 3φdL] (6.157)

DφuL = ∇φuL + ig16BφuL +

g22[iW 1φdL)− W 2φdL + iW 3φuL]. (6.158)

Using the conjugation φ → φ we get

DφuR = ∇φuR + ig16BφuR +

g22[+iW 1φdR)− W 2φdR + iW 3φuR] (6.159)

DφdR = ∇φdR + ig16BφdR +

g22[+iW 1φuR) + W 2φuR)− iW 3φdR] (6.160)

DφdL = ∇φdL − ig16BφdL +

g22[−iW 1φuL) +W 2φuL + iW 3φdL] (6.161)

DφuL = ∇φuL − ig16BφuL +

g22[−iW 1φdL)−W 2φdL − iW 3φuL]. (6.162)

This gives a left doublet of particles and a right doublet of antiparticle. With(6.72) and

ψL =

(ηuηd

); ψR =

(ξuξd

)(6.163)

we get

DµψL = ∂µψL − ig16BµψL − i

g22(W 1

µτ1 +W 2µτ2 +W 3

µτ3)ψL (6.164)

DµψR = ∂µψR + ig16BµψR − i

g22(W 1

µτ1 −W 2µτ2 +W 3

µτ3)ψR. (6.165)

We can then say that charge conjugation is not only a changing of signs ofelectric charges, but it exchanges the right and the left waves. It also changesthe orientation of the space of the τj , where a direct basis (τ1, τ2, τ3), is replacedby an inverse basis (τ1, −τ2, τ3). We encounter this basis both here and in thewave of antiparticle (3.44) used by de Broglie.

82

(6.150) gives also

DφuR = ∇φuR − ig16BφuR +

g22[−iW 1φdR)−W 2φdR − iW 3φuR] (6.155)

DφdR = ∇φdR − ig16BφdR +

g22[−iW 1φuR) +W 2φuR) + iW 3φdR] (6.156)

DφdL = ∇φdL + ig16BφdL +

g22[iW 1φuL) + W 2φuL − iW 3φdL] (6.157)

DφuL = ∇φuL + ig16BφuL +

g22[iW 1φdL)− W 2φdL + iW 3φuL]. (6.158)

Using the conjugation φ → φ we get

DφuR = ∇φuR + ig16BφuR +

g22[+iW 1φdR)− W 2φdR + iW 3φuR] (6.159)

DφdR = ∇φdR + ig16BφdR +

g22[+iW 1φuR) + W 2φuR)− iW 3φdR] (6.160)

DφdL = ∇φdL − ig16BφdL +

g22[−iW 1φuL) +W 2φuL + iW 3φdL] (6.161)

DφuL = ∇φuL − ig16BφuL +

g22[−iW 1φdL)−W 2φdL − iW 3φuL]. (6.162)

This gives a left doublet of particles and a right doublet of antiparticle. With(6.72) and

ψL =

(ηuηd

); ψR =

(ξuξd

)(6.163)

we get

DµψL = ∂µψL − ig16BµψL − i

g22(W 1

µτ1 +W 2µτ2 +W 3

µτ3)ψL (6.164)

DµψR = ∂µψR + ig16BµψR − i

g22(W 1

µτ1 −W 2µτ2 +W 3

µτ3)ψR. (6.165)

We can then say that charge conjugation is not only a changing of signs ofelectric charges, but it exchanges the right and the left waves. It also changesthe orientation of the space of the τj , where a direct basis (τ1, τ2, τ3), is replacedby an inverse basis (τ1, −τ2, τ3). We encounter this basis both here and in thewave of antiparticle (3.44) used by de Broglie.

82

(6.157)

(6.150) gives also

DφuR = ∇φuR − ig16BφuR +

g22[−iW 1φdR)−W 2φdR − iW 3φuR] (6.155)

DφdR = ∇φdR − ig16BφdR +

g22[−iW 1φuR) +W 2φuR) + iW 3φdR] (6.156)

DφdL = ∇φdL + ig16BφdL +

g22[iW 1φuL) + W 2φuL − iW 3φdL] (6.157)

DφuL = ∇φuL + ig16BφuL +

g22[iW 1φdL)− W 2φdL + iW 3φuL]. (6.158)

Using the conjugation φ → φ we get

DφuR = ∇φuR + ig16BφuR +

g22[+iW 1φdR)− W 2φdR + iW 3φuR] (6.159)

DφdR = ∇φdR + ig16BφdR +

g22[+iW 1φuR) + W 2φuR)− iW 3φdR] (6.160)

DφdL = ∇φdL − ig16BφdL +

g22[−iW 1φuL) +W 2φuL + iW 3φdL] (6.161)

DφuL = ∇φuL − ig16BφuL +

g22[−iW 1φdL)−W 2φdL − iW 3φuL]. (6.162)

This gives a left doublet of particles and a right doublet of antiparticle. With(6.72) and

ψL =

(ηuηd

); ψR =

(ξuξd

)(6.163)

we get

DµψL = ∂µψL − ig16BµψL − i

g22(W 1

µτ1 +W 2µτ2 +W 3

µτ3)ψL (6.164)

DµψR = ∂µψR + ig16BµψR − i

g22(W 1

µτ1 −W 2µτ2 +W 3

µτ3)ψR. (6.165)

We can then say that charge conjugation is not only a changing of signs ofelectric charges, but it exchanges the right and the left waves. It also changesthe orientation of the space of the τj , where a direct basis (τ1, τ2, τ3), is replacedby an inverse basis (τ1, −τ2, τ3). We encounter this basis both here and in thewave of antiparticle (3.44) used by de Broglie.

82

(6.150) gives also

DφuR = ∇φuR − ig16BφuR +

g22[−iW 1φdR)−W 2φdR − iW 3φuR] (6.155)

DφdR = ∇φdR − ig16BφdR +

g22[−iW 1φuR) +W 2φuR) + iW 3φdR] (6.156)

DφdL = ∇φdL + ig16BφdL +

g22[iW 1φuL) + W 2φuL − iW 3φdL] (6.157)

DφuL = ∇φuL + ig16BφuL +

g22[iW 1φdL)− W 2φdL + iW 3φuL]. (6.158)

Using the conjugation φ → φ we get

DφuR = ∇φuR + ig16BφuR +

g22[+iW 1φdR)− W 2φdR + iW 3φuR] (6.159)

DφdR = ∇φdR + ig16BφdR +

g22[+iW 1φuR) + W 2φuR)− iW 3φdR] (6.160)

DφdL = ∇φdL − ig16BφdL +

g22[−iW 1φuL) +W 2φuL + iW 3φdL] (6.161)

DφuL = ∇φuL − ig16BφuL +

g22[−iW 1φdL)−W 2φdL − iW 3φuL]. (6.162)

This gives a left doublet of particles and a right doublet of antiparticle. With(6.72) and

ψL =

(ηuηd

); ψR =

(ξuξd

)(6.163)

we get

DµψL = ∂µψL − ig16BµψL − i

g22(W 1

µτ1 +W 2µτ2 +W 3

µτ3)ψL (6.164)

DµψR = ∂µψR + ig16BµψR − i

g22(W 1

µτ1 −W 2µτ2 +W 3

µτ3)ψR. (6.165)

We can then say that charge conjugation is not only a changing of signs ofelectric charges, but it exchanges the right and the left waves. It also changesthe orientation of the space of the τj , where a direct basis (τ1, τ2, τ3), is replacedby an inverse basis (τ1, −τ2, τ3). We encounter this basis both here and in thewave of antiparticle (3.44) used by de Broglie.

82

(6.158)

Using the conjugation

(6.150) gives also

DφuR = ∇φuR − ig16BφuR +

g22[−iW 1φdR)−W 2φdR − iW 3φuR] (6.155)

DφdR = ∇φdR − ig16BφdR +

g22[−iW 1φuR) +W 2φuR) + iW 3φdR] (6.156)

DφdL = ∇φdL + ig16BφdL +

g22[iW 1φuL) + W 2φuL − iW 3φdL] (6.157)

DφuL = ∇φuL + ig16BφuL +

g22[iW 1φdL)− W 2φdL + iW 3φuL]. (6.158)

Using the conjugation φ → φ we get

DφuR = ∇φuR + ig16BφuR +

g22[+iW 1φdR)− W 2φdR + iW 3φuR] (6.159)

DφdR = ∇φdR + ig16BφdR +

g22[+iW 1φuR) + W 2φuR)− iW 3φdR] (6.160)

DφdL = ∇φdL − ig16BφdL +

g22[−iW 1φuL) +W 2φuL + iW 3φdL] (6.161)

DφuL = ∇φuL − ig16BφuL +

g22[−iW 1φdL)−W 2φdL − iW 3φuL]. (6.162)

This gives a left doublet of particles and a right doublet of antiparticle. With(6.72) and

ψL =

(ηuηd

); ψR =

(ξuξd

)(6.163)

we get

DµψL = ∂µψL − ig16BµψL − i

g22(W 1

µτ1 +W 2µτ2 +W 3

µτ3)ψL (6.164)

DµψR = ∂µψR + ig16BµψR − i

g22(W 1

µτ1 −W 2µτ2 +W 3

µτ3)ψR. (6.165)

We can then say that charge conjugation is not only a changing of signs ofelectric charges, but it exchanges the right and the left waves. It also changesthe orientation of the space of the τj , where a direct basis (τ1, τ2, τ3), is replacedby an inverse basis (τ1, −τ2, τ3). We encounter this basis both here and in thewave of antiparticle (3.44) used by de Broglie.

82

we get

(6.150) gives also

DφuR = ∇φuR − ig16BφuR +

g22[−iW 1φdR)−W 2φdR − iW 3φuR] (6.155)

DφdR = ∇φdR − ig16BφdR +

g22[−iW 1φuR) +W 2φuR) + iW 3φdR] (6.156)

DφdL = ∇φdL + ig16BφdL +

g22[iW 1φuL) + W 2φuL − iW 3φdL] (6.157)

DφuL = ∇φuL + ig16BφuL +

g22[iW 1φdL)− W 2φdL + iW 3φuL]. (6.158)

Using the conjugation φ → φ we get

DφuR = ∇φuR + ig16BφuR +

g22[+iW 1φdR)− W 2φdR + iW 3φuR] (6.159)

DφdR = ∇φdR + ig16BφdR +

g22[+iW 1φuR) + W 2φuR)− iW 3φdR] (6.160)

DφdL = ∇φdL − ig16BφdL +

g22[−iW 1φuL) +W 2φuL + iW 3φdL] (6.161)

DφuL = ∇φuL − ig16BφuL +

g22[−iW 1φdL)−W 2φdL − iW 3φuL]. (6.162)

This gives a left doublet of particles and a right doublet of antiparticle. With(6.72) and

ψL =

(ηuηd

); ψR =

(ξuξd

)(6.163)

we get

DµψL = ∂µψL − ig16BµψL − i

g22(W 1

µτ1 +W 2µτ2 +W 3

µτ3)ψL (6.164)

DµψR = ∂µψR + ig16BµψR − i

g22(W 1

µτ1 −W 2µτ2 +W 3

µτ3)ψR. (6.165)

We can then say that charge conjugation is not only a changing of signs ofelectric charges, but it exchanges the right and the left waves. It also changesthe orientation of the space of the τj , where a direct basis (τ1, τ2, τ3), is replacedby an inverse basis (τ1, −τ2, τ3). We encounter this basis both here and in thewave of antiparticle (3.44) used by de Broglie.

82

(6.150) gives also

DφuR = ∇φuR − ig16BφuR +

g22[−iW 1φdR)−W 2φdR − iW 3φuR] (6.155)

DφdR = ∇φdR − ig16BφdR +

g22[−iW 1φuR) +W 2φuR) + iW 3φdR] (6.156)

DφdL = ∇φdL + ig16BφdL +

g22[iW 1φuL) + W 2φuL − iW 3φdL] (6.157)

DφuL = ∇φuL + ig16BφuL +

g22[iW 1φdL)− W 2φdL + iW 3φuL]. (6.158)

Using the conjugation φ → φ we get

DφuR = ∇φuR + ig16BφuR +

g22[+iW 1φdR)− W 2φdR + iW 3φuR] (6.159)

DφdR = ∇φdR + ig16BφdR +

g22[+iW 1φuR) + W 2φuR)− iW 3φdR] (6.160)

DφdL = ∇φdL − ig16BφdL +

g22[−iW 1φuL) +W 2φuL + iW 3φdL] (6.161)

DφuL = ∇φuL − ig16BφuL +

g22[−iW 1φdL)−W 2φdL − iW 3φuL]. (6.162)

This gives a left doublet of particles and a right doublet of antiparticle. With(6.72) and

ψL =

(ηuηd

); ψR =

(ξuξd

)(6.163)

we get

DµψL = ∂µψL − ig16BµψL − i

g22(W 1

µτ1 +W 2µτ2 +W 3

µτ3)ψL (6.164)

DµψR = ∂µψR + ig16BµψR − i

g22(W 1

µτ1 −W 2µτ2 +W 3

µτ3)ψR. (6.165)

We can then say that charge conjugation is not only a changing of signs ofelectric charges, but it exchanges the right and the left waves. It also changesthe orientation of the space of the τj , where a direct basis (τ1, τ2, τ3), is replacedby an inverse basis (τ1, −τ2, τ3). We encounter this basis both here and in thewave of antiparticle (3.44) used by de Broglie.

82

(6.159)

(6.150) gives also

DφuR = ∇φuR − ig16BφuR +

g22[−iW 1φdR)−W 2φdR − iW 3φuR] (6.155)

DφdR = ∇φdR − ig16BφdR +

g22[−iW 1φuR) +W 2φuR) + iW 3φdR] (6.156)

DφdL = ∇φdL + ig16BφdL +

g22[iW 1φuL) + W 2φuL − iW 3φdL] (6.157)

DφuL = ∇φuL + ig16BφuL +

g22[iW 1φdL)− W 2φdL + iW 3φuL]. (6.158)

Using the conjugation φ → φ we get

DφuR = ∇φuR + ig16BφuR +

g22[+iW 1φdR)− W 2φdR + iW 3φuR] (6.159)

DφdR = ∇φdR + ig16BφdR +

g22[+iW 1φuR) + W 2φuR)− iW 3φdR] (6.160)

DφdL = ∇φdL − ig16BφdL +

g22[−iW 1φuL) +W 2φuL + iW 3φdL] (6.161)

DφuL = ∇φuL − ig16BφuL +

g22[−iW 1φdL)−W 2φdL − iW 3φuL]. (6.162)

This gives a left doublet of particles and a right doublet of antiparticle. With(6.72) and

ψL =

(ηuηd

); ψR =

(ξuξd

)(6.163)

we get

DµψL = ∂µψL − ig16BµψL − i

g22(W 1

µτ1 +W 2µτ2 +W 3

µτ3)ψL (6.164)

DµψR = ∂µψR + ig16BµψR − i

g22(W 1

µτ1 −W 2µτ2 +W 3

µτ3)ψR. (6.165)

We can then say that charge conjugation is not only a changing of signs ofelectric charges, but it exchanges the right and the left waves. It also changesthe orientation of the space of the τj , where a direct basis (τ1, τ2, τ3), is replacedby an inverse basis (τ1, −τ2, τ3). We encounter this basis both here and in thewave of antiparticle (3.44) used by de Broglie.

82

(6.150) gives also

DφuR = ∇φuR − ig16BφuR +

g22[−iW 1φdR)−W 2φdR − iW 3φuR] (6.155)

DφdR = ∇φdR − ig16BφdR +

g22[−iW 1φuR) +W 2φuR) + iW 3φdR] (6.156)

DφdL = ∇φdL + ig16BφdL +

g22[iW 1φuL) + W 2φuL − iW 3φdL] (6.157)

DφuL = ∇φuL + ig16BφuL +

g22[iW 1φdL)− W 2φdL + iW 3φuL]. (6.158)

Using the conjugation φ → φ we get

DφuR = ∇φuR + ig16BφuR +

g22[+iW 1φdR)− W 2φdR + iW 3φuR] (6.159)

DφdR = ∇φdR + ig16BφdR +

g22[+iW 1φuR) + W 2φuR)− iW 3φdR] (6.160)

DφdL = ∇φdL − ig16BφdL +

g22[−iW 1φuL) +W 2φuL + iW 3φdL] (6.161)

DφuL = ∇φuL − ig16BφuL +

g22[−iW 1φdL)−W 2φdL − iW 3φuL]. (6.162)

This gives a left doublet of particles and a right doublet of antiparticle. With(6.72) and

ψL =

(ηuηd

); ψR =

(ξuξd

)(6.163)

we get

DµψL = ∂µψL − ig16BµψL − i

g22(W 1

µτ1 +W 2µτ2 +W 3

µτ3)ψL (6.164)

DµψR = ∂µψR + ig16BµψR − i

g22(W 1

µτ1 −W 2µτ2 +W 3

µτ3)ψR. (6.165)

We can then say that charge conjugation is not only a changing of signs ofelectric charges, but it exchanges the right and the left waves. It also changesthe orientation of the space of the τj , where a direct basis (τ1, τ2, τ3), is replacedby an inverse basis (τ1, −τ2, τ3). We encounter this basis both here and in thewave of antiparticle (3.44) used by de Broglie.

82

(6.160)

(6.150) gives also

DφuR = ∇φuR − ig16BφuR +

g22[−iW 1φdR)−W 2φdR − iW 3φuR] (6.155)

DφdR = ∇φdR − ig16BφdR +

g22[−iW 1φuR) +W 2φuR) + iW 3φdR] (6.156)

DφdL = ∇φdL + ig16BφdL +

g22[iW 1φuL) + W 2φuL − iW 3φdL] (6.157)

DφuL = ∇φuL + ig16BφuL +

g22[iW 1φdL)− W 2φdL + iW 3φuL]. (6.158)

Using the conjugation φ → φ we get

DφuR = ∇φuR + ig16BφuR +

g22[+iW 1φdR)− W 2φdR + iW 3φuR] (6.159)

DφdR = ∇φdR + ig16BφdR +

g22[+iW 1φuR) + W 2φuR)− iW 3φdR] (6.160)

DφdL = ∇φdL − ig16BφdL +

g22[−iW 1φuL) +W 2φuL + iW 3φdL] (6.161)

DφuL = ∇φuL − ig16BφuL +

g22[−iW 1φdL)−W 2φdL − iW 3φuL]. (6.162)

This gives a left doublet of particles and a right doublet of antiparticle. With(6.72) and

ψL =

(ηuηd

); ψR =

(ξuξd

)(6.163)

we get

DµψL = ∂µψL − ig16BµψL − i

g22(W 1

µτ1 +W 2µτ2 +W 3

µτ3)ψL (6.164)

DµψR = ∂µψR + ig16BµψR − i

g22(W 1

µτ1 −W 2µτ2 +W 3

µτ3)ψR. (6.165)

We can then say that charge conjugation is not only a changing of signs ofelectric charges, but it exchanges the right and the left waves. It also changesthe orientation of the space of the τj , where a direct basis (τ1, τ2, τ3), is replacedby an inverse basis (τ1, −τ2, τ3). We encounter this basis both here and in thewave of antiparticle (3.44) used by de Broglie.

82

(6.150) gives also

DφuR = ∇φuR − ig16BφuR +

g22[−iW 1φdR)−W 2φdR − iW 3φuR] (6.155)

DφdR = ∇φdR − ig16BφdR +

g22[−iW 1φuR) +W 2φuR) + iW 3φdR] (6.156)

DφdL = ∇φdL + ig16BφdL +

g22[iW 1φuL) + W 2φuL − iW 3φdL] (6.157)

DφuL = ∇φuL + ig16BφuL +

g22[iW 1φdL)− W 2φdL + iW 3φuL]. (6.158)

Using the conjugation φ → φ we get

DφuR = ∇φuR + ig16BφuR +

g22[+iW 1φdR)− W 2φdR + iW 3φuR] (6.159)

DφdR = ∇φdR + ig16BφdR +

g22[+iW 1φuR) + W 2φuR)− iW 3φdR] (6.160)

DφdL = ∇φdL − ig16BφdL +

g22[−iW 1φuL) +W 2φuL + iW 3φdL] (6.161)

DφuL = ∇φuL − ig16BφuL +

g22[−iW 1φdL)−W 2φdL − iW 3φuL]. (6.162)

This gives a left doublet of particles and a right doublet of antiparticle. With(6.72) and

ψL =

(ηuηd

); ψR =

(ξuξd

)(6.163)

we get

DµψL = ∂µψL − ig16BµψL − i

g22(W 1

µτ1 +W 2µτ2 +W 3

µτ3)ψL (6.164)

DµψR = ∂µψR + ig16BµψR − i

g22(W 1

µτ1 −W 2µτ2 +W 3

µτ3)ψR. (6.165)

We can then say that charge conjugation is not only a changing of signs ofelectric charges, but it exchanges the right and the left waves. It also changesthe orientation of the space of the τj , where a direct basis (τ1, τ2, τ3), is replacedby an inverse basis (τ1, −τ2, τ3). We encounter this basis both here and in thewave of antiparticle (3.44) used by de Broglie.

82

(6.161)

(6.150) gives also

DφuR = ∇φuR − ig16BφuR +

g22[−iW 1φdR)−W 2φdR − iW 3φuR] (6.155)

DφdR = ∇φdR − ig16BφdR +

g22[−iW 1φuR) +W 2φuR) + iW 3φdR] (6.156)

DφdL = ∇φdL + ig16BφdL +

g22[iW 1φuL) + W 2φuL − iW 3φdL] (6.157)

DφuL = ∇φuL + ig16BφuL +

g22[iW 1φdL)− W 2φdL + iW 3φuL]. (6.158)

Using the conjugation φ → φ we get

DφuR = ∇φuR + ig16BφuR +

g22[+iW 1φdR)− W 2φdR + iW 3φuR] (6.159)

DφdR = ∇φdR + ig16BφdR +

g22[+iW 1φuR) + W 2φuR)− iW 3φdR] (6.160)

DφdL = ∇φdL − ig16BφdL +

g22[−iW 1φuL) +W 2φuL + iW 3φdL] (6.161)

DφuL = ∇φuL − ig16BφuL +

g22[−iW 1φdL)−W 2φdL − iW 3φuL]. (6.162)

This gives a left doublet of particles and a right doublet of antiparticle. With(6.72) and

ψL =

(ηuηd

); ψR =

(ξuξd

)(6.163)

we get

DµψL = ∂µψL − ig16BµψL − i

g22(W 1

µτ1 +W 2µτ2 +W 3

µτ3)ψL (6.164)

DµψR = ∂µψR + ig16BµψR − i

g22(W 1

µτ1 −W 2µτ2 +W 3

µτ3)ψR. (6.165)

We can then say that charge conjugation is not only a changing of signs ofelectric charges, but it exchanges the right and the left waves. It also changesthe orientation of the space of the τj , where a direct basis (τ1, τ2, τ3), is replacedby an inverse basis (τ1, −τ2, τ3). We encounter this basis both here and in thewave of antiparticle (3.44) used by de Broglie.

82

(6.150) gives also

DφuR = ∇φuR − ig16BφuR +

g22[−iW 1φdR)−W 2φdR − iW 3φuR] (6.155)

DφdR = ∇φdR − ig16BφdR +

g22[−iW 1φuR) +W 2φuR) + iW 3φdR] (6.156)

DφdL = ∇φdL + ig16BφdL +

g22[iW 1φuL) + W 2φuL − iW 3φdL] (6.157)

DφuL = ∇φuL + ig16BφuL +

g22[iW 1φdL)− W 2φdL + iW 3φuL]. (6.158)

Using the conjugation φ → φ we get

DφuR = ∇φuR + ig16BφuR +

g22[+iW 1φdR)− W 2φdR + iW 3φuR] (6.159)

DφdR = ∇φdR + ig16BφdR +

g22[+iW 1φuR) + W 2φuR)− iW 3φdR] (6.160)

DφdL = ∇φdL − ig16BφdL +

g22[−iW 1φuL) +W 2φuL + iW 3φdL] (6.161)

DφuL = ∇φuL − ig16BφuL +

g22[−iW 1φdL)−W 2φdL − iW 3φuL]. (6.162)

This gives a left doublet of particles and a right doublet of antiparticle. With(6.72) and

ψL =

(ηuηd

); ψR =

(ξuξd

)(6.163)

we get

DµψL = ∂µψL − ig16BµψL − i

g22(W 1

µτ1 +W 2µτ2 +W 3

µτ3)ψL (6.164)

DµψR = ∂µψR + ig16BµψR − i

g22(W 1

µτ1 −W 2µτ2 +W 3

µτ3)ψR. (6.165)

We can then say that charge conjugation is not only a changing of signs ofelectric charges, but it exchanges the right and the left waves. It also changesthe orientation of the space of the τj , where a direct basis (τ1, τ2, τ3), is replacedby an inverse basis (τ1, −τ2, τ3). We encounter this basis both here and in thewave of antiparticle (3.44) used by de Broglie.

82

(6.162)

This gives a left doublet of particles and a right dou-blet of antiparticle. With (6.72) and

(6.150) gives also

DφuR = ∇φuR − ig16BφuR +

g22[−iW 1φdR)−W 2φdR − iW 3φuR] (6.155)

DφdR = ∇φdR − ig16BφdR +

g22[−iW 1φuR) +W 2φuR) + iW 3φdR] (6.156)

DφdL = ∇φdL + ig16BφdL +

g22[iW 1φuL) + W 2φuL − iW 3φdL] (6.157)

DφuL = ∇φuL + ig16BφuL +

g22[iW 1φdL)− W 2φdL + iW 3φuL]. (6.158)

Using the conjugation φ → φ we get

DφuR = ∇φuR + ig16BφuR +

g22[+iW 1φdR)− W 2φdR + iW 3φuR] (6.159)

DφdR = ∇φdR + ig16BφdR +

g22[+iW 1φuR) + W 2φuR)− iW 3φdR] (6.160)

DφdL = ∇φdL − ig16BφdL +

g22[−iW 1φuL) +W 2φuL + iW 3φdL] (6.161)

DφuL = ∇φuL − ig16BφuL +

g22[−iW 1φdL)−W 2φdL − iW 3φuL]. (6.162)

This gives a left doublet of particles and a right doublet of antiparticle. With(6.72) and

ψL =

(ηuηd

); ψR =

(ξuξd

)(6.163)

we get

DµψL = ∂µψL − ig16BµψL − i

g22(W 1

µτ1 +W 2µτ2 +W 3

µτ3)ψL (6.164)

DµψR = ∂µψR + ig16BµψR − i

g22(W 1

µτ1 −W 2µτ2 +W 3

µτ3)ψR. (6.165)

We can then say that charge conjugation is not only a changing of signs ofelectric charges, but it exchanges the right and the left waves. It also changesthe orientation of the space of the τj , where a direct basis (τ1, τ2, τ3), is replacedby an inverse basis (τ1, −τ2, τ3). We encounter this basis both here and in thewave of antiparticle (3.44) used by de Broglie.

82

(6.163)

48 Another mechanism giving the

and we get, similarly to (6.47) to (6.50)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu) (6.143)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.144)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.145)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu). (6.146)

With (6.138) to (6.141) this gives

Dφu = ∇φu +g12B

i

3(4φuL − φuR)

+g22[W 1(−iφdR) +W 2(−φdR) +W 3(−iφuR)] (6.147)

Dφd = ∇φd +g12B

i

3(−2φdL − φdR)

+g22[W 1(−iφuR) +W 2φuR) +W 3iφdR] (6.148)

Dφd = ∇φd +g12B

i

3(2φdR + φdL)

+g22[W 1(iφuL) + W 2(φuL) + W 3(−iφdL)] (6.149)

Dφu = ∇φu +g12B

i

3(−4φuR + φuL)

+g22[W 1(iφdL) + W 2(−φdL) + W 3(iφuL)] (6.150)

We separate right and left waves, this gives

DφuL = ∇φuL − i(−2

3)g1BφuL ; Dµηu = ∂µηu − i(−2

3)g1Bµηu (6.151)

DφdL = ∇φdL − i(+1

3)g1BφdL ; Dµηd = ∂µηd − i(+

1

3)g1Bµηd (6.152)

DφdR = ∇φdR − i(−1

3)g1BφdR ; Dµξd = ∂µξd − i(−1

3)g1Bµξd (6.153)

DφuR = ∇φuR − i(+2

3)g1BφuR ; Dµξu = ∂µξu − i(+

2

3)g1Bµξu. (6.154)

Comparison with 6.1 shows that quarks and anti-quarks have awaited electriccharges : − 2

3 |e| for anti-quark u, + 13 |e| for anti-quark d, + 2

3 |e| for the u quarkand − 1

3 |e| for the d quark.48 Separation of right and left waves from (6.147) to

48Another mechanism giving the ± e3and ± 2e

3charges of quarks was proposed in 5.3 of [5].

81

and

and we get, similarly to (6.47) to (6.50)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu) (6.143)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.144)

Dφd = ∇φd +g12Bp′0(φd) +

g22W jpj(φd) (6.145)

Dφu = ∇φu +g12Bp′0(φu) +

g22W jpj(φu). (6.146)

With (6.138) to (6.141) this gives

Dφu = ∇φu +g12B

i

3(4φuL − φuR)

+g22[W 1(−iφdR) +W 2(−φdR) +W 3(−iφuR)] (6.147)

Dφd = ∇φd +g12B

i

3(−2φdL − φdR)

+g22[W 1(−iφuR) +W 2φuR) +W 3iφdR] (6.148)

Dφd = ∇φd +g12B

i

3(2φdR + φdL)

+g22[W 1(iφuL) + W 2(φuL) + W 3(−iφdL)] (6.149)

Dφu = ∇φu +g12B

i

3(−4φuR + φuL)

+g22[W 1(iφdL) + W 2(−φdL) + W 3(iφuL)] (6.150)

We separate right and left waves, this gives

DφuL = ∇φuL − i(−2

3)g1BφuL ; Dµηu = ∂µηu − i(−2

3)g1Bµηu (6.151)

DφdL = ∇φdL − i(+1

3)g1BφdL ; Dµηd = ∂µηd − i(+

1

3)g1Bµηd (6.152)

DφdR = ∇φdR − i(−1

3)g1BφdR ; Dµξd = ∂µξd − i(−1

3)g1Bµξd (6.153)

DφuR = ∇φuR − i(+2

3)g1BφuR ; Dµξu = ∂µξu − i(+

2

3)g1Bµξu. (6.154)

Comparison with 6.1 shows that quarks and anti-quarks have awaited electriccharges : − 2

3 |e| for anti-quark u, + 13 |e| for anti-quark d, + 2

3 |e| for the u quarkand − 1

3 |e| for the d quark.48 Separation of right and left waves from (6.147) to

48Another mechanism giving the ± e3and ± 2e

3charges of quarks was proposed in 5.3 of [5].

81

charges of quarks was proposed in 5.3 of [5].

we get

(6.150) gives also

DφuR = ∇φuR − ig16BφuR +

g22[−iW 1φdR)−W 2φdR − iW 3φuR] (6.155)

DφdR = ∇φdR − ig16BφdR +

g22[−iW 1φuR) +W 2φuR) + iW 3φdR] (6.156)

DφdL = ∇φdL + ig16BφdL +

g22[iW 1φuL) + W 2φuL − iW 3φdL] (6.157)

DφuL = ∇φuL + ig16BφuL +

g22[iW 1φdL)− W 2φdL + iW 3φuL]. (6.158)

Using the conjugation φ → φ we get

DφuR = ∇φuR + ig16BφuR +

g22[+iW 1φdR)− W 2φdR + iW 3φuR] (6.159)

DφdR = ∇φdR + ig16BφdR +

g22[+iW 1φuR) + W 2φuR)− iW 3φdR] (6.160)

DφdL = ∇φdL − ig16BφdL +

g22[−iW 1φuL) +W 2φuL + iW 3φdL] (6.161)

DφuL = ∇φuL − ig16BφuL +

g22[−iW 1φdL)−W 2φdL − iW 3φuL]. (6.162)

This gives a left doublet of particles and a right doublet of antiparticle. With(6.72) and

ψL =

(ηuηd

); ψR =

(ξuξd

)(6.163)

we get

DµψL = ∂µψL − ig16BµψL − i

g22(W 1

µτ1 +W 2µτ2 +W 3

µτ3)ψL (6.164)

DµψR = ∂µψR + ig16BµψR − i

g22(W 1

µτ1 −W 2µτ2 +W 3

µτ3)ψR. (6.165)

We can then say that charge conjugation is not only a changing of signs ofelectric charges, but it exchanges the right and the left waves. It also changesthe orientation of the space of the τj , where a direct basis (τ1, τ2, τ3), is replacedby an inverse basis (τ1, −τ2, τ3). We encounter this basis both here and in thewave of antiparticle (3.44) used by de Broglie.

82

(6.150) gives also

DφuR = ∇φuR − ig16BφuR +

g22[−iW 1φdR)−W 2φdR − iW 3φuR] (6.155)

DφdR = ∇φdR − ig16BφdR +

g22[−iW 1φuR) +W 2φuR) + iW 3φdR] (6.156)

DφdL = ∇φdL + ig16BφdL +

g22[iW 1φuL) + W 2φuL − iW 3φdL] (6.157)

DφuL = ∇φuL + ig16BφuL +

g22[iW 1φdL)− W 2φdL + iW 3φuL]. (6.158)

Using the conjugation φ → φ we get

DφuR = ∇φuR + ig16BφuR +

g22[+iW 1φdR)− W 2φdR + iW 3φuR] (6.159)

DφdR = ∇φdR + ig16BφdR +

g22[+iW 1φuR) + W 2φuR)− iW 3φdR] (6.160)

DφdL = ∇φdL − ig16BφdL +

g22[−iW 1φuL) +W 2φuL + iW 3φdL] (6.161)

DφuL = ∇φuL − ig16BφuL +

g22[−iW 1φdL)−W 2φdL − iW 3φuL]. (6.162)

This gives a left doublet of particles and a right doublet of antiparticle. With(6.72) and

ψL =

(ηuηd

); ψR =

(ξuξd

)(6.163)

we get

DµψL = ∂µψL − ig16BµψL − i

g22(W 1

µτ1 +W 2µτ2 +W 3

µτ3)ψL (6.164)

DµψR = ∂µψR + ig16BµψR − i

g22(W 1

µτ1 −W 2µτ2 +W 3

µτ3)ψR. (6.165)

We can then say that charge conjugation is not only a changing of signs ofelectric charges, but it exchanges the right and the left waves. It also changesthe orientation of the space of the τj , where a direct basis (τ1, τ2, τ3), is replacedby an inverse basis (τ1, −τ2, τ3). We encounter this basis both here and in thewave of antiparticle (3.44) used by de Broglie.

82

;(6.164)

(6.150) gives also

DφuR = ∇φuR − ig16BφuR +

g22[−iW 1φdR)−W 2φdR − iW 3φuR] (6.155)

DφdR = ∇φdR − ig16BφdR +

g22[−iW 1φuR) +W 2φuR) + iW 3φdR] (6.156)

DφdL = ∇φdL + ig16BφdL +

g22[iW 1φuL) + W 2φuL − iW 3φdL] (6.157)

DφuL = ∇φuL + ig16BφuL +

g22[iW 1φdL)− W 2φdL + iW 3φuL]. (6.158)

Using the conjugation φ → φ we get

DφuR = ∇φuR + ig16BφuR +

g22[+iW 1φdR)− W 2φdR + iW 3φuR] (6.159)

DφdR = ∇φdR + ig16BφdR +

g22[+iW 1φuR) + W 2φuR)− iW 3φdR] (6.160)

DφdL = ∇φdL − ig16BφdL +

g22[−iW 1φuL) +W 2φuL + iW 3φdL] (6.161)

DφuL = ∇φuL − ig16BφuL +

g22[−iW 1φdL)−W 2φdL − iW 3φuL]. (6.162)

This gives a left doublet of particles and a right doublet of antiparticle. With(6.72) and

ψL =

(ηuηd

); ψR =

(ξuξd

)(6.163)

we get

DµψL = ∂µψL − ig16BµψL − i

g22(W 1

µτ1 +W 2µτ2 +W 3

µτ3)ψL (6.164)

DµψR = ∂µψR + ig16BµψR − i

g22(W 1

µτ1 −W 2µτ2 +W 3

µτ3)ψR. (6.165)

We can then say that charge conjugation is not only a changing of signs ofelectric charges, but it exchanges the right and the left waves. It also changesthe orientation of the space of the τj , where a direct basis (τ1, τ2, τ3), is replacedby an inverse basis (τ1, −τ2, τ3). We encounter this basis both here and in thewave of antiparticle (3.44) used by de Broglie.

82

(6.150) gives also

DφuR = ∇φuR − ig16BφuR +

g22[−iW 1φdR)−W 2φdR − iW 3φuR] (6.155)

DφdR = ∇φdR − ig16BφdR +

g22[−iW 1φuR) +W 2φuR) + iW 3φdR] (6.156)

DφdL = ∇φdL + ig16BφdL +

g22[iW 1φuL) + W 2φuL − iW 3φdL] (6.157)

DφuL = ∇φuL + ig16BφuL +

g22[iW 1φdL)− W 2φdL + iW 3φuL]. (6.158)

Using the conjugation φ → φ we get

DφuR = ∇φuR + ig16BφuR +

g22[+iW 1φdR)− W 2φdR + iW 3φuR] (6.159)

DφdR = ∇φdR + ig16BφdR +

g22[+iW 1φuR) + W 2φuR)− iW 3φdR] (6.160)

DφdL = ∇φdL − ig16BφdL +

g22[−iW 1φuL) +W 2φuL + iW 3φdL] (6.161)

DφuL = ∇φuL − ig16BφuL +

g22[−iW 1φdL)−W 2φdL − iW 3φuL]. (6.162)

This gives a left doublet of particles and a right doublet of antiparticle. With(6.72) and

ψL =

(ηuηd

); ψR =

(ξuξd

)(6.163)

we get

DµψL = ∂µψL − ig16BµψL − i

g22(W 1

µτ1 +W 2µτ2 +W 3

µτ3)ψL (6.164)

DµψR = ∂µψR + ig16BµψR − i

g22(W 1

µτ1 −W 2µτ2 +W 3

µτ3)ψR. (6.165)

We can then say that charge conjugation is not only a changing of signs ofelectric charges, but it exchanges the right and the left waves. It also changesthe orientation of the space of the τj , where a direct basis (τ1, τ2, τ3), is replacedby an inverse basis (τ1, −τ2, τ3). We encounter this basis both here and in thewave of antiparticle (3.44) used by de Broglie.

82

(6.165)

We can then say that charge conjugation is not only a changing of signs of electric charges, but it exchanges the right and the left waves. It also changes the orientation of the space of the τj , where a direct basis (τ1 , τ2 , τ3), is replaced by an inverse basis (τ1 , − τ2 , τ3). We encounter this basis both here and in the wave of antiparticle (3.44) used by de Broglie.

6.4 Chromodynamics

We start from generators λk of the SU (3) gauge group of chromodynamics

6.4 Chromodynamics

We start from generators λk of the SU(3) gauge group of chromodynamics

λ1 =

0 1 01 0 00 0 0

, λ2 =

0 −i 0i 0 00 0 0

, λ3 =

1 0 00 −1 00 0 0

λ4 =

0 0 10 0 01 0 0

, λ5 =

0 0 −i0 0 0i 0 0

, λ6 =

0 0 00 0 10 1 0

λ7 =

0 0 00 0 −i0 i 0

, λ8 =

1√3

1 0 00 1 00 0 −2

. (6.166)

To simplify notations we use now l, r, g, b instead Ψl, Ψr, Ψg, Ψb. So we have

Ψ =

(l rg b

). Then (6.166) gives

λ1

rgb

=

gr0

, λ2

rgb

=

−igir0

, λ3

rgb

=

r−g0

λ4

rgb

=

b0r

, λ5

rgb

=

−ib0ir

, λ6

rgb

=

0bg

(6.167)

λ7

rgb

=

0−ibig

, λ8

rgb

=

1√3

rg

−2b

.

We name Γk operators corresponding to λk acting on Ψ. We get with (1.93)

Γ1(Ψ) =1

2(Λ4ΨΛ4 + Λ01235ΨΛ01235) =

(0 gr 0

)(6.168)

Γ2(Ψ) =1

2(Λ5ΨΛ4 − Λ01234ΨΛ01235) =

(0 −igir 0

)(6.169)

Γ3(Ψ) = P+ΨP− − P−ΨP+ =

(0 r−g 0

)(6.170)

Γ4(Ψ) = Λ4ΨP− =

(0 b0 r

); Γ5(Ψ) = Λ5ΨP− =

(0 −ib0 ir

)(6.171)

Γ6(Ψ) = P−ΨΛ4 =

(0 0b g

); Γ7(Ψ) = iP−ΨΛ01235 =

(0 0

−ib ig

)(6.172)

Γ8(Ψ) = − 1√3(P−ΨΛ012345 + Λ012345ΨP−) =

1√3

(0 rg −2b

). (6.173)

Everywhere the left up term is 0, so all Γk project the wave Ψ on its quarksector.

83

6.4 Chromodynamics

We start from generators λk of the SU(3) gauge group of chromodynamics

λ1 =

0 1 01 0 00 0 0

, λ2 =

0 −i 0i 0 00 0 0

, λ3 =

1 0 00 −1 00 0 0

λ4 =

0 0 10 0 01 0 0

, λ5 =

0 0 −i0 0 0i 0 0

, λ6 =

0 0 00 0 10 1 0

λ7 =

0 0 00 0 −i0 i 0

, λ8 =

1√3

1 0 00 1 00 0 −2

. (6.166)

To simplify notations we use now l, r, g, b instead Ψl, Ψr, Ψg, Ψb. So we have

Ψ =

(l rg b

). Then (6.166) gives

λ1

rgb

=

gr0

, λ2

rgb

=

−igir0

, λ3

rgb

=

r−g0

λ4

rgb

=

b0r

, λ5

rgb

=

−ib0ir

, λ6

rgb

=

0bg

(6.167)

λ7

rgb

=

0−ibig

, λ8

rgb

=

1√3

rg

−2b

.

We name Γk operators corresponding to λk acting on Ψ. We get with (1.93)

Γ1(Ψ) =1

2(Λ4ΨΛ4 + Λ01235ΨΛ01235) =

(0 gr 0

)(6.168)

Γ2(Ψ) =1

2(Λ5ΨΛ4 − Λ01234ΨΛ01235) =

(0 −igir 0

)(6.169)

Γ3(Ψ) = P+ΨP− − P−ΨP+ =

(0 r−g 0

)(6.170)

Γ4(Ψ) = Λ4ΨP− =

(0 b0 r

); Γ5(Ψ) = Λ5ΨP− =

(0 −ib0 ir

)(6.171)

Γ6(Ψ) = P−ΨΛ4 =

(0 0b g

); Γ7(Ψ) = iP−ΨΛ01235 =

(0 0

−ib ig

)(6.172)

Γ8(Ψ) = − 1√3(P−ΨΛ012345 + Λ012345ΨP−) =

1√3

(0 rg −2b

). (6.173)

Everywhere the left up term is 0, so all Γk project the wave Ψ on its quarksector.

83

6.4 Chromodynamics

We start from generators λk of the SU(3) gauge group of chromodynamics

λ1 =

0 1 01 0 00 0 0

, λ2 =

0 −i 0i 0 00 0 0

, λ3 =

1 0 00 −1 00 0 0

λ4 =

0 0 10 0 01 0 0

, λ5 =

0 0 −i0 0 0i 0 0

, λ6 =

0 0 00 0 10 1 0

λ7 =

0 0 00 0 −i0 i 0

, λ8 =

1√3

1 0 00 1 00 0 −2

. (6.166)

To simplify notations we use now l, r, g, b instead Ψl, Ψr, Ψg, Ψb. So we have

Ψ =

(l rg b

). Then (6.166) gives

λ1

rgb

=

gr0

, λ2

rgb

=

−igir0

, λ3

rgb

=

r−g0

λ4

rgb

=

b0r

, λ5

rgb

=

−ib0ir

, λ6

rgb

=

0bg

(6.167)

λ7

rgb

=

0−ibig

, λ8

rgb

=

1√3

rg

−2b

.

We name Γk operators corresponding to λk acting on Ψ. We get with (1.93)

Γ1(Ψ) =1

2(Λ4ΨΛ4 + Λ01235ΨΛ01235) =

(0 gr 0

)(6.168)

Γ2(Ψ) =1

2(Λ5ΨΛ4 − Λ01234ΨΛ01235) =

(0 −igir 0

)(6.169)

Γ3(Ψ) = P+ΨP− − P−ΨP+ =

(0 r−g 0

)(6.170)

Γ4(Ψ) = Λ4ΨP− =

(0 b0 r

); Γ5(Ψ) = Λ5ΨP− =

(0 −ib0 ir

)(6.171)

Γ6(Ψ) = P−ΨΛ4 =

(0 0b g

); Γ7(Ψ) = iP−ΨΛ01235 =

(0 0

−ib ig

)(6.172)

Γ8(Ψ) = − 1√3(P−ΨΛ012345 + Λ012345ΨP−) =

1√3

(0 rg −2b

). (6.173)

Everywhere the left up term is 0, so all Γk project the wave Ψ on its quarksector.

83

6.4 Chromodynamics

We start from generators λk of the SU(3) gauge group of chromodynamics

λ1 =

0 1 01 0 00 0 0

, λ2 =

0 −i 0i 0 00 0 0

, λ3 =

1 0 00 −1 00 0 0

λ4 =

0 0 10 0 01 0 0

, λ5 =

0 0 −i0 0 0i 0 0

, λ6 =

0 0 00 0 10 1 0

λ7 =

0 0 00 0 −i0 i 0

, λ8 =

1√3

1 0 00 1 00 0 −2

. (6.166)

To simplify notations we use now l, r, g, b instead Ψl, Ψr, Ψg, Ψb. So we have

Ψ =

(l rg b

). Then (6.166) gives

λ1

rgb

=

gr0

, λ2

rgb

=

−igir0

, λ3

rgb

=

r−g0

λ4

rgb

=

b0r

, λ5

rgb

=

−ib0ir

, λ6

rgb

=

0bg

(6.167)

λ7

rgb

=

0−ibig

, λ8

rgb

=

1√3

rg

−2b

.

We name Γk operators corresponding to λk acting on Ψ. We get with (1.93)

Γ1(Ψ) =1

2(Λ4ΨΛ4 + Λ01235ΨΛ01235) =

(0 gr 0

)(6.168)

Γ2(Ψ) =1

2(Λ5ΨΛ4 − Λ01234ΨΛ01235) =

(0 −igir 0

)(6.169)

Γ3(Ψ) = P+ΨP− − P−ΨP+ =

(0 r−g 0

)(6.170)

Γ4(Ψ) = Λ4ΨP− =

(0 b0 r

); Γ5(Ψ) = Λ5ΨP− =

(0 −ib0 ir

)(6.171)

Γ6(Ψ) = P−ΨΛ4 =

(0 0b g

); Γ7(Ψ) = iP−ΨΛ01235 =

(0 0

−ib ig

)(6.172)

Γ8(Ψ) = − 1√3(P−ΨΛ012345 + Λ012345ΨP−) =

1√3

(0 rg −2b

). (6.173)

Everywhere the left up term is 0, so all Γk project the wave Ψ on its quarksector.

83

6.4 Chromodynamics

We start from generators λk of the SU(3) gauge group of chromodynamics

λ1 =

0 1 01 0 00 0 0

, λ2 =

0 −i 0i 0 00 0 0

, λ3 =

1 0 00 −1 00 0 0

λ4 =

0 0 10 0 01 0 0

, λ5 =

0 0 −i0 0 0i 0 0

, λ6 =

0 0 00 0 10 1 0

λ7 =

0 0 00 0 −i0 i 0

, λ8 =

1√3

1 0 00 1 00 0 −2

. (6.166)

To simplify notations we use now l, r, g, b instead Ψl, Ψr, Ψg, Ψb. So we have

Ψ =

(l rg b

). Then (6.166) gives

λ1

rgb

=

gr0

, λ2

rgb

=

−igir0

, λ3

rgb

=

r−g0

λ4

rgb

=

b0r

, λ5

rgb

=

−ib0ir

, λ6

rgb

=

0bg

(6.167)

λ7

rgb

=

0−ibig

, λ8

rgb

=

1√3

rg

−2b

.

We name Γk operators corresponding to λk acting on Ψ. We get with (1.93)

Γ1(Ψ) =1

2(Λ4ΨΛ4 + Λ01235ΨΛ01235) =

(0 gr 0

)(6.168)

Γ2(Ψ) =1

2(Λ5ΨΛ4 − Λ01234ΨΛ01235) =

(0 −igir 0

)(6.169)

Γ3(Ψ) = P+ΨP− − P−ΨP+ =

(0 r−g 0

)(6.170)

Γ4(Ψ) = Λ4ΨP− =

(0 b0 r

); Γ5(Ψ) = Λ5ΨP− =

(0 −ib0 ir

)(6.171)

Γ6(Ψ) = P−ΨΛ4 =

(0 0b g

); Γ7(Ψ) = iP−ΨΛ01235 =

(0 0

−ib ig

)(6.172)

Γ8(Ψ) = − 1√3(P−ΨΛ012345 + Λ012345ΨP−) =

1√3

(0 rg −2b

). (6.173)

Everywhere the left up term is 0, so all Γk project the wave Ψ on its quarksector.

83

,

(6.166)

To simplify notations we use now l, r, g, b instead

Ψl , Ψr , Ψg , Ψb . So we have

6.4 Chromodynamics

We start from generators λk of the SU(3) gauge group of chromodynamics

λ1 =

0 1 01 0 00 0 0

, λ2 =

0 −i 0i 0 00 0 0

, λ3 =

1 0 00 −1 00 0 0

λ4 =

0 0 10 0 01 0 0

, λ5 =

0 0 −i0 0 0i 0 0

, λ6 =

0 0 00 0 10 1 0

λ7 =

0 0 00 0 −i0 i 0

, λ8 =

1√3

1 0 00 1 00 0 −2

. (6.166)

To simplify notations we use now l, r, g, b instead Ψl, Ψr, Ψg, Ψb. So we have

Ψ =

(l rg b

). Then (6.166) gives

λ1

rgb

=

gr0

, λ2

rgb

=

−igir0

, λ3

rgb

=

r−g0

λ4

rgb

=

b0r

, λ5

rgb

=

−ib0ir

, λ6

rgb

=

0bg

(6.167)

λ7

rgb

=

0−ibig

, λ8

rgb

=

1√3

rg

−2b

.

We name Γk operators corresponding to λk acting on Ψ. We get with (1.93)

Γ1(Ψ) =1

2(Λ4ΨΛ4 + Λ01235ΨΛ01235) =

(0 gr 0

)(6.168)

Γ2(Ψ) =1

2(Λ5ΨΛ4 − Λ01234ΨΛ01235) =

(0 −igir 0

)(6.169)

Γ3(Ψ) = P+ΨP− − P−ΨP+ =

(0 r−g 0

)(6.170)

Γ4(Ψ) = Λ4ΨP− =

(0 b0 r

); Γ5(Ψ) = Λ5ΨP− =

(0 −ib0 ir

)(6.171)

Γ6(Ψ) = P−ΨΛ4 =

(0 0b g

); Γ7(Ψ) = iP−ΨΛ01235 =

(0 0

−ib ig

)(6.172)

Γ8(Ψ) = − 1√3(P−ΨΛ012345 + Λ012345ΨP−) =

1√3

(0 rg −2b

). (6.173)

Everywhere the left up term is 0, so all Γk project the wave Ψ on its quarksector.

83

. Then (6.166) gives

,

6.4 Chromodynamics

We start from generators λk of the SU(3) gauge group of chromodynamics

λ1 =

0 1 01 0 00 0 0

, λ2 =

0 −i 0i 0 00 0 0

, λ3 =

1 0 00 −1 00 0 0

λ4 =

0 0 10 0 01 0 0

, λ5 =

0 0 −i0 0 0i 0 0

, λ6 =

0 0 00 0 10 1 0

λ7 =

0 0 00 0 −i0 i 0

, λ8 =

1√3

1 0 00 1 00 0 −2

. (6.166)

To simplify notations we use now l, r, g, b instead Ψl, Ψr, Ψg, Ψb. So we have

Ψ =

(l rg b

). Then (6.166) gives

λ1

rgb

=

gr0

, λ2

rgb

=

−igir0

, λ3

rgb

=

r−g0

λ4

rgb

=

b0r

, λ5

rgb

=

−ib0ir

, λ6

rgb

=

0bg

(6.167)

λ7

rgb

=

0−ibig

, λ8

rgb

=

1√3

rg

−2b

.

We name Γk operators corresponding to λk acting on Ψ. We get with (1.93)

Γ1(Ψ) =1

2(Λ4ΨΛ4 + Λ01235ΨΛ01235) =

(0 gr 0

)(6.168)

Γ2(Ψ) =1

2(Λ5ΨΛ4 − Λ01234ΨΛ01235) =

(0 −igir 0

)(6.169)

Γ3(Ψ) = P+ΨP− − P−ΨP+ =

(0 r−g 0

)(6.170)

Γ4(Ψ) = Λ4ΨP− =

(0 b0 r

); Γ5(Ψ) = Λ5ΨP− =

(0 −ib0 ir

)(6.171)

Γ6(Ψ) = P−ΨΛ4 =

(0 0b g

); Γ7(Ψ) = iP−ΨΛ01235 =

(0 0

−ib ig

)(6.172)

Γ8(Ψ) = − 1√3(P−ΨΛ012345 + Λ012345ΨP−) =

1√3

(0 rg −2b

). (6.173)

Everywhere the left up term is 0, so all Γk project the wave Ψ on its quarksector.

83

6.4 Chromodynamics

We start from generators λk of the SU(3) gauge group of chromodynamics

λ1 =

0 1 01 0 00 0 0

, λ2 =

0 −i 0i 0 00 0 0

, λ3 =

1 0 00 −1 00 0 0

λ4 =

0 0 10 0 01 0 0

, λ5 =

0 0 −i0 0 0i 0 0

, λ6 =

0 0 00 0 10 1 0

λ7 =

0 0 00 0 −i0 i 0

, λ8 =

1√3

1 0 00 1 00 0 −2

. (6.166)

To simplify notations we use now l, r, g, b instead Ψl, Ψr, Ψg, Ψb. So we have

Ψ =

(l rg b

). Then (6.166) gives

λ1

rgb

=

gr0

, λ2

rgb

=

−igir0

, λ3

rgb

=

r−g0

λ4

rgb

=

b0r

, λ5

rgb

=

−ib0ir

, λ6

rgb

=

0bg

(6.167)

λ7

rgb

=

0−ibig

, λ8

rgb

=

1√3

rg

−2b

.

We name Γk operators corresponding to λk acting on Ψ. We get with (1.93)

Γ1(Ψ) =1

2(Λ4ΨΛ4 + Λ01235ΨΛ01235) =

(0 gr 0

)(6.168)

Γ2(Ψ) =1

2(Λ5ΨΛ4 − Λ01234ΨΛ01235) =

(0 −igir 0

)(6.169)

Γ3(Ψ) = P+ΨP− − P−ΨP+ =

(0 r−g 0

)(6.170)

Γ4(Ψ) = Λ4ΨP− =

(0 b0 r

); Γ5(Ψ) = Λ5ΨP− =

(0 −ib0 ir

)(6.171)

Γ6(Ψ) = P−ΨΛ4 =

(0 0b g

); Γ7(Ψ) = iP−ΨΛ01235 =

(0 0

−ib ig

)(6.172)

Γ8(Ψ) = − 1√3(P−ΨΛ012345 + Λ012345ΨP−) =

1√3

(0 rg −2b

). (6.173)

Everywhere the left up term is 0, so all Γk project the wave Ψ on its quarksector.

83

6.4 Chromodynamics

We start from generators λk of the SU(3) gauge group of chromodynamics

λ1 =

0 1 01 0 00 0 0

, λ2 =

0 −i 0i 0 00 0 0

, λ3 =

1 0 00 −1 00 0 0

λ4 =

0 0 10 0 01 0 0

, λ5 =

0 0 −i0 0 0i 0 0

, λ6 =

0 0 00 0 10 1 0

λ7 =

0 0 00 0 −i0 i 0

, λ8 =

1√3

1 0 00 1 00 0 −2

. (6.166)

To simplify notations we use now l, r, g, b instead Ψl, Ψr, Ψg, Ψb. So we have

Ψ =

(l rg b

). Then (6.166) gives

λ1

rgb

=

gr0

, λ2

rgb

=

−igir0

, λ3

rgb

=

r−g0

λ4

rgb

=

b0r

, λ5

rgb

=

−ib0ir

, λ6

rgb

=

0bg

(6.167)

λ7

rgb

=

0−ibig

, λ8

rgb

=

1√3

rg

−2b

.

We name Γk operators corresponding to λk acting on Ψ. We get with (1.93)

Γ1(Ψ) =1

2(Λ4ΨΛ4 + Λ01235ΨΛ01235) =

(0 gr 0

)(6.168)

Γ2(Ψ) =1

2(Λ5ΨΛ4 − Λ01234ΨΛ01235) =

(0 −igir 0

)(6.169)

Γ3(Ψ) = P+ΨP− − P−ΨP+ =

(0 r−g 0

)(6.170)

Γ4(Ψ) = Λ4ΨP− =

(0 b0 r

); Γ5(Ψ) = Λ5ΨP− =

(0 −ib0 ir

)(6.171)

Γ6(Ψ) = P−ΨΛ4 =

(0 0b g

); Γ7(Ψ) = iP−ΨΛ01235 =

(0 0

−ib ig

)(6.172)

Γ8(Ψ) = − 1√3(P−ΨΛ012345 + Λ012345ΨP−) =

1√3

(0 rg −2b

). (6.173)

Everywhere the left up term is 0, so all Γk project the wave Ψ on its quarksector.

83

6.4 Chromodynamics

We start from generators λk of the SU(3) gauge group of chromodynamics

λ1 =

0 1 01 0 00 0 0

, λ2 =

0 −i 0i 0 00 0 0

, λ3 =

1 0 00 −1 00 0 0

λ4 =

0 0 10 0 01 0 0

, λ5 =

0 0 −i0 0 0i 0 0

, λ6 =

0 0 00 0 10 1 0

λ7 =

0 0 00 0 −i0 i 0

, λ8 =

1√3

1 0 00 1 00 0 −2

. (6.166)

To simplify notations we use now l, r, g, b instead Ψl, Ψr, Ψg, Ψb. So we have

Ψ =

(l rg b

). Then (6.166) gives

λ1

rgb

=

gr0

, λ2

rgb

=

−igir0

, λ3

rgb

=

r−g0

λ4

rgb

=

b0r

, λ5

rgb

=

−ib0ir

, λ6

rgb

=

0bg

(6.167)

λ7

rgb

=

0−ibig

, λ8

rgb

=

1√3

rg

−2b

.

We name Γk operators corresponding to λk acting on Ψ. We get with (1.93)

Γ1(Ψ) =1

2(Λ4ΨΛ4 + Λ01235ΨΛ01235) =

(0 gr 0

)(6.168)

Γ2(Ψ) =1

2(Λ5ΨΛ4 − Λ01234ΨΛ01235) =

(0 −igir 0

)(6.169)

Γ3(Ψ) = P+ΨP− − P−ΨP+ =

(0 r−g 0

)(6.170)

Γ4(Ψ) = Λ4ΨP− =

(0 b0 r

); Γ5(Ψ) = Λ5ΨP− =

(0 −ib0 ir

)(6.171)

Γ6(Ψ) = P−ΨΛ4 =

(0 0b g

); Γ7(Ψ) = iP−ΨΛ01235 =

(0 0

−ib ig

)(6.172)

Γ8(Ψ) = − 1√3(P−ΨΛ012345 + Λ012345ΨP−) =

1√3

(0 rg −2b

). (6.173)

Everywhere the left up term is 0, so all Γk project the wave Ψ on its quarksector.

83

6.4 Chromodynamics

We start from generators λk of the SU(3) gauge group of chromodynamics

λ1 =

0 1 01 0 00 0 0

, λ2 =

0 −i 0i 0 00 0 0

, λ3 =

1 0 00 −1 00 0 0

λ4 =

0 0 10 0 01 0 0

, λ5 =

0 0 −i0 0 0i 0 0

, λ6 =

0 0 00 0 10 1 0

λ7 =

0 0 00 0 −i0 i 0

, λ8 =

1√3

1 0 00 1 00 0 −2

. (6.166)

To simplify notations we use now l, r, g, b instead Ψl, Ψr, Ψg, Ψb. So we have

Ψ =

(l rg b

). Then (6.166) gives

λ1

rgb

=

gr0

, λ2

rgb

=

−igir0

, λ3

rgb

=

r−g0

λ4

rgb

=

b0r

, λ5

rgb

=

−ib0ir

, λ6

rgb

=

0bg

(6.167)

λ7

rgb

=

0−ibig

, λ8

rgb

=

1√3

rg

−2b

.

We name Γk operators corresponding to λk acting on Ψ. We get with (1.93)

Γ1(Ψ) =1

2(Λ4ΨΛ4 + Λ01235ΨΛ01235) =

(0 gr 0

)(6.168)

Γ2(Ψ) =1

2(Λ5ΨΛ4 − Λ01234ΨΛ01235) =

(0 −igir 0

)(6.169)

Γ3(Ψ) = P+ΨP− − P−ΨP+ =

(0 r−g 0

)(6.170)

Γ4(Ψ) = Λ4ΨP− =

(0 b0 r

); Γ5(Ψ) = Λ5ΨP− =

(0 −ib0 ir

)(6.171)

Γ6(Ψ) = P−ΨΛ4 =

(0 0b g

); Γ7(Ψ) = iP−ΨΛ01235 =

(0 0

−ib ig

)(6.172)

Γ8(Ψ) = − 1√3(P−ΨΛ012345 + Λ012345ΨP−) =

1√3

(0 rg −2b

). (6.173)

Everywhere the left up term is 0, so all Γk project the wave Ψ on its quarksector.

83

,

(6.167)

,

33

Page 35: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 33

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

We name Γk operators corresponding to λk acting on Ψ. We get with (1.93)

6.4 Chromodynamics

We start from generators λk of the SU(3) gauge group of chromodynamics

λ1 =

0 1 01 0 00 0 0

, λ2 =

0 −i 0i 0 00 0 0

, λ3 =

1 0 00 −1 00 0 0

λ4 =

0 0 10 0 01 0 0

, λ5 =

0 0 −i0 0 0i 0 0

, λ6 =

0 0 00 0 10 1 0

λ7 =

0 0 00 0 −i0 i 0

, λ8 =

1√3

1 0 00 1 00 0 −2

. (6.166)

To simplify notations we use now l, r, g, b instead Ψl, Ψr, Ψg, Ψb. So we have

Ψ =

(l rg b

). Then (6.166) gives

λ1

rgb

=

gr0

, λ2

rgb

=

−igir0

, λ3

rgb

=

r−g0

λ4

rgb

=

b0r

, λ5

rgb

=

−ib0ir

, λ6

rgb

=

0bg

(6.167)

λ7

rgb

=

0−ibig

, λ8

rgb

=

1√3

rg

−2b

.

We name Γk operators corresponding to λk acting on Ψ. We get with (1.93)

Γ1(Ψ) =1

2(Λ4ΨΛ4 + Λ01235ΨΛ01235) =

(0 gr 0

)(6.168)

Γ2(Ψ) =1

2(Λ5ΨΛ4 − Λ01234ΨΛ01235) =

(0 −igir 0

)(6.169)

Γ3(Ψ) = P+ΨP− − P−ΨP+ =

(0 r−g 0

)(6.170)

Γ4(Ψ) = Λ4ΨP− =

(0 b0 r

); Γ5(Ψ) = Λ5ΨP− =

(0 −ib0 ir

)(6.171)

Γ6(Ψ) = P−ΨΛ4 =

(0 0b g

); Γ7(Ψ) = iP−ΨΛ01235 =

(0 0

−ib ig

)(6.172)

Γ8(Ψ) = − 1√3(P−ΨΛ012345 + Λ012345ΨP−) =

1√3

(0 rg −2b

). (6.173)

Everywhere the left up term is 0, so all Γk project the wave Ψ on its quarksector.

83

(6.168)

6.4 Chromodynamics

We start from generators λk of the SU(3) gauge group of chromodynamics

λ1 =

0 1 01 0 00 0 0

, λ2 =

0 −i 0i 0 00 0 0

, λ3 =

1 0 00 −1 00 0 0

λ4 =

0 0 10 0 01 0 0

, λ5 =

0 0 −i0 0 0i 0 0

, λ6 =

0 0 00 0 10 1 0

λ7 =

0 0 00 0 −i0 i 0

, λ8 =

1√3

1 0 00 1 00 0 −2

. (6.166)

To simplify notations we use now l, r, g, b instead Ψl, Ψr, Ψg, Ψb. So we have

Ψ =

(l rg b

). Then (6.166) gives

λ1

rgb

=

gr0

, λ2

rgb

=

−igir0

, λ3

rgb

=

r−g0

λ4

rgb

=

b0r

, λ5

rgb

=

−ib0ir

, λ6

rgb

=

0bg

(6.167)

λ7

rgb

=

0−ibig

, λ8

rgb

=

1√3

rg

−2b

.

We name Γk operators corresponding to λk acting on Ψ. We get with (1.93)

Γ1(Ψ) =1

2(Λ4ΨΛ4 + Λ01235ΨΛ01235) =

(0 gr 0

)(6.168)

Γ2(Ψ) =1

2(Λ5ΨΛ4 − Λ01234ΨΛ01235) =

(0 −igir 0

)(6.169)

Γ3(Ψ) = P+ΨP− − P−ΨP+ =

(0 r−g 0

)(6.170)

Γ4(Ψ) = Λ4ΨP− =

(0 b0 r

); Γ5(Ψ) = Λ5ΨP− =

(0 −ib0 ir

)(6.171)

Γ6(Ψ) = P−ΨΛ4 =

(0 0b g

); Γ7(Ψ) = iP−ΨΛ01235 =

(0 0

−ib ig

)(6.172)

Γ8(Ψ) = − 1√3(P−ΨΛ012345 + Λ012345ΨP−) =

1√3

(0 rg −2b

). (6.173)

Everywhere the left up term is 0, so all Γk project the wave Ψ on its quarksector.

83

(6.169)

6.4 Chromodynamics

We start from generators λk of the SU(3) gauge group of chromodynamics

λ1 =

0 1 01 0 00 0 0

, λ2 =

0 −i 0i 0 00 0 0

, λ3 =

1 0 00 −1 00 0 0

λ4 =

0 0 10 0 01 0 0

, λ5 =

0 0 −i0 0 0i 0 0

, λ6 =

0 0 00 0 10 1 0

λ7 =

0 0 00 0 −i0 i 0

, λ8 =

1√3

1 0 00 1 00 0 −2

. (6.166)

To simplify notations we use now l, r, g, b instead Ψl, Ψr, Ψg, Ψb. So we have

Ψ =

(l rg b

). Then (6.166) gives

λ1

rgb

=

gr0

, λ2

rgb

=

−igir0

, λ3

rgb

=

r−g0

λ4

rgb

=

b0r

, λ5

rgb

=

−ib0ir

, λ6

rgb

=

0bg

(6.167)

λ7

rgb

=

0−ibig

, λ8

rgb

=

1√3

rg

−2b

.

We name Γk operators corresponding to λk acting on Ψ. We get with (1.93)

Γ1(Ψ) =1

2(Λ4ΨΛ4 + Λ01235ΨΛ01235) =

(0 gr 0

)(6.168)

Γ2(Ψ) =1

2(Λ5ΨΛ4 − Λ01234ΨΛ01235) =

(0 −igir 0

)(6.169)

Γ3(Ψ) = P+ΨP− − P−ΨP+ =

(0 r−g 0

)(6.170)

Γ4(Ψ) = Λ4ΨP− =

(0 b0 r

); Γ5(Ψ) = Λ5ΨP− =

(0 −ib0 ir

)(6.171)

Γ6(Ψ) = P−ΨΛ4 =

(0 0b g

); Γ7(Ψ) = iP−ΨΛ01235 =

(0 0

−ib ig

)(6.172)

Γ8(Ψ) = − 1√3(P−ΨΛ012345 + Λ012345ΨP−) =

1√3

(0 rg −2b

). (6.173)

Everywhere the left up term is 0, so all Γk project the wave Ψ on its quarksector.

83

(6.170)

6.4 Chromodynamics

We start from generators λk of the SU(3) gauge group of chromodynamics

λ1 =

0 1 01 0 00 0 0

, λ2 =

0 −i 0i 0 00 0 0

, λ3 =

1 0 00 −1 00 0 0

λ4 =

0 0 10 0 01 0 0

, λ5 =

0 0 −i0 0 0i 0 0

, λ6 =

0 0 00 0 10 1 0

λ7 =

0 0 00 0 −i0 i 0

, λ8 =

1√3

1 0 00 1 00 0 −2

. (6.166)

To simplify notations we use now l, r, g, b instead Ψl, Ψr, Ψg, Ψb. So we have

Ψ =

(l rg b

). Then (6.166) gives

λ1

rgb

=

gr0

, λ2

rgb

=

−igir0

, λ3

rgb

=

r−g0

λ4

rgb

=

b0r

, λ5

rgb

=

−ib0ir

, λ6

rgb

=

0bg

(6.167)

λ7

rgb

=

0−ibig

, λ8

rgb

=

1√3

rg

−2b

.

We name Γk operators corresponding to λk acting on Ψ. We get with (1.93)

Γ1(Ψ) =1

2(Λ4ΨΛ4 + Λ01235ΨΛ01235) =

(0 gr 0

)(6.168)

Γ2(Ψ) =1

2(Λ5ΨΛ4 − Λ01234ΨΛ01235) =

(0 −igir 0

)(6.169)

Γ3(Ψ) = P+ΨP− − P−ΨP+ =

(0 r−g 0

)(6.170)

Γ4(Ψ) = Λ4ΨP− =

(0 b0 r

); Γ5(Ψ) = Λ5ΨP− =

(0 −ib0 ir

)(6.171)

Γ6(Ψ) = P−ΨΛ4 =

(0 0b g

); Γ7(Ψ) = iP−ΨΛ01235 =

(0 0

−ib ig

)(6.172)

Γ8(Ψ) = − 1√3(P−ΨΛ012345 + Λ012345ΨP−) =

1√3

(0 rg −2b

). (6.173)

Everywhere the left up term is 0, so all Γk project the wave Ψ on its quarksector.

83

6.4 Chromodynamics

We start from generators λk of the SU(3) gauge group of chromodynamics

λ1 =

0 1 01 0 00 0 0

, λ2 =

0 −i 0i 0 00 0 0

, λ3 =

1 0 00 −1 00 0 0

λ4 =

0 0 10 0 01 0 0

, λ5 =

0 0 −i0 0 0i 0 0

, λ6 =

0 0 00 0 10 1 0

λ7 =

0 0 00 0 −i0 i 0

, λ8 =

1√3

1 0 00 1 00 0 −2

. (6.166)

To simplify notations we use now l, r, g, b instead Ψl, Ψr, Ψg, Ψb. So we have

Ψ =

(l rg b

). Then (6.166) gives

λ1

rgb

=

gr0

, λ2

rgb

=

−igir0

, λ3

rgb

=

r−g0

λ4

rgb

=

b0r

, λ5

rgb

=

−ib0ir

, λ6

rgb

=

0bg

(6.167)

λ7

rgb

=

0−ibig

, λ8

rgb

=

1√3

rg

−2b

.

We name Γk operators corresponding to λk acting on Ψ. We get with (1.93)

Γ1(Ψ) =1

2(Λ4ΨΛ4 + Λ01235ΨΛ01235) =

(0 gr 0

)(6.168)

Γ2(Ψ) =1

2(Λ5ΨΛ4 − Λ01234ΨΛ01235) =

(0 −igir 0

)(6.169)

Γ3(Ψ) = P+ΨP− − P−ΨP+ =

(0 r−g 0

)(6.170)

Γ4(Ψ) = Λ4ΨP− =

(0 b0 r

); Γ5(Ψ) = Λ5ΨP− =

(0 −ib0 ir

)(6.171)

Γ6(Ψ) = P−ΨΛ4 =

(0 0b g

); Γ7(Ψ) = iP−ΨΛ01235 =

(0 0

−ib ig

)(6.172)

Γ8(Ψ) = − 1√3(P−ΨΛ012345 + Λ012345ΨP−) =

1√3

(0 rg −2b

). (6.173)

Everywhere the left up term is 0, so all Γk project the wave Ψ on its quarksector.

83

(6.171)

6.4 Chromodynamics

We start from generators λk of the SU(3) gauge group of chromodynamics

λ1 =

0 1 01 0 00 0 0

, λ2 =

0 −i 0i 0 00 0 0

, λ3 =

1 0 00 −1 00 0 0

λ4 =

0 0 10 0 01 0 0

, λ5 =

0 0 −i0 0 0i 0 0

, λ6 =

0 0 00 0 10 1 0

λ7 =

0 0 00 0 −i0 i 0

, λ8 =

1√3

1 0 00 1 00 0 −2

. (6.166)

To simplify notations we use now l, r, g, b instead Ψl, Ψr, Ψg, Ψb. So we have

Ψ =

(l rg b

). Then (6.166) gives

λ1

rgb

=

gr0

, λ2

rgb

=

−igir0

, λ3

rgb

=

r−g0

λ4

rgb

=

b0r

, λ5

rgb

=

−ib0ir

, λ6

rgb

=

0bg

(6.167)

λ7

rgb

=

0−ibig

, λ8

rgb

=

1√3

rg

−2b

.

We name Γk operators corresponding to λk acting on Ψ. We get with (1.93)

Γ1(Ψ) =1

2(Λ4ΨΛ4 + Λ01235ΨΛ01235) =

(0 gr 0

)(6.168)

Γ2(Ψ) =1

2(Λ5ΨΛ4 − Λ01234ΨΛ01235) =

(0 −igir 0

)(6.169)

Γ3(Ψ) = P+ΨP− − P−ΨP+ =

(0 r−g 0

)(6.170)

Γ4(Ψ) = Λ4ΨP− =

(0 b0 r

); Γ5(Ψ) = Λ5ΨP− =

(0 −ib0 ir

)(6.171)

Γ6(Ψ) = P−ΨΛ4 =

(0 0b g

); Γ7(Ψ) = iP−ΨΛ01235 =

(0 0

−ib ig

)(6.172)

Γ8(Ψ) = − 1√3(P−ΨΛ012345 + Λ012345ΨP−) =

1√3

(0 rg −2b

). (6.173)

Everywhere the left up term is 0, so all Γk project the wave Ψ on its quarksector.

83

6.4 Chromodynamics

We start from generators λk of the SU(3) gauge group of chromodynamics

λ1 =

0 1 01 0 00 0 0

, λ2 =

0 −i 0i 0 00 0 0

, λ3 =

1 0 00 −1 00 0 0

λ4 =

0 0 10 0 01 0 0

, λ5 =

0 0 −i0 0 0i 0 0

, λ6 =

0 0 00 0 10 1 0

λ7 =

0 0 00 0 −i0 i 0

, λ8 =

1√3

1 0 00 1 00 0 −2

. (6.166)

To simplify notations we use now l, r, g, b instead Ψl, Ψr, Ψg, Ψb. So we have

Ψ =

(l rg b

). Then (6.166) gives

λ1

rgb

=

gr0

, λ2

rgb

=

−igir0

, λ3

rgb

=

r−g0

λ4

rgb

=

b0r

, λ5

rgb

=

−ib0ir

, λ6

rgb

=

0bg

(6.167)

λ7

rgb

=

0−ibig

, λ8

rgb

=

1√3

rg

−2b

.

We name Γk operators corresponding to λk acting on Ψ. We get with (1.93)

Γ1(Ψ) =1

2(Λ4ΨΛ4 + Λ01235ΨΛ01235) =

(0 gr 0

)(6.168)

Γ2(Ψ) =1

2(Λ5ΨΛ4 − Λ01234ΨΛ01235) =

(0 −igir 0

)(6.169)

Γ3(Ψ) = P+ΨP− − P−ΨP+ =

(0 r−g 0

)(6.170)

Γ4(Ψ) = Λ4ΨP− =

(0 b0 r

); Γ5(Ψ) = Λ5ΨP− =

(0 −ib0 ir

)(6.171)

Γ6(Ψ) = P−ΨΛ4 =

(0 0b g

); Γ7(Ψ) = iP−ΨΛ01235 =

(0 0

−ib ig

)(6.172)

Γ8(Ψ) = − 1√3(P−ΨΛ012345 + Λ012345ΨP−) =

1√3

(0 rg −2b

). (6.173)

Everywhere the left up term is 0, so all Γk project the wave Ψ on its quarksector.

83

(6.172)

6.4 Chromodynamics

We start from generators λk of the SU(3) gauge group of chromodynamics

λ1 =

0 1 01 0 00 0 0

, λ2 =

0 −i 0i 0 00 0 0

, λ3 =

1 0 00 −1 00 0 0

λ4 =

0 0 10 0 01 0 0

, λ5 =

0 0 −i0 0 0i 0 0

, λ6 =

0 0 00 0 10 1 0

λ7 =

0 0 00 0 −i0 i 0

, λ8 =

1√3

1 0 00 1 00 0 −2

. (6.166)

To simplify notations we use now l, r, g, b instead Ψl, Ψr, Ψg, Ψb. So we have

Ψ =

(l rg b

). Then (6.166) gives

λ1

rgb

=

gr0

, λ2

rgb

=

−igir0

, λ3

rgb

=

r−g0

λ4

rgb

=

b0r

, λ5

rgb

=

−ib0ir

, λ6

rgb

=

0bg

(6.167)

λ7

rgb

=

0−ibig

, λ8

rgb

=

1√3

rg

−2b

.

We name Γk operators corresponding to λk acting on Ψ. We get with (1.93)

Γ1(Ψ) =1

2(Λ4ΨΛ4 + Λ01235ΨΛ01235) =

(0 gr 0

)(6.168)

Γ2(Ψ) =1

2(Λ5ΨΛ4 − Λ01234ΨΛ01235) =

(0 −igir 0

)(6.169)

Γ3(Ψ) = P+ΨP− − P−ΨP+ =

(0 r−g 0

)(6.170)

Γ4(Ψ) = Λ4ΨP− =

(0 b0 r

); Γ5(Ψ) = Λ5ΨP− =

(0 −ib0 ir

)(6.171)

Γ6(Ψ) = P−ΨΛ4 =

(0 0b g

); Γ7(Ψ) = iP−ΨΛ01235 =

(0 0

−ib ig

)(6.172)

Γ8(Ψ) = − 1√3(P−ΨΛ012345 + Λ012345ΨP−) =

1√3

(0 rg −2b

). (6.173)

Everywhere the left up term is 0, so all Γk project the wave Ψ on its quarksector.

83

6.4 Chromodynamics

We start from generators λk of the SU(3) gauge group of chromodynamics

λ1 =

0 1 01 0 00 0 0

, λ2 =

0 −i 0i 0 00 0 0

, λ3 =

1 0 00 −1 00 0 0

λ4 =

0 0 10 0 01 0 0

, λ5 =

0 0 −i0 0 0i 0 0

, λ6 =

0 0 00 0 10 1 0

λ7 =

0 0 00 0 −i0 i 0

, λ8 =

1√3

1 0 00 1 00 0 −2

. (6.166)

To simplify notations we use now l, r, g, b instead Ψl, Ψr, Ψg, Ψb. So we have

Ψ =

(l rg b

). Then (6.166) gives

λ1

rgb

=

gr0

, λ2

rgb

=

−igir0

, λ3

rgb

=

r−g0

λ4

rgb

=

b0r

, λ5

rgb

=

−ib0ir

, λ6

rgb

=

0bg

(6.167)

λ7

rgb

=

0−ibig

, λ8

rgb

=

1√3

rg

−2b

.

We name Γk operators corresponding to λk acting on Ψ. We get with (1.93)

Γ1(Ψ) =1

2(Λ4ΨΛ4 + Λ01235ΨΛ01235) =

(0 gr 0

)(6.168)

Γ2(Ψ) =1

2(Λ5ΨΛ4 − Λ01234ΨΛ01235) =

(0 −igir 0

)(6.169)

Γ3(Ψ) = P+ΨP− − P−ΨP+ =

(0 r−g 0

)(6.170)

Γ4(Ψ) = Λ4ΨP− =

(0 b0 r

); Γ5(Ψ) = Λ5ΨP− =

(0 −ib0 ir

)(6.171)

Γ6(Ψ) = P−ΨΛ4 =

(0 0b g

); Γ7(Ψ) = iP−ΨΛ01235 =

(0 0

−ib ig

)(6.172)

Γ8(Ψ) = − 1√3(P−ΨΛ012345 + Λ012345ΨP−) =

1√3

(0 rg −2b

). (6.173)

Everywhere the left up term is 0, so all Γk project the wave Ψ on its quarksector.

83

(6.173)

Everywhere the left up term is 0, so all Γk project the wave Ψ on its quark sector.

We can extend the covariant derivative of electro-weak interactions (6.127):We can extend the covariant derivative of electro-weak interactions (6.127):

D(Ψ) = ∂(Ψ) +g12B P 0(Ψ) +

g22W jP j(Ψ) +

g32GkiΓk(Ψ). (6.174)

where g3 is another constant and Gk are eight terms called “gluons”. SinceI4 commute with any element of Cl1,3 and since Pj(iΨind) = iPj(Ψind) forj = 0, 1, 2, 3 and ind = l, r, g, b each operator iΓk commutes with all operatorsP j .

Now we use 12 real numbers a0, aj , j = 1, 2, 3, bk, k = 1, 2, ..., 8, we let

S1 =

j=3∑j=1

ajP j ; S2 =

k=8∑k=1

bkiΓk (6.175)

and we get, using exponentiation (see 6.2)

exp(a0P 0 + S1 + S2) = exp(a0P 0) exp(S1) exp(S2) (6.176)

The set of these operators is a U(1)×SU(2)×SU(3) Lie group. Only differencewith the standard model the structure of this group is not postulated but calcu-lated. The invariance under Cl∗3 (and particularly the relativistic invariance) ofthis covariant derivative is similar to (6.105) with underlined terms. The gaugeinvariance reads with

Ψ′ = [exp(a0P 0 + S1 + S2)](Ψ) ; D = ΛµDµ ; D′ = ΛµD′µ (6.177)

D′µΨ

′ = exp(a0P 0 + S1 + S2)DµΨ (6.178)

B′µ = Bµ − 2

g1∂µa

0 (6.179)

W ′jµP j =

[exp(S1)W

jµP j −

2

g2∂µ[exp(S1)]

]exp(−S1) (6.180)

G′kµiΓk =

[exp(S2)G

kµiΓk − 2

g3∂µ[exp(S2)]

]exp(−S2). (6.181)

The SU(3) group generated by projectors on the quark sector acts only on thissector of the wave :

P+[exp(bkiΓk](Ψ)P+ = P+ΨP+ =

(Ψl 00 0

)(6.182)

We get then a U(1) × SU(2) × SU(3) gauge group for a wave including allfermions of the first generation. This group acts on the lepton sector only by itsU(1)×SU(2) part. The physical translation is: leptons do not strongly interact,they have only electromagnetic and weak interactions. This is fully satisfied inexperiments. The novelty here is that this comes from the structure itself of thequantum wave. Since it is independent on the energy scale, we understand whygreat unified theories do not work.

84

We can extend the covariant derivative of electro-weak interactions (6.127):

D(Ψ) = ∂(Ψ) +g12B P 0(Ψ) +

g22W jP j(Ψ) +

g32GkiΓk(Ψ). (6.174)

where g3 is another constant and Gk are eight terms called “gluons”. SinceI4 commute with any element of Cl1,3 and since Pj(iΨind) = iPj(Ψind) forj = 0, 1, 2, 3 and ind = l, r, g, b each operator iΓk commutes with all operatorsP j .

Now we use 12 real numbers a0, aj , j = 1, 2, 3, bk, k = 1, 2, ..., 8, we let

S1 =

j=3∑j=1

ajP j ; S2 =

k=8∑k=1

bkiΓk (6.175)

and we get, using exponentiation (see 6.2)

exp(a0P 0 + S1 + S2) = exp(a0P 0) exp(S1) exp(S2) (6.176)

The set of these operators is a U(1)×SU(2)×SU(3) Lie group. Only differencewith the standard model the structure of this group is not postulated but calcu-lated. The invariance under Cl∗3 (and particularly the relativistic invariance) ofthis covariant derivative is similar to (6.105) with underlined terms. The gaugeinvariance reads with

Ψ′ = [exp(a0P 0 + S1 + S2)](Ψ) ; D = ΛµDµ ; D′ = ΛµD′µ (6.177)

D′µΨ

′ = exp(a0P 0 + S1 + S2)DµΨ (6.178)

B′µ = Bµ − 2

g1∂µa

0 (6.179)

W ′jµP j =

[exp(S1)W

jµP j −

2

g2∂µ[exp(S1)]

]exp(−S1) (6.180)

G′kµiΓk =

[exp(S2)G

kµiΓk − 2

g3∂µ[exp(S2)]

]exp(−S2). (6.181)

The SU(3) group generated by projectors on the quark sector acts only on thissector of the wave :

P+[exp(bkiΓk](Ψ)P+ = P+ΨP+ =

(Ψl 00 0

)(6.182)

We get then a U(1) × SU(2) × SU(3) gauge group for a wave including allfermions of the first generation. This group acts on the lepton sector only by itsU(1)×SU(2) part. The physical translation is: leptons do not strongly interact,they have only electromagnetic and weak interactions. This is fully satisfied inexperiments. The novelty here is that this comes from the structure itself of thequantum wave. Since it is independent on the energy scale, we understand whygreat unified theories do not work.

84

(6.174)

where g3 is another constant and G k are eight terms called “gluons”. Since I4 commute with any element of Cl1,3 and since Pj (iΨind) = iPj (Ψind) for j = 0, 1, 2, 3 and ind = l, r, g, b each operator iΓk commutes with all operators P j .

Now we use 12 real numbers a0 , a j , j = 1, 2, 3, b k , k = 1, 2, ..., 8, we let

We can extend the covariant derivative of electro-weak interactions (6.127):

D(Ψ) = ∂(Ψ) +g12B P 0(Ψ) +

g22W jP j(Ψ) +

g32GkiΓk(Ψ). (6.174)

where g3 is another constant and Gk are eight terms called “gluons”. SinceI4 commute with any element of Cl1,3 and since Pj(iΨind) = iPj(Ψind) forj = 0, 1, 2, 3 and ind = l, r, g, b each operator iΓk commutes with all operatorsP j .

Now we use 12 real numbers a0, aj , j = 1, 2, 3, bk, k = 1, 2, ..., 8, we let

S1 =

j=3∑j=1

ajP j ; S2 =

k=8∑k=1

bkiΓk (6.175)

and we get, using exponentiation (see 6.2)

exp(a0P 0 + S1 + S2) = exp(a0P 0) exp(S1) exp(S2) (6.176)

The set of these operators is a U(1)×SU(2)×SU(3) Lie group. Only differencewith the standard model the structure of this group is not postulated but calcu-lated. The invariance under Cl∗3 (and particularly the relativistic invariance) ofthis covariant derivative is similar to (6.105) with underlined terms. The gaugeinvariance reads with

Ψ′ = [exp(a0P 0 + S1 + S2)](Ψ) ; D = ΛµDµ ; D′ = ΛµD′µ (6.177)

D′µΨ

′ = exp(a0P 0 + S1 + S2)DµΨ (6.178)

B′µ = Bµ − 2

g1∂µa

0 (6.179)

W ′jµP j =

[exp(S1)W

jµP j −

2

g2∂µ[exp(S1)]

]exp(−S1) (6.180)

G′kµiΓk =

[exp(S2)G

kµiΓk − 2

g3∂µ[exp(S2)]

]exp(−S2). (6.181)

The SU(3) group generated by projectors on the quark sector acts only on thissector of the wave :

P+[exp(bkiΓk](Ψ)P+ = P+ΨP+ =

(Ψl 00 0

)(6.182)

We get then a U(1) × SU(2) × SU(3) gauge group for a wave including allfermions of the first generation. This group acts on the lepton sector only by itsU(1)×SU(2) part. The physical translation is: leptons do not strongly interact,they have only electromagnetic and weak interactions. This is fully satisfied inexperiments. The novelty here is that this comes from the structure itself of thequantum wave. Since it is independent on the energy scale, we understand whygreat unified theories do not work.

84

(6.175)

and we get, using exponentiation (see 6.2)

We can extend the covariant derivative of electro-weak interactions (6.127):

D(Ψ) = ∂(Ψ) +g12B P 0(Ψ) +

g22W jP j(Ψ) +

g32GkiΓk(Ψ). (6.174)

where g3 is another constant and Gk are eight terms called “gluons”. SinceI4 commute with any element of Cl1,3 and since Pj(iΨind) = iPj(Ψind) forj = 0, 1, 2, 3 and ind = l, r, g, b each operator iΓk commutes with all operatorsP j .

Now we use 12 real numbers a0, aj , j = 1, 2, 3, bk, k = 1, 2, ..., 8, we let

S1 =

j=3∑j=1

ajP j ; S2 =

k=8∑k=1

bkiΓk (6.175)

and we get, using exponentiation (see 6.2)

exp(a0P 0 + S1 + S2) = exp(a0P 0) exp(S1) exp(S2) (6.176)

The set of these operators is a U(1)×SU(2)×SU(3) Lie group. Only differencewith the standard model the structure of this group is not postulated but calcu-lated. The invariance under Cl∗3 (and particularly the relativistic invariance) ofthis covariant derivative is similar to (6.105) with underlined terms. The gaugeinvariance reads with

Ψ′ = [exp(a0P 0 + S1 + S2)](Ψ) ; D = ΛµDµ ; D′ = ΛµD′µ (6.177)

D′µΨ

′ = exp(a0P 0 + S1 + S2)DµΨ (6.178)

B′µ = Bµ − 2

g1∂µa

0 (6.179)

W ′jµP j =

[exp(S1)W

jµP j −

2

g2∂µ[exp(S1)]

]exp(−S1) (6.180)

G′kµiΓk =

[exp(S2)G

kµiΓk − 2

g3∂µ[exp(S2)]

]exp(−S2). (6.181)

The SU(3) group generated by projectors on the quark sector acts only on thissector of the wave :

P+[exp(bkiΓk](Ψ)P+ = P+ΨP+ =

(Ψl 00 0

)(6.182)

We get then a U(1) × SU(2) × SU(3) gauge group for a wave including allfermions of the first generation. This group acts on the lepton sector only by itsU(1)×SU(2) part. The physical translation is: leptons do not strongly interact,they have only electromagnetic and weak interactions. This is fully satisfied inexperiments. The novelty here is that this comes from the structure itself of thequantum wave. Since it is independent on the energy scale, we understand whygreat unified theories do not work.

84

(6.176)

The set of these operators is a U (1) × SU (2) × SU (3) Lie group. Only difference with the standard model the structure of this group is not postulated but calculated. The invariance under Cl*3 (and particularly the relativ-istic invariance) of this covariant derivative is similar

to (6.105) with underlined terms. The gauge invariance reads with

We can extend the covariant derivative of electro-weak interactions (6.127):

D(Ψ) = ∂(Ψ) +g12B P 0(Ψ) +

g22W jP j(Ψ) +

g32GkiΓk(Ψ). (6.174)

where g3 is another constant and Gk are eight terms called “gluons”. SinceI4 commute with any element of Cl1,3 and since Pj(iΨind) = iPj(Ψind) forj = 0, 1, 2, 3 and ind = l, r, g, b each operator iΓk commutes with all operatorsP j .

Now we use 12 real numbers a0, aj , j = 1, 2, 3, bk, k = 1, 2, ..., 8, we let

S1 =

j=3∑j=1

ajP j ; S2 =

k=8∑k=1

bkiΓk (6.175)

and we get, using exponentiation (see 6.2)

exp(a0P 0 + S1 + S2) = exp(a0P 0) exp(S1) exp(S2) (6.176)

The set of these operators is a U(1)×SU(2)×SU(3) Lie group. Only differencewith the standard model the structure of this group is not postulated but calcu-lated. The invariance under Cl∗3 (and particularly the relativistic invariance) ofthis covariant derivative is similar to (6.105) with underlined terms. The gaugeinvariance reads with

Ψ′ = [exp(a0P 0 + S1 + S2)](Ψ) ; D = ΛµDµ ; D′ = ΛµD′µ (6.177)

D′µΨ

′ = exp(a0P 0 + S1 + S2)DµΨ (6.178)

B′µ = Bµ − 2

g1∂µa

0 (6.179)

W ′jµP j =

[exp(S1)W

jµP j −

2

g2∂µ[exp(S1)]

]exp(−S1) (6.180)

G′kµiΓk =

[exp(S2)G

kµiΓk − 2

g3∂µ[exp(S2)]

]exp(−S2). (6.181)

The SU(3) group generated by projectors on the quark sector acts only on thissector of the wave :

P+[exp(bkiΓk](Ψ)P+ = P+ΨP+ =

(Ψl 00 0

)(6.182)

We get then a U(1) × SU(2) × SU(3) gauge group for a wave including allfermions of the first generation. This group acts on the lepton sector only by itsU(1)×SU(2) part. The physical translation is: leptons do not strongly interact,they have only electromagnetic and weak interactions. This is fully satisfied inexperiments. The novelty here is that this comes from the structure itself of thequantum wave. Since it is independent on the energy scale, we understand whygreat unified theories do not work.

84

We can extend the covariant derivative of electro-weak interactions (6.127):

D(Ψ) = ∂(Ψ) +g12B P 0(Ψ) +

g22W jP j(Ψ) +

g32GkiΓk(Ψ). (6.174)

where g3 is another constant and Gk are eight terms called “gluons”. SinceI4 commute with any element of Cl1,3 and since Pj(iΨind) = iPj(Ψind) forj = 0, 1, 2, 3 and ind = l, r, g, b each operator iΓk commutes with all operatorsP j .

Now we use 12 real numbers a0, aj , j = 1, 2, 3, bk, k = 1, 2, ..., 8, we let

S1 =

j=3∑j=1

ajP j ; S2 =

k=8∑k=1

bkiΓk (6.175)

and we get, using exponentiation (see 6.2)

exp(a0P 0 + S1 + S2) = exp(a0P 0) exp(S1) exp(S2) (6.176)

The set of these operators is a U(1)×SU(2)×SU(3) Lie group. Only differencewith the standard model the structure of this group is not postulated but calcu-lated. The invariance under Cl∗3 (and particularly the relativistic invariance) ofthis covariant derivative is similar to (6.105) with underlined terms. The gaugeinvariance reads with

Ψ′ = [exp(a0P 0 + S1 + S2)](Ψ) ; D = ΛµDµ ; D′ = ΛµD′µ (6.177)

D′µΨ

′ = exp(a0P 0 + S1 + S2)DµΨ (6.178)

B′µ = Bµ − 2

g1∂µa

0 (6.179)

W ′jµP j =

[exp(S1)W

jµP j −

2

g2∂µ[exp(S1)]

]exp(−S1) (6.180)

G′kµiΓk =

[exp(S2)G

kµiΓk − 2

g3∂µ[exp(S2)]

]exp(−S2). (6.181)

The SU(3) group generated by projectors on the quark sector acts only on thissector of the wave :

P+[exp(bkiΓk](Ψ)P+ = P+ΨP+ =

(Ψl 00 0

)(6.182)

We get then a U(1) × SU(2) × SU(3) gauge group for a wave including allfermions of the first generation. This group acts on the lepton sector only by itsU(1)×SU(2) part. The physical translation is: leptons do not strongly interact,they have only electromagnetic and weak interactions. This is fully satisfied inexperiments. The novelty here is that this comes from the structure itself of thequantum wave. Since it is independent on the energy scale, we understand whygreat unified theories do not work.

84

(6.177)

We can extend the covariant derivative of electro-weak interactions (6.127):

D(Ψ) = ∂(Ψ) +g12B P 0(Ψ) +

g22W jP j(Ψ) +

g32GkiΓk(Ψ). (6.174)

where g3 is another constant and Gk are eight terms called “gluons”. SinceI4 commute with any element of Cl1,3 and since Pj(iΨind) = iPj(Ψind) forj = 0, 1, 2, 3 and ind = l, r, g, b each operator iΓk commutes with all operatorsP j .

Now we use 12 real numbers a0, aj , j = 1, 2, 3, bk, k = 1, 2, ..., 8, we let

S1 =

j=3∑j=1

ajP j ; S2 =

k=8∑k=1

bkiΓk (6.175)

and we get, using exponentiation (see 6.2)

exp(a0P 0 + S1 + S2) = exp(a0P 0) exp(S1) exp(S2) (6.176)

The set of these operators is a U(1)×SU(2)×SU(3) Lie group. Only differencewith the standard model the structure of this group is not postulated but calcu-lated. The invariance under Cl∗3 (and particularly the relativistic invariance) ofthis covariant derivative is similar to (6.105) with underlined terms. The gaugeinvariance reads with

Ψ′ = [exp(a0P 0 + S1 + S2)](Ψ) ; D = ΛµDµ ; D′ = ΛµD′µ (6.177)

D′µΨ

′ = exp(a0P 0 + S1 + S2)DµΨ (6.178)

B′µ = Bµ − 2

g1∂µa

0 (6.179)

W ′jµP j =

[exp(S1)W

jµP j −

2

g2∂µ[exp(S1)]

]exp(−S1) (6.180)

G′kµiΓk =

[exp(S2)G

kµiΓk − 2

g3∂µ[exp(S2)]

]exp(−S2). (6.181)

The SU(3) group generated by projectors on the quark sector acts only on thissector of the wave :

P+[exp(bkiΓk](Ψ)P+ = P+ΨP+ =

(Ψl 00 0

)(6.182)

We get then a U(1) × SU(2) × SU(3) gauge group for a wave including allfermions of the first generation. This group acts on the lepton sector only by itsU(1)×SU(2) part. The physical translation is: leptons do not strongly interact,they have only electromagnetic and weak interactions. This is fully satisfied inexperiments. The novelty here is that this comes from the structure itself of thequantum wave. Since it is independent on the energy scale, we understand whygreat unified theories do not work.

84

(6.178)

We can extend the covariant derivative of electro-weak interactions (6.127):

D(Ψ) = ∂(Ψ) +g12B P 0(Ψ) +

g22W jP j(Ψ) +

g32GkiΓk(Ψ). (6.174)

where g3 is another constant and Gk are eight terms called “gluons”. SinceI4 commute with any element of Cl1,3 and since Pj(iΨind) = iPj(Ψind) forj = 0, 1, 2, 3 and ind = l, r, g, b each operator iΓk commutes with all operatorsP j .

Now we use 12 real numbers a0, aj , j = 1, 2, 3, bk, k = 1, 2, ..., 8, we let

S1 =

j=3∑j=1

ajP j ; S2 =

k=8∑k=1

bkiΓk (6.175)

and we get, using exponentiation (see 6.2)

exp(a0P 0 + S1 + S2) = exp(a0P 0) exp(S1) exp(S2) (6.176)

The set of these operators is a U(1)×SU(2)×SU(3) Lie group. Only differencewith the standard model the structure of this group is not postulated but calcu-lated. The invariance under Cl∗3 (and particularly the relativistic invariance) ofthis covariant derivative is similar to (6.105) with underlined terms. The gaugeinvariance reads with

Ψ′ = [exp(a0P 0 + S1 + S2)](Ψ) ; D = ΛµDµ ; D′ = ΛµD′µ (6.177)

D′µΨ

′ = exp(a0P 0 + S1 + S2)DµΨ (6.178)

B′µ = Bµ − 2

g1∂µa

0 (6.179)

W ′jµP j =

[exp(S1)W

jµP j −

2

g2∂µ[exp(S1)]

]exp(−S1) (6.180)

G′kµiΓk =

[exp(S2)G

kµiΓk − 2

g3∂µ[exp(S2)]

]exp(−S2). (6.181)

The SU(3) group generated by projectors on the quark sector acts only on thissector of the wave :

P+[exp(bkiΓk](Ψ)P+ = P+ΨP+ =

(Ψl 00 0

)(6.182)

We get then a U(1) × SU(2) × SU(3) gauge group for a wave including allfermions of the first generation. This group acts on the lepton sector only by itsU(1)×SU(2) part. The physical translation is: leptons do not strongly interact,they have only electromagnetic and weak interactions. This is fully satisfied inexperiments. The novelty here is that this comes from the structure itself of thequantum wave. Since it is independent on the energy scale, we understand whygreat unified theories do not work.

84

(6.179)

We can extend the covariant derivative of electro-weak interactions (6.127):

D(Ψ) = ∂(Ψ) +g12B P 0(Ψ) +

g22W jP j(Ψ) +

g32GkiΓk(Ψ). (6.174)

where g3 is another constant and Gk are eight terms called “gluons”. SinceI4 commute with any element of Cl1,3 and since Pj(iΨind) = iPj(Ψind) forj = 0, 1, 2, 3 and ind = l, r, g, b each operator iΓk commutes with all operatorsP j .

Now we use 12 real numbers a0, aj , j = 1, 2, 3, bk, k = 1, 2, ..., 8, we let

S1 =

j=3∑j=1

ajP j ; S2 =

k=8∑k=1

bkiΓk (6.175)

and we get, using exponentiation (see 6.2)

exp(a0P 0 + S1 + S2) = exp(a0P 0) exp(S1) exp(S2) (6.176)

The set of these operators is a U(1)×SU(2)×SU(3) Lie group. Only differencewith the standard model the structure of this group is not postulated but calcu-lated. The invariance under Cl∗3 (and particularly the relativistic invariance) ofthis covariant derivative is similar to (6.105) with underlined terms. The gaugeinvariance reads with

Ψ′ = [exp(a0P 0 + S1 + S2)](Ψ) ; D = ΛµDµ ; D′ = ΛµD′µ (6.177)

D′µΨ

′ = exp(a0P 0 + S1 + S2)DµΨ (6.178)

B′µ = Bµ − 2

g1∂µa

0 (6.179)

W ′jµP j =

[exp(S1)W

jµP j −

2

g2∂µ[exp(S1)]

]exp(−S1) (6.180)

G′kµiΓk =

[exp(S2)G

kµiΓk − 2

g3∂µ[exp(S2)]

]exp(−S2). (6.181)

The SU(3) group generated by projectors on the quark sector acts only on thissector of the wave :

P+[exp(bkiΓk](Ψ)P+ = P+ΨP+ =

(Ψl 00 0

)(6.182)

We get then a U(1) × SU(2) × SU(3) gauge group for a wave including allfermions of the first generation. This group acts on the lepton sector only by itsU(1)×SU(2) part. The physical translation is: leptons do not strongly interact,they have only electromagnetic and weak interactions. This is fully satisfied inexperiments. The novelty here is that this comes from the structure itself of thequantum wave. Since it is independent on the energy scale, we understand whygreat unified theories do not work.

84

We can extend the covariant derivative of electro-weak interactions (6.127):

D(Ψ) = ∂(Ψ) +g12B P 0(Ψ) +

g22W jP j(Ψ) +

g32GkiΓk(Ψ). (6.174)

where g3 is another constant and Gk are eight terms called “gluons”. SinceI4 commute with any element of Cl1,3 and since Pj(iΨind) = iPj(Ψind) forj = 0, 1, 2, 3 and ind = l, r, g, b each operator iΓk commutes with all operatorsP j .

Now we use 12 real numbers a0, aj , j = 1, 2, 3, bk, k = 1, 2, ..., 8, we let

S1 =

j=3∑j=1

ajP j ; S2 =

k=8∑k=1

bkiΓk (6.175)

and we get, using exponentiation (see 6.2)

exp(a0P 0 + S1 + S2) = exp(a0P 0) exp(S1) exp(S2) (6.176)

The set of these operators is a U(1)×SU(2)×SU(3) Lie group. Only differencewith the standard model the structure of this group is not postulated but calcu-lated. The invariance under Cl∗3 (and particularly the relativistic invariance) ofthis covariant derivative is similar to (6.105) with underlined terms. The gaugeinvariance reads with

Ψ′ = [exp(a0P 0 + S1 + S2)](Ψ) ; D = ΛµDµ ; D′ = ΛµD′µ (6.177)

D′µΨ

′ = exp(a0P 0 + S1 + S2)DµΨ (6.178)

B′µ = Bµ − 2

g1∂µa

0 (6.179)

W ′jµP j =

[exp(S1)W

jµP j −

2

g2∂µ[exp(S1)]

]exp(−S1) (6.180)

G′kµiΓk =

[exp(S2)G

kµiΓk − 2

g3∂µ[exp(S2)]

]exp(−S2). (6.181)

The SU(3) group generated by projectors on the quark sector acts only on thissector of the wave :

P+[exp(bkiΓk](Ψ)P+ = P+ΨP+ =

(Ψl 00 0

)(6.182)

We get then a U(1) × SU(2) × SU(3) gauge group for a wave including allfermions of the first generation. This group acts on the lepton sector only by itsU(1)×SU(2) part. The physical translation is: leptons do not strongly interact,they have only electromagnetic and weak interactions. This is fully satisfied inexperiments. The novelty here is that this comes from the structure itself of thequantum wave. Since it is independent on the energy scale, we understand whygreat unified theories do not work.

84

(6.180)

We can extend the covariant derivative of electro-weak interactions (6.127):

D(Ψ) = ∂(Ψ) +g12B P 0(Ψ) +

g22W jP j(Ψ) +

g32GkiΓk(Ψ). (6.174)

where g3 is another constant and Gk are eight terms called “gluons”. SinceI4 commute with any element of Cl1,3 and since Pj(iΨind) = iPj(Ψind) forj = 0, 1, 2, 3 and ind = l, r, g, b each operator iΓk commutes with all operatorsP j .

Now we use 12 real numbers a0, aj , j = 1, 2, 3, bk, k = 1, 2, ..., 8, we let

S1 =

j=3∑j=1

ajP j ; S2 =

k=8∑k=1

bkiΓk (6.175)

and we get, using exponentiation (see 6.2)

exp(a0P 0 + S1 + S2) = exp(a0P 0) exp(S1) exp(S2) (6.176)

The set of these operators is a U(1)×SU(2)×SU(3) Lie group. Only differencewith the standard model the structure of this group is not postulated but calcu-lated. The invariance under Cl∗3 (and particularly the relativistic invariance) ofthis covariant derivative is similar to (6.105) with underlined terms. The gaugeinvariance reads with

Ψ′ = [exp(a0P 0 + S1 + S2)](Ψ) ; D = ΛµDµ ; D′ = ΛµD′µ (6.177)

D′µΨ

′ = exp(a0P 0 + S1 + S2)DµΨ (6.178)

B′µ = Bµ − 2

g1∂µa

0 (6.179)

W ′jµP j =

[exp(S1)W

jµP j −

2

g2∂µ[exp(S1)]

]exp(−S1) (6.180)

G′kµiΓk =

[exp(S2)G

kµiΓk − 2

g3∂µ[exp(S2)]

]exp(−S2). (6.181)

The SU(3) group generated by projectors on the quark sector acts only on thissector of the wave :

P+[exp(bkiΓk](Ψ)P+ = P+ΨP+ =

(Ψl 00 0

)(6.182)

We get then a U(1) × SU(2) × SU(3) gauge group for a wave including allfermions of the first generation. This group acts on the lepton sector only by itsU(1)×SU(2) part. The physical translation is: leptons do not strongly interact,they have only electromagnetic and weak interactions. This is fully satisfied inexperiments. The novelty here is that this comes from the structure itself of thequantum wave. Since it is independent on the energy scale, we understand whygreat unified theories do not work.

84

We can extend the covariant derivative of electro-weak interactions (6.127):

D(Ψ) = ∂(Ψ) +g12B P 0(Ψ) +

g22W jP j(Ψ) +

g32GkiΓk(Ψ). (6.174)

where g3 is another constant and Gk are eight terms called “gluons”. SinceI4 commute with any element of Cl1,3 and since Pj(iΨind) = iPj(Ψind) forj = 0, 1, 2, 3 and ind = l, r, g, b each operator iΓk commutes with all operatorsP j .

Now we use 12 real numbers a0, aj , j = 1, 2, 3, bk, k = 1, 2, ..., 8, we let

S1 =

j=3∑j=1

ajP j ; S2 =

k=8∑k=1

bkiΓk (6.175)

and we get, using exponentiation (see 6.2)

exp(a0P 0 + S1 + S2) = exp(a0P 0) exp(S1) exp(S2) (6.176)

The set of these operators is a U(1)×SU(2)×SU(3) Lie group. Only differencewith the standard model the structure of this group is not postulated but calcu-lated. The invariance under Cl∗3 (and particularly the relativistic invariance) ofthis covariant derivative is similar to (6.105) with underlined terms. The gaugeinvariance reads with

Ψ′ = [exp(a0P 0 + S1 + S2)](Ψ) ; D = ΛµDµ ; D′ = ΛµD′µ (6.177)

D′µΨ

′ = exp(a0P 0 + S1 + S2)DµΨ (6.178)

B′µ = Bµ − 2

g1∂µa

0 (6.179)

W ′jµP j =

[exp(S1)W

jµP j −

2

g2∂µ[exp(S1)]

]exp(−S1) (6.180)

G′kµiΓk =

[exp(S2)G

kµiΓk − 2

g3∂µ[exp(S2)]

]exp(−S2). (6.181)

The SU(3) group generated by projectors on the quark sector acts only on thissector of the wave :

P+[exp(bkiΓk](Ψ)P+ = P+ΨP+ =

(Ψl 00 0

)(6.182)

We get then a U(1) × SU(2) × SU(3) gauge group for a wave including allfermions of the first generation. This group acts on the lepton sector only by itsU(1)×SU(2) part. The physical translation is: leptons do not strongly interact,they have only electromagnetic and weak interactions. This is fully satisfied inexperiments. The novelty here is that this comes from the structure itself of thequantum wave. Since it is independent on the energy scale, we understand whygreat unified theories do not work.

84

(6.181)

The SU (3) group generated by projectors on the quark sector acts only on this sector of the wave:

We can extend the covariant derivative of electro-weak interactions (6.127):

D(Ψ) = ∂(Ψ) +g12B P 0(Ψ) +

g22W jP j(Ψ) +

g32GkiΓk(Ψ). (6.174)

where g3 is another constant and Gk are eight terms called “gluons”. SinceI4 commute with any element of Cl1,3 and since Pj(iΨind) = iPj(Ψind) forj = 0, 1, 2, 3 and ind = l, r, g, b each operator iΓk commutes with all operatorsP j .

Now we use 12 real numbers a0, aj , j = 1, 2, 3, bk, k = 1, 2, ..., 8, we let

S1 =

j=3∑j=1

ajP j ; S2 =

k=8∑k=1

bkiΓk (6.175)

and we get, using exponentiation (see 6.2)

exp(a0P 0 + S1 + S2) = exp(a0P 0) exp(S1) exp(S2) (6.176)

The set of these operators is a U(1)×SU(2)×SU(3) Lie group. Only differencewith the standard model the structure of this group is not postulated but calcu-lated. The invariance under Cl∗3 (and particularly the relativistic invariance) ofthis covariant derivative is similar to (6.105) with underlined terms. The gaugeinvariance reads with

Ψ′ = [exp(a0P 0 + S1 + S2)](Ψ) ; D = ΛµDµ ; D′ = ΛµD′µ (6.177)

D′µΨ

′ = exp(a0P 0 + S1 + S2)DµΨ (6.178)

B′µ = Bµ − 2

g1∂µa

0 (6.179)

W ′jµP j =

[exp(S1)W

jµP j −

2

g2∂µ[exp(S1)]

]exp(−S1) (6.180)

G′kµiΓk =

[exp(S2)G

kµiΓk − 2

g3∂µ[exp(S2)]

]exp(−S2). (6.181)

The SU(3) group generated by projectors on the quark sector acts only on thissector of the wave :

P+[exp(bkiΓk](Ψ)P+ = P+ΨP+ =

(Ψl 00 0

)(6.182)

We get then a U(1) × SU(2) × SU(3) gauge group for a wave including allfermions of the first generation. This group acts on the lepton sector only by itsU(1)×SU(2) part. The physical translation is: leptons do not strongly interact,they have only electromagnetic and weak interactions. This is fully satisfied inexperiments. The novelty here is that this comes from the structure itself of thequantum wave. Since it is independent on the energy scale, we understand whygreat unified theories do not work.

84

(6.182)

We get then a U (1) × SU (2) × SU (3) gauge group for a wave including all fermions of the first generation. This group acts on the lepton sector only by its U (1) × SU (2) part. The physical translation is: leptons do not strongly interact, they have only electromagnetic and weak inter-actions. This is fully satisfied in experiments. The nov-elty here is that this comes from the structure itself of the quantum wave. Since it is independent on the energy scale, we understand why great unified theories do not work.

6.4.1 Three generations, four neutrinos

The aim of theoretical physics is to understand experi-mental facts. Today we have to understand both why we get only three kinds of leptons and quarks and a fourth neutrino, without electro-weak interactions. Actual ex-periments show both the limitation to three kinds of light leptons from the study of the Z 0 and the possible exis-tence of a fourth neutrino without electro-weak inter- ac-tions. We explained the existence of three kinds of lep-tons in section 5. This is easily generalized to the three generations of the standard model. Two other generations are gotten by replacing the privileged third direction σ3 by σ1 or σ2 , everywhere this direction is used. The pas-sage from one to another gen- eration must be seen as a circular permutation of indexes 1 → 2 → 3 → 1 or 1 → 3 → 2 → 1 for the other. For instance the σ3 in (6.11) which defines left and right projectors must be replaced by σ1 or σ2 . The σ1 in (6.8) which links the wave of the

32

Page 36: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201434

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

particle to the wave of the antiparticle must be replaced by σ2 or σ3 . These changes imply to treat separately each generation, and it is the reason of this separate treatment in the standard model. Now for a fourth generation we have no other similar possibility since the Cl3 algebra is based on the 3-dimensional physical space. We cannot get a fourth set of operators similar to the Pµ .

But the existence of a fourth neutrino [8] is possible because Cl3 has four generators with square −1. The wave equation of the electron includes one of these four gen-erators, iσ3 = σ12 . Now iσ1 = σ23 and iσ2 = σ31 explain why two other kinds of leptons exist. We can also build an in-variant wave equation with the fourth generator, i = σ123 :

6.4.1 Three generations, four neutrinos

The aim of theoretical physics is to understand experimental facts. Today wehave to understand both why we get only three kinds of leptons and quarksand a fourth neutrino, without electro-weak interactions. Actual experimentsshow both the limitation to three kinds of light leptons from the study of theZ0 and the possible existence of a fourth neutrino without electro-weak inter-actions. We explained the existence of three kinds of leptons in section 5. Thisis easily generalized to the three generations of the standard model. Two othergenerations are gotten by replacing the privileged third direction σ3 by σ1 orσ2, everywhere this direction is used. The passage from one to another gen-eration must be seen as a circular permutation of indexes 1 → 2 → 3 → 1 or1 → 3 → 2 → 1 for the other. For instance the σ3 in (6.11) which defines leftand right projectors must be replaced by σ1 or σ2. The σ1 in (6.8) which linksthe wave of the particle to the wave of the antiparticle must be replaced byσ2 or σ3. These changes imply to treat separately each generation, and it isthe reason of this separate treatment in the standard model. Now for a fourthgeneration we have no other similar possibility since the Cl3 algebra is basedon the 3-dimensional physical space. We cannot get a fourth set of operatorssimilar to the Pµ.

But the existence of a fourth neutrino [8] is possible because Cl3 has fourgenerators with square −1. The wave equation of the electron includes one ofthese four generators, iσ3 = σ12. Now iσ1 = σ23 and iσ2 = σ31 explain why twoother kinds of leptons exist. We can also build an invariant wave equation withthe fourth generator, i = σ123:

φ(∇φ)σ123 +mρ = 0. (6.183)

Multiplying by the left by φ−1

we get with ρ = e−iβφφ the equivalent equation

∇φi+me−iβφ = 0 ; ∇φ = ime−iβφ. (6.184)

Contrarily to our homogeneous non-linear wave equation (3.9) which has theDirac equation as linear approximation, this wave equation cannot come fromthe linear quantum theory, it has no linear approximation because the β angleis not small, it is now the angle of the phase of the wave49. We can neverthelessget plane waves. We search now solutions satisfying

φ = e−iϕφ0 ; ϕ = mvµxµ ; v = σµvµ. (6.185)

where v is a fixed reduced speed and φ0 is also a fixed term, we get:

∇φ = σµ∂µ(eiϕφ0) = imveiϕφ0. (6.186)

And we have

φφ = e−iϕφ0e−iϕφ0 = e−2iϕφ0φ0. (6.187)

49This is another reason to think that the homogeneous non-linear equation is better thanits linear approximation.

85

(6.183)

Multiplying by the left by

6.4.1 Three generations, four neutrinos

The aim of theoretical physics is to understand experimental facts. Today wehave to understand both why we get only three kinds of leptons and quarksand a fourth neutrino, without electro-weak interactions. Actual experimentsshow both the limitation to three kinds of light leptons from the study of theZ0 and the possible existence of a fourth neutrino without electro-weak inter-actions. We explained the existence of three kinds of leptons in section 5. Thisis easily generalized to the three generations of the standard model. Two othergenerations are gotten by replacing the privileged third direction σ3 by σ1 orσ2, everywhere this direction is used. The passage from one to another gen-eration must be seen as a circular permutation of indexes 1 → 2 → 3 → 1 or1 → 3 → 2 → 1 for the other. For instance the σ3 in (6.11) which defines leftand right projectors must be replaced by σ1 or σ2. The σ1 in (6.8) which linksthe wave of the particle to the wave of the antiparticle must be replaced byσ2 or σ3. These changes imply to treat separately each generation, and it isthe reason of this separate treatment in the standard model. Now for a fourthgeneration we have no other similar possibility since the Cl3 algebra is basedon the 3-dimensional physical space. We cannot get a fourth set of operatorssimilar to the Pµ.

But the existence of a fourth neutrino [8] is possible because Cl3 has fourgenerators with square −1. The wave equation of the electron includes one ofthese four generators, iσ3 = σ12. Now iσ1 = σ23 and iσ2 = σ31 explain why twoother kinds of leptons exist. We can also build an invariant wave equation withthe fourth generator, i = σ123:

φ(∇φ)σ123 +mρ = 0. (6.183)

Multiplying by the left by φ−1

we get with ρ = e−iβφφ the equivalent equation

∇φi+me−iβφ = 0 ; ∇φ = ime−iβφ. (6.184)

Contrarily to our homogeneous non-linear wave equation (3.9) which has theDirac equation as linear approximation, this wave equation cannot come fromthe linear quantum theory, it has no linear approximation because the β angleis not small, it is now the angle of the phase of the wave49. We can neverthelessget plane waves. We search now solutions satisfying

φ = e−iϕφ0 ; ϕ = mvµxµ ; v = σµvµ. (6.185)

where v is a fixed reduced speed and φ0 is also a fixed term, we get:

∇φ = σµ∂µ(eiϕφ0) = imveiϕφ0. (6.186)

And we have

φφ = e−iϕφ0e−iϕφ0 = e−2iϕφ0φ0. (6.187)

49This is another reason to think that the homogeneous non-linear equation is better thanits linear approximation.

85

we get with

6.4.1 Three generations, four neutrinos

The aim of theoretical physics is to understand experimental facts. Today wehave to understand both why we get only three kinds of leptons and quarksand a fourth neutrino, without electro-weak interactions. Actual experimentsshow both the limitation to three kinds of light leptons from the study of theZ0 and the possible existence of a fourth neutrino without electro-weak inter-actions. We explained the existence of three kinds of leptons in section 5. Thisis easily generalized to the three generations of the standard model. Two othergenerations are gotten by replacing the privileged third direction σ3 by σ1 orσ2, everywhere this direction is used. The passage from one to another gen-eration must be seen as a circular permutation of indexes 1 → 2 → 3 → 1 or1 → 3 → 2 → 1 for the other. For instance the σ3 in (6.11) which defines leftand right projectors must be replaced by σ1 or σ2. The σ1 in (6.8) which linksthe wave of the particle to the wave of the antiparticle must be replaced byσ2 or σ3. These changes imply to treat separately each generation, and it isthe reason of this separate treatment in the standard model. Now for a fourthgeneration we have no other similar possibility since the Cl3 algebra is basedon the 3-dimensional physical space. We cannot get a fourth set of operatorssimilar to the Pµ.

But the existence of a fourth neutrino [8] is possible because Cl3 has fourgenerators with square −1. The wave equation of the electron includes one ofthese four generators, iσ3 = σ12. Now iσ1 = σ23 and iσ2 = σ31 explain why twoother kinds of leptons exist. We can also build an invariant wave equation withthe fourth generator, i = σ123:

φ(∇φ)σ123 +mρ = 0. (6.183)

Multiplying by the left by φ−1

we get with ρ = e−iβφφ the equivalent equation

∇φi+me−iβφ = 0 ; ∇φ = ime−iβφ. (6.184)

Contrarily to our homogeneous non-linear wave equation (3.9) which has theDirac equation as linear approximation, this wave equation cannot come fromthe linear quantum theory, it has no linear approximation because the β angleis not small, it is now the angle of the phase of the wave49. We can neverthelessget plane waves. We search now solutions satisfying

φ = e−iϕφ0 ; ϕ = mvµxµ ; v = σµvµ. (6.185)

where v is a fixed reduced speed and φ0 is also a fixed term, we get:

∇φ = σµ∂µ(eiϕφ0) = imveiϕφ0. (6.186)

And we have

φφ = e−iϕφ0e−iϕφ0 = e−2iϕφ0φ0. (6.187)

49This is another reason to think that the homogeneous non-linear equation is better thanits linear approximation.

85

the equivalent equation

6.4.1 Three generations, four neutrinos

The aim of theoretical physics is to understand experimental facts. Today wehave to understand both why we get only three kinds of leptons and quarksand a fourth neutrino, without electro-weak interactions. Actual experimentsshow both the limitation to three kinds of light leptons from the study of theZ0 and the possible existence of a fourth neutrino without electro-weak inter-actions. We explained the existence of three kinds of leptons in section 5. Thisis easily generalized to the three generations of the standard model. Two othergenerations are gotten by replacing the privileged third direction σ3 by σ1 orσ2, everywhere this direction is used. The passage from one to another gen-eration must be seen as a circular permutation of indexes 1 → 2 → 3 → 1 or1 → 3 → 2 → 1 for the other. For instance the σ3 in (6.11) which defines leftand right projectors must be replaced by σ1 or σ2. The σ1 in (6.8) which linksthe wave of the particle to the wave of the antiparticle must be replaced byσ2 or σ3. These changes imply to treat separately each generation, and it isthe reason of this separate treatment in the standard model. Now for a fourthgeneration we have no other similar possibility since the Cl3 algebra is basedon the 3-dimensional physical space. We cannot get a fourth set of operatorssimilar to the Pµ.

But the existence of a fourth neutrino [8] is possible because Cl3 has fourgenerators with square −1. The wave equation of the electron includes one ofthese four generators, iσ3 = σ12. Now iσ1 = σ23 and iσ2 = σ31 explain why twoother kinds of leptons exist. We can also build an invariant wave equation withthe fourth generator, i = σ123:

φ(∇φ)σ123 +mρ = 0. (6.183)

Multiplying by the left by φ−1

we get with ρ = e−iβφφ the equivalent equation

∇φi+me−iβφ = 0 ; ∇φ = ime−iβφ. (6.184)

Contrarily to our homogeneous non-linear wave equation (3.9) which has theDirac equation as linear approximation, this wave equation cannot come fromthe linear quantum theory, it has no linear approximation because the β angleis not small, it is now the angle of the phase of the wave49. We can neverthelessget plane waves. We search now solutions satisfying

φ = e−iϕφ0 ; ϕ = mvµxµ ; v = σµvµ. (6.185)

where v is a fixed reduced speed and φ0 is also a fixed term, we get:

∇φ = σµ∂µ(eiϕφ0) = imveiϕφ0. (6.186)

And we have

φφ = e−iϕφ0e−iϕφ0 = e−2iϕφ0φ0. (6.187)

49This is another reason to think that the homogeneous non-linear equation is better thanits linear approximation.

85

(6.184)

Contrarily to our homogeneous non-linear wave equa-tion (3.9) which has the Dirac equation as linear approxi-mation, this wave equation cannot come from the linear quantum theory, it has no linear approximation because the β angle is not small, it is now the angle of the phase of the wave.49 We can nevertheless get plane waves. We search now solutions satisfying

6.4.1 Three generations, four neutrinos

The aim of theoretical physics is to understand experimental facts. Today wehave to understand both why we get only three kinds of leptons and quarksand a fourth neutrino, without electro-weak interactions. Actual experimentsshow both the limitation to three kinds of light leptons from the study of theZ0 and the possible existence of a fourth neutrino without electro-weak inter-actions. We explained the existence of three kinds of leptons in section 5. Thisis easily generalized to the three generations of the standard model. Two othergenerations are gotten by replacing the privileged third direction σ3 by σ1 orσ2, everywhere this direction is used. The passage from one to another gen-eration must be seen as a circular permutation of indexes 1 → 2 → 3 → 1 or1 → 3 → 2 → 1 for the other. For instance the σ3 in (6.11) which defines leftand right projectors must be replaced by σ1 or σ2. The σ1 in (6.8) which linksthe wave of the particle to the wave of the antiparticle must be replaced byσ2 or σ3. These changes imply to treat separately each generation, and it isthe reason of this separate treatment in the standard model. Now for a fourthgeneration we have no other similar possibility since the Cl3 algebra is basedon the 3-dimensional physical space. We cannot get a fourth set of operatorssimilar to the Pµ.

But the existence of a fourth neutrino [8] is possible because Cl3 has fourgenerators with square −1. The wave equation of the electron includes one ofthese four generators, iσ3 = σ12. Now iσ1 = σ23 and iσ2 = σ31 explain why twoother kinds of leptons exist. We can also build an invariant wave equation withthe fourth generator, i = σ123:

φ(∇φ)σ123 +mρ = 0. (6.183)

Multiplying by the left by φ−1

we get with ρ = e−iβφφ the equivalent equation

∇φi+me−iβφ = 0 ; ∇φ = ime−iβφ. (6.184)

Contrarily to our homogeneous non-linear wave equation (3.9) which has theDirac equation as linear approximation, this wave equation cannot come fromthe linear quantum theory, it has no linear approximation because the β angleis not small, it is now the angle of the phase of the wave49. We can neverthelessget plane waves. We search now solutions satisfying

φ = e−iϕφ0 ; ϕ = mvµxµ ; v = σµvµ. (6.185)

where v is a fixed reduced speed and φ0 is also a fixed term, we get:

∇φ = σµ∂µ(eiϕφ0) = imveiϕφ0. (6.186)

And we have

φφ = e−iϕφ0e−iϕφ0 = e−2iϕφ0φ0. (6.187)

49This is another reason to think that the homogeneous non-linear equation is better thanits linear approximation.

85

(6.185)

where v is a fixed reduced speed and φ0 is also a fixed term, we get:

6.4.1 Three generations, four neutrinos

The aim of theoretical physics is to understand experimental facts. Today wehave to understand both why we get only three kinds of leptons and quarksand a fourth neutrino, without electro-weak interactions. Actual experimentsshow both the limitation to three kinds of light leptons from the study of theZ0 and the possible existence of a fourth neutrino without electro-weak inter-actions. We explained the existence of three kinds of leptons in section 5. Thisis easily generalized to the three generations of the standard model. Two othergenerations are gotten by replacing the privileged third direction σ3 by σ1 orσ2, everywhere this direction is used. The passage from one to another gen-eration must be seen as a circular permutation of indexes 1 → 2 → 3 → 1 or1 → 3 → 2 → 1 for the other. For instance the σ3 in (6.11) which defines leftand right projectors must be replaced by σ1 or σ2. The σ1 in (6.8) which linksthe wave of the particle to the wave of the antiparticle must be replaced byσ2 or σ3. These changes imply to treat separately each generation, and it isthe reason of this separate treatment in the standard model. Now for a fourthgeneration we have no other similar possibility since the Cl3 algebra is basedon the 3-dimensional physical space. We cannot get a fourth set of operatorssimilar to the Pµ.

But the existence of a fourth neutrino [8] is possible because Cl3 has fourgenerators with square −1. The wave equation of the electron includes one ofthese four generators, iσ3 = σ12. Now iσ1 = σ23 and iσ2 = σ31 explain why twoother kinds of leptons exist. We can also build an invariant wave equation withthe fourth generator, i = σ123:

φ(∇φ)σ123 +mρ = 0. (6.183)

Multiplying by the left by φ−1

we get with ρ = e−iβφφ the equivalent equation

∇φi+me−iβφ = 0 ; ∇φ = ime−iβφ. (6.184)

Contrarily to our homogeneous non-linear wave equation (3.9) which has theDirac equation as linear approximation, this wave equation cannot come fromthe linear quantum theory, it has no linear approximation because the β angleis not small, it is now the angle of the phase of the wave49. We can neverthelessget plane waves. We search now solutions satisfying

φ = e−iϕφ0 ; ϕ = mvµxµ ; v = σµvµ. (6.185)

where v is a fixed reduced speed and φ0 is also a fixed term, we get:

∇φ = σµ∂µ(eiϕφ0) = imveiϕφ0. (6.186)

And we have

φφ = e−iϕφ0e−iϕφ0 = e−2iϕφ0φ0. (6.187)

49This is another reason to think that the homogeneous non-linear equation is better thanits linear approximation.

85

(6.186)

And we have

6.4.1 Three generations, four neutrinos

The aim of theoretical physics is to understand experimental facts. Today wehave to understand both why we get only three kinds of leptons and quarksand a fourth neutrino, without electro-weak interactions. Actual experimentsshow both the limitation to three kinds of light leptons from the study of theZ0 and the possible existence of a fourth neutrino without electro-weak inter-actions. We explained the existence of three kinds of leptons in section 5. Thisis easily generalized to the three generations of the standard model. Two othergenerations are gotten by replacing the privileged third direction σ3 by σ1 orσ2, everywhere this direction is used. The passage from one to another gen-eration must be seen as a circular permutation of indexes 1 → 2 → 3 → 1 or1 → 3 → 2 → 1 for the other. For instance the σ3 in (6.11) which defines leftand right projectors must be replaced by σ1 or σ2. The σ1 in (6.8) which linksthe wave of the particle to the wave of the antiparticle must be replaced byσ2 or σ3. These changes imply to treat separately each generation, and it isthe reason of this separate treatment in the standard model. Now for a fourthgeneration we have no other similar possibility since the Cl3 algebra is basedon the 3-dimensional physical space. We cannot get a fourth set of operatorssimilar to the Pµ.

But the existence of a fourth neutrino [8] is possible because Cl3 has fourgenerators with square −1. The wave equation of the electron includes one ofthese four generators, iσ3 = σ12. Now iσ1 = σ23 and iσ2 = σ31 explain why twoother kinds of leptons exist. We can also build an invariant wave equation withthe fourth generator, i = σ123:

φ(∇φ)σ123 +mρ = 0. (6.183)

Multiplying by the left by φ−1

we get with ρ = e−iβφφ the equivalent equation

∇φi+me−iβφ = 0 ; ∇φ = ime−iβφ. (6.184)

Contrarily to our homogeneous non-linear wave equation (3.9) which has theDirac equation as linear approximation, this wave equation cannot come fromthe linear quantum theory, it has no linear approximation because the β angleis not small, it is now the angle of the phase of the wave49. We can neverthelessget plane waves. We search now solutions satisfying

φ = e−iϕφ0 ; ϕ = mvµxµ ; v = σµvµ. (6.185)

where v is a fixed reduced speed and φ0 is also a fixed term, we get:

∇φ = σµ∂µ(eiϕφ0) = imveiϕφ0. (6.186)

And we have

φφ = e−iϕφ0e−iϕφ0 = e−2iϕφ0φ0. (6.187)

49This is another reason to think that the homogeneous non-linear equation is better thanits linear approximation.

85

(6.187)

Then if we letThen if we let

φ0φ0 = ρ0eiβ0 (6.188)

we get

β = β0 − 2ϕ ; e−iβφ = e−i(β0−2ϕ)e−iϕφ0 = e−i(β0−ϕ)φ0 (6.189)

Then (6.177) is equivalent to

imveiϕφ0 = ime−i(β0−ϕ)φ0 (6.190)

vφ0 = e−iβ0φ0

eiβ0vφ0 = φ0. (6.191)

Conjugating we get

e−iβ0 vφ0 = φ0. (6.192)

So we get

φ0 = eiβ0vφ0 = eiβ0v[e−iβ0 vφ0] = vvφ0. (6.193)

Then if φ0 = 0 we get

1 = vv (6.194)

which gives (2.73) or (3.40) and since (6.191) implies (3.43) we get the sameresults as with our non-linear wave equation: existence of plane waves with onlypositive energy. Developing (6.176) we get a system of eight equations similar tothe system (2.92) to (2.99) and four of these equations are the conservation of theDµ currents (∂νD

νµ = 0) [8]. Then the density of probability is conservative and

there is no possible disintegration of such a particle. Without a set of operatorsPµ there are no electro-weak forces. Therefore only gravitational interactionsremain possible. Such an object could be necessary part of the black matter,since it is unable to emit photons.

6.5 Geometric transformation linked to the wave

We saw in 3.3 that the wave of the electron defines in each point of space-timea geometric transformation (3.55) from the tangent space-time of an intrinsicmanifold into the tangent space-time to our space-time manifold. What becomesthis transformation when we consider the wave Ψl of a couple electron-neutrino,or the complete wave Ψ of the first generation?

6.5.1 In space-time algebra

Any element M in Cl3 is sum of a scalar s, a vector v, a bivector i w and apseudo-scalar ip. We have

M = s+ v + i w + ip; M = s− v + i w − ip

M† = s+ v − i w − ip; M = s− v − i w + ip. (6.195)

86

(6.188)

we get

Then if we let

φ0φ0 = ρ0eiβ0 (6.188)

we get

β = β0 − 2ϕ ; e−iβφ = e−i(β0−2ϕ)e−iϕφ0 = e−i(β0−ϕ)φ0 (6.189)

Then (6.177) is equivalent to

imveiϕφ0 = ime−i(β0−ϕ)φ0 (6.190)

vφ0 = e−iβ0φ0

eiβ0vφ0 = φ0. (6.191)

Conjugating we get

e−iβ0 vφ0 = φ0. (6.192)

So we get

φ0 = eiβ0vφ0 = eiβ0v[e−iβ0 vφ0] = vvφ0. (6.193)

Then if φ0 = 0 we get

1 = vv (6.194)

which gives (2.73) or (3.40) and since (6.191) implies (3.43) we get the sameresults as with our non-linear wave equation: existence of plane waves with onlypositive energy. Developing (6.176) we get a system of eight equations similar tothe system (2.92) to (2.99) and four of these equations are the conservation of theDµ currents (∂νD

νµ = 0) [8]. Then the density of probability is conservative and

there is no possible disintegration of such a particle. Without a set of operatorsPµ there are no electro-weak forces. Therefore only gravitational interactionsremain possible. Such an object could be necessary part of the black matter,since it is unable to emit photons.

6.5 Geometric transformation linked to the wave

We saw in 3.3 that the wave of the electron defines in each point of space-timea geometric transformation (3.55) from the tangent space-time of an intrinsicmanifold into the tangent space-time to our space-time manifold. What becomesthis transformation when we consider the wave Ψl of a couple electron-neutrino,or the complete wave Ψ of the first generation?

6.5.1 In space-time algebra

Any element M in Cl3 is sum of a scalar s, a vector v, a bivector i w and apseudo-scalar ip. We have

M = s+ v + i w + ip; M = s− v + i w − ip

M† = s+ v − i w − ip; M = s− v − i w + ip. (6.195)

86

Then if we let

φ0φ0 = ρ0eiβ0 (6.188)

we get

β = β0 − 2ϕ ; e−iβφ = e−i(β0−2ϕ)e−iϕφ0 = e−i(β0−ϕ)φ0 (6.189)

Then (6.177) is equivalent to

imveiϕφ0 = ime−i(β0−ϕ)φ0 (6.190)

vφ0 = e−iβ0φ0

eiβ0vφ0 = φ0. (6.191)

Conjugating we get

e−iβ0 vφ0 = φ0. (6.192)

So we get

φ0 = eiβ0vφ0 = eiβ0v[e−iβ0 vφ0] = vvφ0. (6.193)

Then if φ0 = 0 we get

1 = vv (6.194)

which gives (2.73) or (3.40) and since (6.191) implies (3.43) we get the sameresults as with our non-linear wave equation: existence of plane waves with onlypositive energy. Developing (6.176) we get a system of eight equations similar tothe system (2.92) to (2.99) and four of these equations are the conservation of theDµ currents (∂νD

νµ = 0) [8]. Then the density of probability is conservative and

there is no possible disintegration of such a particle. Without a set of operatorsPµ there are no electro-weak forces. Therefore only gravitational interactionsremain possible. Such an object could be necessary part of the black matter,since it is unable to emit photons.

6.5 Geometric transformation linked to the wave

We saw in 3.3 that the wave of the electron defines in each point of space-timea geometric transformation (3.55) from the tangent space-time of an intrinsicmanifold into the tangent space-time to our space-time manifold. What becomesthis transformation when we consider the wave Ψl of a couple electron-neutrino,or the complete wave Ψ of the first generation?

6.5.1 In space-time algebra

Any element M in Cl3 is sum of a scalar s, a vector v, a bivector i w and apseudo-scalar ip. We have

M = s+ v + i w + ip; M = s− v + i w − ip

M† = s+ v − i w − ip; M = s− v − i w + ip. (6.195)

86

(6.189)

Then (6.177) is equivalent to

Then if we let

φ0φ0 = ρ0eiβ0 (6.188)

we get

β = β0 − 2ϕ ; e−iβφ = e−i(β0−2ϕ)e−iϕφ0 = e−i(β0−ϕ)φ0 (6.189)

Then (6.177) is equivalent to

imveiϕφ0 = ime−i(β0−ϕ)φ0 (6.190)

vφ0 = e−iβ0φ0

eiβ0vφ0 = φ0. (6.191)

Conjugating we get

e−iβ0 vφ0 = φ0. (6.192)

So we get

φ0 = eiβ0vφ0 = eiβ0v[e−iβ0 vφ0] = vvφ0. (6.193)

Then if φ0 = 0 we get

1 = vv (6.194)

which gives (2.73) or (3.40) and since (6.191) implies (3.43) we get the sameresults as with our non-linear wave equation: existence of plane waves with onlypositive energy. Developing (6.176) we get a system of eight equations similar tothe system (2.92) to (2.99) and four of these equations are the conservation of theDµ currents (∂νD

νµ = 0) [8]. Then the density of probability is conservative and

there is no possible disintegration of such a particle. Without a set of operatorsPµ there are no electro-weak forces. Therefore only gravitational interactionsremain possible. Such an object could be necessary part of the black matter,since it is unable to emit photons.

6.5 Geometric transformation linked to the wave

We saw in 3.3 that the wave of the electron defines in each point of space-timea geometric transformation (3.55) from the tangent space-time of an intrinsicmanifold into the tangent space-time to our space-time manifold. What becomesthis transformation when we consider the wave Ψl of a couple electron-neutrino,or the complete wave Ψ of the first generation?

6.5.1 In space-time algebra

Any element M in Cl3 is sum of a scalar s, a vector v, a bivector i w and apseudo-scalar ip. We have

M = s+ v + i w + ip; M = s− v + i w − ip

M† = s+ v − i w − ip; M = s− v − i w + ip. (6.195)

86

(6.190)

Then if we let

φ0φ0 = ρ0eiβ0 (6.188)

we get

β = β0 − 2ϕ ; e−iβφ = e−i(β0−2ϕ)e−iϕφ0 = e−i(β0−ϕ)φ0 (6.189)

Then (6.177) is equivalent to

imveiϕφ0 = ime−i(β0−ϕ)φ0 (6.190)

vφ0 = e−iβ0φ0

eiβ0vφ0 = φ0. (6.191)

Conjugating we get

e−iβ0 vφ0 = φ0. (6.192)

So we get

φ0 = eiβ0vφ0 = eiβ0v[e−iβ0 vφ0] = vvφ0. (6.193)

Then if φ0 = 0 we get

1 = vv (6.194)

which gives (2.73) or (3.40) and since (6.191) implies (3.43) we get the sameresults as with our non-linear wave equation: existence of plane waves with onlypositive energy. Developing (6.176) we get a system of eight equations similar tothe system (2.92) to (2.99) and four of these equations are the conservation of theDµ currents (∂νD

νµ = 0) [8]. Then the density of probability is conservative and

there is no possible disintegration of such a particle. Without a set of operatorsPµ there are no electro-weak forces. Therefore only gravitational interactionsremain possible. Such an object could be necessary part of the black matter,since it is unable to emit photons.

6.5 Geometric transformation linked to the wave

We saw in 3.3 that the wave of the electron defines in each point of space-timea geometric transformation (3.55) from the tangent space-time of an intrinsicmanifold into the tangent space-time to our space-time manifold. What becomesthis transformation when we consider the wave Ψl of a couple electron-neutrino,or the complete wave Ψ of the first generation?

6.5.1 In space-time algebra

Any element M in Cl3 is sum of a scalar s, a vector v, a bivector i w and apseudo-scalar ip. We have

M = s+ v + i w + ip; M = s− v + i w − ip

M† = s+ v − i w − ip; M = s− v − i w + ip. (6.195)

86

(6.191)

Conjugating we get

Then if we let

φ0φ0 = ρ0eiβ0 (6.188)

we get

β = β0 − 2ϕ ; e−iβφ = e−i(β0−2ϕ)e−iϕφ0 = e−i(β0−ϕ)φ0 (6.189)

Then (6.177) is equivalent to

imveiϕφ0 = ime−i(β0−ϕ)φ0 (6.190)

vφ0 = e−iβ0φ0

eiβ0vφ0 = φ0. (6.191)

Conjugating we get

e−iβ0 vφ0 = φ0. (6.192)

So we get

φ0 = eiβ0vφ0 = eiβ0v[e−iβ0 vφ0] = vvφ0. (6.193)

Then if φ0 = 0 we get

1 = vv (6.194)

which gives (2.73) or (3.40) and since (6.191) implies (3.43) we get the sameresults as with our non-linear wave equation: existence of plane waves with onlypositive energy. Developing (6.176) we get a system of eight equations similar tothe system (2.92) to (2.99) and four of these equations are the conservation of theDµ currents (∂νD

νµ = 0) [8]. Then the density of probability is conservative and

there is no possible disintegration of such a particle. Without a set of operatorsPµ there are no electro-weak forces. Therefore only gravitational interactionsremain possible. Such an object could be necessary part of the black matter,since it is unable to emit photons.

6.5 Geometric transformation linked to the wave

We saw in 3.3 that the wave of the electron defines in each point of space-timea geometric transformation (3.55) from the tangent space-time of an intrinsicmanifold into the tangent space-time to our space-time manifold. What becomesthis transformation when we consider the wave Ψl of a couple electron-neutrino,or the complete wave Ψ of the first generation?

6.5.1 In space-time algebra

Any element M in Cl3 is sum of a scalar s, a vector v, a bivector i w and apseudo-scalar ip. We have

M = s+ v + i w + ip; M = s− v + i w − ip

M† = s+ v − i w − ip; M = s− v − i w + ip. (6.195)

86

(6.192)

49 This is another reason to think that the homogeneous non-linear equation is better than its linear approximation.

So we get

Then if we let

φ0φ0 = ρ0eiβ0 (6.188)

we get

β = β0 − 2ϕ ; e−iβφ = e−i(β0−2ϕ)e−iϕφ0 = e−i(β0−ϕ)φ0 (6.189)

Then (6.177) is equivalent to

imveiϕφ0 = ime−i(β0−ϕ)φ0 (6.190)

vφ0 = e−iβ0φ0

eiβ0vφ0 = φ0. (6.191)

Conjugating we get

e−iβ0 vφ0 = φ0. (6.192)

So we get

φ0 = eiβ0vφ0 = eiβ0v[e−iβ0 vφ0] = vvφ0. (6.193)

Then if φ0 = 0 we get

1 = vv (6.194)

which gives (2.73) or (3.40) and since (6.191) implies (3.43) we get the sameresults as with our non-linear wave equation: existence of plane waves with onlypositive energy. Developing (6.176) we get a system of eight equations similar tothe system (2.92) to (2.99) and four of these equations are the conservation of theDµ currents (∂νD

νµ = 0) [8]. Then the density of probability is conservative and

there is no possible disintegration of such a particle. Without a set of operatorsPµ there are no electro-weak forces. Therefore only gravitational interactionsremain possible. Such an object could be necessary part of the black matter,since it is unable to emit photons.

6.5 Geometric transformation linked to the wave

We saw in 3.3 that the wave of the electron defines in each point of space-timea geometric transformation (3.55) from the tangent space-time of an intrinsicmanifold into the tangent space-time to our space-time manifold. What becomesthis transformation when we consider the wave Ψl of a couple electron-neutrino,or the complete wave Ψ of the first generation?

6.5.1 In space-time algebra

Any element M in Cl3 is sum of a scalar s, a vector v, a bivector i w and apseudo-scalar ip. We have

M = s+ v + i w + ip; M = s− v + i w − ip

M† = s+ v − i w − ip; M = s− v − i w + ip. (6.195)

86

(6.193)

Then if

Then if we let

φ0φ0 = ρ0eiβ0 (6.188)

we get

β = β0 − 2ϕ ; e−iβφ = e−i(β0−2ϕ)e−iϕφ0 = e−i(β0−ϕ)φ0 (6.189)

Then (6.177) is equivalent to

imveiϕφ0 = ime−i(β0−ϕ)φ0 (6.190)

vφ0 = e−iβ0φ0

eiβ0vφ0 = φ0. (6.191)

Conjugating we get

e−iβ0 vφ0 = φ0. (6.192)

So we get

φ0 = eiβ0vφ0 = eiβ0v[e−iβ0 vφ0] = vvφ0. (6.193)

Then if φ0 = 0 we get

1 = vv (6.194)

which gives (2.73) or (3.40) and since (6.191) implies (3.43) we get the sameresults as with our non-linear wave equation: existence of plane waves with onlypositive energy. Developing (6.176) we get a system of eight equations similar tothe system (2.92) to (2.99) and four of these equations are the conservation of theDµ currents (∂νD

νµ = 0) [8]. Then the density of probability is conservative and

there is no possible disintegration of such a particle. Without a set of operatorsPµ there are no electro-weak forces. Therefore only gravitational interactionsremain possible. Such an object could be necessary part of the black matter,since it is unable to emit photons.

6.5 Geometric transformation linked to the wave

We saw in 3.3 that the wave of the electron defines in each point of space-timea geometric transformation (3.55) from the tangent space-time of an intrinsicmanifold into the tangent space-time to our space-time manifold. What becomesthis transformation when we consider the wave Ψl of a couple electron-neutrino,or the complete wave Ψ of the first generation?

6.5.1 In space-time algebra

Any element M in Cl3 is sum of a scalar s, a vector v, a bivector i w and apseudo-scalar ip. We have

M = s+ v + i w + ip; M = s− v + i w − ip

M† = s+ v − i w − ip; M = s− v − i w + ip. (6.195)

86

we get

Then if we let

φ0φ0 = ρ0eiβ0 (6.188)

we get

β = β0 − 2ϕ ; e−iβφ = e−i(β0−2ϕ)e−iϕφ0 = e−i(β0−ϕ)φ0 (6.189)

Then (6.177) is equivalent to

imveiϕφ0 = ime−i(β0−ϕ)φ0 (6.190)

vφ0 = e−iβ0φ0

eiβ0vφ0 = φ0. (6.191)

Conjugating we get

e−iβ0 vφ0 = φ0. (6.192)

So we get

φ0 = eiβ0vφ0 = eiβ0v[e−iβ0 vφ0] = vvφ0. (6.193)

Then if φ0 = 0 we get

1 = vv (6.194)

which gives (2.73) or (3.40) and since (6.191) implies (3.43) we get the sameresults as with our non-linear wave equation: existence of plane waves with onlypositive energy. Developing (6.176) we get a system of eight equations similar tothe system (2.92) to (2.99) and four of these equations are the conservation of theDµ currents (∂νD

νµ = 0) [8]. Then the density of probability is conservative and

there is no possible disintegration of such a particle. Without a set of operatorsPµ there are no electro-weak forces. Therefore only gravitational interactionsremain possible. Such an object could be necessary part of the black matter,since it is unable to emit photons.

6.5 Geometric transformation linked to the wave

We saw in 3.3 that the wave of the electron defines in each point of space-timea geometric transformation (3.55) from the tangent space-time of an intrinsicmanifold into the tangent space-time to our space-time manifold. What becomesthis transformation when we consider the wave Ψl of a couple electron-neutrino,or the complete wave Ψ of the first generation?

6.5.1 In space-time algebra

Any element M in Cl3 is sum of a scalar s, a vector v, a bivector i w and apseudo-scalar ip. We have

M = s+ v + i w + ip; M = s− v + i w − ip

M† = s+ v − i w − ip; M = s− v − i w + ip. (6.195)

86

(6.194)

which gives (2.73) or (3.40) and since (6.191) implies (3.43) we get the same results as with our non-linear wave equation: existence of plane waves with only pos-itive energy. Developing (6.176) we get a system of eight equations similar to the system (2.92) to (2.99) and four of these equations are the conservation of the Dµ currents (∂ν Dν = 0) [8]. Then the density of prob-ability is conservative and there is no possible disinte-gration of such a particle. Without a set of operators Pµ there are no electro-weak forces. Therefore only grav-itational interactions remain possible. Such an object could be necessary part of the black matter, since it is unable to emit photons.

6.5 Geometric transformation linked to the wave

We saw in 3.3 that the wave of the electron defines in each point of space-time a geometric transformation (3.55) from the tangent space-time of an intrinsic mani-fold into the tangent space-time to our space-time mani-fold. What becomes this transformation when we con-sider the wave Ψl of a couple electron-neutrino, or the complete wave Ψ of the first generation?

6.5.1 In space-time algebra

Any element M in Cl3 is sum of a scalar s, a vector v→

, a bivector iw

→ and a pseudo-scalar ip. We have

Then if we let

φ0φ0 = ρ0eiβ0 (6.188)

we get

β = β0 − 2ϕ ; e−iβφ = e−i(β0−2ϕ)e−iϕφ0 = e−i(β0−ϕ)φ0 (6.189)

Then (6.177) is equivalent to

imveiϕφ0 = ime−i(β0−ϕ)φ0 (6.190)

vφ0 = e−iβ0φ0

eiβ0vφ0 = φ0. (6.191)

Conjugating we get

e−iβ0 vφ0 = φ0. (6.192)

So we get

φ0 = eiβ0vφ0 = eiβ0v[e−iβ0 vφ0] = vvφ0. (6.193)

Then if φ0 = 0 we get

1 = vv (6.194)

which gives (2.73) or (3.40) and since (6.191) implies (3.43) we get the sameresults as with our non-linear wave equation: existence of plane waves with onlypositive energy. Developing (6.176) we get a system of eight equations similar tothe system (2.92) to (2.99) and four of these equations are the conservation of theDµ currents (∂νD

νµ = 0) [8]. Then the density of probability is conservative and

there is no possible disintegration of such a particle. Without a set of operatorsPµ there are no electro-weak forces. Therefore only gravitational interactionsremain possible. Such an object could be necessary part of the black matter,since it is unable to emit photons.

6.5 Geometric transformation linked to the wave

We saw in 3.3 that the wave of the electron defines in each point of space-timea geometric transformation (3.55) from the tangent space-time of an intrinsicmanifold into the tangent space-time to our space-time manifold. What becomesthis transformation when we consider the wave Ψl of a couple electron-neutrino,or the complete wave Ψ of the first generation?

6.5.1 In space-time algebra

Any element M in Cl3 is sum of a scalar s, a vector v, a bivector i w and apseudo-scalar ip. We have

M = s+ v + i w + ip; M = s− v + i w − ip

M† = s+ v − i w − ip; M = s− v − i w + ip. (6.195)

86

(6.195)With the matrix representation of the space-time al-

gebra studied in 1.4.1 and the N in (1.68) we associate to x = xµ σµ in Cl3 the space-time vector

With the matrix representation of the space-time algebra studied in 1.4.1 andthe N in (1.68) we associate to x = xµσµ in Cl3 the space-time vector

x = xµγµ =

(0 xx 0

)(6.196)

Then the dilation R defined by (1.42) associates to the space-time vector x thespace-time vector x′ satisfying

x′ = NxN (6.197)

while the differential operator ∂∂∂ = γµ∂µ satisfies

∂∂∂ = N∂∂∂′N. (6.198)

And the dilation D defined by (3.55) associates to the space-time vector y,element of the tangent space-time to the intrinsic manifold linked to the wave,a space-time vector x in the usual space-time, satisfying

x = ΨyΨ; Ψ =

(φ 0

0 φ

); Ψ =

(φ 00 φ†

); y = yµγµ =

(0 yy 0

). (6.199)

Now we consider the wave of the lepton case Ψl which reads

Ψl =

(φe φn

φn φe

); Ψl =

(φe φ†

n

φn φ†e

). (6.200)

The generalization of (6.199) is

x = ΨlyΨl. (6.201)

But, since

x = ΨlyΨl = x (6.202)

then x is the sum of a scalar, a vector and a pseudo-scalar. 50 To get only avector, we must separate the vector part. Noting < M >1 the vector part ofthe multivector M , we then let instead of (6.201)

x =< ΨlyΨl >1 (6.203)

We have

ΨlyΨl =

(φe φn

φn φe

)(0 yy 0

)(φe φ†

n

φn φ†e

)

=

(φnyφe + φeyφn φeyφ

†e + φnyφ

†n

φeyφe + φnyφn φnyφ†e + φeyφ

†n

)(6.204)

50The same property in Cl3 proves that x is the sum of a scalar and a vector and this isexact for a space-time vector.

87

(6.196)

Then the dilation R defined by (1.42) associates to the space-time vector x the space-time vector x′ satisfying

With the matrix representation of the space-time algebra studied in 1.4.1 andthe N in (1.68) we associate to x = xµσµ in Cl3 the space-time vector

x = xµγµ =

(0 xx 0

)(6.196)

Then the dilation R defined by (1.42) associates to the space-time vector x thespace-time vector x′ satisfying

x′ = NxN (6.197)

while the differential operator ∂∂∂ = γµ∂µ satisfies

∂∂∂ = N∂∂∂′N. (6.198)

And the dilation D defined by (3.55) associates to the space-time vector y,element of the tangent space-time to the intrinsic manifold linked to the wave,a space-time vector x in the usual space-time, satisfying

x = ΨyΨ; Ψ =

(φ 0

0 φ

); Ψ =

(φ 00 φ†

); y = yµγµ =

(0 yy 0

). (6.199)

Now we consider the wave of the lepton case Ψl which reads

Ψl =

(φe φn

φn φe

); Ψl =

(φe φ†

n

φn φ†e

). (6.200)

The generalization of (6.199) is

x = ΨlyΨl. (6.201)

But, since

x = ΨlyΨl = x (6.202)

then x is the sum of a scalar, a vector and a pseudo-scalar. 50 To get only avector, we must separate the vector part. Noting < M >1 the vector part ofthe multivector M , we then let instead of (6.201)

x =< ΨlyΨl >1 (6.203)

We have

ΨlyΨl =

(φe φn

φn φe

)(0 yy 0

)(φe φ†

n

φn φ†e

)

=

(φnyφe + φeyφn φeyφ

†e + φnyφ

†n

φeyφe + φnyφn φnyφ†e + φeyφ

†n

)(6.204)

50The same property in Cl3 proves that x is the sum of a scalar and a vector and this isexact for a space-time vector.

87

(6.197)

while the differential operator

With the matrix representation of the space-time algebra studied in 1.4.1 andthe N in (1.68) we associate to x = xµσµ in Cl3 the space-time vector

x = xµγµ =

(0 xx 0

)(6.196)

Then the dilation R defined by (1.42) associates to the space-time vector x thespace-time vector x′ satisfying

x′ = NxN (6.197)

while the differential operator ∂∂∂ = γµ∂µ satisfies

∂∂∂ = N∂∂∂′N. (6.198)

And the dilation D defined by (3.55) associates to the space-time vector y,element of the tangent space-time to the intrinsic manifold linked to the wave,a space-time vector x in the usual space-time, satisfying

x = ΨyΨ; Ψ =

(φ 0

0 φ

); Ψ =

(φ 00 φ†

); y = yµγµ =

(0 yy 0

). (6.199)

Now we consider the wave of the lepton case Ψl which reads

Ψl =

(φe φn

φn φe

); Ψl =

(φe φ†

n

φn φ†e

). (6.200)

The generalization of (6.199) is

x = ΨlyΨl. (6.201)

But, since

x = ΨlyΨl = x (6.202)

then x is the sum of a scalar, a vector and a pseudo-scalar. 50 To get only avector, we must separate the vector part. Noting < M >1 the vector part ofthe multivector M , we then let instead of (6.201)

x =< ΨlyΨl >1 (6.203)

We have

ΨlyΨl =

(φe φn

φn φe

)(0 yy 0

)(φe φ†

n

φn φ†e

)

=

(φnyφe + φeyφn φeyφ

†e + φnyφ

†n

φeyφe + φnyφn φnyφ†e + φeyφ

†n

)(6.204)

50The same property in Cl3 proves that x is the sum of a scalar and a vector and this isexact for a space-time vector.

87

satisfies

With the matrix representation of the space-time algebra studied in 1.4.1 andthe N in (1.68) we associate to x = xµσµ in Cl3 the space-time vector

x = xµγµ =

(0 xx 0

)(6.196)

Then the dilation R defined by (1.42) associates to the space-time vector x thespace-time vector x′ satisfying

x′ = NxN (6.197)

while the differential operator ∂∂∂ = γµ∂µ satisfies

∂∂∂ = N∂∂∂′N. (6.198)

And the dilation D defined by (3.55) associates to the space-time vector y,element of the tangent space-time to the intrinsic manifold linked to the wave,a space-time vector x in the usual space-time, satisfying

x = ΨyΨ; Ψ =

(φ 0

0 φ

); Ψ =

(φ 00 φ†

); y = yµγµ =

(0 yy 0

). (6.199)

Now we consider the wave of the lepton case Ψl which reads

Ψl =

(φe φn

φn φe

); Ψl =

(φe φ†

n

φn φ†e

). (6.200)

The generalization of (6.199) is

x = ΨlyΨl. (6.201)

But, since

x = ΨlyΨl = x (6.202)

then x is the sum of a scalar, a vector and a pseudo-scalar. 50 To get only avector, we must separate the vector part. Noting < M >1 the vector part ofthe multivector M , we then let instead of (6.201)

x =< ΨlyΨl >1 (6.203)

We have

ΨlyΨl =

(φe φn

φn φe

)(0 yy 0

)(φe φ†

n

φn φ†e

)

=

(φnyφe + φeyφn φeyφ

†e + φnyφ

†n

φeyφe + φnyφn φnyφ†e + φeyφ

†n

)(6.204)

50The same property in Cl3 proves that x is the sum of a scalar and a vector and this isexact for a space-time vector.

87

(6.198)

And the dilation D defined by (3.55) associates to the space-time vector y, element of the tangent space-time to the intrinsic manifold linked to the wave, a space-time vector x in the usual space-time, satisfying

35

Page 37: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 35

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

With the matrix representation of the space-time algebra studied in 1.4.1 andthe N in (1.68) we associate to x = xµσµ in Cl3 the space-time vector

x = xµγµ =

(0 xx 0

)(6.196)

Then the dilation R defined by (1.42) associates to the space-time vector x thespace-time vector x′ satisfying

x′ = NxN (6.197)

while the differential operator ∂∂∂ = γµ∂µ satisfies

∂∂∂ = N∂∂∂′N. (6.198)

And the dilation D defined by (3.55) associates to the space-time vector y,element of the tangent space-time to the intrinsic manifold linked to the wave,a space-time vector x in the usual space-time, satisfying

x = ΨyΨ; Ψ =

(φ 0

0 φ

); Ψ =

(φ 00 φ†

); y = yµγµ =

(0 yy 0

). (6.199)

Now we consider the wave of the lepton case Ψl which reads

Ψl =

(φe φn

φn φe

); Ψl =

(φe φ†

n

φn φ†e

). (6.200)

The generalization of (6.199) is

x = ΨlyΨl. (6.201)

But, since

x = ΨlyΨl = x (6.202)

then x is the sum of a scalar, a vector and a pseudo-scalar. 50 To get only avector, we must separate the vector part. Noting < M >1 the vector part ofthe multivector M , we then let instead of (6.201)

x =< ΨlyΨl >1 (6.203)

We have

ΨlyΨl =

(φe φn

φn φe

)(0 yy 0

)(φe φ†

n

φn φ†e

)

=

(φnyφe + φeyφn φeyφ

†e + φnyφ

†n

φeyφe + φnyφn φnyφ†e + φeyφ

†n

)(6.204)

50The same property in Cl3 proves that x is the sum of a scalar and a vector and this isexact for a space-time vector.

87

With the matrix representation of the space-time algebra studied in 1.4.1 andthe N in (1.68) we associate to x = xµσµ in Cl3 the space-time vector

x = xµγµ =

(0 xx 0

)(6.196)

Then the dilation R defined by (1.42) associates to the space-time vector x thespace-time vector x′ satisfying

x′ = NxN (6.197)

while the differential operator ∂∂∂ = γµ∂µ satisfies

∂∂∂ = N∂∂∂′N. (6.198)

And the dilation D defined by (3.55) associates to the space-time vector y,element of the tangent space-time to the intrinsic manifold linked to the wave,a space-time vector x in the usual space-time, satisfying

x = ΨyΨ; Ψ =

(φ 0

0 φ

); Ψ =

(φ 00 φ†

); y = yµγµ =

(0 yy 0

). (6.199)

Now we consider the wave of the lepton case Ψl which reads

Ψl =

(φe φn

φn φe

); Ψl =

(φe φ†

n

φn φ†e

). (6.200)

The generalization of (6.199) is

x = ΨlyΨl. (6.201)

But, since

x = ΨlyΨl = x (6.202)

then x is the sum of a scalar, a vector and a pseudo-scalar. 50 To get only avector, we must separate the vector part. Noting < M >1 the vector part ofthe multivector M , we then let instead of (6.201)

x =< ΨlyΨl >1 (6.203)

We have

ΨlyΨl =

(φe φn

φn φe

)(0 yy 0

)(φe φ†

n

φn φ†e

)

=

(φnyφe + φeyφn φeyφ

†e + φnyφ

†n

φeyφe + φnyφn φnyφ†e + φeyφ

†n

)(6.204)

50The same property in Cl3 proves that x is the sum of a scalar and a vector and this isexact for a space-time vector.

87

(6.199)

Now we consider the wave of the lepton case Ψl which reads

With the matrix representation of the space-time algebra studied in 1.4.1 andthe N in (1.68) we associate to x = xµσµ in Cl3 the space-time vector

x = xµγµ =

(0 xx 0

)(6.196)

Then the dilation R defined by (1.42) associates to the space-time vector x thespace-time vector x′ satisfying

x′ = NxN (6.197)

while the differential operator ∂∂∂ = γµ∂µ satisfies

∂∂∂ = N∂∂∂′N. (6.198)

And the dilation D defined by (3.55) associates to the space-time vector y,element of the tangent space-time to the intrinsic manifold linked to the wave,a space-time vector x in the usual space-time, satisfying

x = ΨyΨ; Ψ =

(φ 0

0 φ

); Ψ =

(φ 00 φ†

); y = yµγµ =

(0 yy 0

). (6.199)

Now we consider the wave of the lepton case Ψl which reads

Ψl =

(φe φn

φn φe

); Ψl =

(φe φ†

n

φn φ†e

). (6.200)

The generalization of (6.199) is

x = ΨlyΨl. (6.201)

But, since

x = ΨlyΨl = x (6.202)

then x is the sum of a scalar, a vector and a pseudo-scalar. 50 To get only avector, we must separate the vector part. Noting < M >1 the vector part ofthe multivector M , we then let instead of (6.201)

x =< ΨlyΨl >1 (6.203)

We have

ΨlyΨl =

(φe φn

φn φe

)(0 yy 0

)(φe φ†

n

φn φ†e

)

=

(φnyφe + φeyφn φeyφ

†e + φnyφ

†n

φeyφe + φnyφn φnyφ†e + φeyφ

†n

)(6.204)

50The same property in Cl3 proves that x is the sum of a scalar and a vector and this isexact for a space-time vector.

87

(6.200)

The generalization of (6.199) is

With the matrix representation of the space-time algebra studied in 1.4.1 andthe N in (1.68) we associate to x = xµσµ in Cl3 the space-time vector

x = xµγµ =

(0 xx 0

)(6.196)

Then the dilation R defined by (1.42) associates to the space-time vector x thespace-time vector x′ satisfying

x′ = NxN (6.197)

while the differential operator ∂∂∂ = γµ∂µ satisfies

∂∂∂ = N∂∂∂′N. (6.198)

And the dilation D defined by (3.55) associates to the space-time vector y,element of the tangent space-time to the intrinsic manifold linked to the wave,a space-time vector x in the usual space-time, satisfying

x = ΨyΨ; Ψ =

(φ 0

0 φ

); Ψ =

(φ 00 φ†

); y = yµγµ =

(0 yy 0

). (6.199)

Now we consider the wave of the lepton case Ψl which reads

Ψl =

(φe φn

φn φe

); Ψl =

(φe φ†

n

φn φ†e

). (6.200)

The generalization of (6.199) is

x = ΨlyΨl. (6.201)

But, since

x = ΨlyΨl = x (6.202)

then x is the sum of a scalar, a vector and a pseudo-scalar. 50 To get only avector, we must separate the vector part. Noting < M >1 the vector part ofthe multivector M , we then let instead of (6.201)

x =< ΨlyΨl >1 (6.203)

We have

ΨlyΨl =

(φe φn

φn φe

)(0 yy 0

)(φe φ†

n

φn φ†e

)

=

(φnyφe + φeyφn φeyφ

†e + φnyφ

†n

φeyφe + φnyφn φnyφ†e + φeyφ

†n

)(6.204)

50The same property in Cl3 proves that x is the sum of a scalar and a vector and this isexact for a space-time vector.

87

(6.201)

But, since

With the matrix representation of the space-time algebra studied in 1.4.1 andthe N in (1.68) we associate to x = xµσµ in Cl3 the space-time vector

x = xµγµ =

(0 xx 0

)(6.196)

Then the dilation R defined by (1.42) associates to the space-time vector x thespace-time vector x′ satisfying

x′ = NxN (6.197)

while the differential operator ∂∂∂ = γµ∂µ satisfies

∂∂∂ = N∂∂∂′N. (6.198)

And the dilation D defined by (3.55) associates to the space-time vector y,element of the tangent space-time to the intrinsic manifold linked to the wave,a space-time vector x in the usual space-time, satisfying

x = ΨyΨ; Ψ =

(φ 0

0 φ

); Ψ =

(φ 00 φ†

); y = yµγµ =

(0 yy 0

). (6.199)

Now we consider the wave of the lepton case Ψl which reads

Ψl =

(φe φn

φn φe

); Ψl =

(φe φ†

n

φn φ†e

). (6.200)

The generalization of (6.199) is

x = ΨlyΨl. (6.201)

But, since

x = ΨlyΨl = x (6.202)

then x is the sum of a scalar, a vector and a pseudo-scalar. 50 To get only avector, we must separate the vector part. Noting < M >1 the vector part ofthe multivector M , we then let instead of (6.201)

x =< ΨlyΨl >1 (6.203)

We have

ΨlyΨl =

(φe φn

φn φe

)(0 yy 0

)(φe φ†

n

φn φ†e

)

=

(φnyφe + φeyφn φeyφ

†e + φnyφ

†n

φeyφe + φnyφn φnyφ†e + φeyφ

†n

)(6.204)

50The same property in Cl3 proves that x is the sum of a scalar and a vector and this isexact for a space-time vector.

87

(6.202)

then x is the sum of a scalar, a vector and a pseudo-sca-lar.50 To get only a vector, we must separate the vector part. Noting < M >1 the vector part of the multivector M, we then let instead of (6.201)

With the matrix representation of the space-time algebra studied in 1.4.1 andthe N in (1.68) we associate to x = xµσµ in Cl3 the space-time vector

x = xµγµ =

(0 xx 0

)(6.196)

Then the dilation R defined by (1.42) associates to the space-time vector x thespace-time vector x′ satisfying

x′ = NxN (6.197)

while the differential operator ∂∂∂ = γµ∂µ satisfies

∂∂∂ = N∂∂∂′N. (6.198)

And the dilation D defined by (3.55) associates to the space-time vector y,element of the tangent space-time to the intrinsic manifold linked to the wave,a space-time vector x in the usual space-time, satisfying

x = ΨyΨ; Ψ =

(φ 0

0 φ

); Ψ =

(φ 00 φ†

); y = yµγµ =

(0 yy 0

). (6.199)

Now we consider the wave of the lepton case Ψl which reads

Ψl =

(φe φn

φn φe

); Ψl =

(φe φ†

n

φn φ†e

). (6.200)

The generalization of (6.199) is

x = ΨlyΨl. (6.201)

But, since

x = ΨlyΨl = x (6.202)

then x is the sum of a scalar, a vector and a pseudo-scalar. 50 To get only avector, we must separate the vector part. Noting < M >1 the vector part ofthe multivector M , we then let instead of (6.201)

x =< ΨlyΨl >1 (6.203)

We have

ΨlyΨl =

(φe φn

φn φe

)(0 yy 0

)(φe φ†

n

φn φ†e

)

=

(φnyφe + φeyφn φeyφ

†e + φnyφ

†n

φeyφe + φnyφn φnyφ†e + φeyφ

†n

)(6.204)

50The same property in Cl3 proves that x is the sum of a scalar and a vector and this isexact for a space-time vector.

87

(6.203)

We have

With the matrix representation of the space-time algebra studied in 1.4.1 andthe N in (1.68) we associate to x = xµσµ in Cl3 the space-time vector

x = xµγµ =

(0 xx 0

)(6.196)

Then the dilation R defined by (1.42) associates to the space-time vector x thespace-time vector x′ satisfying

x′ = NxN (6.197)

while the differential operator ∂∂∂ = γµ∂µ satisfies

∂∂∂ = N∂∂∂′N. (6.198)

And the dilation D defined by (3.55) associates to the space-time vector y,element of the tangent space-time to the intrinsic manifold linked to the wave,a space-time vector x in the usual space-time, satisfying

x = ΨyΨ; Ψ =

(φ 0

0 φ

); Ψ =

(φ 00 φ†

); y = yµγµ =

(0 yy 0

). (6.199)

Now we consider the wave of the lepton case Ψl which reads

Ψl =

(φe φn

φn φe

); Ψl =

(φe φ†

n

φn φ†e

). (6.200)

The generalization of (6.199) is

x = ΨlyΨl. (6.201)

But, since

x = ΨlyΨl = x (6.202)

then x is the sum of a scalar, a vector and a pseudo-scalar. 50 To get only avector, we must separate the vector part. Noting < M >1 the vector part ofthe multivector M , we then let instead of (6.201)

x =< ΨlyΨl >1 (6.203)

We have

ΨlyΨl =

(φe φn

φn φe

)(0 yy 0

)(φe φ†

n

φn φ†e

)

=

(φnyφe + φeyφn φeyφ

†e + φnyφ

†n

φeyφe + φnyφn φnyφ†e + φeyφ

†n

)(6.204)

50The same property in Cl3 proves that x is the sum of a scalar and a vector and this isexact for a space-time vector.

87

(6.204)

which giveswhich gives

x =< ΨlyΨl >1=

(0 xx 0

); x = φeyφ

†e + φnyφ

†n. (6.205)

We let

D = De +Dn ; De(y) = φeyφ†e ; Dn(y) = φnyφ

†n (6.206)

De is a direct dilation, conserving the orientation of the time and the space. Dn

is an inverse dilation, conserving the orientation of the time and changing theorientation of the space. The geometric transformation D : y → x is the sum ofthese two dilations.

The element y is independent on the relative observer: if M is any elementof Cl∗3 and N is given by (1.68), the dilation R defined in (1.42) satisfies

x′ = MxM† ; φ′e = Mφe ; φ′

n = Mφn (6.207)

Ψ′l =

(φ′e φ′

n

φ′n φ′

e

)=

(Mφe Mφn

Mφn Mφe

)= NΨl (6.208)

x′ =

(0 x′

x′ 0

)= NxN = N < ΨlyΨl >1 N =< NΨlyΨlN >1

=< Ψ′lyΨ

′l >1 . (6.209)

We then have

x =< ΨlyΨl >1 ; x′ =< Ψ′lyΨ

′l >1 (6.210)

with the same y for the observer of x and for the observer of x′.

6.5.2 Extension to the complete wave

The complete wave Ψ containing the wave of leptons and quarks of the firstgeneration defined in (6.123) satisfies (the proof is in Appendix A)

Ψ =

(Ψb Ψr

Ψg Ψl

)(6.211)

The wave has value in the Clifford algebra Cl5,1. Each element reads

Ψ =n=6∑n=0

< Ψ >n (6.212)

where < Ψ >n is named a n-vector. The reverse satisfies

Ψ =< Ψ >0 + < Ψ >1 − < Ψ >2 − < Ψ >3 + < Ψ >4 + < Ψ >5 − < Ψ >6 .(6.213)

88

(6.205)

We let

which gives

x =< ΨlyΨl >1=

(0 xx 0

); x = φeyφ

†e + φnyφ

†n. (6.205)

We let

D = De +Dn ; De(y) = φeyφ†e ; Dn(y) = φnyφ

†n (6.206)

De is a direct dilation, conserving the orientation of the time and the space. Dn

is an inverse dilation, conserving the orientation of the time and changing theorientation of the space. The geometric transformation D : y → x is the sum ofthese two dilations.

The element y is independent on the relative observer: if M is any elementof Cl∗3 and N is given by (1.68), the dilation R defined in (1.42) satisfies

x′ = MxM† ; φ′e = Mφe ; φ′

n = Mφn (6.207)

Ψ′l =

(φ′e φ′

n

φ′n φ′

e

)=

(Mφe Mφn

Mφn Mφe

)= NΨl (6.208)

x′ =

(0 x′

x′ 0

)= NxN = N < ΨlyΨl >1 N =< NΨlyΨlN >1

=< Ψ′lyΨ

′l >1 . (6.209)

We then have

x =< ΨlyΨl >1 ; x′ =< Ψ′lyΨ

′l >1 (6.210)

with the same y for the observer of x and for the observer of x′.

6.5.2 Extension to the complete wave

The complete wave Ψ containing the wave of leptons and quarks of the firstgeneration defined in (6.123) satisfies (the proof is in Appendix A)

Ψ =

(Ψb Ψr

Ψg Ψl

)(6.211)

The wave has value in the Clifford algebra Cl5,1. Each element reads

Ψ =n=6∑n=0

< Ψ >n (6.212)

where < Ψ >n is named a n-vector. The reverse satisfies

Ψ =< Ψ >0 + < Ψ >1 − < Ψ >2 − < Ψ >3 + < Ψ >4 + < Ψ >5 − < Ψ >6 .(6.213)

88

which gives

x =< ΨlyΨl >1=

(0 xx 0

); x = φeyφ

†e + φnyφ

†n. (6.205)

We let

D = De +Dn ; De(y) = φeyφ†e ; Dn(y) = φnyφ

†n (6.206)

De is a direct dilation, conserving the orientation of the time and the space. Dn

is an inverse dilation, conserving the orientation of the time and changing theorientation of the space. The geometric transformation D : y → x is the sum ofthese two dilations.

The element y is independent on the relative observer: if M is any elementof Cl∗3 and N is given by (1.68), the dilation R defined in (1.42) satisfies

x′ = MxM† ; φ′e = Mφe ; φ′

n = Mφn (6.207)

Ψ′l =

(φ′e φ′

n

φ′n φ′

e

)=

(Mφe Mφn

Mφn Mφe

)= NΨl (6.208)

x′ =

(0 x′

x′ 0

)= NxN = N < ΨlyΨl >1 N =< NΨlyΨlN >1

=< Ψ′lyΨ

′l >1 . (6.209)

We then have

x =< ΨlyΨl >1 ; x′ =< Ψ′lyΨ

′l >1 (6.210)

with the same y for the observer of x and for the observer of x′.

6.5.2 Extension to the complete wave

The complete wave Ψ containing the wave of leptons and quarks of the firstgeneration defined in (6.123) satisfies (the proof is in Appendix A)

Ψ =

(Ψb Ψr

Ψg Ψl

)(6.211)

The wave has value in the Clifford algebra Cl5,1. Each element reads

Ψ =n=6∑n=0

< Ψ >n (6.212)

where < Ψ >n is named a n-vector. The reverse satisfies

Ψ =< Ψ >0 + < Ψ >1 − < Ψ >2 − < Ψ >3 + < Ψ >4 + < Ψ >5 − < Ψ >6 .(6.213)

88

which gives

x =< ΨlyΨl >1=

(0 xx 0

); x = φeyφ

†e + φnyφ

†n. (6.205)

We let

D = De +Dn ; De(y) = φeyφ†e ; Dn(y) = φnyφ

†n (6.206)

De is a direct dilation, conserving the orientation of the time and the space. Dn

is an inverse dilation, conserving the orientation of the time and changing theorientation of the space. The geometric transformation D : y → x is the sum ofthese two dilations.

The element y is independent on the relative observer: if M is any elementof Cl∗3 and N is given by (1.68), the dilation R defined in (1.42) satisfies

x′ = MxM† ; φ′e = Mφe ; φ′

n = Mφn (6.207)

Ψ′l =

(φ′e φ′

n

φ′n φ′

e

)=

(Mφe Mφn

Mφn Mφe

)= NΨl (6.208)

x′ =

(0 x′

x′ 0

)= NxN = N < ΨlyΨl >1 N =< NΨlyΨlN >1

=< Ψ′lyΨ

′l >1 . (6.209)

We then have

x =< ΨlyΨl >1 ; x′ =< Ψ′lyΨ

′l >1 (6.210)

with the same y for the observer of x and for the observer of x′.

6.5.2 Extension to the complete wave

The complete wave Ψ containing the wave of leptons and quarks of the firstgeneration defined in (6.123) satisfies (the proof is in Appendix A)

Ψ =

(Ψb Ψr

Ψg Ψl

)(6.211)

The wave has value in the Clifford algebra Cl5,1. Each element reads

Ψ =n=6∑n=0

< Ψ >n (6.212)

where < Ψ >n is named a n-vector. The reverse satisfies

Ψ =< Ψ >0 + < Ψ >1 − < Ψ >2 − < Ψ >3 + < Ψ >4 + < Ψ >5 − < Ψ >6 .(6.213)

88

(6.206)

De is a direct dilation, conserving the orientation of the time and the space. Dn is an inverse dilation, conserving the orientation of the time and changing the orientation of the space. The geometric transformation

which gives

x =< ΨlyΨl >1=

(0 xx 0

); x = φeyφ

†e + φnyφ

†n. (6.205)

We let

D = De +Dn ; De(y) = φeyφ†e ; Dn(y) = φnyφ

†n (6.206)

De is a direct dilation, conserving the orientation of the time and the space. Dn

is an inverse dilation, conserving the orientation of the time and changing theorientation of the space. The geometric transformation D : y → x is the sum ofthese two dilations.

The element y is independent on the relative observer: if M is any elementof Cl∗3 and N is given by (1.68), the dilation R defined in (1.42) satisfies

x′ = MxM† ; φ′e = Mφe ; φ′

n = Mφn (6.207)

Ψ′l =

(φ′e φ′

n

φ′n φ′

e

)=

(Mφe Mφn

Mφn Mφe

)= NΨl (6.208)

x′ =

(0 x′

x′ 0

)= NxN = N < ΨlyΨl >1 N =< NΨlyΨlN >1

=< Ψ′lyΨ

′l >1 . (6.209)

We then have

x =< ΨlyΨl >1 ; x′ =< Ψ′lyΨ

′l >1 (6.210)

with the same y for the observer of x and for the observer of x′.

6.5.2 Extension to the complete wave

The complete wave Ψ containing the wave of leptons and quarks of the firstgeneration defined in (6.123) satisfies (the proof is in Appendix A)

Ψ =

(Ψb Ψr

Ψg Ψl

)(6.211)

The wave has value in the Clifford algebra Cl5,1. Each element reads

Ψ =n=6∑n=0

< Ψ >n (6.212)

where < Ψ >n is named a n-vector. The reverse satisfies

Ψ =< Ψ >0 + < Ψ >1 − < Ψ >2 − < Ψ >3 + < Ψ >4 + < Ψ >5 − < Ψ >6 .(6.213)

88

is the sum of these two dilations.

The element y is independent on the relative observer: if M is any element of Cl*3 and N is given by (1.68), the dilation R defined in (1.42) satisfies

which gives

x =< ΨlyΨl >1=

(0 xx 0

); x = φeyφ

†e + φnyφ

†n. (6.205)

We let

D = De +Dn ; De(y) = φeyφ†e ; Dn(y) = φnyφ

†n (6.206)

De is a direct dilation, conserving the orientation of the time and the space. Dn

is an inverse dilation, conserving the orientation of the time and changing theorientation of the space. The geometric transformation D : y → x is the sum ofthese two dilations.

The element y is independent on the relative observer: if M is any elementof Cl∗3 and N is given by (1.68), the dilation R defined in (1.42) satisfies

x′ = MxM† ; φ′e = Mφe ; φ′

n = Mφn (6.207)

Ψ′l =

(φ′e φ′

n

φ′n φ′

e

)=

(Mφe Mφn

Mφn Mφe

)= NΨl (6.208)

x′ =

(0 x′

x′ 0

)= NxN = N < ΨlyΨl >1 N =< NΨlyΨlN >1

=< Ψ′lyΨ

′l >1 . (6.209)

We then have

x =< ΨlyΨl >1 ; x′ =< Ψ′lyΨ

′l >1 (6.210)

with the same y for the observer of x and for the observer of x′.

6.5.2 Extension to the complete wave

The complete wave Ψ containing the wave of leptons and quarks of the firstgeneration defined in (6.123) satisfies (the proof is in Appendix A)

Ψ =

(Ψb Ψr

Ψg Ψl

)(6.211)

The wave has value in the Clifford algebra Cl5,1. Each element reads

Ψ =n=6∑n=0

< Ψ >n (6.212)

where < Ψ >n is named a n-vector. The reverse satisfies

Ψ =< Ψ >0 + < Ψ >1 − < Ψ >2 − < Ψ >3 + < Ψ >4 + < Ψ >5 − < Ψ >6 .(6.213)

88

(6.207)

(6.208)

50 The same property in Cl3 proves that x is the sum of a scalar and a vector and this is exact for a space-time vector.

which gives

x =< ΨlyΨl >1=

(0 xx 0

); x = φeyφ

†e + φnyφ

†n. (6.205)

We let

D = De +Dn ; De(y) = φeyφ†e ; Dn(y) = φnyφ

†n (6.206)

De is a direct dilation, conserving the orientation of the time and the space. Dn

is an inverse dilation, conserving the orientation of the time and changing theorientation of the space. The geometric transformation D : y → x is the sum ofthese two dilations.

The element y is independent on the relative observer: if M is any elementof Cl∗3 and N is given by (1.68), the dilation R defined in (1.42) satisfies

x′ = MxM† ; φ′e = Mφe ; φ′

n = Mφn (6.207)

Ψ′l =

(φ′e φ′

n

φ′n φ′

e

)=

(Mφe Mφn

Mφn Mφe

)= NΨl (6.208)

x′ =

(0 x′

x′ 0

)= NxN = N < ΨlyΨl >1 N =< NΨlyΨlN >1

=< Ψ′lyΨ

′l >1 . (6.209)

We then have

x =< ΨlyΨl >1 ; x′ =< Ψ′lyΨ

′l >1 (6.210)

with the same y for the observer of x and for the observer of x′.

6.5.2 Extension to the complete wave

The complete wave Ψ containing the wave of leptons and quarks of the firstgeneration defined in (6.123) satisfies (the proof is in Appendix A)

Ψ =

(Ψb Ψr

Ψg Ψl

)(6.211)

The wave has value in the Clifford algebra Cl5,1. Each element reads

Ψ =n=6∑n=0

< Ψ >n (6.212)

where < Ψ >n is named a n-vector. The reverse satisfies

Ψ =< Ψ >0 + < Ψ >1 − < Ψ >2 − < Ψ >3 + < Ψ >4 + < Ψ >5 − < Ψ >6 .(6.213)

88

which gives

x =< ΨlyΨl >1=

(0 xx 0

); x = φeyφ

†e + φnyφ

†n. (6.205)

We let

D = De +Dn ; De(y) = φeyφ†e ; Dn(y) = φnyφ

†n (6.206)

De is a direct dilation, conserving the orientation of the time and the space. Dn

is an inverse dilation, conserving the orientation of the time and changing theorientation of the space. The geometric transformation D : y → x is the sum ofthese two dilations.

The element y is independent on the relative observer: if M is any elementof Cl∗3 and N is given by (1.68), the dilation R defined in (1.42) satisfies

x′ = MxM† ; φ′e = Mφe ; φ′

n = Mφn (6.207)

Ψ′l =

(φ′e φ′

n

φ′n φ′

e

)=

(Mφe Mφn

Mφn Mφe

)= NΨl (6.208)

x′ =

(0 x′

x′ 0

)= NxN = N < ΨlyΨl >1 N =< NΨlyΨlN >1

=< Ψ′lyΨ

′l >1 . (6.209)

We then have

x =< ΨlyΨl >1 ; x′ =< Ψ′lyΨ

′l >1 (6.210)

with the same y for the observer of x and for the observer of x′.

6.5.2 Extension to the complete wave

The complete wave Ψ containing the wave of leptons and quarks of the firstgeneration defined in (6.123) satisfies (the proof is in Appendix A)

Ψ =

(Ψb Ψr

Ψg Ψl

)(6.211)

The wave has value in the Clifford algebra Cl5,1. Each element reads

Ψ =n=6∑n=0

< Ψ >n (6.212)

where < Ψ >n is named a n-vector. The reverse satisfies

Ψ =< Ψ >0 + < Ψ >1 − < Ψ >2 − < Ψ >3 + < Ψ >4 + < Ψ >5 − < Ψ >6 .(6.213)

88

which gives

x =< ΨlyΨl >1=

(0 xx 0

); x = φeyφ

†e + φnyφ

†n. (6.205)

We let

D = De +Dn ; De(y) = φeyφ†e ; Dn(y) = φnyφ

†n (6.206)

De is a direct dilation, conserving the orientation of the time and the space. Dn

is an inverse dilation, conserving the orientation of the time and changing theorientation of the space. The geometric transformation D : y → x is the sum ofthese two dilations.

The element y is independent on the relative observer: if M is any elementof Cl∗3 and N is given by (1.68), the dilation R defined in (1.42) satisfies

x′ = MxM† ; φ′e = Mφe ; φ′

n = Mφn (6.207)

Ψ′l =

(φ′e φ′

n

φ′n φ′

e

)=

(Mφe Mφn

Mφn Mφe

)= NΨl (6.208)

x′ =

(0 x′

x′ 0

)= NxN = N < ΨlyΨl >1 N =< NΨlyΨlN >1

=< Ψ′lyΨ

′l >1 . (6.209)

We then have

x =< ΨlyΨl >1 ; x′ =< Ψ′lyΨ

′l >1 (6.210)

with the same y for the observer of x and for the observer of x′.

6.5.2 Extension to the complete wave

The complete wave Ψ containing the wave of leptons and quarks of the firstgeneration defined in (6.123) satisfies (the proof is in Appendix A)

Ψ =

(Ψb Ψr

Ψg Ψl

)(6.211)

The wave has value in the Clifford algebra Cl5,1. Each element reads

Ψ =n=6∑n=0

< Ψ >n (6.212)

where < Ψ >n is named a n-vector. The reverse satisfies

Ψ =< Ψ >0 + < Ψ >1 − < Ψ >2 − < Ψ >3 + < Ψ >4 + < Ψ >5 − < Ψ >6 .(6.213)

88

(6.209)We then have

which gives

x =< ΨlyΨl >1=

(0 xx 0

); x = φeyφ

†e + φnyφ

†n. (6.205)

We let

D = De +Dn ; De(y) = φeyφ†e ; Dn(y) = φnyφ

†n (6.206)

De is a direct dilation, conserving the orientation of the time and the space. Dn

is an inverse dilation, conserving the orientation of the time and changing theorientation of the space. The geometric transformation D : y → x is the sum ofthese two dilations.

The element y is independent on the relative observer: if M is any elementof Cl∗3 and N is given by (1.68), the dilation R defined in (1.42) satisfies

x′ = MxM† ; φ′e = Mφe ; φ′

n = Mφn (6.207)

Ψ′l =

(φ′e φ′

n

φ′n φ′

e

)=

(Mφe Mφn

Mφn Mφe

)= NΨl (6.208)

x′ =

(0 x′

x′ 0

)= NxN = N < ΨlyΨl >1 N =< NΨlyΨlN >1

=< Ψ′lyΨ

′l >1 . (6.209)

We then have

x =< ΨlyΨl >1 ; x′ =< Ψ′lyΨ

′l >1 (6.210)

with the same y for the observer of x and for the observer of x′.

6.5.2 Extension to the complete wave

The complete wave Ψ containing the wave of leptons and quarks of the firstgeneration defined in (6.123) satisfies (the proof is in Appendix A)

Ψ =

(Ψb Ψr

Ψg Ψl

)(6.211)

The wave has value in the Clifford algebra Cl5,1. Each element reads

Ψ =n=6∑n=0

< Ψ >n (6.212)

where < Ψ >n is named a n-vector. The reverse satisfies

Ψ =< Ψ >0 + < Ψ >1 − < Ψ >2 − < Ψ >3 + < Ψ >4 + < Ψ >5 − < Ψ >6 .(6.213)

88

(6.210)

with the same y for the observer of x and for the observ-er of x′.

6.5.2 Extension to the complete wave

The complete wave Ψ containing the wave of leptons and quarks of the first generation defined in (6.123) satisfies (the proof is in Appendix A)

which gives

x =< ΨlyΨl >1=

(0 xx 0

); x = φeyφ

†e + φnyφ

†n. (6.205)

We let

D = De +Dn ; De(y) = φeyφ†e ; Dn(y) = φnyφ

†n (6.206)

De is a direct dilation, conserving the orientation of the time and the space. Dn

is an inverse dilation, conserving the orientation of the time and changing theorientation of the space. The geometric transformation D : y → x is the sum ofthese two dilations.

The element y is independent on the relative observer: if M is any elementof Cl∗3 and N is given by (1.68), the dilation R defined in (1.42) satisfies

x′ = MxM† ; φ′e = Mφe ; φ′

n = Mφn (6.207)

Ψ′l =

(φ′e φ′

n

φ′n φ′

e

)=

(Mφe Mφn

Mφn Mφe

)= NΨl (6.208)

x′ =

(0 x′

x′ 0

)= NxN = N < ΨlyΨl >1 N =< NΨlyΨlN >1

=< Ψ′lyΨ

′l >1 . (6.209)

We then have

x =< ΨlyΨl >1 ; x′ =< Ψ′lyΨ

′l >1 (6.210)

with the same y for the observer of x and for the observer of x′.

6.5.2 Extension to the complete wave

The complete wave Ψ containing the wave of leptons and quarks of the firstgeneration defined in (6.123) satisfies (the proof is in Appendix A)

Ψ =

(Ψb Ψr

Ψg Ψl

)(6.211)

The wave has value in the Clifford algebra Cl5,1. Each element reads

Ψ =n=6∑n=0

< Ψ >n (6.212)

where < Ψ >n is named a n-vector. The reverse satisfies

Ψ =< Ψ >0 + < Ψ >1 − < Ψ >2 − < Ψ >3 + < Ψ >4 + < Ψ >5 − < Ψ >6 .(6.213)

88

(6.211)

The wave has value in the Clifford algebra Cl5,1 . Each element reads

which gives

x =< ΨlyΨl >1=

(0 xx 0

); x = φeyφ

†e + φnyφ

†n. (6.205)

We let

D = De +Dn ; De(y) = φeyφ†e ; Dn(y) = φnyφ

†n (6.206)

De is a direct dilation, conserving the orientation of the time and the space. Dn

is an inverse dilation, conserving the orientation of the time and changing theorientation of the space. The geometric transformation D : y → x is the sum ofthese two dilations.

The element y is independent on the relative observer: if M is any elementof Cl∗3 and N is given by (1.68), the dilation R defined in (1.42) satisfies

x′ = MxM† ; φ′e = Mφe ; φ′

n = Mφn (6.207)

Ψ′l =

(φ′e φ′

n

φ′n φ′

e

)=

(Mφe Mφn

Mφn Mφe

)= NΨl (6.208)

x′ =

(0 x′

x′ 0

)= NxN = N < ΨlyΨl >1 N =< NΨlyΨlN >1

=< Ψ′lyΨ

′l >1 . (6.209)

We then have

x =< ΨlyΨl >1 ; x′ =< Ψ′lyΨ

′l >1 (6.210)

with the same y for the observer of x and for the observer of x′.

6.5.2 Extension to the complete wave

The complete wave Ψ containing the wave of leptons and quarks of the firstgeneration defined in (6.123) satisfies (the proof is in Appendix A)

Ψ =

(Ψb Ψr

Ψg Ψl

)(6.211)

The wave has value in the Clifford algebra Cl5,1. Each element reads

Ψ =n=6∑n=0

< Ψ >n (6.212)

where < Ψ >n is named a n-vector. The reverse satisfies

Ψ =< Ψ >0 + < Ψ >1 − < Ψ >2 − < Ψ >3 + < Ψ >4 + < Ψ >5 − < Ψ >6 .(6.213)

88

(6.212)

where < Ψ >n is named a n-vector. The reverse satisfies

which gives

x =< ΨlyΨl >1=

(0 xx 0

); x = φeyφ

†e + φnyφ

†n. (6.205)

We let

D = De +Dn ; De(y) = φeyφ†e ; Dn(y) = φnyφ

†n (6.206)

De is a direct dilation, conserving the orientation of the time and the space. Dn

is an inverse dilation, conserving the orientation of the time and changing theorientation of the space. The geometric transformation D : y → x is the sum ofthese two dilations.

The element y is independent on the relative observer: if M is any elementof Cl∗3 and N is given by (1.68), the dilation R defined in (1.42) satisfies

x′ = MxM† ; φ′e = Mφe ; φ′

n = Mφn (6.207)

Ψ′l =

(φ′e φ′

n

φ′n φ′

e

)=

(Mφe Mφn

Mφn Mφe

)= NΨl (6.208)

x′ =

(0 x′

x′ 0

)= NxN = N < ΨlyΨl >1 N =< NΨlyΨlN >1

=< Ψ′lyΨ

′l >1 . (6.209)

We then have

x =< ΨlyΨl >1 ; x′ =< Ψ′lyΨ

′l >1 (6.210)

with the same y for the observer of x and for the observer of x′.

6.5.2 Extension to the complete wave

The complete wave Ψ containing the wave of leptons and quarks of the firstgeneration defined in (6.123) satisfies (the proof is in Appendix A)

Ψ =

(Ψb Ψr

Ψg Ψl

)(6.211)

The wave has value in the Clifford algebra Cl5,1. Each element reads

Ψ =n=6∑n=0

< Ψ >n (6.212)

where < Ψ >n is named a n-vector. The reverse satisfies

Ψ =< Ψ >0 + < Ψ >1 − < Ψ >2 − < Ψ >3 + < Ψ >4 + < Ψ >5 − < Ψ >6 .(6.213)

88

which gives

x =< ΨlyΨl >1=

(0 xx 0

); x = φeyφ

†e + φnyφ

†n. (6.205)

We let

D = De +Dn ; De(y) = φeyφ†e ; Dn(y) = φnyφ

†n (6.206)

De is a direct dilation, conserving the orientation of the time and the space. Dn

is an inverse dilation, conserving the orientation of the time and changing theorientation of the space. The geometric transformation D : y → x is the sum ofthese two dilations.

The element y is independent on the relative observer: if M is any elementof Cl∗3 and N is given by (1.68), the dilation R defined in (1.42) satisfies

x′ = MxM† ; φ′e = Mφe ; φ′

n = Mφn (6.207)

Ψ′l =

(φ′e φ′

n

φ′n φ′

e

)=

(Mφe Mφn

Mφn Mφe

)= NΨl (6.208)

x′ =

(0 x′

x′ 0

)= NxN = N < ΨlyΨl >1 N =< NΨlyΨlN >1

=< Ψ′lyΨ

′l >1 . (6.209)

We then have

x =< ΨlyΨl >1 ; x′ =< Ψ′lyΨ

′l >1 (6.210)

with the same y for the observer of x and for the observer of x′.

6.5.2 Extension to the complete wave

The complete wave Ψ containing the wave of leptons and quarks of the firstgeneration defined in (6.123) satisfies (the proof is in Appendix A)

Ψ =

(Ψb Ψr

Ψg Ψl

)(6.211)

The wave has value in the Clifford algebra Cl5,1. Each element reads

Ψ =n=6∑n=0

< Ψ >n (6.212)

where < Ψ >n is named a n-vector. The reverse satisfies

Ψ =< Ψ >0 + < Ψ >1 − < Ψ >2 − < Ψ >3 + < Ψ >4 + < Ψ >5 − < Ψ >6 .(6.213)

88

(6.213)

We define the v-part Av of any multivector A as the sum of the vectorial part and of the pseudo-vectorial part in the complete space-time:

We define the v-part Av of any multivector A as the sum of the vectorial partand of the pseudo-vectorial part in the complete space-time:

Av =< A >v=< A >1 + < A >5 (6.214)

because it is this vectorial part which replaces in Cl5,1 the vectorial part < M >1

of the space-time algebra. It is linked to the fact that vectors of Cl1,5 are 5-vectors of Cl5,1 and vice-versa. We should then get the same definition of thevectorial part by using Cl1,5. We use

y =

µ=3∑µ=0

yµγµ ; y5 =

µ=3∑µ=0

yµ5 γµ (6.215)

< y >1 =

a=5∑a=0

yaΛa =

µ=3∑µ=0

yµΛµ + y4Λ4 + y5Λ5 (6.216)

< y >5 =

a=5∑a=0

ya5ΛaΛ0123 = (

µ=3∑µ=0

yµ5Λµ + y45Λ4 + y55Λ5)Λ0123. (6.217)

This gives with (1.72) and (1.75)

< y >1 =

(0 −y+ y4 − y5i

y+ y4 + y5i 0

)(6.218)

< y >5 =

(0 −y5 + y45 − y55i

y5 + y45 + y55i 0

)(i 00 i

)(6.219)

yv =< y >v =

(0 −yv + y4v − y5v

yv + y4v + y5v 0

)(6.220)

with

yv = y+ y5i ; y4v = y4 + y45i ; y5v = −y55 + y5i (6.221)

The generalization of (6.203) is the transformation:

f : yv → xv =< ΨyvΨ >v (6.222)

We use for x similar notations as in (6.215), (6.216), (6.217), (6.221), with x inthe place of y and we get

ΨyvΨ =

(A BC D

); xv =< ΨyvΨ >v=

(0 BC 0

)

xv + x4v + x5

v = C = Ψb(yv + y4v + y5v)Ψb +Ψg(−yv + y4v − y5v)Ψg (6.223)

−xv + x4v − x5

v = B = Ψr(yv + y4v + y5v)Ψr +Ψl(−yv + y4v − y5v)Ψl. (6.224)

This equation contains the term ΨlyvΨl and similar terms coming from thewave of quarks. We remark that the supplementary dimensions are mixed with

89

(6.214)

because it is this vectorial part which replaces in Cl5,1 the vectorial part < M >1 of the space-time algebra. It is linked to the fact that vectors of Cl1,5 are 5-vectors of Cl5,1 and vice-versa. We should then get the same definition of the vectorial part by using Cl1,5 . We use

We define the v-part Av of any multivector A as the sum of the vectorial partand of the pseudo-vectorial part in the complete space-time:

Av =< A >v=< A >1 + < A >5 (6.214)

because it is this vectorial part which replaces in Cl5,1 the vectorial part < M >1

of the space-time algebra. It is linked to the fact that vectors of Cl1,5 are 5-vectors of Cl5,1 and vice-versa. We should then get the same definition of thevectorial part by using Cl1,5. We use

y =

µ=3∑µ=0

yµγµ ; y5 =

µ=3∑µ=0

yµ5 γµ (6.215)

< y >1 =

a=5∑a=0

yaΛa =

µ=3∑µ=0

yµΛµ + y4Λ4 + y5Λ5 (6.216)

< y >5 =

a=5∑a=0

ya5ΛaΛ0123 = (

µ=3∑µ=0

yµ5Λµ + y45Λ4 + y55Λ5)Λ0123. (6.217)

This gives with (1.72) and (1.75)

< y >1 =

(0 −y+ y4 − y5i

y+ y4 + y5i 0

)(6.218)

< y >5 =

(0 −y5 + y45 − y55i

y5 + y45 + y55i 0

)(i 00 i

)(6.219)

yv =< y >v =

(0 −yv + y4v − y5v

yv + y4v + y5v 0

)(6.220)

with

yv = y+ y5i ; y4v = y4 + y45i ; y5v = −y55 + y5i (6.221)

The generalization of (6.203) is the transformation:

f : yv → xv =< ΨyvΨ >v (6.222)

We use for x similar notations as in (6.215), (6.216), (6.217), (6.221), with x inthe place of y and we get

ΨyvΨ =

(A BC D

); xv =< ΨyvΨ >v=

(0 BC 0

)

xv + x4v + x5

v = C = Ψb(yv + y4v + y5v)Ψb +Ψg(−yv + y4v − y5v)Ψg (6.223)

−xv + x4v − x5

v = B = Ψr(yv + y4v + y5v)Ψr +Ψl(−yv + y4v − y5v)Ψl. (6.224)

This equation contains the term ΨlyvΨl and similar terms coming from thewave of quarks. We remark that the supplementary dimensions are mixed with

89

(6.215)

We define the v-part Av of any multivector A as the sum of the vectorial partand of the pseudo-vectorial part in the complete space-time:

Av =< A >v=< A >1 + < A >5 (6.214)

because it is this vectorial part which replaces in Cl5,1 the vectorial part < M >1

of the space-time algebra. It is linked to the fact that vectors of Cl1,5 are 5-vectors of Cl5,1 and vice-versa. We should then get the same definition of thevectorial part by using Cl1,5. We use

y =

µ=3∑µ=0

yµγµ ; y5 =

µ=3∑µ=0

yµ5 γµ (6.215)

< y >1 =

a=5∑a=0

yaΛa =

µ=3∑µ=0

yµΛµ + y4Λ4 + y5Λ5 (6.216)

< y >5 =

a=5∑a=0

ya5ΛaΛ0123 = (

µ=3∑µ=0

yµ5Λµ + y45Λ4 + y55Λ5)Λ0123. (6.217)

This gives with (1.72) and (1.75)

< y >1 =

(0 −y+ y4 − y5i

y+ y4 + y5i 0

)(6.218)

< y >5 =

(0 −y5 + y45 − y55i

y5 + y45 + y55i 0

)(i 00 i

)(6.219)

yv =< y >v =

(0 −yv + y4v − y5v

yv + y4v + y5v 0

)(6.220)

with

yv = y+ y5i ; y4v = y4 + y45i ; y5v = −y55 + y5i (6.221)

The generalization of (6.203) is the transformation:

f : yv → xv =< ΨyvΨ >v (6.222)

We use for x similar notations as in (6.215), (6.216), (6.217), (6.221), with x inthe place of y and we get

ΨyvΨ =

(A BC D

); xv =< ΨyvΨ >v=

(0 BC 0

)

xv + x4v + x5

v = C = Ψb(yv + y4v + y5v)Ψb +Ψg(−yv + y4v − y5v)Ψg (6.223)

−xv + x4v − x5

v = B = Ψr(yv + y4v + y5v)Ψr +Ψl(−yv + y4v − y5v)Ψl. (6.224)

This equation contains the term ΨlyvΨl and similar terms coming from thewave of quarks. We remark that the supplementary dimensions are mixed with

89

. (6.216)

We define the v-part Av of any multivector A as the sum of the vectorial partand of the pseudo-vectorial part in the complete space-time:

Av =< A >v=< A >1 + < A >5 (6.214)

because it is this vectorial part which replaces in Cl5,1 the vectorial part < M >1

of the space-time algebra. It is linked to the fact that vectors of Cl1,5 are 5-vectors of Cl5,1 and vice-versa. We should then get the same definition of thevectorial part by using Cl1,5. We use

y =

µ=3∑µ=0

yµγµ ; y5 =

µ=3∑µ=0

yµ5 γµ (6.215)

< y >1 =

a=5∑a=0

yaΛa =

µ=3∑µ=0

yµΛµ + y4Λ4 + y5Λ5 (6.216)

< y >5 =a=5∑a=0

ya5ΛaΛ0123 = (

µ=3∑µ=0

yµ5Λµ + y45Λ4 + y55Λ5)Λ0123. (6.217)

This gives with (1.72) and (1.75)

< y >1 =

(0 −y+ y4 − y5i

y+ y4 + y5i 0

)(6.218)

< y >5 =

(0 −y5 + y45 − y55i

y5 + y45 + y55i 0

)(i 00 i

)(6.219)

yv =< y >v =

(0 −yv + y4v − y5v

yv + y4v + y5v 0

)(6.220)

with

yv = y+ y5i ; y4v = y4 + y45i ; y5v = −y55 + y5i (6.221)

The generalization of (6.203) is the transformation:

f : yv → xv =< ΨyvΨ >v (6.222)

We use for x similar notations as in (6.215), (6.216), (6.217), (6.221), with x inthe place of y and we get

ΨyvΨ =

(A BC D

); xv =< ΨyvΨ >v=

(0 BC 0

)

xv + x4v + x5

v = C = Ψb(yv + y4v + y5v)Ψb +Ψg(−yv + y4v − y5v)Ψg (6.223)

−xv + x4v − x5

v = B = Ψr(yv + y4v + y5v)Ψr +Ψl(−yv + y4v − y5v)Ψl. (6.224)

This equation contains the term ΨlyvΨl and similar terms coming from thewave of quarks. We remark that the supplementary dimensions are mixed with

89

We define the v-part Av of any multivector A as the sum of the vectorial partand of the pseudo-vectorial part in the complete space-time:

Av =< A >v=< A >1 + < A >5 (6.214)

because it is this vectorial part which replaces in Cl5,1 the vectorial part < M >1

of the space-time algebra. It is linked to the fact that vectors of Cl1,5 are 5-vectors of Cl5,1 and vice-versa. We should then get the same definition of thevectorial part by using Cl1,5. We use

y =

µ=3∑µ=0

yµγµ ; y5 =

µ=3∑µ=0

yµ5 γµ (6.215)

< y >1 =

a=5∑a=0

yaΛa =

µ=3∑µ=0

yµΛµ + y4Λ4 + y5Λ5 (6.216)

< y >5 =a=5∑a=0

ya5ΛaΛ0123 = (

µ=3∑µ=0

yµ5Λµ + y45Λ4 + y55Λ5)Λ0123. (6.217)

This gives with (1.72) and (1.75)

< y >1 =

(0 −y+ y4 − y5i

y+ y4 + y5i 0

)(6.218)

< y >5 =

(0 −y5 + y45 − y55i

y5 + y45 + y55i 0

)(i 00 i

)(6.219)

yv =< y >v =

(0 −yv + y4v − y5v

yv + y4v + y5v 0

)(6.220)

with

yv = y+ y5i ; y4v = y4 + y45i ; y5v = −y55 + y5i (6.221)

The generalization of (6.203) is the transformation:

f : yv → xv =< ΨyvΨ >v (6.222)

We use for x similar notations as in (6.215), (6.216), (6.217), (6.221), with x inthe place of y and we get

ΨyvΨ =

(A BC D

); xv =< ΨyvΨ >v=

(0 BC 0

)

xv + x4v + x5

v = C = Ψb(yv + y4v + y5v)Ψb +Ψg(−yv + y4v − y5v)Ψg (6.223)

−xv + x4v − x5

v = B = Ψr(yv + y4v + y5v)Ψr +Ψl(−yv + y4v − y5v)Ψl. (6.224)

This equation contains the term ΨlyvΨl and similar terms coming from thewave of quarks. We remark that the supplementary dimensions are mixed with

89

(6.217)

This gives with (1.72) and (1.75)

34

Page 38: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201436

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

We define the v-part Av of any multivector A as the sum of the vectorial partand of the pseudo-vectorial part in the complete space-time:

Av =< A >v=< A >1 + < A >5 (6.214)

because it is this vectorial part which replaces in Cl5,1 the vectorial part < M >1

of the space-time algebra. It is linked to the fact that vectors of Cl1,5 are 5-vectors of Cl5,1 and vice-versa. We should then get the same definition of thevectorial part by using Cl1,5. We use

y =

µ=3∑µ=0

yµγµ ; y5 =

µ=3∑µ=0

yµ5 γµ (6.215)

< y >1 =

a=5∑a=0

yaΛa =

µ=3∑µ=0

yµΛµ + y4Λ4 + y5Λ5 (6.216)

< y >5 =

a=5∑a=0

ya5ΛaΛ0123 = (

µ=3∑µ=0

yµ5Λµ + y45Λ4 + y55Λ5)Λ0123. (6.217)

This gives with (1.72) and (1.75)

< y >1 =

(0 −y+ y4 − y5i

y+ y4 + y5i 0

)(6.218)

< y >5 =

(0 −y5 + y45 − y55i

y5 + y45 + y55i 0

)(i 00 i

)(6.219)

yv =< y >v =

(0 −yv + y4v − y5v

yv + y4v + y5v 0

)(6.220)

with

yv = y+ y5i ; y4v = y4 + y45i ; y5v = −y55 + y5i (6.221)

The generalization of (6.203) is the transformation:

f : yv → xv =< ΨyvΨ >v (6.222)

We use for x similar notations as in (6.215), (6.216), (6.217), (6.221), with x inthe place of y and we get

ΨyvΨ =

(A BC D

); xv =< ΨyvΨ >v=

(0 BC 0

)

xv + x4v + x5

v = C = Ψb(yv + y4v + y5v)Ψb +Ψg(−yv + y4v − y5v)Ψg (6.223)

−xv + x4v − x5

v = B = Ψr(yv + y4v + y5v)Ψr +Ψl(−yv + y4v − y5v)Ψl. (6.224)

This equation contains the term ΨlyvΨl and similar terms coming from thewave of quarks. We remark that the supplementary dimensions are mixed with

89

(6.218)

We define the v-part Av of any multivector A as the sum of the vectorial partand of the pseudo-vectorial part in the complete space-time:

Av =< A >v=< A >1 + < A >5 (6.214)

because it is this vectorial part which replaces in Cl5,1 the vectorial part < M >1

of the space-time algebra. It is linked to the fact that vectors of Cl1,5 are 5-vectors of Cl5,1 and vice-versa. We should then get the same definition of thevectorial part by using Cl1,5. We use

y =

µ=3∑µ=0

yµγµ ; y5 =

µ=3∑µ=0

yµ5 γµ (6.215)

< y >1 =

a=5∑a=0

yaΛa =

µ=3∑µ=0

yµΛµ + y4Λ4 + y5Λ5 (6.216)

< y >5 =a=5∑a=0

ya5ΛaΛ0123 = (

µ=3∑µ=0

yµ5Λµ + y45Λ4 + y55Λ5)Λ0123. (6.217)

This gives with (1.72) and (1.75)

< y >1 =

(0 −y+ y4 − y5i

y+ y4 + y5i 0

)(6.218)

< y >5 =

(0 −y5 + y45 − y55i

y5 + y45 + y55i 0

)(i 00 i

)(6.219)

yv =< y >v =

(0 −yv + y4v − y5v

yv + y4v + y5v 0

)(6.220)

with

yv = y+ y5i ; y4v = y4 + y45i ; y5v = −y55 + y5i (6.221)

The generalization of (6.203) is the transformation:

f : yv → xv =< ΨyvΨ >v (6.222)

We use for x similar notations as in (6.215), (6.216), (6.217), (6.221), with x inthe place of y and we get

ΨyvΨ =

(A BC D

); xv =< ΨyvΨ >v=

(0 BC 0

)

xv + x4v + x5

v = C = Ψb(yv + y4v + y5v)Ψb +Ψg(−yv + y4v − y5v)Ψg (6.223)

−xv + x4v − x5

v = B = Ψr(yv + y4v + y5v)Ψr +Ψl(−yv + y4v − y5v)Ψl. (6.224)

This equation contains the term ΨlyvΨl and similar terms coming from thewave of quarks. We remark that the supplementary dimensions are mixed with

89

(6.219)

We define the v-part Av of any multivector A as the sum of the vectorial partand of the pseudo-vectorial part in the complete space-time:

Av =< A >v=< A >1 + < A >5 (6.214)

because it is this vectorial part which replaces in Cl5,1 the vectorial part < M >1

of the space-time algebra. It is linked to the fact that vectors of Cl1,5 are 5-vectors of Cl5,1 and vice-versa. We should then get the same definition of thevectorial part by using Cl1,5. We use

y =

µ=3∑µ=0

yµγµ ; y5 =

µ=3∑µ=0

yµ5 γµ (6.215)

< y >1 =

a=5∑a=0

yaΛa =

µ=3∑µ=0

yµΛµ + y4Λ4 + y5Λ5 (6.216)

< y >5 =

a=5∑a=0

ya5ΛaΛ0123 = (

µ=3∑µ=0

yµ5Λµ + y45Λ4 + y55Λ5)Λ0123. (6.217)

This gives with (1.72) and (1.75)

< y >1 =

(0 −y+ y4 − y5i

y+ y4 + y5i 0

)(6.218)

< y >5 =

(0 −y5 + y45 − y55i

y5 + y45 + y55i 0

)(i 00 i

)(6.219)

yv =< y >v =

(0 −yv + y4v − y5v

yv + y4v + y5v 0

)(6.220)

with

yv = y+ y5i ; y4v = y4 + y45i ; y5v = −y55 + y5i (6.221)

The generalization of (6.203) is the transformation:

f : yv → xv =< ΨyvΨ >v (6.222)

We use for x similar notations as in (6.215), (6.216), (6.217), (6.221), with x inthe place of y and we get

ΨyvΨ =

(A BC D

); xv =< ΨyvΨ >v=

(0 BC 0

)

xv + x4v + x5

v = C = Ψb(yv + y4v + y5v)Ψb +Ψg(−yv + y4v − y5v)Ψg (6.223)

−xv + x4v − x5

v = B = Ψr(yv + y4v + y5v)Ψr +Ψl(−yv + y4v − y5v)Ψl. (6.224)

This equation contains the term ΨlyvΨl and similar terms coming from thewave of quarks. We remark that the supplementary dimensions are mixed with

89

(6.220)

with

We define the v-part Av of any multivector A as the sum of the vectorial partand of the pseudo-vectorial part in the complete space-time:

Av =< A >v=< A >1 + < A >5 (6.214)

because it is this vectorial part which replaces in Cl5,1 the vectorial part < M >1

of the space-time algebra. It is linked to the fact that vectors of Cl1,5 are 5-vectors of Cl5,1 and vice-versa. We should then get the same definition of thevectorial part by using Cl1,5. We use

y =

µ=3∑µ=0

yµγµ ; y5 =

µ=3∑µ=0

yµ5 γµ (6.215)

< y >1 =

a=5∑a=0

yaΛa =

µ=3∑µ=0

yµΛµ + y4Λ4 + y5Λ5 (6.216)

< y >5 =

a=5∑a=0

ya5ΛaΛ0123 = (

µ=3∑µ=0

yµ5Λµ + y45Λ4 + y55Λ5)Λ0123. (6.217)

This gives with (1.72) and (1.75)

< y >1 =

(0 −y+ y4 − y5i

y+ y4 + y5i 0

)(6.218)

< y >5 =

(0 −y5 + y45 − y55i

y5 + y45 + y55i 0

)(i 00 i

)(6.219)

yv =< y >v =

(0 −yv + y4v − y5v

yv + y4v + y5v 0

)(6.220)

with

yv = y+ y5i ; y4v = y4 + y45i ; y5v = −y55 + y5i (6.221)

The generalization of (6.203) is the transformation:

f : yv → xv =< ΨyvΨ >v (6.222)

We use for x similar notations as in (6.215), (6.216), (6.217), (6.221), with x inthe place of y and we get

ΨyvΨ =

(A BC D

); xv =< ΨyvΨ >v=

(0 BC 0

)

xv + x4v + x5

v = C = Ψb(yv + y4v + y5v)Ψb +Ψg(−yv + y4v − y5v)Ψg (6.223)

−xv + x4v − x5

v = B = Ψr(yv + y4v + y5v)Ψr +Ψl(−yv + y4v − y5v)Ψl. (6.224)

This equation contains the term ΨlyvΨl and similar terms coming from thewave of quarks. We remark that the supplementary dimensions are mixed with

89

(6.221)

The generalization of (6.203) is the transformation:

We define the v-part Av of any multivector A as the sum of the vectorial partand of the pseudo-vectorial part in the complete space-time:

Av =< A >v=< A >1 + < A >5 (6.214)

because it is this vectorial part which replaces in Cl5,1 the vectorial part < M >1

of the space-time algebra. It is linked to the fact that vectors of Cl1,5 are 5-vectors of Cl5,1 and vice-versa. We should then get the same definition of thevectorial part by using Cl1,5. We use

y =

µ=3∑µ=0

yµγµ ; y5 =

µ=3∑µ=0

yµ5 γµ (6.215)

< y >1 =

a=5∑a=0

yaΛa =

µ=3∑µ=0

yµΛµ + y4Λ4 + y5Λ5 (6.216)

< y >5 =

a=5∑a=0

ya5ΛaΛ0123 = (

µ=3∑µ=0

yµ5Λµ + y45Λ4 + y55Λ5)Λ0123. (6.217)

This gives with (1.72) and (1.75)

< y >1 =

(0 −y+ y4 − y5i

y+ y4 + y5i 0

)(6.218)

< y >5 =

(0 −y5 + y45 − y55i

y5 + y45 + y55i 0

)(i 00 i

)(6.219)

yv =< y >v =

(0 −yv + y4v − y5v

yv + y4v + y5v 0

)(6.220)

with

yv = y+ y5i ; y4v = y4 + y45i ; y5v = −y55 + y5i (6.221)

The generalization of (6.203) is the transformation:

f : yv → xv =< ΨyvΨ >v (6.222)

We use for x similar notations as in (6.215), (6.216), (6.217), (6.221), with x inthe place of y and we get

ΨyvΨ =

(A BC D

); xv =< ΨyvΨ >v=

(0 BC 0

)

xv + x4v + x5

v = C = Ψb(yv + y4v + y5v)Ψb +Ψg(−yv + y4v − y5v)Ψg (6.223)

−xv + x4v − x5

v = B = Ψr(yv + y4v + y5v)Ψr +Ψl(−yv + y4v − y5v)Ψl. (6.224)

This equation contains the term ΨlyvΨl and similar terms coming from thewave of quarks. We remark that the supplementary dimensions are mixed with

89

(6.222)

We use for x similar notations as in (6.215), (6.216), (6.217), (6.221), with x in the place of y and we get

We define the v-part Av of any multivector A as the sum of the vectorial partand of the pseudo-vectorial part in the complete space-time:

Av =< A >v=< A >1 + < A >5 (6.214)

because it is this vectorial part which replaces in Cl5,1 the vectorial part < M >1

of the space-time algebra. It is linked to the fact that vectors of Cl1,5 are 5-vectors of Cl5,1 and vice-versa. We should then get the same definition of thevectorial part by using Cl1,5. We use

y =

µ=3∑µ=0

yµγµ ; y5 =

µ=3∑µ=0

yµ5 γµ (6.215)

< y >1 =

a=5∑a=0

yaΛa =

µ=3∑µ=0

yµΛµ + y4Λ4 + y5Λ5 (6.216)

< y >5 =

a=5∑a=0

ya5ΛaΛ0123 = (

µ=3∑µ=0

yµ5Λµ + y45Λ4 + y55Λ5)Λ0123. (6.217)

This gives with (1.72) and (1.75)

< y >1 =

(0 −y+ y4 − y5i

y+ y4 + y5i 0

)(6.218)

< y >5 =

(0 −y5 + y45 − y55i

y5 + y45 + y55i 0

)(i 00 i

)(6.219)

yv =< y >v =

(0 −yv + y4v − y5v

yv + y4v + y5v 0

)(6.220)

with

yv = y+ y5i ; y4v = y4 + y45i ; y5v = −y55 + y5i (6.221)

The generalization of (6.203) is the transformation:

f : yv → xv =< ΨyvΨ >v (6.222)

We use for x similar notations as in (6.215), (6.216), (6.217), (6.221), with x inthe place of y and we get

ΨyvΨ =

(A BC D

); xv =< ΨyvΨ >v=

(0 BC 0

)

xv + x4v + x5

v = C = Ψb(yv + y4v + y5v)Ψb +Ψg(−yv + y4v − y5v)Ψg (6.223)

−xv + x4v − x5

v = B = Ψr(yv + y4v + y5v)Ψr +Ψl(−yv + y4v − y5v)Ψl. (6.224)

This equation contains the term ΨlyvΨl and similar terms coming from thewave of quarks. We remark that the supplementary dimensions are mixed with

89

We define the v-part Av of any multivector A as the sum of the vectorial partand of the pseudo-vectorial part in the complete space-time:

Av =< A >v=< A >1 + < A >5 (6.214)

because it is this vectorial part which replaces in Cl5,1 the vectorial part < M >1

of the space-time algebra. It is linked to the fact that vectors of Cl1,5 are 5-vectors of Cl5,1 and vice-versa. We should then get the same definition of thevectorial part by using Cl1,5. We use

y =

µ=3∑µ=0

yµγµ ; y5 =

µ=3∑µ=0

yµ5 γµ (6.215)

< y >1 =

a=5∑a=0

yaΛa =

µ=3∑µ=0

yµΛµ + y4Λ4 + y5Λ5 (6.216)

< y >5 =

a=5∑a=0

ya5ΛaΛ0123 = (

µ=3∑µ=0

yµ5Λµ + y45Λ4 + y55Λ5)Λ0123. (6.217)

This gives with (1.72) and (1.75)

< y >1 =

(0 −y+ y4 − y5i

y+ y4 + y5i 0

)(6.218)

< y >5 =

(0 −y5 + y45 − y55i

y5 + y45 + y55i 0

)(i 00 i

)(6.219)

yv =< y >v =

(0 −yv + y4v − y5v

yv + y4v + y5v 0

)(6.220)

with

yv = y+ y5i ; y4v = y4 + y45i ; y5v = −y55 + y5i (6.221)

The generalization of (6.203) is the transformation:

f : yv → xv =< ΨyvΨ >v (6.222)

We use for x similar notations as in (6.215), (6.216), (6.217), (6.221), with x inthe place of y and we get

ΨyvΨ =

(A BC D

); xv =< ΨyvΨ >v=

(0 BC 0

)

xv + x4v + x5

v = C = Ψb(yv + y4v + y5v)Ψb +Ψg(−yv + y4v − y5v)Ψg (6.223)

−xv + x4v − x5

v = B = Ψr(yv + y4v + y5v)Ψr +Ψl(−yv + y4v − y5v)Ψl. (6.224)

This equation contains the term ΨlyvΨl and similar terms coming from thewave of quarks. We remark that the supplementary dimensions are mixed with

89

We define the v-part Av of any multivector A as the sum of the vectorial partand of the pseudo-vectorial part in the complete space-time:

Av =< A >v=< A >1 + < A >5 (6.214)

because it is this vectorial part which replaces in Cl5,1 the vectorial part < M >1

of the space-time algebra. It is linked to the fact that vectors of Cl1,5 are 5-vectors of Cl5,1 and vice-versa. We should then get the same definition of thevectorial part by using Cl1,5. We use

y =

µ=3∑µ=0

yµγµ ; y5 =

µ=3∑µ=0

yµ5 γµ (6.215)

< y >1 =

a=5∑a=0

yaΛa =

µ=3∑µ=0

yµΛµ + y4Λ4 + y5Λ5 (6.216)

< y >5 =

a=5∑a=0

ya5ΛaΛ0123 = (

µ=3∑µ=0

yµ5Λµ + y45Λ4 + y55Λ5)Λ0123. (6.217)

This gives with (1.72) and (1.75)

< y >1 =

(0 −y+ y4 − y5i

y+ y4 + y5i 0

)(6.218)

< y >5 =

(0 −y5 + y45 − y55i

y5 + y45 + y55i 0

)(i 00 i

)(6.219)

yv =< y >v =

(0 −yv + y4v − y5v

yv + y4v + y5v 0

)(6.220)

with

yv = y+ y5i ; y4v = y4 + y45i ; y5v = −y55 + y5i (6.221)

The generalization of (6.203) is the transformation:

f : yv → xv =< ΨyvΨ >v (6.222)

We use for x similar notations as in (6.215), (6.216), (6.217), (6.221), with x inthe place of y and we get

ΨyvΨ =

(A BC D

); xv =< ΨyvΨ >v=

(0 BC 0

)

xv + x4v + x5

v = C = Ψb(yv + y4v + y5v)Ψb +Ψg(−yv + y4v − y5v)Ψg (6.223)

−xv + x4v − x5

v = B = Ψr(yv + y4v + y5v)Ψr +Ψl(−yv + y4v − y5v)Ψl. (6.224)

This equation contains the term ΨlyvΨl and similar terms coming from thewave of quarks. We remark that the supplementary dimensions are mixed with

89

(6.223)

We define the v-part Av of any multivector A as the sum of the vectorial partand of the pseudo-vectorial part in the complete space-time:

Av =< A >v=< A >1 + < A >5 (6.214)

because it is this vectorial part which replaces in Cl5,1 the vectorial part < M >1

of the space-time algebra. It is linked to the fact that vectors of Cl1,5 are 5-vectors of Cl5,1 and vice-versa. We should then get the same definition of thevectorial part by using Cl1,5. We use

y =

µ=3∑µ=0

yµγµ ; y5 =

µ=3∑µ=0

yµ5 γµ (6.215)

< y >1 =

a=5∑a=0

yaΛa =

µ=3∑µ=0

yµΛµ + y4Λ4 + y5Λ5 (6.216)

< y >5 =

a=5∑a=0

ya5ΛaΛ0123 = (

µ=3∑µ=0

yµ5Λµ + y45Λ4 + y55Λ5)Λ0123. (6.217)

This gives with (1.72) and (1.75)

< y >1 =

(0 −y+ y4 − y5i

y+ y4 + y5i 0

)(6.218)

< y >5 =

(0 −y5 + y45 − y55i

y5 + y45 + y55i 0

)(i 00 i

)(6.219)

yv =< y >v =

(0 −yv + y4v − y5v

yv + y4v + y5v 0

)(6.220)

with

yv = y+ y5i ; y4v = y4 + y45i ; y5v = −y55 + y5i (6.221)

The generalization of (6.203) is the transformation:

f : yv → xv =< ΨyvΨ >v (6.222)

We use for x similar notations as in (6.215), (6.216), (6.217), (6.221), with x inthe place of y and we get

ΨyvΨ =

(A BC D

); xv =< ΨyvΨ >v=

(0 BC 0

)

xv + x4v + x5

v = C = Ψb(yv + y4v + y5v)Ψb +Ψg(−yv + y4v − y5v)Ψg (6.223)

−xv + x4v − x5

v = B = Ψr(yv + y4v + y5v)Ψr +Ψl(−yv + y4v − y5v)Ψl. (6.224)

This equation contains the term ΨlyvΨl and similar terms coming from thewave of quarks. We remark that the supplementary dimensions are mixed with

89

We define the v-part Av of any multivector A as the sum of the vectorial partand of the pseudo-vectorial part in the complete space-time:

Av =< A >v=< A >1 + < A >5 (6.214)

because it is this vectorial part which replaces in Cl5,1 the vectorial part < M >1

of the space-time algebra. It is linked to the fact that vectors of Cl1,5 are 5-vectors of Cl5,1 and vice-versa. We should then get the same definition of thevectorial part by using Cl1,5. We use

y =

µ=3∑µ=0

yµγµ ; y5 =

µ=3∑µ=0

yµ5 γµ (6.215)

< y >1 =

a=5∑a=0

yaΛa =

µ=3∑µ=0

yµΛµ + y4Λ4 + y5Λ5 (6.216)

< y >5 =

a=5∑a=0

ya5ΛaΛ0123 = (

µ=3∑µ=0

yµ5Λµ + y45Λ4 + y55Λ5)Λ0123. (6.217)

This gives with (1.72) and (1.75)

< y >1 =

(0 −y+ y4 − y5i

y+ y4 + y5i 0

)(6.218)

< y >5 =

(0 −y5 + y45 − y55i

y5 + y45 + y55i 0

)(i 00 i

)(6.219)

yv =< y >v =

(0 −yv + y4v − y5v

yv + y4v + y5v 0

)(6.220)

with

yv = y+ y5i ; y4v = y4 + y45i ; y5v = −y55 + y5i (6.221)

The generalization of (6.203) is the transformation:

f : yv → xv =< ΨyvΨ >v (6.222)

We use for x similar notations as in (6.215), (6.216), (6.217), (6.221), with x inthe place of y and we get

ΨyvΨ =

(A BC D

); xv =< ΨyvΨ >v=

(0 BC 0

)

xv + x4v + x5

v = C = Ψb(yv + y4v + y5v)Ψb +Ψg(−yv + y4v − y5v)Ψg (6.223)

−xv + x4v − x5

v = B = Ψr(yv + y4v + y5v)Ψr +Ψl(−yv + y4v − y5v)Ψl. (6.224)

This equation contains the term ΨlyvΨl and similar terms coming from thewave of quarks. We remark that the supplementary dimensions are mixed with

89

(6.224)

This equation contains the term

We define the v-part Av of any multivector A as the sum of the vectorial partand of the pseudo-vectorial part in the complete space-time:

Av =< A >v=< A >1 + < A >5 (6.214)

because it is this vectorial part which replaces in Cl5,1 the vectorial part < M >1

of the space-time algebra. It is linked to the fact that vectors of Cl1,5 are 5-vectors of Cl5,1 and vice-versa. We should then get the same definition of thevectorial part by using Cl1,5. We use

y =

µ=3∑µ=0

yµγµ ; y5 =

µ=3∑µ=0

yµ5 γµ (6.215)

< y >1 =

a=5∑a=0

yaΛa =

µ=3∑µ=0

yµΛµ + y4Λ4 + y5Λ5 (6.216)

< y >5 =

a=5∑a=0

ya5ΛaΛ0123 = (

µ=3∑µ=0

yµ5Λµ + y45Λ4 + y55Λ5)Λ0123. (6.217)

This gives with (1.72) and (1.75)

< y >1 =

(0 −y+ y4 − y5i

y+ y4 + y5i 0

)(6.218)

< y >5 =

(0 −y5 + y45 − y55i

y5 + y45 + y55i 0

)(i 00 i

)(6.219)

yv =< y >v =

(0 −yv + y4v − y5v

yv + y4v + y5v 0

)(6.220)

with

yv = y+ y5i ; y4v = y4 + y45i ; y5v = −y55 + y5i (6.221)

The generalization of (6.203) is the transformation:

f : yv → xv =< ΨyvΨ >v (6.222)

We use for x similar notations as in (6.215), (6.216), (6.217), (6.221), with x inthe place of y and we get

ΨyvΨ =

(A BC D

); xv =< ΨyvΨ >v=

(0 BC 0

)

xv + x4v + x5

v = C = Ψb(yv + y4v + y5v)Ψb +Ψg(−yv + y4v − y5v)Ψg (6.223)

−xv + x4v − x5

v = B = Ψr(yv + y4v + y5v)Ψr +Ψl(−yv + y4v − y5v)Ψl. (6.224)

This equation contains the term ΨlyvΨl and similar terms coming from thewave of quarks. We remark that the supplementary dimensions are mixed with

89

and similar terms coming from the wave of quarks. We remark that the supplementary dimensions are mixed with the ordi-nary ones. We remark also that xv or yv are now sum of a vector and a 5-vector, which is in Cl5,1 a pseudo-vector. Components of these sums may be expressed as

the ordinary ones. We remark also that xv or yv are now sum of a vector and a5-vector, which is in Cl5,1 a pseudo-vector. Components of these sums may beexpressed as

xav = xa + xa

5i (6.225)

The complete space-time has then a natural structure of complex linear spacewith dimension 6, with the i of the chiral gauge.

6.5.3 Invariance

The dilation R induced by any element M of Cl3 satisfying (1.42) reads inspace-time algebra, with the N of (1.68):

x′ = NxN ; x =

µ=3∑µ=0

xµγµ ; x′ =

µ=3∑µ=0

x′µγµ ; Ψ′l = NΨl (6.226)

and we await the same transformation for the waves of quarks:

Ψ′r = NΨr ; Ψ′

g = NΨg ; Ψ′b = NΨb (6.227)

We let

N =

(N 00 N

)=

M 0 0 0

0 M 0 00 0 M 0

0 0 0 M

. (6.228)

We then get

N =

(N 0

0 N

)=

M 0 0 00 M† 0 00 0 M 00 0 0 M†

(6.229)

With

x5 =

µ=3∑µ=0

xµ5γµ ; x′

5 =

µ=3∑µ=0

x′µ5γµ (6.230)

xv = x+ x5i ; x′v = x′ + x′

5i (6.231)

x4v = x4 + x4

5i ; x5v = −x5

5 + x5i ; x′4v = x′4 + x′4

5i ; x′5v = −x′5

5 + x′5i(6.232)

xv =

(0 −xv + x4

v − x5v

xv + x4v + x5

v 0

)

x′v =

(0 −x′

v + x′4v − x′5

v

x′v + x′4

v + x′5v 0

)(6.233)

90

. (6.225)

The complete space-time has then a natural structure of complex linear space with dimension 6, with the i of the chiral gauge.

6.5.3 Invariance

The dilation R induced by any element M of Cl3 satis-fying (1.42) reads in space-time algebra, with the N of (1.68):

the ordinary ones. We remark also that xv or yv are now sum of a vector and a5-vector, which is in Cl5,1 a pseudo-vector. Components of these sums may beexpressed as

xav = xa + xa

5i (6.225)

The complete space-time has then a natural structure of complex linear spacewith dimension 6, with the i of the chiral gauge.

6.5.3 Invariance

The dilation R induced by any element M of Cl3 satisfying (1.42) reads inspace-time algebra, with the N of (1.68):

x′ = NxN ; x =

µ=3∑µ=0

xµγµ ; x′ =

µ=3∑µ=0

x′µγµ ; Ψ′l = NΨl (6.226)

and we await the same transformation for the waves of quarks:

Ψ′r = NΨr ; Ψ′

g = NΨg ; Ψ′b = NΨb (6.227)

We let

N =

(N 00 N

)=

M 0 0 0

0 M 0 00 0 M 0

0 0 0 M

. (6.228)

We then get

N =

(N 0

0 N

)=

M 0 0 00 M† 0 00 0 M 00 0 0 M†

(6.229)

With

x5 =

µ=3∑µ=0

xµ5γµ ; x′

5 =

µ=3∑µ=0

x′µ5γµ (6.230)

xv = x+ x5i ; x′v = x′ + x′

5i (6.231)

x4v = x4 + x4

5i ; x5v = −x5

5 + x5i ; x′4v = x′4 + x′4

5i ; x′5v = −x′5

5 + x′5i(6.232)

xv =

(0 −xv + x4

v − x5v

xv + x4v + x5

v 0

)

x′v =

(0 −x′

v + x′4v − x′5

v

x′v + x′4

v + x′5v 0

)(6.233)

90

the ordinary ones. We remark also that xv or yv are now sum of a vector and a5-vector, which is in Cl5,1 a pseudo-vector. Components of these sums may beexpressed as

xav = xa + xa

5i (6.225)

The complete space-time has then a natural structure of complex linear spacewith dimension 6, with the i of the chiral gauge.

6.5.3 Invariance

The dilation R induced by any element M of Cl3 satisfying (1.42) reads inspace-time algebra, with the N of (1.68):

x′ = NxN ; x =

µ=3∑µ=0

xµγµ ; x′ =

µ=3∑µ=0

x′µγµ ; Ψ′l = NΨl (6.226)

and we await the same transformation for the waves of quarks:

Ψ′r = NΨr ; Ψ′

g = NΨg ; Ψ′b = NΨb (6.227)

We let

N =

(N 00 N

)=

M 0 0 0

0 M 0 00 0 M 0

0 0 0 M

. (6.228)

We then get

N =

(N 0

0 N

)=

M 0 0 00 M† 0 00 0 M 00 0 0 M†

(6.229)

With

x5 =

µ=3∑µ=0

xµ5γµ ; x′

5 =

µ=3∑µ=0

x′µ5γµ (6.230)

xv = x+ x5i ; x′v = x′ + x′

5i (6.231)

x4v = x4 + x4

5i ; x5v = −x5

5 + x5i ; x′4v = x′4 + x′4

5i ; x′5v = −x′5

5 + x′5i(6.232)

xv =

(0 −xv + x4

v − x5v

xv + x4v + x5

v 0

)

x′v =

(0 −x′

v + x′4v − x′5

v

x′v + x′4

v + x′5v 0

)(6.233)

90

(6.226)

and we await the same transformation for the waves of quarks:

the ordinary ones. We remark also that xv or yv are now sum of a vector and a5-vector, which is in Cl5,1 a pseudo-vector. Components of these sums may beexpressed as

xav = xa + xa

5i (6.225)

The complete space-time has then a natural structure of complex linear spacewith dimension 6, with the i of the chiral gauge.

6.5.3 Invariance

The dilation R induced by any element M of Cl3 satisfying (1.42) reads inspace-time algebra, with the N of (1.68):

x′ = NxN ; x =

µ=3∑µ=0

xµγµ ; x′ =

µ=3∑µ=0

x′µγµ ; Ψ′l = NΨl (6.226)

and we await the same transformation for the waves of quarks:

Ψ′r = NΨr ; Ψ′

g = NΨg ; Ψ′b = NΨb (6.227)

We let

N =

(N 00 N

)=

M 0 0 0

0 M 0 00 0 M 0

0 0 0 M

. (6.228)

We then get

N =

(N 0

0 N

)=

M 0 0 00 M† 0 00 0 M 00 0 0 M†

(6.229)

With

x5 =

µ=3∑µ=0

xµ5γµ ; x′

5 =

µ=3∑µ=0

x′µ5γµ (6.230)

xv = x+ x5i ; x′v = x′ + x′

5i (6.231)

x4v = x4 + x4

5i ; x5v = −x5

5 + x5i ; x′4v = x′4 + x′4

5i ; x′5v = −x′5

5 + x′5i(6.232)

xv =

(0 −xv + x4

v − x5v

xv + x4v + x5

v 0

)

x′v =

(0 −x′

v + x′4v − x′5

v

x′v + x′4

v + x′5v 0

)(6.233)

90

(6.227)

We let

the ordinary ones. We remark also that xv or yv are now sum of a vector and a5-vector, which is in Cl5,1 a pseudo-vector. Components of these sums may beexpressed as

xav = xa + xa

5i (6.225)

The complete space-time has then a natural structure of complex linear spacewith dimension 6, with the i of the chiral gauge.

6.5.3 Invariance

The dilation R induced by any element M of Cl3 satisfying (1.42) reads inspace-time algebra, with the N of (1.68):

x′ = NxN ; x =

µ=3∑µ=0

xµγµ ; x′ =

µ=3∑µ=0

x′µγµ ; Ψ′l = NΨl (6.226)

and we await the same transformation for the waves of quarks:

Ψ′r = NΨr ; Ψ′

g = NΨg ; Ψ′b = NΨb (6.227)

We let

N =

(N 00 N

)=

M 0 0 0

0 M 0 00 0 M 0

0 0 0 M

. (6.228)

We then get

N =

(N 0

0 N

)=

M 0 0 00 M† 0 00 0 M 00 0 0 M†

(6.229)

With

x5 =

µ=3∑µ=0

xµ5γµ ; x′

5 =

µ=3∑µ=0

x′µ5γµ (6.230)

xv = x+ x5i ; x′v = x′ + x′

5i (6.231)

x4v = x4 + x4

5i ; x5v = −x5

5 + x5i ; x′4v = x′4 + x′4

5i ; x′5v = −x′5

5 + x′5i(6.232)

xv =

(0 −xv + x4

v − x5v

xv + x4v + x5

v 0

)

x′v =

(0 −x′

v + x′4v − x′5

v

x′v + x′4

v + x′5v 0

)(6.233)

90

(6.228)

We then get

the ordinary ones. We remark also that xv or yv are now sum of a vector and a5-vector, which is in Cl5,1 a pseudo-vector. Components of these sums may beexpressed as

xav = xa + xa

5i (6.225)

The complete space-time has then a natural structure of complex linear spacewith dimension 6, with the i of the chiral gauge.

6.5.3 Invariance

The dilation R induced by any element M of Cl3 satisfying (1.42) reads inspace-time algebra, with the N of (1.68):

x′ = NxN ; x =

µ=3∑µ=0

xµγµ ; x′ =

µ=3∑µ=0

x′µγµ ; Ψ′l = NΨl (6.226)

and we await the same transformation for the waves of quarks:

Ψ′r = NΨr ; Ψ′

g = NΨg ; Ψ′b = NΨb (6.227)

We let

N =

(N 00 N

)=

M 0 0 0

0 M 0 00 0 M 0

0 0 0 M

. (6.228)

We then get

N =

(N 0

0 N

)=

M 0 0 00 M† 0 00 0 M 00 0 0 M†

(6.229)

With

x5 =

µ=3∑µ=0

xµ5γµ ; x′

5 =

µ=3∑µ=0

x′µ5γµ (6.230)

xv = x+ x5i ; x′v = x′ + x′

5i (6.231)

x4v = x4 + x4

5i ; x5v = −x5

5 + x5i ; x′4v = x′4 + x′4

5i ; x′5v = −x′5

5 + x′5i(6.232)

xv =

(0 −xv + x4

v − x5v

xv + x4v + x5

v 0

)

x′v =

(0 −x′

v + x′4v − x′5

v

x′v + x′4

v + x′5v 0

)(6.233)

90

(6.229)

With

the ordinary ones. We remark also that xv or yv are now sum of a vector and a5-vector, which is in Cl5,1 a pseudo-vector. Components of these sums may beexpressed as

xav = xa + xa

5i (6.225)

The complete space-time has then a natural structure of complex linear spacewith dimension 6, with the i of the chiral gauge.

6.5.3 Invariance

The dilation R induced by any element M of Cl3 satisfying (1.42) reads inspace-time algebra, with the N of (1.68):

x′ = NxN ; x =

µ=3∑µ=0

xµγµ ; x′ =

µ=3∑µ=0

x′µγµ ; Ψ′l = NΨl (6.226)

and we await the same transformation for the waves of quarks:

Ψ′r = NΨr ; Ψ′

g = NΨg ; Ψ′b = NΨb (6.227)

We let

N =

(N 00 N

)=

M 0 0 0

0 M 0 00 0 M 0

0 0 0 M

. (6.228)

We then get

N =

(N 0

0 N

)=

M 0 0 00 M† 0 00 0 M 00 0 0 M†

(6.229)

With

x5 =

µ=3∑µ=0

xµ5γµ ; x′

5 =

µ=3∑µ=0

x′µ5γµ (6.230)

xv = x+ x5i ; x′v = x′ + x′

5i (6.231)

x4v = x4 + x4

5i ; x5v = −x5

5 + x5i ; x′4v = x′4 + x′4

5i ; x′5v = −x′5

5 + x′5i(6.232)

xv =

(0 −xv + x4

v − x5v

xv + x4v + x5

v 0

)

x′v =

(0 −x′

v + x′4v − x′5

v

x′v + x′4

v + x′5v 0

)(6.233)

90

(6.230)

the ordinary ones. We remark also that xv or yv are now sum of a vector and a5-vector, which is in Cl5,1 a pseudo-vector. Components of these sums may beexpressed as

xav = xa + xa

5i (6.225)

The complete space-time has then a natural structure of complex linear spacewith dimension 6, with the i of the chiral gauge.

6.5.3 Invariance

The dilation R induced by any element M of Cl3 satisfying (1.42) reads inspace-time algebra, with the N of (1.68):

x′ = NxN ; x =

µ=3∑µ=0

xµγµ ; x′ =

µ=3∑µ=0

x′µγµ ; Ψ′l = NΨl (6.226)

and we await the same transformation for the waves of quarks:

Ψ′r = NΨr ; Ψ′

g = NΨg ; Ψ′b = NΨb (6.227)

We let

N =

(N 00 N

)=

M 0 0 0

0 M 0 00 0 M 0

0 0 0 M

. (6.228)

We then get

N =

(N 0

0 N

)=

M 0 0 00 M† 0 00 0 M 00 0 0 M†

(6.229)

With

x5 =

µ=3∑µ=0

xµ5γµ ; x′

5 =

µ=3∑µ=0

x′µ5γµ (6.230)

xv = x+ x5i ; x′v = x′ + x′

5i (6.231)

x4v = x4 + x4

5i ; x5v = −x5

5 + x5i ; x′4v = x′4 + x′4

5i ; x′5v = −x′5

5 + x′5i(6.232)

xv =

(0 −xv + x4

v − x5v

xv + x4v + x5

v 0

)

x′v =

(0 −x′

v + x′4v − x′5

v

x′v + x′4

v + x′5v 0

)(6.233)

90

(6.231)

the ordinary ones. We remark also that xv or yv are now sum of a vector and a5-vector, which is in Cl5,1 a pseudo-vector. Components of these sums may beexpressed as

xav = xa + xa

5i (6.225)

The complete space-time has then a natural structure of complex linear spacewith dimension 6, with the i of the chiral gauge.

6.5.3 Invariance

The dilation R induced by any element M of Cl3 satisfying (1.42) reads inspace-time algebra, with the N of (1.68):

x′ = NxN ; x =

µ=3∑µ=0

xµγµ ; x′ =

µ=3∑µ=0

x′µγµ ; Ψ′l = NΨl (6.226)

and we await the same transformation for the waves of quarks:

Ψ′r = NΨr ; Ψ′

g = NΨg ; Ψ′b = NΨb (6.227)

We let

N =

(N 00 N

)=

M 0 0 0

0 M 0 00 0 M 0

0 0 0 M

. (6.228)

We then get

N =

(N 0

0 N

)=

M 0 0 00 M† 0 00 0 M 00 0 0 M†

(6.229)

With

x5 =

µ=3∑µ=0

xµ5γµ ; x′

5 =

µ=3∑µ=0

x′µ5γµ (6.230)

xv = x+ x5i ; x′v = x′ + x′

5i (6.231)

x4v = x4 + x4

5i ; x5v = −x5

5 + x5i ; x′4v = x′4 + x′4

5i ; x′5v = −x′5

5 + x′5i(6.232)

xv =

(0 −xv + x4

v − x5v

xv + x4v + x5

v 0

)

x′v =

(0 −x′

v + x′4v − x′5

v

x′v + x′4

v + x′5v 0

)(6.233)

90

the ordinary ones. We remark also that xv or yv are now sum of a vector and a5-vector, which is in Cl5,1 a pseudo-vector. Components of these sums may beexpressed as

xav = xa + xa

5i (6.225)

The complete space-time has then a natural structure of complex linear spacewith dimension 6, with the i of the chiral gauge.

6.5.3 Invariance

The dilation R induced by any element M of Cl3 satisfying (1.42) reads inspace-time algebra, with the N of (1.68):

x′ = NxN ; x =

µ=3∑µ=0

xµγµ ; x′ =

µ=3∑µ=0

x′µγµ ; Ψ′l = NΨl (6.226)

and we await the same transformation for the waves of quarks:

Ψ′r = NΨr ; Ψ′

g = NΨg ; Ψ′b = NΨb (6.227)

We let

N =

(N 00 N

)=

M 0 0 0

0 M 0 00 0 M 0

0 0 0 M

. (6.228)

We then get

N =

(N 0

0 N

)=

M 0 0 00 M† 0 00 0 M 00 0 0 M†

(6.229)

With

x5 =

µ=3∑µ=0

xµ5γµ ; x′

5 =

µ=3∑µ=0

x′µ5γµ (6.230)

xv = x+ x5i ; x′v = x′ + x′

5i (6.231)

x4v = x4 + x4

5i ; x5v = −x5

5 + x5i ; x′4v = x′4 + x′4

5i ; x′5v = −x′5

5 + x′5i(6.232)

xv =

(0 −xv + x4

v − x5v

xv + x4v + x5

v 0

)

x′v =

(0 −x′

v + x′4v − x′5

v

x′v + x′4

v + x′5v 0

)(6.233)

90

(6.232)

the ordinary ones. We remark also that xv or yv are now sum of a vector and a5-vector, which is in Cl5,1 a pseudo-vector. Components of these sums may beexpressed as

xav = xa + xa

5i (6.225)

The complete space-time has then a natural structure of complex linear spacewith dimension 6, with the i of the chiral gauge.

6.5.3 Invariance

The dilation R induced by any element M of Cl3 satisfying (1.42) reads inspace-time algebra, with the N of (1.68):

x′ = NxN ; x =

µ=3∑µ=0

xµγµ ; x′ =

µ=3∑µ=0

x′µγµ ; Ψ′l = NΨl (6.226)

and we await the same transformation for the waves of quarks:

Ψ′r = NΨr ; Ψ′

g = NΨg ; Ψ′b = NΨb (6.227)

We let

N =

(N 00 N

)=

M 0 0 0

0 M 0 00 0 M 0

0 0 0 M

. (6.228)

We then get

N =

(N 0

0 N

)=

M 0 0 00 M† 0 00 0 M 00 0 0 M†

(6.229)

With

x5 =

µ=3∑µ=0

xµ5γµ ; x′

5 =

µ=3∑µ=0

x′µ5γµ (6.230)

xv = x+ x5i ; x′v = x′ + x′

5i (6.231)

x4v = x4 + x4

5i ; x5v = −x5

5 + x5i ; x′4v = x′4 + x′4

5i ; x′5v = −x′5

5 + x′5i(6.232)

xv =

(0 −xv + x4

v − x5v

xv + x4v + x5

v 0

)

x′v =

(0 −x′

v + x′4v − x′5

v

x′v + x′4

v + x′5v 0

)(6.233)

90

(6.233)

the generalization of (6.209) in Cl5,1 readsthe generalization of (6.209) in Cl5,1 reads

x′v = NxvN ; Ψ′ = NΨ (6.234)

which gives

Ψ′ = NΨ = ΨN. (6.235)

Then the first equality (6.234) is equivalent to the system:

x′v + x′5

v = N(xv + x5v)N (6.236)

x′4v = x4

vNN. (6.237)

And since we can separate, in (6.236), the different multivector parts, it isequivalent to the system:

x′ = NxN (6.238)

x′5 = Nx5N (6.239)

x′4v = x4

vNN

x′5v = x5

vNN. (6.240)

With (1.43) (6.237) and (6.240) read

x′4 + ix′45 = reiθ(x4 + ix4

5) (6.241)

−x′55 + ix′5 = reiθ(−x5

5 + ix5) (6.242)

This separation between the different components of the global space-time ex-plains why we usually see only the real components of the 4-dimensional space-time vector x. Only the usual space-time has real components. (6.241) and(6.242) indicates both that these two supplementary dimensions are complexdimensions and that they separate completely the usual space-time in the globalspace-time. A space-time with one or two supplementary conditions has beenused early [24]. The problem was always to explain why classical physics do notsee these supplementary dimensions. Here this problem is automatically solvedby the difference coming from the invariance group of physical laws.

The form invariance of the geometric transformation f results from (6.231)and (6.232) which give

f : yv → xv =< ΨyvΨ >v (6.243)

f : yv → x′v =< Ψ′yvΨ

′ >v=< NΨyvΨN >v

= N < ΨyvΨ >v N = NxvN. (6.244)

Similarly to what we said in 3.3, yv is independent on the observer, intrinsic tothe wave.

91

(6.234)

which gives

the generalization of (6.209) in Cl5,1 reads

x′v = NxvN ; Ψ′ = NΨ (6.234)

which gives

Ψ′ = NΨ = ΨN. (6.235)

Then the first equality (6.234) is equivalent to the system:

x′v + x′5

v = N(xv + x5v)N (6.236)

x′4v = x4

vNN. (6.237)

And since we can separate, in (6.236), the different multivector parts, it isequivalent to the system:

x′ = NxN (6.238)

x′5 = Nx5N (6.239)

x′4v = x4

vNN

x′5v = x5

vNN. (6.240)

With (1.43) (6.237) and (6.240) read

x′4 + ix′45 = reiθ(x4 + ix4

5) (6.241)

−x′55 + ix′5 = reiθ(−x5

5 + ix5) (6.242)

This separation between the different components of the global space-time ex-plains why we usually see only the real components of the 4-dimensional space-time vector x. Only the usual space-time has real components. (6.241) and(6.242) indicates both that these two supplementary dimensions are complexdimensions and that they separate completely the usual space-time in the globalspace-time. A space-time with one or two supplementary conditions has beenused early [24]. The problem was always to explain why classical physics do notsee these supplementary dimensions. Here this problem is automatically solvedby the difference coming from the invariance group of physical laws.

The form invariance of the geometric transformation f results from (6.231)and (6.232) which give

f : yv → xv =< ΨyvΨ >v (6.243)

f : yv → x′v =< Ψ′yvΨ

′ >v=< NΨyvΨN >v

= N < ΨyvΨ >v N = NxvN. (6.244)

Similarly to what we said in 3.3, yv is independent on the observer, intrinsic tothe wave.

91

(6.235)

Then the first equality (6.234) is equivalent to the system:

the generalization of (6.209) in Cl5,1 reads

x′v = NxvN ; Ψ′ = NΨ (6.234)

which gives

Ψ′ = NΨ = ΨN. (6.235)

Then the first equality (6.234) is equivalent to the system:

x′v + x′5

v = N(xv + x5v)N (6.236)

x′4v = x4

vNN. (6.237)

And since we can separate, in (6.236), the different multivector parts, it isequivalent to the system:

x′ = NxN (6.238)

x′5 = Nx5N (6.239)

x′4v = x4

vNN

x′5v = x5

vNN. (6.240)

With (1.43) (6.237) and (6.240) read

x′4 + ix′45 = reiθ(x4 + ix4

5) (6.241)

−x′55 + ix′5 = reiθ(−x5

5 + ix5) (6.242)

This separation between the different components of the global space-time ex-plains why we usually see only the real components of the 4-dimensional space-time vector x. Only the usual space-time has real components. (6.241) and(6.242) indicates both that these two supplementary dimensions are complexdimensions and that they separate completely the usual space-time in the globalspace-time. A space-time with one or two supplementary conditions has beenused early [24]. The problem was always to explain why classical physics do notsee these supplementary dimensions. Here this problem is automatically solvedby the difference coming from the invariance group of physical laws.

The form invariance of the geometric transformation f results from (6.231)and (6.232) which give

f : yv → xv =< ΨyvΨ >v (6.243)

f : yv → x′v =< Ψ′yvΨ

′ >v=< NΨyvΨN >v

= N < ΨyvΨ >v N = NxvN. (6.244)

Similarly to what we said in 3.3, yv is independent on the observer, intrinsic tothe wave.

91

(6.236)

the generalization of (6.209) in Cl5,1 reads

x′v = NxvN ; Ψ′ = NΨ (6.234)

which gives

Ψ′ = NΨ = ΨN. (6.235)

Then the first equality (6.234) is equivalent to the system:

x′v + x′5

v = N(xv + x5v)N (6.236)

x′4v = x4

vNN. (6.237)

And since we can separate, in (6.236), the different multivector parts, it isequivalent to the system:

x′ = NxN (6.238)

x′5 = Nx5N (6.239)

x′4v = x4

vNN

x′5v = x5

vNN. (6.240)

With (1.43) (6.237) and (6.240) read

x′4 + ix′45 = reiθ(x4 + ix4

5) (6.241)

−x′55 + ix′5 = reiθ(−x5

5 + ix5) (6.242)

This separation between the different components of the global space-time ex-plains why we usually see only the real components of the 4-dimensional space-time vector x. Only the usual space-time has real components. (6.241) and(6.242) indicates both that these two supplementary dimensions are complexdimensions and that they separate completely the usual space-time in the globalspace-time. A space-time with one or two supplementary conditions has beenused early [24]. The problem was always to explain why classical physics do notsee these supplementary dimensions. Here this problem is automatically solvedby the difference coming from the invariance group of physical laws.

The form invariance of the geometric transformation f results from (6.231)and (6.232) which give

f : yv → xv =< ΨyvΨ >v (6.243)

f : yv → x′v =< Ψ′yvΨ

′ >v=< NΨyvΨN >v

= N < ΨyvΨ >v N = NxvN. (6.244)

Similarly to what we said in 3.3, yv is independent on the observer, intrinsic tothe wave.

91

(6.237)

And since we can separate, in (6.236), the different multivector parts, it is equivalent to the system:

the generalization of (6.209) in Cl5,1 reads

x′v = NxvN ; Ψ′ = NΨ (6.234)

which gives

Ψ′ = NΨ = ΨN. (6.235)

Then the first equality (6.234) is equivalent to the system:

x′v + x′5

v = N(xv + x5v)N (6.236)

x′4v = x4

vNN. (6.237)

And since we can separate, in (6.236), the different multivector parts, it isequivalent to the system:

x′ = NxN (6.238)

x′5 = Nx5N (6.239)

x′4v = x4

vNN

x′5v = x5

vNN. (6.240)

With (1.43) (6.237) and (6.240) read

x′4 + ix′45 = reiθ(x4 + ix4

5) (6.241)

−x′55 + ix′5 = reiθ(−x5

5 + ix5) (6.242)

This separation between the different components of the global space-time ex-plains why we usually see only the real components of the 4-dimensional space-time vector x. Only the usual space-time has real components. (6.241) and(6.242) indicates both that these two supplementary dimensions are complexdimensions and that they separate completely the usual space-time in the globalspace-time. A space-time with one or two supplementary conditions has beenused early [24]. The problem was always to explain why classical physics do notsee these supplementary dimensions. Here this problem is automatically solvedby the difference coming from the invariance group of physical laws.

The form invariance of the geometric transformation f results from (6.231)and (6.232) which give

f : yv → xv =< ΨyvΨ >v (6.243)

f : yv → x′v =< Ψ′yvΨ

′ >v=< NΨyvΨN >v

= N < ΨyvΨ >v N = NxvN. (6.244)

Similarly to what we said in 3.3, yv is independent on the observer, intrinsic tothe wave.

91

(6.238)

the generalization of (6.209) in Cl5,1 reads

x′v = NxvN ; Ψ′ = NΨ (6.234)

which gives

Ψ′ = NΨ = ΨN. (6.235)

Then the first equality (6.234) is equivalent to the system:

x′v + x′5

v = N(xv + x5v)N (6.236)

x′4v = x4

vNN. (6.237)

And since we can separate, in (6.236), the different multivector parts, it isequivalent to the system:

x′ = NxN (6.238)

x′5 = Nx5N (6.239)

x′4v = x4

vNN

x′5v = x5

vNN. (6.240)

With (1.43) (6.237) and (6.240) read

x′4 + ix′45 = reiθ(x4 + ix4

5) (6.241)

−x′55 + ix′5 = reiθ(−x5

5 + ix5) (6.242)

This separation between the different components of the global space-time ex-plains why we usually see only the real components of the 4-dimensional space-time vector x. Only the usual space-time has real components. (6.241) and(6.242) indicates both that these two supplementary dimensions are complexdimensions and that they separate completely the usual space-time in the globalspace-time. A space-time with one or two supplementary conditions has beenused early [24]. The problem was always to explain why classical physics do notsee these supplementary dimensions. Here this problem is automatically solvedby the difference coming from the invariance group of physical laws.

The form invariance of the geometric transformation f results from (6.231)and (6.232) which give

f : yv → xv =< ΨyvΨ >v (6.243)

f : yv → x′v =< Ψ′yvΨ

′ >v=< NΨyvΨN >v

= N < ΨyvΨ >v N = NxvN. (6.244)

Similarly to what we said in 3.3, yv is independent on the observer, intrinsic tothe wave.

91

(6.239)

the generalization of (6.209) in Cl5,1 reads

x′v = NxvN ; Ψ′ = NΨ (6.234)

which gives

Ψ′ = NΨ = ΨN. (6.235)

Then the first equality (6.234) is equivalent to the system:

x′v + x′5

v = N(xv + x5v)N (6.236)

x′4v = x4

vNN. (6.237)

And since we can separate, in (6.236), the different multivector parts, it isequivalent to the system:

x′ = NxN (6.238)

x′5 = Nx5N (6.239)

x′4v = x4

vNN

x′5v = x5

vNN. (6.240)

With (1.43) (6.237) and (6.240) read

x′4 + ix′45 = reiθ(x4 + ix4

5) (6.241)

−x′55 + ix′5 = reiθ(−x5

5 + ix5) (6.242)

This separation between the different components of the global space-time ex-plains why we usually see only the real components of the 4-dimensional space-time vector x. Only the usual space-time has real components. (6.241) and(6.242) indicates both that these two supplementary dimensions are complexdimensions and that they separate completely the usual space-time in the globalspace-time. A space-time with one or two supplementary conditions has beenused early [24]. The problem was always to explain why classical physics do notsee these supplementary dimensions. Here this problem is automatically solvedby the difference coming from the invariance group of physical laws.

The form invariance of the geometric transformation f results from (6.231)and (6.232) which give

f : yv → xv =< ΨyvΨ >v (6.243)

f : yv → x′v =< Ψ′yvΨ

′ >v=< NΨyvΨN >v

= N < ΨyvΨ >v N = NxvN. (6.244)

Similarly to what we said in 3.3, yv is independent on the observer, intrinsic tothe wave.

91

(6.240)

With (1.43) (6.237) and (6.240) read

the generalization of (6.209) in Cl5,1 reads

x′v = NxvN ; Ψ′ = NΨ (6.234)

which gives

Ψ′ = NΨ = ΨN. (6.235)

Then the first equality (6.234) is equivalent to the system:

x′v + x′5

v = N(xv + x5v)N (6.236)

x′4v = x4

vNN. (6.237)

And since we can separate, in (6.236), the different multivector parts, it isequivalent to the system:

x′ = NxN (6.238)

x′5 = Nx5N (6.239)

x′4v = x4

vNN

x′5v = x5

vNN. (6.240)

With (1.43) (6.237) and (6.240) read

x′4 + ix′45 = reiθ(x4 + ix4

5) (6.241)

−x′55 + ix′5 = reiθ(−x5

5 + ix5) (6.242)

This separation between the different components of the global space-time ex-plains why we usually see only the real components of the 4-dimensional space-time vector x. Only the usual space-time has real components. (6.241) and(6.242) indicates both that these two supplementary dimensions are complexdimensions and that they separate completely the usual space-time in the globalspace-time. A space-time with one or two supplementary conditions has beenused early [24]. The problem was always to explain why classical physics do notsee these supplementary dimensions. Here this problem is automatically solvedby the difference coming from the invariance group of physical laws.

The form invariance of the geometric transformation f results from (6.231)and (6.232) which give

f : yv → xv =< ΨyvΨ >v (6.243)

f : yv → x′v =< Ψ′yvΨ

′ >v=< NΨyvΨN >v

= N < ΨyvΨ >v N = NxvN. (6.244)

Similarly to what we said in 3.3, yv is independent on the observer, intrinsic tothe wave.

91

(6.241)

the generalization of (6.209) in Cl5,1 reads

x′v = NxvN ; Ψ′ = NΨ (6.234)

which gives

Ψ′ = NΨ = ΨN. (6.235)

Then the first equality (6.234) is equivalent to the system:

x′v + x′5

v = N(xv + x5v)N (6.236)

x′4v = x4

vNN. (6.237)

And since we can separate, in (6.236), the different multivector parts, it isequivalent to the system:

x′ = NxN (6.238)

x′5 = Nx5N (6.239)

x′4v = x4

vNN

x′5v = x5

vNN. (6.240)

With (1.43) (6.237) and (6.240) read

x′4 + ix′45 = reiθ(x4 + ix4

5) (6.241)

−x′55 + ix′5 = reiθ(−x5

5 + ix5) (6.242)

This separation between the different components of the global space-time ex-plains why we usually see only the real components of the 4-dimensional space-time vector x. Only the usual space-time has real components. (6.241) and(6.242) indicates both that these two supplementary dimensions are complexdimensions and that they separate completely the usual space-time in the globalspace-time. A space-time with one or two supplementary conditions has beenused early [24]. The problem was always to explain why classical physics do notsee these supplementary dimensions. Here this problem is automatically solvedby the difference coming from the invariance group of physical laws.

The form invariance of the geometric transformation f results from (6.231)and (6.232) which give

f : yv → xv =< ΨyvΨ >v (6.243)

f : yv → x′v =< Ψ′yvΨ

′ >v=< NΨyvΨN >v

= N < ΨyvΨ >v N = NxvN. (6.244)

Similarly to what we said in 3.3, yv is independent on the observer, intrinsic tothe wave.

91

(6.242)

37

Page 39: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 37

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

This separation between the different components of the global space-time ex- plains why we usually see only the real components of the 4-dimensional space- time vector x. Only the usual space-time has real compo-nents. (6.241) and (6.242) indicates both that these two supplementary dimensions are complex dimensions and that they separate completely the usual space-time in the global space-time. A space-time with one or two supple-mentary conditions has been used early [24]. The prob-lem was always to explain why classical physics do not see these supplementary dimensions. Here this problem is automatically solved by the difference coming from the invariance group of physical laws.

The form invariance of the geometric transformation f results from (6.231) and (6.232) which give

the generalization of (6.209) in Cl5,1 reads

x′v = NxvN ; Ψ′ = NΨ (6.234)

which gives

Ψ′ = NΨ = ΨN. (6.235)

Then the first equality (6.234) is equivalent to the system:

x′v + x′5

v = N(xv + x5v)N (6.236)

x′4v = x4

vNN. (6.237)

And since we can separate, in (6.236), the different multivector parts, it isequivalent to the system:

x′ = NxN (6.238)

x′5 = Nx5N (6.239)

x′4v = x4

vNN

x′5v = x5

vNN. (6.240)

With (1.43) (6.237) and (6.240) read

x′4 + ix′45 = reiθ(x4 + ix4

5) (6.241)

−x′55 + ix′5 = reiθ(−x5

5 + ix5) (6.242)

This separation between the different components of the global space-time ex-plains why we usually see only the real components of the 4-dimensional space-time vector x. Only the usual space-time has real components. (6.241) and(6.242) indicates both that these two supplementary dimensions are complexdimensions and that they separate completely the usual space-time in the globalspace-time. A space-time with one or two supplementary conditions has beenused early [24]. The problem was always to explain why classical physics do notsee these supplementary dimensions. Here this problem is automatically solvedby the difference coming from the invariance group of physical laws.

The form invariance of the geometric transformation f results from (6.231)and (6.232) which give

f : yv → xv =< ΨyvΨ >v (6.243)

f : yv → x′v =< Ψ′yvΨ

′ >v=< NΨyvΨN >v

= N < ΨyvΨ >v N = NxvN. (6.244)

Similarly to what we said in 3.3, yv is independent on the observer, intrinsic tothe wave.

91

(6.243)

the generalization of (6.209) in Cl5,1 reads

x′v = NxvN ; Ψ′ = NΨ (6.234)

which gives

Ψ′ = NΨ = ΨN. (6.235)

Then the first equality (6.234) is equivalent to the system:

x′v + x′5

v = N(xv + x5v)N (6.236)

x′4v = x4

vNN. (6.237)

And since we can separate, in (6.236), the different multivector parts, it isequivalent to the system:

x′ = NxN (6.238)

x′5 = Nx5N (6.239)

x′4v = x4

vNN

x′5v = x5

vNN. (6.240)

With (1.43) (6.237) and (6.240) read

x′4 + ix′45 = reiθ(x4 + ix4

5) (6.241)

−x′55 + ix′5 = reiθ(−x5

5 + ix5) (6.242)

This separation between the different components of the global space-time ex-plains why we usually see only the real components of the 4-dimensional space-time vector x. Only the usual space-time has real components. (6.241) and(6.242) indicates both that these two supplementary dimensions are complexdimensions and that they separate completely the usual space-time in the globalspace-time. A space-time with one or two supplementary conditions has beenused early [24]. The problem was always to explain why classical physics do notsee these supplementary dimensions. Here this problem is automatically solvedby the difference coming from the invariance group of physical laws.

The form invariance of the geometric transformation f results from (6.231)and (6.232) which give

f : yv → xv =< ΨyvΨ >v (6.243)

f : yv → x′v =< Ψ′yvΨ

′ >v=< NΨyvΨN >v

= N < ΨyvΨ >v N = NxvN. (6.244)

Similarly to what we said in 3.3, yv is independent on the observer, intrinsic tothe wave.

91

(6.244)

Similarly to what we said in 3.3, yv is independent on the observer, intrinsic to the wave.

6.6 Existence of the inverse

Our study in 5.2 of systems of electrons has introduced the inverse φ−1 which is defined only where det φ ≠ 0. We can see that this condition is satisfied everywhere for each bound state of the H atom (see Appendix C). We saw previously that the wave of the electron is a part of the wave Ψl with value in Cl1,3 which must be also invert-ible. We must then get det(Ψl) ≠ 0.

We have not yet used one of the features of the stan-dard model, because it was not useful until now: the right part of the neutrino wave does not interact, and the stan-dard model can do anything without ξn . We can then suppose

6.6 Existence of the inverse

Our study in 5.2 of systems of electrons has introduced the inverse φ−1 whichis defined only where detφ = 0. We can see that this condition is satisfiedeverywhere for each bound state of the H atom (see Appendix C). We sawpreviously that the wave of the electron is a part of the wave Ψl with value inCl1,3 which must be also invertible. We must then get det(Ψl) = 0.

We have not yet used one of the features of the standard model, because itwas not useful until now: the right part of the neutrino wave does not interact,and the standard model can do anything without ξn. We can then suppose

ξ1n = ξ2n = 0 (6.245)

We then have with (6.2), (6.3) and (6.8):

Ψl =√2

ξ1e −η∗2e 0 −η∗2nξ2e η∗1e 0 η∗1nη1n 0 η1e −ξ∗2eη2n 0 η2e ξ∗1e

(6.246)

We let

ρe = | det(φe)| = 2|ξ1eη∗1e + ξ2eη∗2e| (6.247)

ρL = | det(φL)| ; φL =√2

(η1n η1eη2n η2e

)(6.248)

ρl = [det(Ψl)]1/2 (6.249)

The calculation of the determinant of the matrix (6.246) gives the remarkableresult:

ρl =√ρ2e + ρ2L. (6.250)

It is then very easy to get an invertible Ψl, it happens as soon as φe is invertible(for instance for each bound state of the H atom), or as soon as ηe and ηn arelinearly independent. This is a very interesting use of the condition ξn = 0, andmeans that all features of the standard model are important. It also means thatthe true mathematical frame is the Clifford algebras and that the existence ofan inverse wave in each point is physically useful. Moreover we can extend thisto the complete wave of all fermions of the first generation. The standard modeluses only left waves for the quarks, we get then for the color r:

Ψr =√2

0 −η∗2dr 0 −η∗2ur0 η∗1dr 0 η∗1ur

η1ur 0 η1dr 0η2ur 0 η2dr 0

(6.251)

92

(6.245)

We then have with (6.2), (6.3) and (6.8):

6.6 Existence of the inverse

Our study in 5.2 of systems of electrons has introduced the inverse φ−1 whichis defined only where detφ = 0. We can see that this condition is satisfiedeverywhere for each bound state of the H atom (see Appendix C). We sawpreviously that the wave of the electron is a part of the wave Ψl with value inCl1,3 which must be also invertible. We must then get det(Ψl) = 0.

We have not yet used one of the features of the standard model, because itwas not useful until now: the right part of the neutrino wave does not interact,and the standard model can do anything without ξn. We can then suppose

ξ1n = ξ2n = 0 (6.245)

We then have with (6.2), (6.3) and (6.8):

Ψl =√2

ξ1e −η∗2e 0 −η∗2nξ2e η∗1e 0 η∗1nη1n 0 η1e −ξ∗2eη2n 0 η2e ξ∗1e

(6.246)

We let

ρe = | det(φe)| = 2|ξ1eη∗1e + ξ2eη∗2e| (6.247)

ρL = | det(φL)| ; φL =√2

(η1n η1eη2n η2e

)(6.248)

ρl = [det(Ψl)]1/2 (6.249)

The calculation of the determinant of the matrix (6.246) gives the remarkableresult:

ρl =√ρ2e + ρ2L. (6.250)

It is then very easy to get an invertible Ψl, it happens as soon as φe is invertible(for instance for each bound state of the H atom), or as soon as ηe and ηn arelinearly independent. This is a very interesting use of the condition ξn = 0, andmeans that all features of the standard model are important. It also means thatthe true mathematical frame is the Clifford algebras and that the existence ofan inverse wave in each point is physically useful. Moreover we can extend thisto the complete wave of all fermions of the first generation. The standard modeluses only left waves for the quarks, we get then for the color r:

Ψr =√2

0 −η∗2dr 0 −η∗2ur0 η∗1dr 0 η∗1ur

η1ur 0 η1dr 0η2ur 0 η2dr 0

(6.251)

92

(6.246)

We let

6.6 Existence of the inverse

Our study in 5.2 of systems of electrons has introduced the inverse φ−1 whichis defined only where detφ = 0. We can see that this condition is satisfiedeverywhere for each bound state of the H atom (see Appendix C). We sawpreviously that the wave of the electron is a part of the wave Ψl with value inCl1,3 which must be also invertible. We must then get det(Ψl) = 0.

We have not yet used one of the features of the standard model, because itwas not useful until now: the right part of the neutrino wave does not interact,and the standard model can do anything without ξn. We can then suppose

ξ1n = ξ2n = 0 (6.245)

We then have with (6.2), (6.3) and (6.8):

Ψl =√2

ξ1e −η∗2e 0 −η∗2nξ2e η∗1e 0 η∗1nη1n 0 η1e −ξ∗2eη2n 0 η2e ξ∗1e

(6.246)

We let

ρe = | det(φe)| = 2|ξ1eη∗1e + ξ2eη∗2e| (6.247)

ρL = | det(φL)| ; φL =√2

(η1n η1eη2n η2e

)(6.248)

ρl = [det(Ψl)]1/2 (6.249)

The calculation of the determinant of the matrix (6.246) gives the remarkableresult:

ρl =√ρ2e + ρ2L. (6.250)

It is then very easy to get an invertible Ψl, it happens as soon as φe is invertible(for instance for each bound state of the H atom), or as soon as ηe and ηn arelinearly independent. This is a very interesting use of the condition ξn = 0, andmeans that all features of the standard model are important. It also means thatthe true mathematical frame is the Clifford algebras and that the existence ofan inverse wave in each point is physically useful. Moreover we can extend thisto the complete wave of all fermions of the first generation. The standard modeluses only left waves for the quarks, we get then for the color r:

Ψr =√2

0 −η∗2dr 0 −η∗2ur0 η∗1dr 0 η∗1ur

η1ur 0 η1dr 0η2ur 0 η2dr 0

(6.251)

92

(6.247)

6.6 Existence of the inverse

Our study in 5.2 of systems of electrons has introduced the inverse φ−1 whichis defined only where detφ = 0. We can see that this condition is satisfiedeverywhere for each bound state of the H atom (see Appendix C). We sawpreviously that the wave of the electron is a part of the wave Ψl with value inCl1,3 which must be also invertible. We must then get det(Ψl) = 0.

We have not yet used one of the features of the standard model, because itwas not useful until now: the right part of the neutrino wave does not interact,and the standard model can do anything without ξn. We can then suppose

ξ1n = ξ2n = 0 (6.245)

We then have with (6.2), (6.3) and (6.8):

Ψl =√2

ξ1e −η∗2e 0 −η∗2nξ2e η∗1e 0 η∗1nη1n 0 η1e −ξ∗2eη2n 0 η2e ξ∗1e

(6.246)

We let

ρe = | det(φe)| = 2|ξ1eη∗1e + ξ2eη∗2e| (6.247)

ρL = | det(φL)| ; φL =√2

(η1n η1eη2n η2e

)(6.248)

ρl = [det(Ψl)]1/2 (6.249)

The calculation of the determinant of the matrix (6.246) gives the remarkableresult:

ρl =√ρ2e + ρ2L. (6.250)

It is then very easy to get an invertible Ψl, it happens as soon as φe is invertible(for instance for each bound state of the H atom), or as soon as ηe and ηn arelinearly independent. This is a very interesting use of the condition ξn = 0, andmeans that all features of the standard model are important. It also means thatthe true mathematical frame is the Clifford algebras and that the existence ofan inverse wave in each point is physically useful. Moreover we can extend thisto the complete wave of all fermions of the first generation. The standard modeluses only left waves for the quarks, we get then for the color r:

Ψr =√2

0 −η∗2dr 0 −η∗2ur0 η∗1dr 0 η∗1ur

η1ur 0 η1dr 0η2ur 0 η2dr 0

(6.251)

92

(6.248)

6.6 Existence of the inverse

Our study in 5.2 of systems of electrons has introduced the inverse φ−1 whichis defined only where detφ = 0. We can see that this condition is satisfiedeverywhere for each bound state of the H atom (see Appendix C). We sawpreviously that the wave of the electron is a part of the wave Ψl with value inCl1,3 which must be also invertible. We must then get det(Ψl) = 0.

We have not yet used one of the features of the standard model, because itwas not useful until now: the right part of the neutrino wave does not interact,and the standard model can do anything without ξn. We can then suppose

ξ1n = ξ2n = 0 (6.245)

We then have with (6.2), (6.3) and (6.8):

Ψl =√2

ξ1e −η∗2e 0 −η∗2nξ2e η∗1e 0 η∗1nη1n 0 η1e −ξ∗2eη2n 0 η2e ξ∗1e

(6.246)

We let

ρe = | det(φe)| = 2|ξ1eη∗1e + ξ2eη∗2e| (6.247)

ρL = | det(φL)| ; φL =√2

(η1n η1eη2n η2e

)(6.248)

ρl = [det(Ψl)]1/2 (6.249)

The calculation of the determinant of the matrix (6.246) gives the remarkableresult:

ρl =√ρ2e + ρ2L. (6.250)

It is then very easy to get an invertible Ψl, it happens as soon as φe is invertible(for instance for each bound state of the H atom), or as soon as ηe and ηn arelinearly independent. This is a very interesting use of the condition ξn = 0, andmeans that all features of the standard model are important. It also means thatthe true mathematical frame is the Clifford algebras and that the existence ofan inverse wave in each point is physically useful. Moreover we can extend thisto the complete wave of all fermions of the first generation. The standard modeluses only left waves for the quarks, we get then for the color r:

Ψr =√2

0 −η∗2dr 0 −η∗2ur0 η∗1dr 0 η∗1ur

η1ur 0 η1dr 0η2ur 0 η2dr 0

(6.251)

92

(6.249)

The calculation of the determinant of the matrix (6.246) gives the remarkable result:

6.6 Existence of the inverse

Our study in 5.2 of systems of electrons has introduced the inverse φ−1 whichis defined only where detφ = 0. We can see that this condition is satisfiedeverywhere for each bound state of the H atom (see Appendix C). We sawpreviously that the wave of the electron is a part of the wave Ψl with value inCl1,3 which must be also invertible. We must then get det(Ψl) = 0.

We have not yet used one of the features of the standard model, because itwas not useful until now: the right part of the neutrino wave does not interact,and the standard model can do anything without ξn. We can then suppose

ξ1n = ξ2n = 0 (6.245)

We then have with (6.2), (6.3) and (6.8):

Ψl =√2

ξ1e −η∗2e 0 −η∗2nξ2e η∗1e 0 η∗1nη1n 0 η1e −ξ∗2eη2n 0 η2e ξ∗1e

(6.246)

We let

ρe = | det(φe)| = 2|ξ1eη∗1e + ξ2eη∗2e| (6.247)

ρL = | det(φL)| ; φL =√2

(η1n η1eη2n η2e

)(6.248)

ρl = [det(Ψl)]1/2 (6.249)

The calculation of the determinant of the matrix (6.246) gives the remarkableresult:

ρl =√ρ2e + ρ2L. (6.250)

It is then very easy to get an invertible Ψl, it happens as soon as φe is invertible(for instance for each bound state of the H atom), or as soon as ηe and ηn arelinearly independent. This is a very interesting use of the condition ξn = 0, andmeans that all features of the standard model are important. It also means thatthe true mathematical frame is the Clifford algebras and that the existence ofan inverse wave in each point is physically useful. Moreover we can extend thisto the complete wave of all fermions of the first generation. The standard modeluses only left waves for the quarks, we get then for the color r:

Ψr =√2

0 −η∗2dr 0 −η∗2ur0 η∗1dr 0 η∗1ur

η1ur 0 η1dr 0η2ur 0 η2dr 0

(6.251)

92

(6.250)

It is then very easy to get an invertible Ψl , it happens as soon as φe is invertible (for instance for each bound state of the H atom), or as soon as ηe and ηn are linearly independent. This is a very interesting use of the condi-tion ξn = 0, and means that all features of the standard model are important. It also means that the true mathe-matical frame is the Clifford algebras and that the exis-tence of an inverse wave in each point is physically use-ful. Moreover we can extend this to the complete wave of all fermions of the first generation. The standard model uses only left waves for the quarks, we get then for the color r:

6.6 Existence of the inverse

Our study in 5.2 of systems of electrons has introduced the inverse φ−1 whichis defined only where detφ = 0. We can see that this condition is satisfiedeverywhere for each bound state of the H atom (see Appendix C). We sawpreviously that the wave of the electron is a part of the wave Ψl with value inCl1,3 which must be also invertible. We must then get det(Ψl) = 0.

We have not yet used one of the features of the standard model, because itwas not useful until now: the right part of the neutrino wave does not interact,and the standard model can do anything without ξn. We can then suppose

ξ1n = ξ2n = 0 (6.245)

We then have with (6.2), (6.3) and (6.8):

Ψl =√2

ξ1e −η∗2e 0 −η∗2nξ2e η∗1e 0 η∗1nη1n 0 η1e −ξ∗2eη2n 0 η2e ξ∗1e

(6.246)

We let

ρe = | det(φe)| = 2|ξ1eη∗1e + ξ2eη∗2e| (6.247)

ρL = | det(φL)| ; φL =√2

(η1n η1eη2n η2e

)(6.248)

ρl = [det(Ψl)]1/2 (6.249)

The calculation of the determinant of the matrix (6.246) gives the remarkableresult:

ρl =√ρ2e + ρ2L. (6.250)

It is then very easy to get an invertible Ψl, it happens as soon as φe is invertible(for instance for each bound state of the H atom), or as soon as ηe and ηn arelinearly independent. This is a very interesting use of the condition ξn = 0, andmeans that all features of the standard model are important. It also means thatthe true mathematical frame is the Clifford algebras and that the existence ofan inverse wave in each point is physically useful. Moreover we can extend thisto the complete wave of all fermions of the first generation. The standard modeluses only left waves for the quarks, we get then for the color r:

Ψr =√2

0 −η∗2dr 0 −η∗2ur0 η∗1dr 0 η∗1ur

η1ur 0 η1dr 0η2ur 0 η2dr 0

(6.251)

92

(6.251)

and two similar equalities for colors g and b. Now we consider two matrices:

and two similar equalities for colors g and b. Now we consider two matrices:

L =√2

η1e η1n η1dr η1urη2e η2n η2dr η2urη1dg η1ug η1db η1ubη2dg η2ug η2db η2ub

;M =

√2

−ξ∗2e η1e η1dr η1urξ∗1e η2e η2dr η2ur0 η1dg η1db η1ub0 η2dg η2db η2ub

(6.252)

And we get with (6.123) the identity

det(Ψ) = | det(L)|2 + | det(M)|2 (6.253)

We can then see the waves of the standard model as having the maximumnumber of degrees of freedom compatible with the existence of an inverse waveΨ−1.

In the M matrix of (6.252) the green color is less present than red and bluecolors, which seems a priori abnormal. Technically the reason is simple: sincethe only right term, ξ, is on the same column as the ug wave, when we suppressall terms of a column and of a line in the calculation of a determinant, the ugterm necessarily disappears.

More important, the fundamental mathematical tool is Clifford algebra, notcomplex matrix algebra. This comes from the fact that space-time algebra isnot identical to the algebra of 4 × 4 complex matrices, or the Cl5,1 Cliffordalgebra of the 6-dimensional space-time is not identical to the algebra of 8× 8complex matrices. These Clifford algebras are only sub-algebras of the complexmatrix algebras. Moreover they are sub-algebras only as real algebras. The useof complex linear spaces is then a kind of accident, a fortuitous coincidence: thepossible identification between the Clifford algebra of the 3-dimensional spaceand the algebra of 2× 2 complex matrices, as algebras on the real field.

Consequently, for instance, Ψ matrices are not at all symmetric. Null termsare on same columns, not in lines. Lines 1, 2 and 5, 6 of Ψ are multiplied bya M factor while lines 3, 4 and 7, 8 are multiplied by a M factor of the forminvariance group. We may also remark that all terms of L and M matrices in(6.252) are left terms, multiplied by a M factor in the form invariance group.When we look at operators of the electro-weak gauge group we can also see thatthey act on columns of matrices, not on lines.

Other consequence, the change of a matrix into its adjoint matrix is notthe most important transformation. This should be the case if the theory ofhermitian spaces and unitary matrices was fundamental. The most importanttransformation is the reversion, (A becoming A), as we can see throughout thisbook. This reversion makes sense in any Clifford algebra, and it is this alonereversion that appears in calculations. It happens that the reverse is identicalto the adjoint matrix when we identify space algebra and Pauli algebra. Butthis happens only in the Clifford algebra of the physical space. With the space-time algebra, or with the algebra of the 6-dimensional space-time the reverseis not the adjoint matrix. Reversion exchanges the left-up matrix-bloc and theright-down matrix-bloc, while the right-up and the left-down matrix-blocs stay

93

and two similar equalities for colors g and b. Now we consider two matrices:

L =√2

η1e η1n η1dr η1urη2e η2n η2dr η2urη1dg η1ug η1db η1ubη2dg η2ug η2db η2ub

;M =

√2

−ξ∗2e η1e η1dr η1urξ∗1e η2e η2dr η2ur0 η1dg η1db η1ub0 η2dg η2db η2ub

(6.252)

And we get with (6.123) the identity

det(Ψ) = | det(L)|2 + | det(M)|2 (6.253)

We can then see the waves of the standard model as having the maximumnumber of degrees of freedom compatible with the existence of an inverse waveΨ−1.

In the M matrix of (6.252) the green color is less present than red and bluecolors, which seems a priori abnormal. Technically the reason is simple: sincethe only right term, ξ, is on the same column as the ug wave, when we suppressall terms of a column and of a line in the calculation of a determinant, the ugterm necessarily disappears.

More important, the fundamental mathematical tool is Clifford algebra, notcomplex matrix algebra. This comes from the fact that space-time algebra isnot identical to the algebra of 4 × 4 complex matrices, or the Cl5,1 Cliffordalgebra of the 6-dimensional space-time is not identical to the algebra of 8× 8complex matrices. These Clifford algebras are only sub-algebras of the complexmatrix algebras. Moreover they are sub-algebras only as real algebras. The useof complex linear spaces is then a kind of accident, a fortuitous coincidence: thepossible identification between the Clifford algebra of the 3-dimensional spaceand the algebra of 2× 2 complex matrices, as algebras on the real field.

Consequently, for instance, Ψ matrices are not at all symmetric. Null termsare on same columns, not in lines. Lines 1, 2 and 5, 6 of Ψ are multiplied bya M factor while lines 3, 4 and 7, 8 are multiplied by a M factor of the forminvariance group. We may also remark that all terms of L and M matrices in(6.252) are left terms, multiplied by a M factor in the form invariance group.When we look at operators of the electro-weak gauge group we can also see thatthey act on columns of matrices, not on lines.

Other consequence, the change of a matrix into its adjoint matrix is notthe most important transformation. This should be the case if the theory ofhermitian spaces and unitary matrices was fundamental. The most importanttransformation is the reversion, (A becoming A), as we can see throughout thisbook. This reversion makes sense in any Clifford algebra, and it is this alonereversion that appears in calculations. It happens that the reverse is identicalto the adjoint matrix when we identify space algebra and Pauli algebra. Butthis happens only in the Clifford algebra of the physical space. With the space-time algebra, or with the algebra of the 6-dimensional space-time the reverseis not the adjoint matrix. Reversion exchanges the left-up matrix-bloc and theright-down matrix-bloc, while the right-up and the left-down matrix-blocs stay

93

(6.252)

And we get with (6.123) the identity

and two similar equalities for colors g and b. Now we consider two matrices:

L =√2

η1e η1n η1dr η1urη2e η2n η2dr η2urη1dg η1ug η1db η1ubη2dg η2ug η2db η2ub

;M =

√2

−ξ∗2e η1e η1dr η1urξ∗1e η2e η2dr η2ur0 η1dg η1db η1ub0 η2dg η2db η2ub

(6.252)

And we get with (6.123) the identity

det(Ψ) = | det(L)|2 + | det(M)|2 (6.253)

We can then see the waves of the standard model as having the maximumnumber of degrees of freedom compatible with the existence of an inverse waveΨ−1.

In the M matrix of (6.252) the green color is less present than red and bluecolors, which seems a priori abnormal. Technically the reason is simple: sincethe only right term, ξ, is on the same column as the ug wave, when we suppressall terms of a column and of a line in the calculation of a determinant, the ugterm necessarily disappears.

More important, the fundamental mathematical tool is Clifford algebra, notcomplex matrix algebra. This comes from the fact that space-time algebra isnot identical to the algebra of 4 × 4 complex matrices, or the Cl5,1 Cliffordalgebra of the 6-dimensional space-time is not identical to the algebra of 8× 8complex matrices. These Clifford algebras are only sub-algebras of the complexmatrix algebras. Moreover they are sub-algebras only as real algebras. The useof complex linear spaces is then a kind of accident, a fortuitous coincidence: thepossible identification between the Clifford algebra of the 3-dimensional spaceand the algebra of 2× 2 complex matrices, as algebras on the real field.

Consequently, for instance, Ψ matrices are not at all symmetric. Null termsare on same columns, not in lines. Lines 1, 2 and 5, 6 of Ψ are multiplied bya M factor while lines 3, 4 and 7, 8 are multiplied by a M factor of the forminvariance group. We may also remark that all terms of L and M matrices in(6.252) are left terms, multiplied by a M factor in the form invariance group.When we look at operators of the electro-weak gauge group we can also see thatthey act on columns of matrices, not on lines.

Other consequence, the change of a matrix into its adjoint matrix is notthe most important transformation. This should be the case if the theory ofhermitian spaces and unitary matrices was fundamental. The most importanttransformation is the reversion, (A becoming A), as we can see throughout thisbook. This reversion makes sense in any Clifford algebra, and it is this alonereversion that appears in calculations. It happens that the reverse is identicalto the adjoint matrix when we identify space algebra and Pauli algebra. Butthis happens only in the Clifford algebra of the physical space. With the space-time algebra, or with the algebra of the 6-dimensional space-time the reverseis not the adjoint matrix. Reversion exchanges the left-up matrix-bloc and theright-down matrix-bloc, while the right-up and the left-down matrix-blocs stay

93

(6.253)

We can then see the waves of the standard model as having the maximum number of degrees of freedom compatible with the existence of an inverse wave Ψ−1 .

In the M matrix of (6.252) the green color is less pres-ent than red and blue colors, which seems a priori abnor-mal. Technically the reason is simple: since the only right term, ξ, is on the same column as the ug wave, when we suppress all terms of a column and of a line in the calcula-tion of a determinant, the ug term necessarily disappears.

More important, the fundamental mathematical tool is Clifford algebra, not complex matrix algebra. This comes from the fact that space-time algebra is not identi-cal to the algebra of 4 × 4 complex matrices, or the Cl5,1 Clifford algebra of the 6-dimensional space-time is not identical to the algebra of 8 × 8 complex matrices. These Clifford algebras are only sub-algebras of the complex matrix algebras. Moreover they are sub-algebras only as

36

Page 40: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201438

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

real algebras. The use of complex linear spaces is then a kind of accident, a fortuitous coincidence: the possible identification between the Clifford algebra of the 3-di-mensional space and the algebra of 2 × 2 complex matri-ces, as algebras on the real field.

Consequently, for instance, Ψ matrices are not at all symmetric. Null terms are on same columns, not in lines. Lines 1, 2 and 5, 6 of Ψ are multiplied by a M factor while lines 3, 4 and 7, 8 are multiplied by a

and two similar equalities for colors g and b. Now we consider two matrices:

L =√2

η1e η1n η1dr η1urη2e η2n η2dr η2urη1dg η1ug η1db η1ubη2dg η2ug η2db η2ub

;M =

√2

−ξ∗2e η1e η1dr η1urξ∗1e η2e η2dr η2ur0 η1dg η1db η1ub0 η2dg η2db η2ub

(6.252)

And we get with (6.123) the identity

det(Ψ) = | det(L)|2 + | det(M)|2 (6.253)

We can then see the waves of the standard model as having the maximumnumber of degrees of freedom compatible with the existence of an inverse waveΨ−1.

In the M matrix of (6.252) the green color is less present than red and bluecolors, which seems a priori abnormal. Technically the reason is simple: sincethe only right term, ξ, is on the same column as the ug wave, when we suppressall terms of a column and of a line in the calculation of a determinant, the ugterm necessarily disappears.

More important, the fundamental mathematical tool is Clifford algebra, notcomplex matrix algebra. This comes from the fact that space-time algebra isnot identical to the algebra of 4 × 4 complex matrices, or the Cl5,1 Cliffordalgebra of the 6-dimensional space-time is not identical to the algebra of 8× 8complex matrices. These Clifford algebras are only sub-algebras of the complexmatrix algebras. Moreover they are sub-algebras only as real algebras. The useof complex linear spaces is then a kind of accident, a fortuitous coincidence: thepossible identification between the Clifford algebra of the 3-dimensional spaceand the algebra of 2× 2 complex matrices, as algebras on the real field.

Consequently, for instance, Ψ matrices are not at all symmetric. Null termsare on same columns, not in lines. Lines 1, 2 and 5, 6 of Ψ are multiplied bya M factor while lines 3, 4 and 7, 8 are multiplied by a M factor of the forminvariance group. We may also remark that all terms of L and M matrices in(6.252) are left terms, multiplied by a M factor in the form invariance group.When we look at operators of the electro-weak gauge group we can also see thatthey act on columns of matrices, not on lines.

Other consequence, the change of a matrix into its adjoint matrix is notthe most important transformation. This should be the case if the theory ofhermitian spaces and unitary matrices was fundamental. The most importanttransformation is the reversion, (A becoming A), as we can see throughout thisbook. This reversion makes sense in any Clifford algebra, and it is this alonereversion that appears in calculations. It happens that the reverse is identicalto the adjoint matrix when we identify space algebra and Pauli algebra. Butthis happens only in the Clifford algebra of the physical space. With the space-time algebra, or with the algebra of the 6-dimensional space-time the reverseis not the adjoint matrix. Reversion exchanges the left-up matrix-bloc and theright-down matrix-bloc, while the right-up and the left-down matrix-blocs stay

93

factor of the form invariance group. We may also remark that all terms of L and M matrices in (6.252) are left terms, multiplied by a

and two similar equalities for colors g and b. Now we consider two matrices:

L =√2

η1e η1n η1dr η1urη2e η2n η2dr η2urη1dg η1ug η1db η1ubη2dg η2ug η2db η2ub

;M =

√2

−ξ∗2e η1e η1dr η1urξ∗1e η2e η2dr η2ur0 η1dg η1db η1ub0 η2dg η2db η2ub

(6.252)

And we get with (6.123) the identity

det(Ψ) = | det(L)|2 + | det(M)|2 (6.253)

We can then see the waves of the standard model as having the maximumnumber of degrees of freedom compatible with the existence of an inverse waveΨ−1.

In the M matrix of (6.252) the green color is less present than red and bluecolors, which seems a priori abnormal. Technically the reason is simple: sincethe only right term, ξ, is on the same column as the ug wave, when we suppressall terms of a column and of a line in the calculation of a determinant, the ugterm necessarily disappears.

More important, the fundamental mathematical tool is Clifford algebra, notcomplex matrix algebra. This comes from the fact that space-time algebra isnot identical to the algebra of 4 × 4 complex matrices, or the Cl5,1 Cliffordalgebra of the 6-dimensional space-time is not identical to the algebra of 8× 8complex matrices. These Clifford algebras are only sub-algebras of the complexmatrix algebras. Moreover they are sub-algebras only as real algebras. The useof complex linear spaces is then a kind of accident, a fortuitous coincidence: thepossible identification between the Clifford algebra of the 3-dimensional spaceand the algebra of 2× 2 complex matrices, as algebras on the real field.

Consequently, for instance, Ψ matrices are not at all symmetric. Null termsare on same columns, not in lines. Lines 1, 2 and 5, 6 of Ψ are multiplied bya M factor while lines 3, 4 and 7, 8 are multiplied by a M factor of the forminvariance group. We may also remark that all terms of L and M matrices in(6.252) are left terms, multiplied by a M factor in the form invariance group.When we look at operators of the electro-weak gauge group we can also see thatthey act on columns of matrices, not on lines.

Other consequence, the change of a matrix into its adjoint matrix is notthe most important transformation. This should be the case if the theory ofhermitian spaces and unitary matrices was fundamental. The most importanttransformation is the reversion, (A becoming A), as we can see throughout thisbook. This reversion makes sense in any Clifford algebra, and it is this alonereversion that appears in calculations. It happens that the reverse is identicalto the adjoint matrix when we identify space algebra and Pauli algebra. Butthis happens only in the Clifford algebra of the physical space. With the space-time algebra, or with the algebra of the 6-dimensional space-time the reverseis not the adjoint matrix. Reversion exchanges the left-up matrix-bloc and theright-down matrix-bloc, while the right-up and the left-down matrix-blocs stay

93

factor in the form invariance group. When we look at operators of the electro-weak gauge group we can also see that they act on columns of matrices, not on lines.

Other consequence, the change of a matrix into its ad-joint matrix is not the most important transformation. This should be the case if the theory of hermitian spaces and unitary matrices was fundamental. The most important transformation is the reversion, (A becoming

and two similar equalities for colors g and b. Now we consider two matrices:

L =√2

η1e η1n η1dr η1urη2e η2n η2dr η2urη1dg η1ug η1db η1ubη2dg η2ug η2db η2ub

;M =

√2

−ξ∗2e η1e η1dr η1urξ∗1e η2e η2dr η2ur0 η1dg η1db η1ub0 η2dg η2db η2ub

(6.252)

And we get with (6.123) the identity

det(Ψ) = | det(L)|2 + | det(M)|2 (6.253)

We can then see the waves of the standard model as having the maximumnumber of degrees of freedom compatible with the existence of an inverse waveΨ−1.

In the M matrix of (6.252) the green color is less present than red and bluecolors, which seems a priori abnormal. Technically the reason is simple: sincethe only right term, ξ, is on the same column as the ug wave, when we suppressall terms of a column and of a line in the calculation of a determinant, the ugterm necessarily disappears.

More important, the fundamental mathematical tool is Clifford algebra, notcomplex matrix algebra. This comes from the fact that space-time algebra isnot identical to the algebra of 4 × 4 complex matrices, or the Cl5,1 Cliffordalgebra of the 6-dimensional space-time is not identical to the algebra of 8× 8complex matrices. These Clifford algebras are only sub-algebras of the complexmatrix algebras. Moreover they are sub-algebras only as real algebras. The useof complex linear spaces is then a kind of accident, a fortuitous coincidence: thepossible identification between the Clifford algebra of the 3-dimensional spaceand the algebra of 2× 2 complex matrices, as algebras on the real field.

Consequently, for instance, Ψ matrices are not at all symmetric. Null termsare on same columns, not in lines. Lines 1, 2 and 5, 6 of Ψ are multiplied bya M factor while lines 3, 4 and 7, 8 are multiplied by a M factor of the forminvariance group. We may also remark that all terms of L and M matrices in(6.252) are left terms, multiplied by a M factor in the form invariance group.When we look at operators of the electro-weak gauge group we can also see thatthey act on columns of matrices, not on lines.

Other consequence, the change of a matrix into its adjoint matrix is notthe most important transformation. This should be the case if the theory ofhermitian spaces and unitary matrices was fundamental. The most importanttransformation is the reversion, (A becoming A), as we can see throughout thisbook. This reversion makes sense in any Clifford algebra, and it is this alonereversion that appears in calculations. It happens that the reverse is identicalto the adjoint matrix when we identify space algebra and Pauli algebra. Butthis happens only in the Clifford algebra of the physical space. With the space-time algebra, or with the algebra of the 6-dimensional space-time the reverseis not the adjoint matrix. Reversion exchanges the left-up matrix-bloc and theright-down matrix-bloc, while the right-up and the left-down matrix-blocs stay

93

), as we can see throughout this book. This reversion makes sense in any Clifford algebra, and it is this alone reversion that appears in calculations. It happens that the reverse is iden-tical to the adjoint matrix when we identify space algebra and Pauli algebra. But this happens only in the Clifford algebra of the physical space. With the space- time alge-bra, or with the algebra of the 6-dimensional space-time the reverse is not the adjoint matrix. Reversion exchang-es the left-up matrix-bloc and the right-down matrix-bloc, while the right-up and the left-down matrix-blocs stay in the same place, being exchanged two times. If the SU (3) group exchanging r, g, b states was fundamental, it should be effectively necessary that the green color should play the same role as red and blue colors.

Since this is not true, we see that the U (1) × SU (2) × SU (3) structure is widely ”accidental” on the mathematical point of view. This means that the necessity of unitary gauge groups is not justified. The im-portant structure is in fact the Cl5,1 algebra and its left and right multiplicative automorphisms.

6.7 Wave equations

The mass term of the Dirac equation links the right wave to the left wave, we can read this in (2.31) and (2.32). W 1 et W 2 terms in the electro-weak theory link left waves ηe ηn of the electron and of its neutrino, while B and W 3 terms work separately with left and right waves. The Weinberg-Salam model took advantage of the very small mass of the electron to neglect its mass term.51 Mass is

51 This approximation is a posteriori satisfied by the huge mass of the Z 0 which is 180,000 times the mass of the electron. This approximation was inevitable because the mass term of the linear Dirac equation cannot be compatible with the electro-weak gauge.

then out 6.1 to 6.6. The existence of the preceding identi-ties allows a mass term in a wave equation both form in-variant and gauge invariant, we see this first in the case of the Ψl wave of the electron and its neutrino:

in the same place, being exchanged two times. If the SU(3) group exchangingr, g, b states was fundamental, it should be effectively necessary that the greencolor should play the same role as red and blue colors.

Since this is not true, we see that the U(1) × SU(2) × SU(3) structure iswidely ”accidental” on the mathematical point of view. This means that thenecessity of unitary gauge groups is not justified. The important structure is infact the Cl5,1 algebra and its left and right multiplicative automorphisms.

6.7 Wave equations

The mass term of the Dirac equation links the right wave to the left wave, wecan read this in (2.31) and (2.32). W 1 et W 2 terms in the electro-weak theorylink left waves ηe ηn of the electron and of its neutrino, while B and W 3 termswork separately with left and right waves. The Weinberg-Salam model tookadvantage of the very small mass of the electron to neglect its mass term51.Mass is then out 6.1 to 6.6. The existence of the preceding identities allows amass term in a wave equation both form invariant and gauge invariant, we seethis first in the case of the Ψl wave of the electron and its neutrino:

Ψl(DΨl)γ012 +mρl = 0 (6.254)

if we authorize ρl, defined in (6.250), to be variable in the gauge invariance asin the form invariance. For the case of the form invariance (which implies therelativistic invariance) we have with (2.64) and (6.248).

ρ′e = rρe ; φ′L = MφL

ρ′L = | det(φ′L)| = | det(M)|| det(φL)| = rρL

ρ′l =

√ρ′e

2 + ρ′L2 = r

√ρ2e + ρ2L = rρl. (6.255)

The wave equation (6.254) is then form invariant under the transformation Rdefined by M in (1.42) and N in (1.80), the equation becomes :

Ψ′l(D

′Ψ′l)γ012 +m′ρ′l = 0 ; mρl = m′ρ′l. (6.256)

This wave equation could not be gotten from the linear wave equation, becauseeven if the relativistic invariant ρ, linked to the determinants, always exist whenwe use the wave of a pair electron-neutrino, there is no more a Yvon-Takabayasiangle. It is defined only for one electron. Under the gauge transformationdefined in (6.119) to (6.122) we get (the detailed calculation is in Appendix B):

Ψ′l(D

′Ψ′l)γ012 +m′ρ′l = 0 ; ρ′l = | det(Ψ′

l)|1/2. (6.257)

51This approximation is a posteriori satisfied by the huge mass of the Z0 which is 180,000times the mass of the electron. This approximation was inevitable because the mass term ofthe linear Dirac equation cannot be compatible with the electro-weak gauge.

94

(6.254)

if we authorize ρl , defined in (6.250), to be variable in the gauge invariance as in the form invariance. For the case of the form invariance (which implies the relativistic in-variance) we have with (2.64) and (6.248).

in the same place, being exchanged two times. If the SU(3) group exchangingr, g, b states was fundamental, it should be effectively necessary that the greencolor should play the same role as red and blue colors.

Since this is not true, we see that the U(1) × SU(2) × SU(3) structure iswidely ”accidental” on the mathematical point of view. This means that thenecessity of unitary gauge groups is not justified. The important structure is infact the Cl5,1 algebra and its left and right multiplicative automorphisms.

6.7 Wave equations

The mass term of the Dirac equation links the right wave to the left wave, wecan read this in (2.31) and (2.32). W 1 et W 2 terms in the electro-weak theorylink left waves ηe ηn of the electron and of its neutrino, while B and W 3 termswork separately with left and right waves. The Weinberg-Salam model tookadvantage of the very small mass of the electron to neglect its mass term51.Mass is then out 6.1 to 6.6. The existence of the preceding identities allows amass term in a wave equation both form invariant and gauge invariant, we seethis first in the case of the Ψl wave of the electron and its neutrino:

Ψl(DΨl)γ012 +mρl = 0 (6.254)

if we authorize ρl, defined in (6.250), to be variable in the gauge invariance asin the form invariance. For the case of the form invariance (which implies therelativistic invariance) we have with (2.64) and (6.248).

ρ′e = rρe ; φ′L = MφL

ρ′L = | det(φ′L)| = | det(M)|| det(φL)| = rρL

ρ′l =

√ρ′e

2 + ρ′L2 = r

√ρ2e + ρ2L = rρl. (6.255)

The wave equation (6.254) is then form invariant under the transformation Rdefined by M in (1.42) and N in (1.80), the equation becomes :

Ψ′l(D

′Ψ′l)γ012 +m′ρ′l = 0 ; mρl = m′ρ′l. (6.256)

This wave equation could not be gotten from the linear wave equation, becauseeven if the relativistic invariant ρ, linked to the determinants, always exist whenwe use the wave of a pair electron-neutrino, there is no more a Yvon-Takabayasiangle. It is defined only for one electron. Under the gauge transformationdefined in (6.119) to (6.122) we get (the detailed calculation is in Appendix B):

Ψ′l(D

′Ψ′l)γ012 +m′ρ′l = 0 ; ρ′l = | det(Ψ′

l)|1/2. (6.257)

51This approximation is a posteriori satisfied by the huge mass of the Z0 which is 180,000times the mass of the electron. This approximation was inevitable because the mass term ofthe linear Dirac equation cannot be compatible with the electro-weak gauge.

94

(6.255)

The wave equation (6.254) is then form invariant un-der the transformation R defined by M in (1.42) and N in (1.80), the equation becomes:

in the same place, being exchanged two times. If the SU(3) group exchangingr, g, b states was fundamental, it should be effectively necessary that the greencolor should play the same role as red and blue colors.

Since this is not true, we see that the U(1) × SU(2) × SU(3) structure iswidely ”accidental” on the mathematical point of view. This means that thenecessity of unitary gauge groups is not justified. The important structure is infact the Cl5,1 algebra and its left and right multiplicative automorphisms.

6.7 Wave equations

The mass term of the Dirac equation links the right wave to the left wave, wecan read this in (2.31) and (2.32). W 1 et W 2 terms in the electro-weak theorylink left waves ηe ηn of the electron and of its neutrino, while B and W 3 termswork separately with left and right waves. The Weinberg-Salam model tookadvantage of the very small mass of the electron to neglect its mass term51.Mass is then out 6.1 to 6.6. The existence of the preceding identities allows amass term in a wave equation both form invariant and gauge invariant, we seethis first in the case of the Ψl wave of the electron and its neutrino:

Ψl(DΨl)γ012 +mρl = 0 (6.254)

if we authorize ρl, defined in (6.250), to be variable in the gauge invariance asin the form invariance. For the case of the form invariance (which implies therelativistic invariance) we have with (2.64) and (6.248).

ρ′e = rρe ; φ′L = MφL

ρ′L = | det(φ′L)| = | det(M)|| det(φL)| = rρL

ρ′l =

√ρ′e

2 + ρ′L2 = r

√ρ2e + ρ2L = rρl. (6.255)

The wave equation (6.254) is then form invariant under the transformation Rdefined by M in (1.42) and N in (1.80), the equation becomes :

Ψ′l(D

′Ψ′l)γ012 +m′ρ′l = 0 ; mρl = m′ρ′l. (6.256)

This wave equation could not be gotten from the linear wave equation, becauseeven if the relativistic invariant ρ, linked to the determinants, always exist whenwe use the wave of a pair electron-neutrino, there is no more a Yvon-Takabayasiangle. It is defined only for one electron. Under the gauge transformationdefined in (6.119) to (6.122) we get (the detailed calculation is in Appendix B):

Ψ′l(D

′Ψ′l)γ012 +m′ρ′l = 0 ; ρ′l = | det(Ψ′

l)|1/2. (6.257)

51This approximation is a posteriori satisfied by the huge mass of the Z0 which is 180,000times the mass of the electron. This approximation was inevitable because the mass term ofthe linear Dirac equation cannot be compatible with the electro-weak gauge.

94

(6.256)

This wave equation could not be gotten from the lin-ear wave equation, because even if the relativistic invari-ant ρ, linked to the determinants, always exist when we use the wave of a pair electron-neutrino, there is no more a Yvon-Takabayasi angle. It is defined only for one elec-tron. Under the gauge transformation defined in (6.119) to (6.122) we get (the detailed calculation is in Appen-dix B):

in the same place, being exchanged two times. If the SU(3) group exchangingr, g, b states was fundamental, it should be effectively necessary that the greencolor should play the same role as red and blue colors.

Since this is not true, we see that the U(1) × SU(2) × SU(3) structure iswidely ”accidental” on the mathematical point of view. This means that thenecessity of unitary gauge groups is not justified. The important structure is infact the Cl5,1 algebra and its left and right multiplicative automorphisms.

6.7 Wave equations

The mass term of the Dirac equation links the right wave to the left wave, wecan read this in (2.31) and (2.32). W 1 et W 2 terms in the electro-weak theorylink left waves ηe ηn of the electron and of its neutrino, while B and W 3 termswork separately with left and right waves. The Weinberg-Salam model tookadvantage of the very small mass of the electron to neglect its mass term51.Mass is then out 6.1 to 6.6. The existence of the preceding identities allows amass term in a wave equation both form invariant and gauge invariant, we seethis first in the case of the Ψl wave of the electron and its neutrino:

Ψl(DΨl)γ012 +mρl = 0 (6.254)

if we authorize ρl, defined in (6.250), to be variable in the gauge invariance asin the form invariance. For the case of the form invariance (which implies therelativistic invariance) we have with (2.64) and (6.248).

ρ′e = rρe ; φ′L = MφL

ρ′L = | det(φ′L)| = | det(M)|| det(φL)| = rρL

ρ′l =

√ρ′e

2 + ρ′L2 = r

√ρ2e + ρ2L = rρl. (6.255)

The wave equation (6.254) is then form invariant under the transformation Rdefined by M in (1.42) and N in (1.80), the equation becomes :

Ψ′l(D

′Ψ′l)γ012 +m′ρ′l = 0 ; mρl = m′ρ′l. (6.256)

This wave equation could not be gotten from the linear wave equation, becauseeven if the relativistic invariant ρ, linked to the determinants, always exist whenwe use the wave of a pair electron-neutrino, there is no more a Yvon-Takabayasiangle. It is defined only for one electron. Under the gauge transformationdefined in (6.119) to (6.122) we get (the detailed calculation is in Appendix B):

Ψ′l(D

′Ψ′l)γ012 +m′ρ′l = 0 ; ρ′l = | det(Ψ′

l)|1/2. (6.257)

51This approximation is a posteriori satisfied by the huge mass of the Z0 which is 180,000times the mass of the electron. This approximation was inevitable because the mass term ofthe linear Dirac equation cannot be compatible with the electro-weak gauge.

94

(6.257)

Therefore it is not necessary to use a complicated mechanism of spontaneously broken symmetry to rec-oncile the electro-weak gauge invariance with the exis- tence of the mass of the electron. All you have to do is to accept that the ρl term, which depends on Ψ, may change with the gauge transformation acting on this Ψ. The gen-eralization of (6.254) to the complete wave including the wave of the quarks of the first generation is possible:

Therefore it is not necessary to use a complicated mechanism of spontaneouslybroken symmetry to reconcile the electro-weak gauge invariance with the exis-tence of the mass of the electron. All you have to do is to accept that the ρlterm, which depends on Ψ, may change with the gauge transformation actingon this Ψ. The generalization of (6.254) to the complete wave including thewave of the quarks of the first generation is possible:

Ψ(DΨ)Λ012 +mqρ = mρlP− ; ρ = [det(Ψ)]1/4 (6.258)

where mq is the reduced mass of the u quark, ρl satisfies (6.250) and P− is theprojector defined in (1.93). The other quark is more heavy, but we must recallthat the d quark used in all this section is not the ordinary d quark, but thepartner of the u quark in electro-weak interactions, which is a combination ofthe d and s quarks, s being the corresponding of d in the second generation.With the gauge transformation defined in (6.177) to (6.181) we get:

Ψ′(D′Ψ′)Λ012 +m′qρ

′ = m′ρ′lP− (6.259)

ρ′ = [det(Ψ′)]1/4 ; ρ′l = [det(Ψ′l)]

1/2. (6.260)

In a domain of the space-time where the wave of u and d quarks is zero we getdet(Ψ) = 0 and the wave equation (6.258) is reduced to (6.254).

In this case and in a domain of the space-time where the wave of the electronis null or negligible we get ρl = 0 and the wave equation of the neutrino isreduced to ∇ηn = 0 which is the wave equation of the usual neutrino movingwith the light speed. This wave is then without interaction.

7 Magnetic monopoles

We present here the recent experimental works on magnetic monopoles.Next we apply to the magnetic monopole our study of electro-weakinteractions.

7.1 Russian experimental works

Recent experimental works about magnetic monopoles began with V.F. Mikhailov[25]. He was taking up works made fifty years ago by F. Ehrenhaft. An electricarc produces ferromagnetic dusts that are conducted by a Ar gas into a chamberwhere a laser lights them up. Into the chamber the ferromagnetic particles aremoved by a magnetic field and an electric field orthogonal to the magnetic field.The direction of the fields may be reversed. Movements are observed, under thelight of the laser, with an optic microscope.

The measure of the magnetic charge of these particles took advantage of thefact that some of them have also an electric charge and the move of an electriccharge into an electric field is well known. Mikhailov observed an elementary

magnetic charge g = nαe

6. The fine structure constant α is small (α ≈ 1

137 ).

95

(6.258)

where mq is the reduced mass of the u quark, ρl satisfies (6.250) and P − is the projector defined in (1.93). The other quark is more heavy, but we must recall that the d quark used in all this section is not the ordinary d quark, but the partner of the u quark in electro-weak in-teractions, which is a combination of the d and s quarks, s being the corresponding of d in the second genera-tion. With the gauge transformation defined in (6.177) to (6.181) we get:

Therefore it is not necessary to use a complicated mechanism of spontaneouslybroken symmetry to reconcile the electro-weak gauge invariance with the exis-tence of the mass of the electron. All you have to do is to accept that the ρlterm, which depends on Ψ, may change with the gauge transformation actingon this Ψ. The generalization of (6.254) to the complete wave including thewave of the quarks of the first generation is possible:

Ψ(DΨ)Λ012 +mqρ = mρlP− ; ρ = [det(Ψ)]1/4 (6.258)

where mq is the reduced mass of the u quark, ρl satisfies (6.250) and P− is theprojector defined in (1.93). The other quark is more heavy, but we must recallthat the d quark used in all this section is not the ordinary d quark, but thepartner of the u quark in electro-weak interactions, which is a combination ofthe d and s quarks, s being the corresponding of d in the second generation.With the gauge transformation defined in (6.177) to (6.181) we get:

Ψ′(D′Ψ′)Λ012 +m′qρ

′ = m′ρ′lP− (6.259)

ρ′ = [det(Ψ′)]1/4 ; ρ′l = [det(Ψ′l)]

1/2. (6.260)

In a domain of the space-time where the wave of u and d quarks is zero we getdet(Ψ) = 0 and the wave equation (6.258) is reduced to (6.254).

In this case and in a domain of the space-time where the wave of the electronis null or negligible we get ρl = 0 and the wave equation of the neutrino isreduced to ∇ηn = 0 which is the wave equation of the usual neutrino movingwith the light speed. This wave is then without interaction.

7 Magnetic monopoles

We present here the recent experimental works on magnetic monopoles.Next we apply to the magnetic monopole our study of electro-weakinteractions.

7.1 Russian experimental works

Recent experimental works about magnetic monopoles began with V.F. Mikhailov[25]. He was taking up works made fifty years ago by F. Ehrenhaft. An electricarc produces ferromagnetic dusts that are conducted by a Ar gas into a chamberwhere a laser lights them up. Into the chamber the ferromagnetic particles aremoved by a magnetic field and an electric field orthogonal to the magnetic field.The direction of the fields may be reversed. Movements are observed, under thelight of the laser, with an optic microscope.

The measure of the magnetic charge of these particles took advantage of thefact that some of them have also an electric charge and the move of an electriccharge into an electric field is well known. Mikhailov observed an elementary

magnetic charge g = nαe

6. The fine structure constant α is small (α ≈ 1

137 ).

95

(6.259)

39

Page 41: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 39

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

Therefore it is not necessary to use a complicated mechanism of spontaneouslybroken symmetry to reconcile the electro-weak gauge invariance with the exis-tence of the mass of the electron. All you have to do is to accept that the ρlterm, which depends on Ψ, may change with the gauge transformation actingon this Ψ. The generalization of (6.254) to the complete wave including thewave of the quarks of the first generation is possible:

Ψ(DΨ)Λ012 +mqρ = mρlP− ; ρ = [det(Ψ)]1/4 (6.258)

where mq is the reduced mass of the u quark, ρl satisfies (6.250) and P− is theprojector defined in (1.93). The other quark is more heavy, but we must recallthat the d quark used in all this section is not the ordinary d quark, but thepartner of the u quark in electro-weak interactions, which is a combination ofthe d and s quarks, s being the corresponding of d in the second generation.With the gauge transformation defined in (6.177) to (6.181) we get:

Ψ′(D′Ψ′)Λ012 +m′qρ

′ = m′ρ′lP− (6.259)

ρ′ = [det(Ψ′)]1/4 ; ρ′l = [det(Ψ′l)]

1/2. (6.260)

In a domain of the space-time where the wave of u and d quarks is zero we getdet(Ψ) = 0 and the wave equation (6.258) is reduced to (6.254).

In this case and in a domain of the space-time where the wave of the electronis null or negligible we get ρl = 0 and the wave equation of the neutrino isreduced to ∇ηn = 0 which is the wave equation of the usual neutrino movingwith the light speed. This wave is then without interaction.

7 Magnetic monopoles

We present here the recent experimental works on magnetic monopoles.Next we apply to the magnetic monopole our study of electro-weakinteractions.

7.1 Russian experimental works

Recent experimental works about magnetic monopoles began with V.F. Mikhailov[25]. He was taking up works made fifty years ago by F. Ehrenhaft. An electricarc produces ferromagnetic dusts that are conducted by a Ar gas into a chamberwhere a laser lights them up. Into the chamber the ferromagnetic particles aremoved by a magnetic field and an electric field orthogonal to the magnetic field.The direction of the fields may be reversed. Movements are observed, under thelight of the laser, with an optic microscope.

The measure of the magnetic charge of these particles took advantage of thefact that some of them have also an electric charge and the move of an electriccharge into an electric field is well known. Mikhailov observed an elementary

magnetic charge g = nαe

6. The fine structure constant α is small (α ≈ 1

137 ).

95

(6.260)

In a domain of the space-time where the wave of u and d quarks is zero we get det(Ψ) = 0 and the wave equa-tion (6.258) is reduced to (6.254).

In this case and in a domain of the space-time where the wave of the electron is null or negligible we get ρl = 0 and the wave equation of the neutrino is reduced to

Therefore it is not necessary to use a complicated mechanism of spontaneouslybroken symmetry to reconcile the electro-weak gauge invariance with the exis-tence of the mass of the electron. All you have to do is to accept that the ρlterm, which depends on Ψ, may change with the gauge transformation actingon this Ψ. The generalization of (6.254) to the complete wave including thewave of the quarks of the first generation is possible:

Ψ(DΨ)Λ012 +mqρ = mρlP− ; ρ = [det(Ψ)]1/4 (6.258)

where mq is the reduced mass of the u quark, ρl satisfies (6.250) and P− is theprojector defined in (1.93). The other quark is more heavy, but we must recallthat the d quark used in all this section is not the ordinary d quark, but thepartner of the u quark in electro-weak interactions, which is a combination ofthe d and s quarks, s being the corresponding of d in the second generation.With the gauge transformation defined in (6.177) to (6.181) we get:

Ψ′(D′Ψ′)Λ012 +m′qρ

′ = m′ρ′lP− (6.259)

ρ′ = [det(Ψ′)]1/4 ; ρ′l = [det(Ψ′l)]

1/2. (6.260)

In a domain of the space-time where the wave of u and d quarks is zero we getdet(Ψ) = 0 and the wave equation (6.258) is reduced to (6.254).

In this case and in a domain of the space-time where the wave of the electronis null or negligible we get ρl = 0 and the wave equation of the neutrino isreduced to ∇ηn = 0 which is the wave equation of the usual neutrino movingwith the light speed. This wave is then without interaction.

7 Magnetic monopoles

We present here the recent experimental works on magnetic monopoles.Next we apply to the magnetic monopole our study of electro-weakinteractions.

7.1 Russian experimental works

Recent experimental works about magnetic monopoles began with V.F. Mikhailov[25]. He was taking up works made fifty years ago by F. Ehrenhaft. An electricarc produces ferromagnetic dusts that are conducted by a Ar gas into a chamberwhere a laser lights them up. Into the chamber the ferromagnetic particles aremoved by a magnetic field and an electric field orthogonal to the magnetic field.The direction of the fields may be reversed. Movements are observed, under thelight of the laser, with an optic microscope.

The measure of the magnetic charge of these particles took advantage of thefact that some of them have also an electric charge and the move of an electriccharge into an electric field is well known. Mikhailov observed an elementary

magnetic charge g = nαe

6. The fine structure constant α is small (α ≈ 1

137 ).

95

which is the wave equation of the usual neutri-no moving with the light speed. This wave is then with-out interaction.

7. Magnetic monopolesWe present here the recent experimental works on magnetic monopoles. Next we apply to the magnetic monopole our study of electro-weak interactions.

7.1 Russian experimental works

Recent experimental works about magnetic monopoles began with V.F. Mikhailov [25]. He was taking up works made fifty years ago by F. Ehrenhaft. An electric arc pro-duces ferromagnetic dusts that are conducted by a Ar gas into a chamber where a laser lights them up. Into the chamber the ferromagnetic particles are moved by a mag-netic field and an electric field orthogonal to the magnetic field. The direction of the fields may be reversed. Move-ments are observed, under the light of the laser, with an optic microscope.

The measure of the magnetic charge of these particles took advantage of the fact that some of them have also an electric charge and the move of an electric charge into an electric field is well known. Mikhailov observed an el-ementary magnetic charge

Therefore it is not necessary to use a complicated mechanism of spontaneouslybroken symmetry to reconcile the electro-weak gauge invariance with the exis-tence of the mass of the electron. All you have to do is to accept that the ρlterm, which depends on Ψ, may change with the gauge transformation actingon this Ψ. The generalization of (6.254) to the complete wave including thewave of the quarks of the first generation is possible:

Ψ(DΨ)Λ012 +mqρ = mρlP− ; ρ = [det(Ψ)]1/4 (6.258)

where mq is the reduced mass of the u quark, ρl satisfies (6.250) and P− is theprojector defined in (1.93). The other quark is more heavy, but we must recallthat the d quark used in all this section is not the ordinary d quark, but thepartner of the u quark in electro-weak interactions, which is a combination ofthe d and s quarks, s being the corresponding of d in the second generation.With the gauge transformation defined in (6.177) to (6.181) we get:

Ψ′(D′Ψ′)Λ012 +m′qρ

′ = m′ρ′lP− (6.259)

ρ′ = [det(Ψ′)]1/4 ; ρ′l = [det(Ψ′l)]

1/2. (6.260)

In a domain of the space-time where the wave of u and d quarks is zero we getdet(Ψ) = 0 and the wave equation (6.258) is reduced to (6.254).

In this case and in a domain of the space-time where the wave of the electronis null or negligible we get ρl = 0 and the wave equation of the neutrino isreduced to ∇ηn = 0 which is the wave equation of the usual neutrino movingwith the light speed. This wave is then without interaction.

7 Magnetic monopoles

We present here the recent experimental works on magnetic monopoles.Next we apply to the magnetic monopole our study of electro-weakinteractions.

7.1 Russian experimental works

Recent experimental works about magnetic monopoles began with V.F. Mikhailov[25]. He was taking up works made fifty years ago by F. Ehrenhaft. An electricarc produces ferromagnetic dusts that are conducted by a Ar gas into a chamberwhere a laser lights them up. Into the chamber the ferromagnetic particles aremoved by a magnetic field and an electric field orthogonal to the magnetic field.The direction of the fields may be reversed. Movements are observed, under thelight of the laser, with an optic microscope.

The measure of the magnetic charge of these particles took advantage of thefact that some of them have also an electric charge and the move of an electriccharge into an electric field is well known. Mikhailov observed an elementary

magnetic charge g = nαe

6. The fine structure constant α is small (α ≈ 1

137 ).

95

. The fine structure constant α is small (

Therefore it is not necessary to use a complicated mechanism of spontaneouslybroken symmetry to reconcile the electro-weak gauge invariance with the exis-tence of the mass of the electron. All you have to do is to accept that the ρlterm, which depends on Ψ, may change with the gauge transformation actingon this Ψ. The generalization of (6.254) to the complete wave including thewave of the quarks of the first generation is possible:

Ψ(DΨ)Λ012 +mqρ = mρlP− ; ρ = [det(Ψ)]1/4 (6.258)

where mq is the reduced mass of the u quark, ρl satisfies (6.250) and P− is theprojector defined in (1.93). The other quark is more heavy, but we must recallthat the d quark used in all this section is not the ordinary d quark, but thepartner of the u quark in electro-weak interactions, which is a combination ofthe d and s quarks, s being the corresponding of d in the second generation.With the gauge transformation defined in (6.177) to (6.181) we get:

Ψ′(D′Ψ′)Λ012 +m′qρ

′ = m′ρ′lP− (6.259)

ρ′ = [det(Ψ′)]1/4 ; ρ′l = [det(Ψ′l)]

1/2. (6.260)

In a domain of the space-time where the wave of u and d quarks is zero we getdet(Ψ) = 0 and the wave equation (6.258) is reduced to (6.254).

In this case and in a domain of the space-time where the wave of the electronis null or negligible we get ρl = 0 and the wave equation of the neutrino isreduced to ∇ηn = 0 which is the wave equation of the usual neutrino movingwith the light speed. This wave is then without interaction.

7 Magnetic monopoles

We present here the recent experimental works on magnetic monopoles.Next we apply to the magnetic monopole our study of electro-weakinteractions.

7.1 Russian experimental works

Recent experimental works about magnetic monopoles began with V.F. Mikhailov[25]. He was taking up works made fifty years ago by F. Ehrenhaft. An electricarc produces ferromagnetic dusts that are conducted by a Ar gas into a chamberwhere a laser lights them up. Into the chamber the ferromagnetic particles aremoved by a magnetic field and an electric field orthogonal to the magnetic field.The direction of the fields may be reversed. Movements are observed, under thelight of the laser, with an optic microscope.

The measure of the magnetic charge of these particles took advantage of thefact that some of them have also an electric charge and the move of an electriccharge into an electric field is well known. Mikhailov observed an elementary

magnetic charge g = nαe

6. The fine structure constant α is small (α ≈ 1

137 ).

95

).But the expected value is completely different [13]. A

calculation made by Dirac, obtained again in a very smart way by G. Lochak from his theory of the monopole [19] gives, for the elementary magnetic charge

But the expected value is completely different [13]. A calculation made byDirac, obtained again in a very smart way by G. Lochak from his theory of themonopole [19] gives, for the elementary magnetic charge

eg

c=

n

2(7.1)

where n is an integer. The elementary magnetic charge observed by Mikhailovwas much smaller than the theoretical charge. We may ask if there is a reasonto refute the theoretical calculation, or if there exists an experimental reason tothis divergence. The two things are possible: each process allowing to get (7.1)includes a calculation of the potentials created by charges, and we can doubt itsvalidity. Magnetic charges observed by Mikhailov were visible only during theillumination by the strong light of a laser, and may have been second order effectscoming from this illumination. Mikhailov realized also an experiment wherethe ferromagnetic particles were included into water droplets, with sphericalsymmetry. Then he measured magnetic charges compatible with the elementarymagnetic charge calculated by Dirac. The value of such a charge is then aquestion that must be solved experimentally.

The experimental work of L. Urutskoev had in common with Mikhailov’swork only the use of an electric arc. To shatter concrete, little holes were madeand filled with water, an electric wire was put in each hole and an electriccondenser was discharged into the wires. The discharge produced an explosionand this explosion shattered the concrete. The first astonishing fact was thegreat speed of the pieces of concrete smashed by the explosion, this induced aneed to better study what was going there.

The continuation of experiments was to shoot into pure water, without con-crete. An intense glowing was found to appear above the device. The durationof this phenomenon, about 5ms, was much greater than the duration of the dis-charge, 0.15ms. A spectral analysis of the emitted light was performed. Spectrallines of nitrogen or oxygen were very weak, while the glowing was emitted intothe air. and the strongest spectral lines showed the presence of Ti, Fe, Cu, Zn,Cr, Ni, Ca, Na. The presence of Cu and Zn could come from the electric wires,the presence of Ti signified that the Ti foils used in discharges spread above thedevice, in spite of the cover. The presence of the other elements was enigmatic.This induced to analyze more finely the metal powder resulting from the explo-sion of the Ti foil in water. Observations made were still stranger. While thefoil was made of 99.7% Ti the ratio of Ti in powder could go down to 92%. Theamount of disappeared titanium corresponded to the amount of new elementsappearing, Fe, Si, Al, Ca, Na, Cu, Zn, principally. In addition, an isotopic anal-ysis showed that the isotopic composition of Ti was changed, with a significantdecline of the ratio of 48Ti. Experiments were repeated many times, with allnecessary precautions. Other metals were used, in particular zirconium. Ratiosof different outside elements changed on composition of the exploded foil. Forinstance there was much more Cr with the zirconium than with titanium, andmuch less Si and Al.

Since the transformation from an element to another is usually associated

96

. (7.1)

where n is an integer. The elementary magnetic charge observed by Mikhailov was much smaller than the the-oretical charge. We may ask if there is a reason to re-fute the theoretical calculation, or if there exists an ex-perimental reason to this divergence. The two things are possible: each process allowing to get (7.1) includes a calculation of the potentials created by charges, and we can doubt its validity. Magnetic charges observed by Mikhailov were visible only during the illumination by the strong light of a laser, and may have been second or-der effects coming from this illumination. Mikhailov re-alized also an experiment where the ferromagnetic par-

ticles were included into water droplets, with spherical symmetry. Then he measured magnetic charges compat-ible with the elementary magnetic charge calculated by Dirac. The value of such a charge is then a question that must be solved experimentally.

The experimental work of L. Urutskoev had in com-mon with Mikhailov’s work only the use of an electric arc. To shatter concrete, little holes were made and filled with water, an electric wire was put in each hole and an electric condenser was discharged into the wires. The discharge produced an explosion and this explosion shat-tered the concrete. The first astonishing fact was the great speed of the pieces of concrete smashed by the explosion, this induced a need to better study what was going there.

The continuation of experiments was to shoot into pure water, without con- crete. An intense glowing was found to appear above the device. The duration of this phenomenon, about 5ms, was much greater than the du-ration of the dis- charge, 0.15ms. A spectral analysis of the emitted light was performed. Spectral lines of ni-trogen or oxygen were very weak, while the glowing was emitted into the air. and the strongest spectral lines showed the presence of Ti, Fe, Cu, Zn, Cr, Ni, Ca, Na. The presence of Cu and Zn could come from the elec-tric wires, the presence of Ti signified that the Ti foils used in discharges spread above the device, in spite of the cover. The presence of the other elements was enig-matic. This induced to analyze more finely the metal powder resulting from the explosion of the Ti foil in wa-ter. Observations made were still stranger. While the foil was made of 99.7% Ti the ratio of Ti in powder could go down to 92%. The amount of disappeared titanium cor-responded to the amount of new elements appearing, Fe,Si, Al, Ca, Na, Cu, Zn, principally. In addition, an isoto-pic analysis showed that the isotopic composition of Ti was changed, with a significant decline of the ratio of 48 Ti. Experiments were repeated many times, with all nec-essary precautions. Other metals were used, in particular zirconium. Ratios of different outside elements changed on composition of the exploded foil. For instance there was much more Cr with the zirconium than with titani-um, and much less Si and Al.

Since the transformation from an element to another is usually associated to radioactivity, an intensive search of radioactive emission was made. There was no X-γ rays detected, in spite of 1019–1020 transformed atoms at each shot. Detection of neutrons was also performed. Scin-tillator detectors indicated a pulse that allowed to esti-mate the speed of the radiation to 20–40 m/s. Such a low speed could not match a neutron flux, because neutrons should be ultra cold. A detection of the radiation with photo emulsions was applied, for lack of better means. We will come back farther on what is seen with these

38

Page 42: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201440

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

films. Urutskoev saw next that the presence of a strong magnetic field changed the aspect of these traces, and he deduced that the radiation going out his shots had mag-netic properties. He led then experiments to trap the ra-diation with strong magnets and he used the Moessbauer effect to prove the reality of these captures.

Urutskoev noted also that the transformations come principally from even- even kernels, that is to say from kernels with an even number of protons and an even num-ber of neutrons. He noticed that the mean binding ener-gy of produced kernels was very few different from the mean binding energy of initial kernels: there was no nu-clear energy emitted or absorbed in significant amount. And all the produced kernels were in the ground state, there was no radioactivity.

Experiments made by N.G. Ivoilov [16] indicated that it was possible to get similar traces on photographic films with much less energy: he used an electric arc into water, with a current exceeding not 40 A with a 80 V tension. He got traces complying to properties of magnetic mono-poles predicted by the G. Lochak’s theory.

7.2 Works at E.C.N.

Works made at the Ecole Centrale de Nantes, in the lab-oratory of Guillaume Racineux by Didier Priem and Claude Daviau [22] with the help of Henri Lehn and of the Fondation Louis de Broglie, had the aim to satisfy and to continue the Urutskoev’s work. This seemed nec-essary in view of the extraordinary nature of yet obtained results.

Figure 1: Vessel

The experimental device is dependent on the avail-able equipment at the E.C.N. and then is different, even if it is as few as possible, from this used by Urutskoev. The generator is an American one, Maxwell type, maxi-mum power 12 kJ at 8.4 kV, capacity 360 µF and a ves-sel (Figure 1). The first containment vessel was made of

aluminum, it was replaced by a second vessel to allow to collect the gas produced during a shot. Experiments made by Urutskoev allow him to see that the gas is al-most totally hydrogen. This second vessel was made of stainless steel, it contained a tank with an internal diam-eter of 20 mm covered by polyurethane. The internal di-ameter was then reduced to 16 mm which has improved the yield. A third vessel was made when the second was tired. The current coming from the generator is distrib-uted into two electrodes, one up and one down. They are linked by a fuse made of Ti40.

After a shot, the gas is collected, its volume is mea-sured. Powders are collected with the liquid which con-tains them, and are placed during 24 hours under a pho-tographic plate exposed to the radiation coming out of powders. This photographic film is then developed and examined with an optic micro- scope. Powders are des-sicated and examined with the electronic microscope of the E.C.N.. This allows us to get three kinds of results, about powders, gas and traces on the photographic films.

7.2.1 Results about powder and gas

Our observations confirm very widely the results ob-tained by L. Urutskoev, even if our ratios of production are lower than those he got. The energy of the discharge being lower than this of Urutskoev, and the discharge being shorter, this is not astonishing. But outside this, strange elements whose we get spectro- grams into the electronic microscope have a composition very near that obtained by Urutskoev. In the same time our obser-vations make the things still stranger: when we notice the presence of one per cent of iron into our powders, this iron is not dispersed a little everywhere. On the contrary what we notice is: one per cent of the particles are made of so much iron than titanium is quasi missing. It is often iron which is dominating but there are shots where we find more copper than iron. The particles made of copper have any scale, some are numerous and have length of about one micrometer, others much rar-er are greater and even visible to the naked eye. Those particles contain very few titanium. The composition of the exotic particles may be more complicated: we ob-serve par- ticles of iron-chromium, of copper-zinc. Iron is rarely alone, it is most of time with chromium, a lit-tle nickel, sometimes 1% manganese, and with carbon and oxygen. The composition of particles is often not homogeneous, a particle may have not transformed ti-tanium at places and titanium may have been nearly all replaced at another place.

Figure 2 shows a particle with an evident continuity, which has dark places and one light place, in addition to many holes. On the left and above, titanium remains intact. At the center, the spectral analysis indicates the follow-

41

Page 43: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 41

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

ing mass composition: Fe 69, 8%, Ti 10, 81%, Ni 7.28%, Cr 4, 33%, O 3, 98%, C 3, 8%. Holes are also significant, because they indicate a gas production just before the solidification caused by the intense cooling in water.

Figure 2: Particle with an iron place

The fact that iron is rarely alone, and that it is associ-ated to chromium and nickel has much complicated our work, because the stainless steel of our tank is made of those three metals, and we could be objected that stain-less steel of our tank contaminated powders. Stainless steel was therefore removed from the inside of the tank, it contains now only titanium and polyurethane. The sup-pression of the stainless steel has changed nothing actu-ally, there is also iron into powders when the alone met-al inside the tank is titanium. This was predictable since the composition indicated above is not this of the stain-less steel of our vessel. We can also easily satisfy that the Ti40 used to make our fuse does not contain the ratio of iron, copper and other materials found into powders.

Extraordinary results obtained by Urutskoev are there-fore well real. The one who should say them impossible only has to reproduce the experiment. If he is honest, he will be obliged to see that something really happens.

But nothing should happen: conditions of the ex-periment move an energy measured in kJ, this furnish only a hundred of eV at uppermost for each con- cerned atom of titanium. This is ridiculously small in compari-son with nuclear binding energies. In addition interac-tions known until then work in a completely different way. For instance weak interactions allow to transform one proton of a kernel into a neutron, or vice versa, and that is submitted to general laws of quantum mechanics, where random plays a obligatory and permanent role. If the kernel of a titanium atom was transformed by weak interaction, it could give a kernel of scandium or va-nadium. Neither of those metals was seen until then. We saw vanadium rays not only once, and vanadium is an obligatory way if you want to go, with weak inter-

actions, from titanium to iron or copper. And if weak interactions were acting, transformed kernels should arrive at random, in time and in space, not into macro-scopic bundles.

We must not forget that our experiment is an explo-sion and an explosion is not precisely the best way to as-semble into a packet some dispersed atoms. It is on the contrary a very good way to disperse a concentrated mat-ter. Since we see particles made of iron, or of copper, or of nickel, or of iron-chromium, with very few titanium, these elements were produced together. We do not under-stand how it is possible, but that changes nothing to the reality of the phenomenon.

In addition there are energy constraints. The mass of the elements found into our powders and which should not be there is 1010 times greater than the mass of the energy brought by the electric discharge. With an ex-cellent precision we can then say that the total energy of the produced atoms is equal to the total energy of the destroyed atoms. This conservation of the total energy restricts considerably the possibilities of reaction. We cannot get for instance vanadium. The isotopes of va-nadium are heavier than these of titanium, which allows to 48V to be β + radioactive and to disintegrate into 48Ti. And as we have no radioactivity linked to these trans-formations, it is necessary that the total number of elec-trons, of protons and of neutrons are also conserved. So strange as it may be, all these conditions of conser-vation do not forbid the observed transformations. As Urutskoev said, all is just like if for instance 100 ker-nels of 48Ti go together for some reason to form a big ”kernel”, then reallocate their nucleons to form in the same time lighter and heavier kernels. Doing so they also respect the conservation laws of energy, electric charge, baryonic charge, leptonic charge... And in addi-tion this magical transformation is accompanied by no significant radioactivity!

Now we do not know enough to have an idea about mechanisms of trans- formation. We do not know why after one shot we get many iron particles while after the following shot we will get instead copper particles. To begin to understand what happens will necessitate probably a very fine analysis of the obtained particles and of the physical conditions into our vessel. In view of the brevity of the discharge (72µs) and the intense pressures linked to the shock wave, it will be not easy to learn more.

Some gas was always produced during the metallur-gical works made at the Ecole Centrale. The presence of this gas was besides considered as a nuisance, limiting the repetitiveness of the shots. The device that we use al-lows to measure easily the quantity of produced gas. This gas is quasi totally made of hydrogen. As titanium heated

40

Page 44: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201442

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

Figure 3: Circle, diameter: 0,2 mm

Figure 4: Circle, length of the picture: 2,6 mm

Figure 5: circle, length of the picture: 2,47 mm

Figure 6: Circle, length of the picture: 0,95 mm

Figure 7: Circle, length of the picture: 1,45 mm

to a very high temperature is a reducing agent, this is not surprising. It is also difficult to estimate the quantity of oxygen going into the powders as oxide or dioxide of ti-tanium, or dissolving into water. We have estimations in-dicating that a part of the hydrogen does not come from the dissociation of water. To satisfy this a shot into heavy water has been done with success by L. Urutskoev. He got not only D2, but also HD and H2. And this hydrogen cannot come from the water. Transformations of titanium can leave isolated protons and electrons which form hy-drogen atoms. This hydrogen, either from chemical ori-gin or not, is formed inside particles, which are often so much spongy that they float on the water in which we collect the powders.

7.2.2 Stains

After each trial, the titanium powders from the fusible are collected along with the water contained in the trial chamber and are placed under a photographic plate. The traces are produced, not immediately in the electric arc, but by what is in the water and powders, and leaving sev-eral hours after the electric arc. Sometimes, something go out of the water, it is not only the things that make the traces, but also a part of the powders on the surface of the water. They emerge from the water, despite the grav-ity and the surface tension of water, and are glued on the wrapping paper of the photographic plate:

Figure 1: Stained paper, experiments 103, 62, 79

7.2.3 Traces

Powders collected after a shot and the photographic plate, following both indica- tions of Urutskoev and Lo-chak, are placed between two metallic plates forming a plane condenser, under a low 10V tension. The move of a magnetic monopole in a fixed uniform electric field is analogous to the move of an electric charge in a fixed uni-form magnetic field. The Laplace force is

what is in the water and powders, and leaving several hours after the electricarc. Sometimes, something go out of the water, it is not only the things thatmake the traces, but also a part of the powders on the surface of the water.They emerge from the water, despite the gravity and the surface tension ofwater, and are glued on the wrapping paper of the photographic plate:

Figure 1: Stained paper, experiments 103, 62, 79.

7.2.3 Traces

Powders collected after a shot and the photographic plate, following both indica-tions of Urutskoev and Lochak, are placed between two metallic plates forminga plane condenser, under a low 10V tension. The move of a magnetic monopolein a fixed uniform electric field is analogous to the move of an electric charge ina fixed uniform magnetic field. The Laplace force is

F = g( H − v

c× E) (7.2)

where g is the charge of the magnetic monopole. In a constant electric fieldorthogonal to the plane of the plate, a monopole must have a circular moveWe expect rotations into the plane of the photographic plate, and it is whathappens rather often, as figures 3 to 7 show.

Figure 3: Circle, diameter: 0,2 mm

Figure 4: Circle, length of the picture: 2,6 mm

101

(7.2)

where g is the charge of the magnetic monopole. In a constant electric field orthogonal to the plane of the plate,

a monopole must have a circular move We expect rota-tions into the plane of the photographic plate, and it is what happens rather often, as figures 3 to 7 show.

We must not expect all traces to be circular, because the presence of glass dishes between plates induces a certainly non-uniform electric field. We must also no-tice we do not know a priori what we seek, we see prob-ably only a little part of traces, in the absence of know-ing completely the dynamics of magnetic monopoles. We also do not know how monopoles interact with the photographic plate. It is easier to see the very long and stark traces, more difficult to see the short and weak traces. Circles are not the only curved traces, we obtain also horseshoes:

43

Page 45: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 43

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

Figure 8: Horseshoe, length of the picture: 0,19 mm

We must expect not perfect circles, notably because the loss of energy gives a smaller radius. This is visible on the following pictures

Figure 9: Braking, length of the picture: 1,78 mm

Figure 10: Braking, length of the picture: 1,9 mm

Figure 11: Braking, length of the picture: 0,57 mm

Figure 12: Braking, length of the picture: 0,2 mm

Large traces, as in figures 8 or 12, are actually double traces. This doubling of traces is more visible when the two traces are well separated:

Figure 13: Double trace, length of the picture: 2,67 mm

Figure 14: Double trace, length of the picture: 0,58 mm

The magnetic monopole of G. Lochak is a chiral ob-ject, built from an angle which is pseudo-scalar. The sim-pler object of our usual world explaining what is chiral-ity is a screw. There are left screws and right screws. This property is verified for several observed traces52. We can see spirals, often with difficulty. Sometimes the spiral is very visible, as on this trace and its enlargements:

Figure 15: Spiral trace (length 2mm)

Figures 16 and 17: Enlargements of figure 15

Undulations are often seen on enlargements of our pictures:

Figure 18: Wave, length of the picture: 2,67 mm

A wavelength is directly measurable on this picture, where we count 30 wave-lengths, this gives a 89µm

52 This is at the moment the best proof of the predictive power of the Lochak’s idea of a Dirac wave for the magnetic monopole

42

Page 46: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201444

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

wavelength. A wavelength is also directly measurable on the following picture:

Figure 19: Wave, length of the picture: 1,54 mm

Considering the four undulations in the middle we can estimate the wave- length: 130µm. Moreover a sec-ond thing is visible on this picture, a double pattern with alternatively rising and descending traces.

The Lochak’s theory of the magnetic monopole can account for this double pattern: the wave is a Dirac spin-or made of two Weyl spinors, a right one and a left one. If the proper mass of the monopole is null these two Weyl spinors are independent and may move one without the other. If the proper mass is not null the two Weyl spin-ors are coupled by the mass term. Perhaps what we see on figure 19 is exactly that, a left wave and a right wave, whose we see only pieces. They are superposed at ends and successively seen in the middle. A double pattern is rather common, we can see this in the following figures:

Figure 20: Double pattern, length of the picture: 2 mm

The wavelength is estimated to 143µm.

Figure 21: Double pattern, length of the picture: 1,64 mm

Here the wavelength is estimated to 65µm.

Figure 22: Double pattern, length of the picture: 2,65 mm

The wavelength is estimated to 177µm. If the wave-length is the de Broglie’s wavelength, not an artifact53, it is possible to calculate the impulse:

Figure 21: Double pattern, length of the picture: 1,64 mm

Here the wavelength is estimated to 65µm.

Figure 22: Double pattern, length of the picture: 2,65 mm

The wavelength is estimated to 177µm. If the wavelength is the de Broglie’swavelength, not an artifact53, it is possible to calculate the impulse:

p = mv =h

λ(7.3)

For the wave of figure 21 where the wavelength is the shortest the impulseis about 10−29kgm/s. The big question is then the velocity of the magneticmonopole. If it is the light speed the energy is very small. Can a wave withonly 0,02eVc−2 make the visible effects on figure 21 ? This is dubious. The onlyexperimental velocity was given by Urutskoev and it is very low: 20-40 m/s. Avelocity of 20 m/s gives then a mass: 5.10−31kg, similar to the proper mass ofthe electron. A velocity still lower is possible since it is perhaps at the end ofthe braking that we saw this trace. Another theoretical possibility is given by(5.42) where the limit speed has a null limit when ε is near 1.

Figure 23: Continuous-broken trace, length of the picture: 1,47 mm.

Continuity of many traces is only an appearance coming from a blurred picture.We can see this on the next picture, where a numeric enlargement allows tocount grains and to estimate the distance between two grains: 8µm.

53G. Lochak thinks that what we see is not the de Broglie’s wavelength, but only a scalecorresponding to the response of the plate to the move of the wave. But then why two patterns?

105

(7.3)

For the wave of figure 21 where the wavelength is the shortest the impulse is about 10−29 kgm/s. The big ques-tion is then the velocity of the magnetic monopole. If it is the light speed the energy is very small. Can a wave with only 0,02eVc−2 make the visible effects on figure 21? This is dubious. The only experimental velocity was given by Urutskoev and it is very low: 20-40 m/s. A velocity of 20 m/s gives then a mass: 5.10−31 kg, similar to the prop-er mass of the electron. A velocity still lower is possible since it is perhaps at the end of the braking that we saw this trace. Another theoretical possibility is given by (5.42) where the limit speed has a null limit when E is near 1.

Figure 23: Continuous-broken trace, length of the picture: 1,47 mm

Continuity of many traces is only an appearance com-ing from a blurred picture.We can see this on the next pic-ture, where a numeric enlargement allows to count grains and to estimate the distance between two grains: 8µm.

Figure 24: Enlarged trace, length of the picture: 0,38 mm

Another frequent aspect of our traces is the quasi-par-allelism of very long traces, as on the following figure:

Figure 25: Multiple traces, length of the picture: 1,97 mm

53 G. Lochak thinks that what we see is not the de Broglie’s wavelength, but only a scale corresponding to the response of the plate to the move of the wave. But then why two patterns?

45

Page 47: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 45

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

Figure 25 shows only a part of each trace which extends on the two sides of the picture. We see five traces nearly parallel and we guess two other ones. We can suppose the double character of these traces is linked to the double character of the wave, with a left and a right part. Following this hypothesis we can think single traces due to superimposed left and right parts. The parallelism of some traces can come from a weak separation of divergent traces, as on the fol-lowing figure:

Figure 26: Divergent traces, length of the picture: 2,67 mm

These traces present obviously a granular structure, with distances between grains very similar: this pleads strongly for the hypothesis of a unique wave, left and right. The wavelength is estimated to 19, 6µm. A few branchings between traces may be seen:

Figure 27: Branching, length of the picture: 1,87 mm

Figure 28: Branching, length of the picture: 0,77 mm

One trace favoring best the hypothesis of the left and right spinors is the fol- lowing, with an enlargement of the upper trace and another of the down trace:

Figure 29: Double spiral, length of the picture: 1,94 mm

The two enlargements are similar to two screws turn-ing inversely.

All these traces show stark differences from phys-ics of particles with an electric charge. To see the left or right nature of a trace will necessitate a three-dimension-al observation of these traces. Such observations show that monopoles make depressions on the surface of the plate [9].

7.3 Electrons and monopoles

The invariant wave equation (3.9) of the electron was ob-tained from the wave equation of the Lochak’s magnetic monopole (3.11) in the particular case (3.12) where the wave equation is homogeneous. To do this we replaced the local chiral gauge by the local electric gauge. We shall then get the invariant wave equation of the magnet-ic monopole by using the inverse transformation, replac-ing the electric gauge by the chiral gauge. We read this gauge in space algebra as:

Figure 28: Branching, length of the picture: 0,77 mm.

One trace favoring best the hypothesis of the left and right spinors is the fol-lowing, with an enlargement of the upper trace and another of the down trace:

Figure 29: Double spiral, length of the picture: 1,94 mm.

The two enlargements are similar to two screws turning inversely.All these traces show stark differences from physics of particles with an

electric charge. To see the left or right nature of a trace will necessitate a three-dimensional observation of these traces. Such observations show that monopolesmake depressions on the surface of the plate [9].

7.3 Electrons and monopoles

The invariant wave equation (3.9) of the electron was obtained from the waveequation of the Lochak’s magnetic monopole (3.11) in the particular case (3.12)where the wave equation is homogeneous. To do this we replaced the local chiralgauge by the local electric gauge. We shall then get the invariant wave equationof the magnetic monopole by using the inverse transformation, replacing theelectric gauge by the chiral gauge. We read this gauge in space algebra as :

φ′ = eiaφ ; QB′ = QB −∇a ; Q =g

c(7.4)

where a is a real number and where g is the charge of the magnetic monopole.iB is the pseudo-vector of space-time magnetic potential, which is also theCabibbo-Ferrari’s potential of the theory of the monopole and which is also thepotential term that is multiplied by the projector P0 in (6.13). The invariantwave equation of the magnetic monopole reads then :

φ(∇φ)σ21 + φQiBφσ21 +mρ = 0. (7.5)

First difference with the case of the electron : this wave equation has none linearapproximation. It is not allowed to add a e−iβ term into the mass term becauseβ is not chiral gauge invariant.

107

(7.4)

where a is a real number and where g is the charge of the magnetic monopole. iB is the pseudo-vector of space-time magnetic potential, which is also the Cabibbo-Fer-rari’s potential of the theory of the monopole and which is also the potential term that is multiplied by the projec-tor P0 in (6.13). The invariant wave equation of the mag-netic monopole reads then:

Figure 28: Branching, length of the picture: 0,77 mm.

One trace favoring best the hypothesis of the left and right spinors is the fol-lowing, with an enlargement of the upper trace and another of the down trace:

Figure 29: Double spiral, length of the picture: 1,94 mm.

The two enlargements are similar to two screws turning inversely.All these traces show stark differences from physics of particles with an

electric charge. To see the left or right nature of a trace will necessitate a three-dimensional observation of these traces. Such observations show that monopolesmake depressions on the surface of the plate [9].

7.3 Electrons and monopoles

The invariant wave equation (3.9) of the electron was obtained from the waveequation of the Lochak’s magnetic monopole (3.11) in the particular case (3.12)where the wave equation is homogeneous. To do this we replaced the local chiralgauge by the local electric gauge. We shall then get the invariant wave equationof the magnetic monopole by using the inverse transformation, replacing theelectric gauge by the chiral gauge. We read this gauge in space algebra as :

φ′ = eiaφ ; QB′ = QB −∇a ; Q =g

c(7.4)

where a is a real number and where g is the charge of the magnetic monopole.iB is the pseudo-vector of space-time magnetic potential, which is also theCabibbo-Ferrari’s potential of the theory of the monopole and which is also thepotential term that is multiplied by the projector P0 in (6.13). The invariantwave equation of the magnetic monopole reads then :

φ(∇φ)σ21 + φQiBφσ21 +mρ = 0. (7.5)

First difference with the case of the electron : this wave equation has none linearapproximation. It is not allowed to add a e−iβ term into the mass term becauseβ is not chiral gauge invariant.

107

(7.5)

First difference with the case of the electron: this wave equation has none linear approximation. It is not allowed to add a e−iβ term into the mass term because β is not chiral gauge invariant.

To get the 8 numeric equations of this invariant wave equation we use a space-time vector U satisfying

To get the 8 numeric equations of this invariant wave equation we use aspace-time vector U satisfying

φQBφ = Uµσµ (7.6)

and we get in the place of (3.21) to (3.28) the system

0 = w3 − U3 +mρ (7.7)

0 = v2 (7.8)

0 = −v1 (7.9)

0 = w0 − U0 (7.10)

0 = −v3 (7.11)

0 = w2 + U1 (7.12)

0 = −w1 − U2 (7.13)

0 = −v0 (7.14)

As with the electron the scalar part of the invariant wave (7.7) is the Lagrangiandensity. Lochak immediately remarked that in this Lagrangian density the cur-rent J = D0 is replaced by K = D3. From there comes in 7.7 the 3 indexinstead of a 0 index. We can say that the invariant wave equation is somewheresimpler than the invariant wave of the electron : all four vµ terms are zero. Thismeans that the four Dµ vectors are conservative. We recall that the density D0

0

gives in the case of the electron that quantum theory see, from the Schrdingerequation, as a probability density. Lochak has proved that K = D3 is the con-servative current linked to the invariance of the Lagrangian density (7.7) underthe chiral gauge (7.4). Vectors D1 and D2, equally conservative, are unknownof the formalism of Dirac matrices. We have seen in (2.103)-(2.104) that theelectric gauge gives a rotation in the (D1, D2) plane. With the chiral gaugeall four Dµ are invariant. They are with (2.56) the elements of an orthogonalbasis, and their components are the elements of the matrix of the dilatation Din (3.55).

7.3.1 Charge conjugation

We use again the link between the wave of the particle and the wave of theantiparticle. We note the wave of the antimonopole φa :

φ = φaσ1 ; φa = −φσ1 ; φ = σ1φa (7.15)

The invariant wave equation is then read as

σ1φa(∇φa)σ1σ21 + σ1φQiBφaσ1σ21 +mρ = 0. (7.16)

Multiplying on the right and on the left by σ1 we get

−φa(∇φa)σ21 − φaQiBφaσ21 +mρ = 0. (7.17)

108

(7.6)

and we get in the place of (3.21) to (3.28) the system

(7.7) (7.8) (7.9) (7.10) (7.11) (7.12) (7.13) (7.14)

As with the electron the scalar part of the invariant wave (7.7) is the Lagrangian density. Lochak immedi-ately remarked that in this Lagrangian density the cur-

To get the 8 numeric equations of this invariant wave equation we use aspace-time vector U satisfying

φQBφ = Uµσµ (7.6)

and we get in the place of (3.21) to (3.28) the system

0 = w3 − U3 +mρ (7.7)

0 = v2 (7.8)

0 = −v1 (7.9)

0 = w0 − U0 (7.10)

0 = −v3 (7.11)

0 = w2 + U1 (7.12)

0 = −w1 − U2 (7.13)

0 = −v0 (7.14)

As with the electron the scalar part of the invariant wave (7.7) is the Lagrangiandensity. Lochak immediately remarked that in this Lagrangian density the cur-rent J = D0 is replaced by K = D3. From there comes in 7.7 the 3 indexinstead of a 0 index. We can say that the invariant wave equation is somewheresimpler than the invariant wave of the electron : all four vµ terms are zero. Thismeans that the four Dµ vectors are conservative. We recall that the density D0

0

gives in the case of the electron that quantum theory see, from the Schrdingerequation, as a probability density. Lochak has proved that K = D3 is the con-servative current linked to the invariance of the Lagrangian density (7.7) underthe chiral gauge (7.4). Vectors D1 and D2, equally conservative, are unknownof the formalism of Dirac matrices. We have seen in (2.103)-(2.104) that theelectric gauge gives a rotation in the (D1, D2) plane. With the chiral gaugeall four Dµ are invariant. They are with (2.56) the elements of an orthogonalbasis, and their components are the elements of the matrix of the dilatation Din (3.55).

7.3.1 Charge conjugation

We use again the link between the wave of the particle and the wave of theantiparticle. We note the wave of the antimonopole φa :

φ = φaσ1 ; φa = −φσ1 ; φ = σ1φa (7.15)

The invariant wave equation is then read as

σ1φa(∇φa)σ1σ21 + σ1φQiBφaσ1σ21 +mρ = 0. (7.16)

Multiplying on the right and on the left by σ1 we get

−φa(∇φa)σ21 − φaQiBφaσ21 +mρ = 0. (7.17)

108

44

Page 48: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201446

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

rent J = D0 is replaced by K = D3 . From there comes in 7.7 the 3 index instead of a 0 index. We can say that the invariant wave equation is somewhere simpler than the invariant wave of the electron: all four vµ terms are zero. This means that the four Dµ vectors are conserva-tive. We recall that the density D0 gives in the case of the electron that quantum theory see, from the Schrding-er equation, as a probability density. Lochak has proved that K = D3 is the conservative current linked to the in-variance of the Lagrangian density (7.7) under the chiral gauge (7.4). Vectors D1 and D2 , equally conservative, are unknown of the formalism of Dirac matrices. We have seen in (2.103)–(2.104) that the electric gauge gives a ro-tation in the (D1 , D2) plane. With the chiral gauge all four Dµ are invariant. They are with (2.56) the elements of an orthogonal basis, and their components are the elements of the matrix of the dilatation D in (3.55).

7.3.1 Charge conjugation

We use again the link between the wave of the particle and the wave of the antiparticle. We note the wave of the antimonopole φa:

To get the 8 numeric equations of this invariant wave equation we use aspace-time vector U satisfying

φQBφ = Uµσµ (7.6)

and we get in the place of (3.21) to (3.28) the system

0 = w3 − U3 +mρ (7.7)

0 = v2 (7.8)

0 = −v1 (7.9)

0 = w0 − U0 (7.10)

0 = −v3 (7.11)

0 = w2 + U1 (7.12)

0 = −w1 − U2 (7.13)

0 = −v0 (7.14)

As with the electron the scalar part of the invariant wave (7.7) is the Lagrangiandensity. Lochak immediately remarked that in this Lagrangian density the cur-rent J = D0 is replaced by K = D3. From there comes in 7.7 the 3 indexinstead of a 0 index. We can say that the invariant wave equation is somewheresimpler than the invariant wave of the electron : all four vµ terms are zero. Thismeans that the four Dµ vectors are conservative. We recall that the density D0

0

gives in the case of the electron that quantum theory see, from the Schrdingerequation, as a probability density. Lochak has proved that K = D3 is the con-servative current linked to the invariance of the Lagrangian density (7.7) underthe chiral gauge (7.4). Vectors D1 and D2, equally conservative, are unknownof the formalism of Dirac matrices. We have seen in (2.103)-(2.104) that theelectric gauge gives a rotation in the (D1, D2) plane. With the chiral gaugeall four Dµ are invariant. They are with (2.56) the elements of an orthogonalbasis, and their components are the elements of the matrix of the dilatation Din (3.55).

7.3.1 Charge conjugation

We use again the link between the wave of the particle and the wave of theantiparticle. We note the wave of the antimonopole φa :

φ = φaσ1 ; φa = −φσ1 ; φ = σ1φa (7.15)

The invariant wave equation is then read as

σ1φa(∇φa)σ1σ21 + σ1φQiBφaσ1σ21 +mρ = 0. (7.16)

Multiplying on the right and on the left by σ1 we get

−φa(∇φa)σ21 − φaQiBφaσ21 +mρ = 0. (7.17)

108

(7.15)

The invariant wave equation is then read as

To get the 8 numeric equations of this invariant wave equation we use aspace-time vector U satisfying

φQBφ = Uµσµ (7.6)

and we get in the place of (3.21) to (3.28) the system

0 = w3 − U3 +mρ (7.7)

0 = v2 (7.8)

0 = −v1 (7.9)

0 = w0 − U0 (7.10)

0 = −v3 (7.11)

0 = w2 + U1 (7.12)

0 = −w1 − U2 (7.13)

0 = −v0 (7.14)

As with the electron the scalar part of the invariant wave (7.7) is the Lagrangiandensity. Lochak immediately remarked that in this Lagrangian density the cur-rent J = D0 is replaced by K = D3. From there comes in 7.7 the 3 indexinstead of a 0 index. We can say that the invariant wave equation is somewheresimpler than the invariant wave of the electron : all four vµ terms are zero. Thismeans that the four Dµ vectors are conservative. We recall that the density D0

0

gives in the case of the electron that quantum theory see, from the Schrdingerequation, as a probability density. Lochak has proved that K = D3 is the con-servative current linked to the invariance of the Lagrangian density (7.7) underthe chiral gauge (7.4). Vectors D1 and D2, equally conservative, are unknownof the formalism of Dirac matrices. We have seen in (2.103)-(2.104) that theelectric gauge gives a rotation in the (D1, D2) plane. With the chiral gaugeall four Dµ are invariant. They are with (2.56) the elements of an orthogonalbasis, and their components are the elements of the matrix of the dilatation Din (3.55).

7.3.1 Charge conjugation

We use again the link between the wave of the particle and the wave of theantiparticle. We note the wave of the antimonopole φa :

φ = φaσ1 ; φa = −φσ1 ; φ = σ1φa (7.15)

The invariant wave equation is then read as

σ1φa(∇φa)σ1σ21 + σ1φQiBφaσ1σ21 +mρ = 0. (7.16)

Multiplying on the right and on the left by σ1 we get

−φa(∇φa)σ21 − φaQiBφaσ21 +mρ = 0. (7.17)

108

(7.16)

Multiplying on the right and on the left by σ1 we get

To get the 8 numeric equations of this invariant wave equation we use aspace-time vector U satisfying

φQBφ = Uµσµ (7.6)

and we get in the place of (3.21) to (3.28) the system

0 = w3 − U3 +mρ (7.7)

0 = v2 (7.8)

0 = −v1 (7.9)

0 = w0 − U0 (7.10)

0 = −v3 (7.11)

0 = w2 + U1 (7.12)

0 = −w1 − U2 (7.13)

0 = −v0 (7.14)

As with the electron the scalar part of the invariant wave (7.7) is the Lagrangiandensity. Lochak immediately remarked that in this Lagrangian density the cur-rent J = D0 is replaced by K = D3. From there comes in 7.7 the 3 indexinstead of a 0 index. We can say that the invariant wave equation is somewheresimpler than the invariant wave of the electron : all four vµ terms are zero. Thismeans that the four Dµ vectors are conservative. We recall that the density D0

0

gives in the case of the electron that quantum theory see, from the Schrdingerequation, as a probability density. Lochak has proved that K = D3 is the con-servative current linked to the invariance of the Lagrangian density (7.7) underthe chiral gauge (7.4). Vectors D1 and D2, equally conservative, are unknownof the formalism of Dirac matrices. We have seen in (2.103)-(2.104) that theelectric gauge gives a rotation in the (D1, D2) plane. With the chiral gaugeall four Dµ are invariant. They are with (2.56) the elements of an orthogonalbasis, and their components are the elements of the matrix of the dilatation Din (3.55).

7.3.1 Charge conjugation

We use again the link between the wave of the particle and the wave of theantiparticle. We note the wave of the antimonopole φa :

φ = φaσ1 ; φa = −φσ1 ; φ = σ1φa (7.15)

The invariant wave equation is then read as

σ1φa(∇φa)σ1σ21 + σ1φQiBφaσ1σ21 +mρ = 0. (7.16)

Multiplying on the right and on the left by σ1 we get

−φa(∇φa)σ21 − φaQiBφaσ21 +mρ = 0. (7.17)

108

(7.17)

This is usually simplified intoThis is usually simplified into

φa(∇φa)σ21 + φaQiBφaσ21 −mρ = 0. (7.18)

Therefore Lochak remarked immediately that the charge conjugation does notchange the sign of the magnetic charge, contrarily to the case of the electriccharge. Then there is no polarization of the void from magnetic charges.[17][18] [19]. But the form invariance of the wave equation indicates that the truewave equation is (7.17), not (7.18). It should then be more correct to say that,contrarily to the case of the electron, the charge conjugation changes here notonly the differential term, but also the charge, then it does not change the gaugenor the sign of the mass-energy.

7.3.2 The interaction electron-monopole

The space-time vector B is, like the vector electromagnetic potential A, a con-travariant vector, this is correct because O. Costa de Beauregard explained [11]why potential terms are moving with sources that are electric and magneticcharges. The QB vector, similar to the qA vector, is a covariant vector (seesection 4). This allows the interaction by gauge invariance. We have seen insection 6 that the Weinberg-Salam θW angle is invariant under the group of di-lations. An electric charge creating a A potential creates then also, with (6.85),a potential :

B = cos(θW )A (7.19)

Since this B potential is present in the wave equation of the magnetic monopole,it is able to interact with the electric charge. This interaction was detailed byLochak. The basis of his calculation is the continuity of the wave functionunder the group of rotations. The continuity of the wave being comforted bythe continuity of the potential, it is not necessary to review the calculation andwe can use [17] [19]. The B potential used there was questionable because itis not continuous in each point of the z axis. It is why the result, even if thephysical reasoning was perfect, is a little too short. In the case of a potentialcreated by an electric charge we have

A0 = −e

r; B0 = cos(θW )A0 = cos(θW )(−e

r) = −e cos(θW )

r= −e′

r(7.20)

where e′ = e cos(θW ). The Dirac formula giving the magnetic charge thatLochak obtained by the only condition of continuity of the wave under thegroup of rotations becomes then

e′g

c=

n

2(7.21)

where n is an integer, this gives a magnetic charge which is a multiple of :

g =c

2e cos(θW ). (7.22)

109

(7.18)

Therefore Lochak remarked immediately that the charge conjugation does not change the sign of the mag-netic charge, contrarily to the case of the electric charge. Then there is no polarization of the void from magnet-ic charges.[17] [18] [19]. But the form invariance of the wave equation indicates that the true wave equation is (7.17), not (7.18). It should then be more correct to say that, contrarily to the case of the electron, the charge con-jugation changes here not only the differential term, but also the charge, then it does not change the gauge nor the sign of the mass-energy.

7.3.2 The interaction electron-monopole

The space-time vector B is, like the vector electromag-netic potential A, a con- travariant vector, this is correct because O. Costa de Beauregard explained [11] why po-

tential terms are moving with sources that are electric and magnetic charges. The QB vector, similar to the qA vector, is a covariant vector (see section 4). This allows the interaction by gauge invariance. We have seen in sec-tion 6 that the Weinberg-Salam θW angle is invariant un-der the group of di- lations. An electric charge creating a A potential creates then also, with (6.85), a potential:

This is usually simplified into

φa(∇φa)σ21 + φaQiBφaσ21 −mρ = 0. (7.18)

Therefore Lochak remarked immediately that the charge conjugation does notchange the sign of the magnetic charge, contrarily to the case of the electriccharge. Then there is no polarization of the void from magnetic charges.[17][18] [19]. But the form invariance of the wave equation indicates that the truewave equation is (7.17), not (7.18). It should then be more correct to say that,contrarily to the case of the electron, the charge conjugation changes here notonly the differential term, but also the charge, then it does not change the gaugenor the sign of the mass-energy.

7.3.2 The interaction electron-monopole

The space-time vector B is, like the vector electromagnetic potential A, a con-travariant vector, this is correct because O. Costa de Beauregard explained [11]why potential terms are moving with sources that are electric and magneticcharges. The QB vector, similar to the qA vector, is a covariant vector (seesection 4). This allows the interaction by gauge invariance. We have seen insection 6 that the Weinberg-Salam θW angle is invariant under the group of di-lations. An electric charge creating a A potential creates then also, with (6.85),a potential :

B = cos(θW )A (7.19)

Since this B potential is present in the wave equation of the magnetic monopole,it is able to interact with the electric charge. This interaction was detailed byLochak. The basis of his calculation is the continuity of the wave functionunder the group of rotations. The continuity of the wave being comforted bythe continuity of the potential, it is not necessary to review the calculation andwe can use [17] [19]. The B potential used there was questionable because itis not continuous in each point of the z axis. It is why the result, even if thephysical reasoning was perfect, is a little too short. In the case of a potentialcreated by an electric charge we have

A0 = −e

r; B0 = cos(θW )A0 = cos(θW )(−e

r) = −e cos(θW )

r= −e′

r(7.20)

where e′ = e cos(θW ). The Dirac formula giving the magnetic charge thatLochak obtained by the only condition of continuity of the wave under thegroup of rotations becomes then

e′g

c=

n

2(7.21)

where n is an integer, this gives a magnetic charge which is a multiple of :

g =c

2e cos(θW ). (7.22)

109

(7.19)

Since this B potential is present in the wave equation of the magnetic monopole, it is able to interact with the electric charge. This interaction was detailed by Lochak. The basis of his calculation is the continuity of the wave function under the group of rotations. The continuity of the wave being comforted by the continuity of the poten-tial, it is not necessary to review the calculation and we can use [17] [19]. The B potential used there was ques-tionable because it is not continuous in each point of the z axis. It is why the result, even if the physical reasoning was perfect, is a little too short. In the case of a potential created by an electric charge we have

This is usually simplified into

φa(∇φa)σ21 + φaQiBφaσ21 −mρ = 0. (7.18)

Therefore Lochak remarked immediately that the charge conjugation does notchange the sign of the magnetic charge, contrarily to the case of the electriccharge. Then there is no polarization of the void from magnetic charges.[17][18] [19]. But the form invariance of the wave equation indicates that the truewave equation is (7.17), not (7.18). It should then be more correct to say that,contrarily to the case of the electron, the charge conjugation changes here notonly the differential term, but also the charge, then it does not change the gaugenor the sign of the mass-energy.

7.3.2 The interaction electron-monopole

The space-time vector B is, like the vector electromagnetic potential A, a con-travariant vector, this is correct because O. Costa de Beauregard explained [11]why potential terms are moving with sources that are electric and magneticcharges. The QB vector, similar to the qA vector, is a covariant vector (seesection 4). This allows the interaction by gauge invariance. We have seen insection 6 that the Weinberg-Salam θW angle is invariant under the group of di-lations. An electric charge creating a A potential creates then also, with (6.85),a potential :

B = cos(θW )A (7.19)

Since this B potential is present in the wave equation of the magnetic monopole,it is able to interact with the electric charge. This interaction was detailed byLochak. The basis of his calculation is the continuity of the wave functionunder the group of rotations. The continuity of the wave being comforted bythe continuity of the potential, it is not necessary to review the calculation andwe can use [17] [19]. The B potential used there was questionable because itis not continuous in each point of the z axis. It is why the result, even if thephysical reasoning was perfect, is a little too short. In the case of a potentialcreated by an electric charge we have

A0 = −e

r; B0 = cos(θW )A0 = cos(θW )(−e

r) = −e cos(θW )

r= −e′

r(7.20)

where e′ = e cos(θW ). The Dirac formula giving the magnetic charge thatLochak obtained by the only condition of continuity of the wave under thegroup of rotations becomes then

e′g

c=

n

2(7.21)

where n is an integer, this gives a magnetic charge which is a multiple of :

g =c

2e cos(θW ). (7.22)

109

This is usually simplified into

φa(∇φa)σ21 + φaQiBφaσ21 −mρ = 0. (7.18)

Therefore Lochak remarked immediately that the charge conjugation does notchange the sign of the magnetic charge, contrarily to the case of the electriccharge. Then there is no polarization of the void from magnetic charges.[17][18] [19]. But the form invariance of the wave equation indicates that the truewave equation is (7.17), not (7.18). It should then be more correct to say that,contrarily to the case of the electron, the charge conjugation changes here notonly the differential term, but also the charge, then it does not change the gaugenor the sign of the mass-energy.

7.3.2 The interaction electron-monopole

The space-time vector B is, like the vector electromagnetic potential A, a con-travariant vector, this is correct because O. Costa de Beauregard explained [11]why potential terms are moving with sources that are electric and magneticcharges. The QB vector, similar to the qA vector, is a covariant vector (seesection 4). This allows the interaction by gauge invariance. We have seen insection 6 that the Weinberg-Salam θW angle is invariant under the group of di-lations. An electric charge creating a A potential creates then also, with (6.85),a potential :

B = cos(θW )A (7.19)

Since this B potential is present in the wave equation of the magnetic monopole,it is able to interact with the electric charge. This interaction was detailed byLochak. The basis of his calculation is the continuity of the wave functionunder the group of rotations. The continuity of the wave being comforted bythe continuity of the potential, it is not necessary to review the calculation andwe can use [17] [19]. The B potential used there was questionable because itis not continuous in each point of the z axis. It is why the result, even if thephysical reasoning was perfect, is a little too short. In the case of a potentialcreated by an electric charge we have

A0 = −e

r; B0 = cos(θW )A0 = cos(θW )(−e

r) = −e cos(θW )

r= −e′

r(7.20)

where e′ = e cos(θW ). The Dirac formula giving the magnetic charge thatLochak obtained by the only condition of continuity of the wave under thegroup of rotations becomes then

e′g

c=

n

2(7.21)

where n is an integer, this gives a magnetic charge which is a multiple of :

g =c

2e cos(θW ). (7.22)

109

(7.20)

where e′ = e cos(θW). The Dirac formula giving the mag-netic charge that Lochak obtained by the only condition of continuity of the wave under the group of rotations be-comes then

This is usually simplified into

φa(∇φa)σ21 + φaQiBφaσ21 −mρ = 0. (7.18)

Therefore Lochak remarked immediately that the charge conjugation does notchange the sign of the magnetic charge, contrarily to the case of the electriccharge. Then there is no polarization of the void from magnetic charges.[17][18] [19]. But the form invariance of the wave equation indicates that the truewave equation is (7.17), not (7.18). It should then be more correct to say that,contrarily to the case of the electron, the charge conjugation changes here notonly the differential term, but also the charge, then it does not change the gaugenor the sign of the mass-energy.

7.3.2 The interaction electron-monopole

The space-time vector B is, like the vector electromagnetic potential A, a con-travariant vector, this is correct because O. Costa de Beauregard explained [11]why potential terms are moving with sources that are electric and magneticcharges. The QB vector, similar to the qA vector, is a covariant vector (seesection 4). This allows the interaction by gauge invariance. We have seen insection 6 that the Weinberg-Salam θW angle is invariant under the group of di-lations. An electric charge creating a A potential creates then also, with (6.85),a potential :

B = cos(θW )A (7.19)

Since this B potential is present in the wave equation of the magnetic monopole,it is able to interact with the electric charge. This interaction was detailed byLochak. The basis of his calculation is the continuity of the wave functionunder the group of rotations. The continuity of the wave being comforted bythe continuity of the potential, it is not necessary to review the calculation andwe can use [17] [19]. The B potential used there was questionable because itis not continuous in each point of the z axis. It is why the result, even if thephysical reasoning was perfect, is a little too short. In the case of a potentialcreated by an electric charge we have

A0 = −e

r; B0 = cos(θW )A0 = cos(θW )(−e

r) = −e cos(θW )

r= −e′

r(7.20)

where e′ = e cos(θW ). The Dirac formula giving the magnetic charge thatLochak obtained by the only condition of continuity of the wave under thegroup of rotations becomes then

e′g

c=

n

2(7.21)

where n is an integer, this gives a magnetic charge which is a multiple of :

g =c

2e cos(θW ). (7.22)

109

(7.21)

where n is an integer, this gives a magnetic charge which is a multiple of:

This is usually simplified into

φa(∇φa)σ21 + φaQiBφaσ21 −mρ = 0. (7.18)

Therefore Lochak remarked immediately that the charge conjugation does notchange the sign of the magnetic charge, contrarily to the case of the electriccharge. Then there is no polarization of the void from magnetic charges.[17][18] [19]. But the form invariance of the wave equation indicates that the truewave equation is (7.17), not (7.18). It should then be more correct to say that,contrarily to the case of the electron, the charge conjugation changes here notonly the differential term, but also the charge, then it does not change the gaugenor the sign of the mass-energy.

7.3.2 The interaction electron-monopole

The space-time vector B is, like the vector electromagnetic potential A, a con-travariant vector, this is correct because O. Costa de Beauregard explained [11]why potential terms are moving with sources that are electric and magneticcharges. The QB vector, similar to the qA vector, is a covariant vector (seesection 4). This allows the interaction by gauge invariance. We have seen insection 6 that the Weinberg-Salam θW angle is invariant under the group of di-lations. An electric charge creating a A potential creates then also, with (6.85),a potential :

B = cos(θW )A (7.19)

Since this B potential is present in the wave equation of the magnetic monopole,it is able to interact with the electric charge. This interaction was detailed byLochak. The basis of his calculation is the continuity of the wave functionunder the group of rotations. The continuity of the wave being comforted bythe continuity of the potential, it is not necessary to review the calculation andwe can use [17] [19]. The B potential used there was questionable because itis not continuous in each point of the z axis. It is why the result, even if thephysical reasoning was perfect, is a little too short. In the case of a potentialcreated by an electric charge we have

A0 = −e

r; B0 = cos(θW )A0 = cos(θW )(−e

r) = −e cos(θW )

r= −e′

r(7.20)

where e′ = e cos(θW ). The Dirac formula giving the magnetic charge thatLochak obtained by the only condition of continuity of the wave under thegroup of rotations becomes then

e′g

c=

n

2(7.21)

where n is an integer, this gives a magnetic charge which is a multiple of :

g =c

2e cos(θW ). (7.22)

109

(7.22)

We get then a lightly greater charge, 1.134 times the charge calculated by the Dirac formula. This charge has been gotten by numerous ways, for instance from the an-gular momentum of the electromagnetic field, or from the movement of an electric charge in the field of a magnetic monopole. In this case it is a iB potential that is created by the magnetic charge. The electron sees the A potential that comes from (6.85) and we get also

We get then a lightly greater charge, 1.134 times the charge calculated by theDirac formula. This charge has been gotten by numerous ways, for instance fromthe angular momentum of the electromagnetic field, or from the movement ofan electric charge in the field of a magnetic monopole. In this case it is aiB potential that is created by the magnetic charge. The electron sees the Apotential that comes from (6.85) and we get also

A = cos(θW )B (7.23)

Then all is as if the charge of the magnetic monopole should be g′ = g cos(θW ).In the place of (7.21) we get

eg′

c=

n

2(7.24)

which gives again the modified Dirac formula (7.22). This small change to thevalue of the magnetic charge is the only change. The Poincar’s equation givingthe trajectory of an electron upon a magnetic monopole [15] is unchanged, asthe cone that he introduced. Lochak proved that this cone is the Poinsot coneof a quantum top [20].

The presence of a σ21 term in the invariant wave equation implies similarlyto the electron case, the existence of two other wave equations obtained by acircular permutation of indexes 1, 2, 3 in Pauli matrices (see section 5). A fourthkind of magnetic monopole comes from the wave equation of a fourth neutrino(6.183) by adding a gauge term. We can then think that four kinds of magneticmonopoles may exist, three of them similarly to the fact that there are electronsbut also muons and tauons. These three generations must be treated separatelyin the electro-weak interactions that we look at now

7.3.3 Electro-weak interactions with monopoles

We want to get an identity similar to (6.250) allowing to Ψ−1 to exist every-where, we suppose then that the wave of the monopole interacting is

Ψ =

(φL φn

φn φL

); φn = φnL + φnR (7.25)

where φn is the wave of the magnetic monopole. We use here the idea of Lochakof the monopole as an excited state of the neutrino, and we place the wave of themonopole where was the place of the neutrino. The supplementary left spinorφL may be seen as a part of an electric wave. We conserve the form (6.22) ofthe covariant derivative. Since only P0 was changed when we went from thelepton case to the quark case, we shall use the same projectors P± of (6.12) andwe use again projectors Pj in (6.14) to (6.16). In the place of (6.13) we let

P0(Ψ) = aΨγ21 + bP−(Ψ)i (7.26)

110

(7.23)

47

Page 49: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 47

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

Then all is as if the charge of the magnetic monopole should be g′ = g cos(θW). In the place of (7.21) we get

We get then a lightly greater charge, 1.134 times the charge calculated by theDirac formula. This charge has been gotten by numerous ways, for instance fromthe angular momentum of the electromagnetic field, or from the movement ofan electric charge in the field of a magnetic monopole. In this case it is aiB potential that is created by the magnetic charge. The electron sees the Apotential that comes from (6.85) and we get also

A = cos(θW )B (7.23)

Then all is as if the charge of the magnetic monopole should be g′ = g cos(θW ).In the place of (7.21) we get

eg′

c=

n

2(7.24)

which gives again the modified Dirac formula (7.22). This small change to thevalue of the magnetic charge is the only change. The Poincar’s equation givingthe trajectory of an electron upon a magnetic monopole [15] is unchanged, asthe cone that he introduced. Lochak proved that this cone is the Poinsot coneof a quantum top [20].

The presence of a σ21 term in the invariant wave equation implies similarlyto the electron case, the existence of two other wave equations obtained by acircular permutation of indexes 1, 2, 3 in Pauli matrices (see section 5). A fourthkind of magnetic monopole comes from the wave equation of a fourth neutrino(6.183) by adding a gauge term. We can then think that four kinds of magneticmonopoles may exist, three of them similarly to the fact that there are electronsbut also muons and tauons. These three generations must be treated separatelyin the electro-weak interactions that we look at now

7.3.3 Electro-weak interactions with monopoles

We want to get an identity similar to (6.250) allowing to Ψ−1 to exist every-where, we suppose then that the wave of the monopole interacting is

Ψ =

(φL φn

φn φL

); φn = φnL + φnR (7.25)

where φn is the wave of the magnetic monopole. We use here the idea of Lochakof the monopole as an excited state of the neutrino, and we place the wave of themonopole where was the place of the neutrino. The supplementary left spinorφL may be seen as a part of an electric wave. We conserve the form (6.22) ofthe covariant derivative. Since only P0 was changed when we went from thelepton case to the quark case, we shall use the same projectors P± of (6.12) andwe use again projectors Pj in (6.14) to (6.16). In the place of (6.13) we let

P0(Ψ) = aΨγ21 + bP−(Ψ)i (7.26)

110

(7.24)

which gives again the modified Dirac formula (7.22). This small change to the value of the magnetic charge is the only change. The Poincar’s equation giving the tra-jectory of an electron upon a magnetic monopole [15] is unchanged, as the cone that he introduced. Lochak proved that this cone is the Poinsot cone of a quantum top [20].

The presence of a σ21 term in the invariant wave equa-tion implies similarly to the electron case, the existence of two other wave equations obtained by a circular per-mutation of indexes 1, 2, 3 in Pauli matrices (see sec-tion 5). A fourth kind of magnetic monopole comes from the wave equation of a fourth neutrino (6.183) by adding a gauge term. We can then think that four kinds of mag-netic monopoles may exist, three of them similarly to the fact that there are electrons but also muons and tauons. These three generations must be treated separately in the electro-weak interactions that we look at now.

7.3.3 Electro-weak interactions with monopoles

We want to get an identity similar to (6.250) allowing to Ψ−1 to exist every- where, we suppose then that the wave of the monopole interacting is

We get then a lightly greater charge, 1.134 times the charge calculated by theDirac formula. This charge has been gotten by numerous ways, for instance fromthe angular momentum of the electromagnetic field, or from the movement ofan electric charge in the field of a magnetic monopole. In this case it is aiB potential that is created by the magnetic charge. The electron sees the Apotential that comes from (6.85) and we get also

A = cos(θW )B (7.23)

Then all is as if the charge of the magnetic monopole should be g′ = g cos(θW ).In the place of (7.21) we get

eg′

c=

n

2(7.24)

which gives again the modified Dirac formula (7.22). This small change to thevalue of the magnetic charge is the only change. The Poincar’s equation givingthe trajectory of an electron upon a magnetic monopole [15] is unchanged, asthe cone that he introduced. Lochak proved that this cone is the Poinsot coneof a quantum top [20].

The presence of a σ21 term in the invariant wave equation implies similarlyto the electron case, the existence of two other wave equations obtained by acircular permutation of indexes 1, 2, 3 in Pauli matrices (see section 5). A fourthkind of magnetic monopole comes from the wave equation of a fourth neutrino(6.183) by adding a gauge term. We can then think that four kinds of magneticmonopoles may exist, three of them similarly to the fact that there are electronsbut also muons and tauons. These three generations must be treated separatelyin the electro-weak interactions that we look at now

7.3.3 Electro-weak interactions with monopoles

We want to get an identity similar to (6.250) allowing to Ψ−1 to exist every-where, we suppose then that the wave of the monopole interacting is

Ψ =

(φL φn

φn φL

); φn = φnL + φnR (7.25)

where φn is the wave of the magnetic monopole. We use here the idea of Lochakof the monopole as an excited state of the neutrino, and we place the wave of themonopole where was the place of the neutrino. The supplementary left spinorφL may be seen as a part of an electric wave. We conserve the form (6.22) ofthe covariant derivative. Since only P0 was changed when we went from thelepton case to the quark case, we shall use the same projectors P± of (6.12) andwe use again projectors Pj in (6.14) to (6.16). In the place of (6.13) we let

P0(Ψ) = aΨγ21 + bP−(Ψ)i (7.26)

110

(7.25)

where φn is the wave of the magnetic monopole. We use here the idea of Lochak of the monopole as an excited state of the neutrino, and we place the wave of the mono-pole where was the place of the neutrino. The supple-mentary left spinor φL may be seen as a part of an electric wave. We conserve the form (6.22) of the covariant de-rivative. Since only P0 was changed when we went from the lepton case to the quark case, we shall use the same projectors P± of (6.12) and we use again projectors Pj in (6.14) to (6.16). In the place of (6.13) we let

We get then a lightly greater charge, 1.134 times the charge calculated by theDirac formula. This charge has been gotten by numerous ways, for instance fromthe angular momentum of the electromagnetic field, or from the movement ofan electric charge in the field of a magnetic monopole. In this case it is aiB potential that is created by the magnetic charge. The electron sees the Apotential that comes from (6.85) and we get also

A = cos(θW )B (7.23)

Then all is as if the charge of the magnetic monopole should be g′ = g cos(θW ).In the place of (7.21) we get

eg′

c=

n

2(7.24)

which gives again the modified Dirac formula (7.22). This small change to thevalue of the magnetic charge is the only change. The Poincar’s equation givingthe trajectory of an electron upon a magnetic monopole [15] is unchanged, asthe cone that he introduced. Lochak proved that this cone is the Poinsot coneof a quantum top [20].

The presence of a σ21 term in the invariant wave equation implies similarlyto the electron case, the existence of two other wave equations obtained by acircular permutation of indexes 1, 2, 3 in Pauli matrices (see section 5). A fourthkind of magnetic monopole comes from the wave equation of a fourth neutrino(6.183) by adding a gauge term. We can then think that four kinds of magneticmonopoles may exist, three of them similarly to the fact that there are electronsbut also muons and tauons. These three generations must be treated separatelyin the electro-weak interactions that we look at now

7.3.3 Electro-weak interactions with monopoles

We want to get an identity similar to (6.250) allowing to Ψ−1 to exist every-where, we suppose then that the wave of the monopole interacting is

Ψ =

(φL φn

φn φL

); φn = φnL + φnR (7.25)

where φn is the wave of the magnetic monopole. We use here the idea of Lochakof the monopole as an excited state of the neutrino, and we place the wave of themonopole where was the place of the neutrino. The supplementary left spinorφL may be seen as a part of an electric wave. We conserve the form (6.22) ofthe covariant derivative. Since only P0 was changed when we went from thelepton case to the quark case, we shall use the same projectors P± of (6.12) andwe use again projectors Pj in (6.14) to (6.16). In the place of (6.13) we let

P0(Ψ) = aΨγ21 + bP−(Ψ)i (7.26)

110

(7.26)

where a and b are real numbers. We get the same com-mutation relations as in (6.17), except the last equality which must be replaced by:

where a and b are real numbers. We get the same commutation relations as in(6.17), except the last equality which must be replaced by :

P0Pj = PjP0 = −aiPj . (7.27)

Therefore the gauge group has the same structure U(1)× SU(2). We get with(7.25)

P+(Ψ) =

(φL φnL

φnL φL

); P−(Ψ) =

(0 φnR

φnR 0

). (7.28)

We recall that

γ21 =

(iσ3 00 iσ3

); φRσ3 = φR ; φLσ3 = −φL. (7.29)

We then have

Ψγ21 = i

(−φL φnR − φnL

−φnR + φnL φL

); P−(Ψ) = i

(0 −φnR

φnR 0

)

P0(Ψ) = i

(−aφL (a− b)φnR − aφnL

(−a+ b)φnR + aφnL aφL

)(7.30)

BP0(Ψ) = i

((−a+ b)BφnR + aBφnL aBφL

−aBφL (a− b)BφnR − aBφnL

)(7.31)

We use (7.29) and (6.15), then we get

P2(Ψ) =

(φnL −φL

−φL φnL

)(7.32)

P1(Ψ) = P2(Ψ)i = i

(φnL φL

−φL −φnL

)(7.33)

(W1P1 +W2P2)(Ψ) = i

((−W 1 + iW 2)φL (−W 1 − iW 2)φnL

(W 1 − iW 2)φnL (W 1 + iW 2)φL

)(7.34)

Using W+ and W− defined in (6.74) we get

(W1P1 +W2P2)(Ψ) = i

(W−φL −W+φnL

W+φnL −W−φL

)(7.35)

We have also :

P3(Ψ) = P+(Ψ)(−i) = i

(−φL φnL

−φnL φL

)(7.36)

W3P3(Ψ) = i

(−W 3φnL W 3φL

−W 3φL W 3φnL

)(7.37)

111

(7.27)

Therefore the gauge group has the same structure U (1) × SU (2). We get with (7.25)

where a and b are real numbers. We get the same commutation relations as in(6.17), except the last equality which must be replaced by :

P0Pj = PjP0 = −aiPj . (7.27)

Therefore the gauge group has the same structure U(1)× SU(2). We get with(7.25)

P+(Ψ) =

(φL φnL

φnL φL

); P−(Ψ) =

(0 φnR

φnR 0

). (7.28)

We recall that

γ21 =

(iσ3 00 iσ3

); φRσ3 = φR ; φLσ3 = −φL. (7.29)

We then have

Ψγ21 = i

(−φL φnR − φnL

−φnR + φnL φL

); P−(Ψ) = i

(0 −φnR

φnR 0

)

P0(Ψ) = i

(−aφL (a− b)φnR − aφnL

(−a+ b)φnR + aφnL aφL

)(7.30)

BP0(Ψ) = i

((−a+ b)BφnR + aBφnL aBφL

−aBφL (a− b)BφnR − aBφnL

)(7.31)

We use (7.29) and (6.15), then we get

P2(Ψ) =

(φnL −φL

−φL φnL

)(7.32)

P1(Ψ) = P2(Ψ)i = i

(φnL φL

−φL −φnL

)(7.33)

(W1P1 +W2P2)(Ψ) = i

((−W 1 + iW 2)φL (−W 1 − iW 2)φnL

(W 1 − iW 2)φnL (W 1 + iW 2)φL

)(7.34)

Using W+ and W− defined in (6.74) we get

(W1P1 +W2P2)(Ψ) = i

(W−φL −W+φnL

W+φnL −W−φL

)(7.35)

We have also :

P3(Ψ) = P+(Ψ)(−i) = i

(−φL φnL

−φnL φL

)(7.36)

W3P3(Ψ) = i

(−W 3φnL W 3φL

−W 3φL W 3φnL

)(7.37)

111

where a and b are real numbers. We get the same commutation relations as in(6.17), except the last equality which must be replaced by :

P0Pj = PjP0 = −aiPj . (7.27)

Therefore the gauge group has the same structure U(1)× SU(2). We get with(7.25)

P+(Ψ) =

(φL φnL

φnL φL

); P−(Ψ) =

(0 φnR

φnR 0

). (7.28)

We recall that

γ21 =

(iσ3 00 iσ3

); φRσ3 = φR ; φLσ3 = −φL. (7.29)

We then have

Ψγ21 = i

(−φL φnR − φnL

−φnR + φnL φL

); P−(Ψ) = i

(0 −φnR

φnR 0

)

P0(Ψ) = i

(−aφL (a− b)φnR − aφnL

(−a+ b)φnR + aφnL aφL

)(7.30)

BP0(Ψ) = i

((−a+ b)BφnR + aBφnL aBφL

−aBφL (a− b)BφnR − aBφnL

)(7.31)

We use (7.29) and (6.15), then we get

P2(Ψ) =

(φnL −φL

−φL φnL

)(7.32)

P1(Ψ) = P2(Ψ)i = i

(φnL φL

−φL −φnL

)(7.33)

(W1P1 +W2P2)(Ψ) = i

((−W 1 + iW 2)φL (−W 1 − iW 2)φnL

(W 1 − iW 2)φnL (W 1 + iW 2)φL

)(7.34)

Using W+ and W− defined in (6.74) we get

(W1P1 +W2P2)(Ψ) = i

(W−φL −W+φnL

W+φnL −W−φL

)(7.35)

We have also :

P3(Ψ) = P+(Ψ)(−i) = i

(−φL φnL

−φnL φL

)(7.36)

W3P3(Ψ) = i

(−W 3φnL W 3φL

−W 3φL W 3φnL

)(7.37)

111

(7.28)

We recall that

where a and b are real numbers. We get the same commutation relations as in(6.17), except the last equality which must be replaced by :

P0Pj = PjP0 = −aiPj . (7.27)

Therefore the gauge group has the same structure U(1)× SU(2). We get with(7.25)

P+(Ψ) =

(φL φnL

φnL φL

); P−(Ψ) =

(0 φnR

φnR 0

). (7.28)

We recall that

γ21 =

(iσ3 00 iσ3

); φRσ3 = φR ; φLσ3 = −φL. (7.29)

We then have

Ψγ21 = i

(−φL φnR − φnL

−φnR + φnL φL

); P−(Ψ) = i

(0 −φnR

φnR 0

)

P0(Ψ) = i

(−aφL (a− b)φnR − aφnL

(−a+ b)φnR + aφnL aφL

)(7.30)

BP0(Ψ) = i

((−a+ b)BφnR + aBφnL aBφL

−aBφL (a− b)BφnR − aBφnL

)(7.31)

We use (7.29) and (6.15), then we get

P2(Ψ) =

(φnL −φL

−φL φnL

)(7.32)

P1(Ψ) = P2(Ψ)i = i

(φnL φL

−φL −φnL

)(7.33)

(W1P1 +W2P2)(Ψ) = i

((−W 1 + iW 2)φL (−W 1 − iW 2)φnL

(W 1 − iW 2)φnL (W 1 + iW 2)φL

)(7.34)

Using W+ and W− defined in (6.74) we get

(W1P1 +W2P2)(Ψ) = i

(W−φL −W+φnL

W+φnL −W−φL

)(7.35)

We have also :

P3(Ψ) = P+(Ψ)(−i) = i

(−φL φnL

−φnL φL

)(7.36)

W3P3(Ψ) = i

(−W 3φnL W 3φL

−W 3φL W 3φnL

)(7.37)

111

(7.29)

We then have

where a and b are real numbers. We get the same commutation relations as in(6.17), except the last equality which must be replaced by :

P0Pj = PjP0 = −aiPj . (7.27)

Therefore the gauge group has the same structure U(1)× SU(2). We get with(7.25)

P+(Ψ) =

(φL φnL

φnL φL

); P−(Ψ) =

(0 φnR

φnR 0

). (7.28)

We recall that

γ21 =

(iσ3 00 iσ3

); φRσ3 = φR ; φLσ3 = −φL. (7.29)

We then have

Ψγ21 = i

(−φL φnR − φnL

−φnR + φnL φL

); P−(Ψ) = i

(0 −φnR

φnR 0

)

P0(Ψ) = i

(−aφL (a− b)φnR − aφnL

(−a+ b)φnR + aφnL aφL

)(7.30)

BP0(Ψ) = i

((−a+ b)BφnR + aBφnL aBφL

−aBφL (a− b)BφnR − aBφnL

)(7.31)

We use (7.29) and (6.15), then we get

P2(Ψ) =

(φnL −φL

−φL φnL

)(7.32)

P1(Ψ) = P2(Ψ)i = i

(φnL φL

−φL −φnL

)(7.33)

(W1P1 +W2P2)(Ψ) = i

((−W 1 + iW 2)φL (−W 1 − iW 2)φnL

(W 1 − iW 2)φnL (W 1 + iW 2)φL

)(7.34)

Using W+ and W− defined in (6.74) we get

(W1P1 +W2P2)(Ψ) = i

(W−φL −W+φnL

W+φnL −W−φL

)(7.35)

We have also :

P3(Ψ) = P+(Ψ)(−i) = i

(−φL φnL

−φnL φL

)(7.36)

W3P3(Ψ) = i

(−W 3φnL W 3φL

−W 3φL W 3φnL

)(7.37)

111

;

where a and b are real numbers. We get the same commutation relations as in(6.17), except the last equality which must be replaced by :

P0Pj = PjP0 = −aiPj . (7.27)

Therefore the gauge group has the same structure U(1)× SU(2). We get with(7.25)

P+(Ψ) =

(φL φnL

φnL φL

); P−(Ψ) =

(0 φnR

φnR 0

). (7.28)

We recall that

γ21 =

(iσ3 00 iσ3

); φRσ3 = φR ; φLσ3 = −φL. (7.29)

We then have

Ψγ21 = i

(−φL φnR − φnL

−φnR + φnL φL

); P−(Ψ) = i

(0 −φnR

φnR 0

)

P0(Ψ) = i

(−aφL (a− b)φnR − aφnL

(−a+ b)φnR + aφnL aφL

)(7.30)

BP0(Ψ) = i

((−a+ b)BφnR + aBφnL aBφL

−aBφL (a− b)BφnR − aBφnL

)(7.31)

We use (7.29) and (6.15), then we get

P2(Ψ) =

(φnL −φL

−φL φnL

)(7.32)

P1(Ψ) = P2(Ψ)i = i

(φnL φL

−φL −φnL

)(7.33)

(W1P1 +W2P2)(Ψ) = i

((−W 1 + iW 2)φL (−W 1 − iW 2)φnL

(W 1 − iW 2)φnL (W 1 + iW 2)φL

)(7.34)

Using W+ and W− defined in (6.74) we get

(W1P1 +W2P2)(Ψ) = i

(W−φL −W+φnL

W+φnL −W−φL

)(7.35)

We have also :

P3(Ψ) = P+(Ψ)(−i) = i

(−φL φnL

−φnL φL

)(7.36)

W3P3(Ψ) = i

(−W 3φnL W 3φL

−W 3φL W 3φnL

)(7.37)

111

;

where a and b are real numbers. We get the same commutation relations as in(6.17), except the last equality which must be replaced by :

P0Pj = PjP0 = −aiPj . (7.27)

Therefore the gauge group has the same structure U(1)× SU(2). We get with(7.25)

P+(Ψ) =

(φL φnL

φnL φL

); P−(Ψ) =

(0 φnR

φnR 0

). (7.28)

We recall that

γ21 =

(iσ3 00 iσ3

); φRσ3 = φR ; φLσ3 = −φL. (7.29)

We then have

Ψγ21 = i

(−φL φnR − φnL

−φnR + φnL φL

); P−(Ψ) = i

(0 −φnR

φnR 0

)

P0(Ψ) = i

(−aφL (a− b)φnR − aφnL

(−a+ b)φnR + aφnL aφL

)(7.30)

BP0(Ψ) = i

((−a+ b)BφnR + aBφnL aBφL

−aBφL (a− b)BφnR − aBφnL

)(7.31)

We use (7.29) and (6.15), then we get

P2(Ψ) =

(φnL −φL

−φL φnL

)(7.32)

P1(Ψ) = P2(Ψ)i = i

(φnL φL

−φL −φnL

)(7.33)

(W1P1 +W2P2)(Ψ) = i

((−W 1 + iW 2)φL (−W 1 − iW 2)φnL

(W 1 − iW 2)φnL (W 1 + iW 2)φL

)(7.34)

Using W+ and W− defined in (6.74) we get

(W1P1 +W2P2)(Ψ) = i

(W−φL −W+φnL

W+φnL −W−φL

)(7.35)

We have also :

P3(Ψ) = P+(Ψ)(−i) = i

(−φL φnL

−φnL φL

)(7.36)

W3P3(Ψ) = i

(−W 3φnL W 3φL

−W 3φL W 3φnL

)(7.37)

111

(7.30)

where a and b are real numbers. We get the same commutation relations as in(6.17), except the last equality which must be replaced by :

P0Pj = PjP0 = −aiPj . (7.27)

Therefore the gauge group has the same structure U(1)× SU(2). We get with(7.25)

P+(Ψ) =

(φL φnL

φnL φL

); P−(Ψ) =

(0 φnR

φnR 0

). (7.28)

We recall that

γ21 =

(iσ3 00 iσ3

); φRσ3 = φR ; φLσ3 = −φL. (7.29)

We then have

Ψγ21 = i

(−φL φnR − φnL

−φnR + φnL φL

); P−(Ψ) = i

(0 −φnR

φnR 0

)

P0(Ψ) = i

(−aφL (a− b)φnR − aφnL

(−a+ b)φnR + aφnL aφL

)(7.30)

BP0(Ψ) = i

((−a+ b)BφnR + aBφnL aBφL

−aBφL (a− b)BφnR − aBφnL

)(7.31)

We use (7.29) and (6.15), then we get

P2(Ψ) =

(φnL −φL

−φL φnL

)(7.32)

P1(Ψ) = P2(Ψ)i = i

(φnL φL

−φL −φnL

)(7.33)

(W1P1 +W2P2)(Ψ) = i

((−W 1 + iW 2)φL (−W 1 − iW 2)φnL

(W 1 − iW 2)φnL (W 1 + iW 2)φL

)(7.34)

Using W+ and W− defined in (6.74) we get

(W1P1 +W2P2)(Ψ) = i

(W−φL −W+φnL

W+φnL −W−φL

)(7.35)

We have also :

P3(Ψ) = P+(Ψ)(−i) = i

(−φL φnL

−φnL φL

)(7.36)

W3P3(Ψ) = i

(−W 3φnL W 3φL

−W 3φL W 3φnL

)(7.37)

111

where a and b are real numbers. We get the same commutation relations as in(6.17), except the last equality which must be replaced by :

P0Pj = PjP0 = −aiPj . (7.27)

Therefore the gauge group has the same structure U(1)× SU(2). We get with(7.25)

P+(Ψ) =

(φL φnL

φnL φL

); P−(Ψ) =

(0 φnR

φnR 0

). (7.28)

We recall that

γ21 =

(iσ3 00 iσ3

); φRσ3 = φR ; φLσ3 = −φL. (7.29)

We then have

Ψγ21 = i

(−φL φnR − φnL

−φnR + φnL φL

); P−(Ψ) = i

(0 −φnR

φnR 0

)

P0(Ψ) = i

(−aφL (a− b)φnR − aφnL

(−a+ b)φnR + aφnL aφL

)(7.30)

BP0(Ψ) = i

((−a+ b)BφnR + aBφnL aBφL

−aBφL (a− b)BφnR − aBφnL

)(7.31)

We use (7.29) and (6.15), then we get

P2(Ψ) =

(φnL −φL

−φL φnL

)(7.32)

P1(Ψ) = P2(Ψ)i = i

(φnL φL

−φL −φnL

)(7.33)

(W1P1 +W2P2)(Ψ) = i

((−W 1 + iW 2)φL (−W 1 − iW 2)φnL

(W 1 − iW 2)φnL (W 1 + iW 2)φL

)(7.34)

Using W+ and W− defined in (6.74) we get

(W1P1 +W2P2)(Ψ) = i

(W−φL −W+φnL

W+φnL −W−φL

)(7.35)

We have also :

P3(Ψ) = P+(Ψ)(−i) = i

(−φL φnL

−φnL φL

)(7.36)

W3P3(Ψ) = i

(−W 3φnL W 3φL

−W 3φL W 3φnL

)(7.37)

111

(7.31)

We use (7.29) and (6.15), then we get

where a and b are real numbers. We get the same commutation relations as in(6.17), except the last equality which must be replaced by :

P0Pj = PjP0 = −aiPj . (7.27)

Therefore the gauge group has the same structure U(1)× SU(2). We get with(7.25)

P+(Ψ) =

(φL φnL

φnL φL

); P−(Ψ) =

(0 φnR

φnR 0

). (7.28)

We recall that

γ21 =

(iσ3 00 iσ3

); φRσ3 = φR ; φLσ3 = −φL. (7.29)

We then have

Ψγ21 = i

(−φL φnR − φnL

−φnR + φnL φL

); P−(Ψ) = i

(0 −φnR

φnR 0

)

P0(Ψ) = i

(−aφL (a− b)φnR − aφnL

(−a+ b)φnR + aφnL aφL

)(7.30)

BP0(Ψ) = i

((−a+ b)BφnR + aBφnL aBφL

−aBφL (a− b)BφnR − aBφnL

)(7.31)

We use (7.29) and (6.15), then we get

P2(Ψ) =

(φnL −φL

−φL φnL

)(7.32)

P1(Ψ) = P2(Ψ)i = i

(φnL φL

−φL −φnL

)(7.33)

(W1P1 +W2P2)(Ψ) = i

((−W 1 + iW 2)φL (−W 1 − iW 2)φnL

(W 1 − iW 2)φnL (W 1 + iW 2)φL

)(7.34)

Using W+ and W− defined in (6.74) we get

(W1P1 +W2P2)(Ψ) = i

(W−φL −W+φnL

W+φnL −W−φL

)(7.35)

We have also :

P3(Ψ) = P+(Ψ)(−i) = i

(−φL φnL

−φnL φL

)(7.36)

W3P3(Ψ) = i

(−W 3φnL W 3φL

−W 3φL W 3φnL

)(7.37)

111

(7.32)

where a and b are real numbers. We get the same commutation relations as in(6.17), except the last equality which must be replaced by :

P0Pj = PjP0 = −aiPj . (7.27)

Therefore the gauge group has the same structure U(1)× SU(2). We get with(7.25)

P+(Ψ) =

(φL φnL

φnL φL

); P−(Ψ) =

(0 φnR

φnR 0

). (7.28)

We recall that

γ21 =

(iσ3 00 iσ3

); φRσ3 = φR ; φLσ3 = −φL. (7.29)

We then have

Ψγ21 = i

(−φL φnR − φnL

−φnR + φnL φL

); P−(Ψ) = i

(0 −φnR

φnR 0

)

P0(Ψ) = i

(−aφL (a− b)φnR − aφnL

(−a+ b)φnR + aφnL aφL

)(7.30)

BP0(Ψ) = i

((−a+ b)BφnR + aBφnL aBφL

−aBφL (a− b)BφnR − aBφnL

)(7.31)

We use (7.29) and (6.15), then we get

P2(Ψ) =

(φnL −φL

−φL φnL

)(7.32)

P1(Ψ) = P2(Ψ)i = i

(φnL φL

−φL −φnL

)(7.33)

(W1P1 +W2P2)(Ψ) = i

((−W 1 + iW 2)φL (−W 1 − iW 2)φnL

(W 1 − iW 2)φnL (W 1 + iW 2)φL

)(7.34)

Using W+ and W− defined in (6.74) we get

(W1P1 +W2P2)(Ψ) = i

(W−φL −W+φnL

W+φnL −W−φL

)(7.35)

We have also :

P3(Ψ) = P+(Ψ)(−i) = i

(−φL φnL

−φnL φL

)(7.36)

W3P3(Ψ) = i

(−W 3φnL W 3φL

−W 3φL W 3φnL

)(7.37)

111

(7.33)

where a and b are real numbers. We get the same commutation relations as in(6.17), except the last equality which must be replaced by :

P0Pj = PjP0 = −aiPj . (7.27)

Therefore the gauge group has the same structure U(1)× SU(2). We get with(7.25)

P+(Ψ) =

(φL φnL

φnL φL

); P−(Ψ) =

(0 φnR

φnR 0

). (7.28)

We recall that

γ21 =

(iσ3 00 iσ3

); φRσ3 = φR ; φLσ3 = −φL. (7.29)

We then have

Ψγ21 = i

(−φL φnR − φnL

−φnR + φnL φL

); P−(Ψ) = i

(0 −φnR

φnR 0

)

P0(Ψ) = i

(−aφL (a− b)φnR − aφnL

(−a+ b)φnR + aφnL aφL

)(7.30)

BP0(Ψ) = i

((−a+ b)BφnR + aBφnL aBφL

−aBφL (a− b)BφnR − aBφnL

)(7.31)

We use (7.29) and (6.15), then we get

P2(Ψ) =

(φnL −φL

−φL φnL

)(7.32)

P1(Ψ) = P2(Ψ)i = i

(φnL φL

−φL −φnL

)(7.33)

(W1P1 +W2P2)(Ψ) = i

((−W 1 + iW 2)φL (−W 1 − iW 2)φnL

(W 1 − iW 2)φnL (W 1 + iW 2)φL

)(7.34)

Using W+ and W− defined in (6.74) we get

(W1P1 +W2P2)(Ψ) = i

(W−φL −W+φnL

W+φnL −W−φL

)(7.35)

We have also :

P3(Ψ) = P+(Ψ)(−i) = i

(−φL φnL

−φnL φL

)(7.36)

W3P3(Ψ) = i

(−W 3φnL W 3φL

−W 3φL W 3φnL

)(7.37)

111

where a and b are real numbers. We get the same commutation relations as in(6.17), except the last equality which must be replaced by :

P0Pj = PjP0 = −aiPj . (7.27)

Therefore the gauge group has the same structure U(1)× SU(2). We get with(7.25)

P+(Ψ) =

(φL φnL

φnL φL

); P−(Ψ) =

(0 φnR

φnR 0

). (7.28)

We recall that

γ21 =

(iσ3 00 iσ3

); φRσ3 = φR ; φLσ3 = −φL. (7.29)

We then have

Ψγ21 = i

(−φL φnR − φnL

−φnR + φnL φL

); P−(Ψ) = i

(0 −φnR

φnR 0

)

P0(Ψ) = i

(−aφL (a− b)φnR − aφnL

(−a+ b)φnR + aφnL aφL

)(7.30)

BP0(Ψ) = i

((−a+ b)BφnR + aBφnL aBφL

−aBφL (a− b)BφnR − aBφnL

)(7.31)

We use (7.29) and (6.15), then we get

P2(Ψ) =

(φnL −φL

−φL φnL

)(7.32)

P1(Ψ) = P2(Ψ)i = i

(φnL φL

−φL −φnL

)(7.33)

(W1P1 +W2P2)(Ψ) = i

((−W 1 + iW 2)φL (−W 1 − iW 2)φnL

(W 1 − iW 2)φnL (W 1 + iW 2)φL

)(7.34)

Using W+ and W− defined in (6.74) we get

(W1P1 +W2P2)(Ψ) = i

(W−φL −W+φnL

W+φnL −W−φL

)(7.35)

We have also :

P3(Ψ) = P+(Ψ)(−i) = i

(−φL φnL

−φnL φL

)(7.36)

W3P3(Ψ) = i

(−W 3φnL W 3φL

−W 3φL W 3φnL

)(7.37)

111

(7.34)

Using W + and W − defined in (6.74) we get

where a and b are real numbers. We get the same commutation relations as in(6.17), except the last equality which must be replaced by :

P0Pj = PjP0 = −aiPj . (7.27)

Therefore the gauge group has the same structure U(1)× SU(2). We get with(7.25)

P+(Ψ) =

(φL φnL

φnL φL

); P−(Ψ) =

(0 φnR

φnR 0

). (7.28)

We recall that

γ21 =

(iσ3 00 iσ3

); φRσ3 = φR ; φLσ3 = −φL. (7.29)

We then have

Ψγ21 = i

(−φL φnR − φnL

−φnR + φnL φL

); P−(Ψ) = i

(0 −φnR

φnR 0

)

P0(Ψ) = i

(−aφL (a− b)φnR − aφnL

(−a+ b)φnR + aφnL aφL

)(7.30)

BP0(Ψ) = i

((−a+ b)BφnR + aBφnL aBφL

−aBφL (a− b)BφnR − aBφnL

)(7.31)

We use (7.29) and (6.15), then we get

P2(Ψ) =

(φnL −φL

−φL φnL

)(7.32)

P1(Ψ) = P2(Ψ)i = i

(φnL φL

−φL −φnL

)(7.33)

(W1P1 +W2P2)(Ψ) = i

((−W 1 + iW 2)φL (−W 1 − iW 2)φnL

(W 1 − iW 2)φnL (W 1 + iW 2)φL

)(7.34)

Using W+ and W− defined in (6.74) we get

(W1P1 +W2P2)(Ψ) = i

(W−φL −W+φnL

W+φnL −W−φL

)(7.35)

We have also :

P3(Ψ) = P+(Ψ)(−i) = i

(−φL φnL

−φnL φL

)(7.36)

W3P3(Ψ) = i

(−W 3φnL W 3φL

−W 3φL W 3φnL

)(7.37)

111

(7.35)

We have also:

where a and b are real numbers. We get the same commutation relations as in(6.17), except the last equality which must be replaced by :

P0Pj = PjP0 = −aiPj . (7.27)

Therefore the gauge group has the same structure U(1)× SU(2). We get with(7.25)

P+(Ψ) =

(φL φnL

φnL φL

); P−(Ψ) =

(0 φnR

φnR 0

). (7.28)

We recall that

γ21 =

(iσ3 00 iσ3

); φRσ3 = φR ; φLσ3 = −φL. (7.29)

We then have

Ψγ21 = i

(−φL φnR − φnL

−φnR + φnL φL

); P−(Ψ) = i

(0 −φnR

φnR 0

)

P0(Ψ) = i

(−aφL (a− b)φnR − aφnL

(−a+ b)φnR + aφnL aφL

)(7.30)

BP0(Ψ) = i

((−a+ b)BφnR + aBφnL aBφL

−aBφL (a− b)BφnR − aBφnL

)(7.31)

We use (7.29) and (6.15), then we get

P2(Ψ) =

(φnL −φL

−φL φnL

)(7.32)

P1(Ψ) = P2(Ψ)i = i

(φnL φL

−φL −φnL

)(7.33)

(W1P1 +W2P2)(Ψ) = i

((−W 1 + iW 2)φL (−W 1 − iW 2)φnL

(W 1 − iW 2)φnL (W 1 + iW 2)φL

)(7.34)

Using W+ and W− defined in (6.74) we get

(W1P1 +W2P2)(Ψ) = i

(W−φL −W+φnL

W+φnL −W−φL

)(7.35)

We have also :

P3(Ψ) = P+(Ψ)(−i) = i

(−φL φnL

−φnL φL

)(7.36)

W3P3(Ψ) = i

(−W 3φnL W 3φL

−W 3φL W 3φnL

)(7.37)

111

(7.36)

46

Page 50: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201448

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

where a and b are real numbers. We get the same commutation relations as in(6.17), except the last equality which must be replaced by :

P0Pj = PjP0 = −aiPj . (7.27)

Therefore the gauge group has the same structure U(1)× SU(2). We get with(7.25)

P+(Ψ) =

(φL φnL

φnL φL

); P−(Ψ) =

(0 φnR

φnR 0

). (7.28)

We recall that

γ21 =

(iσ3 00 iσ3

); φRσ3 = φR ; φLσ3 = −φL. (7.29)

We then have

Ψγ21 = i

(−φL φnR − φnL

−φnR + φnL φL

); P−(Ψ) = i

(0 −φnR

φnR 0

)

P0(Ψ) = i

(−aφL (a− b)φnR − aφnL

(−a+ b)φnR + aφnL aφL

)(7.30)

BP0(Ψ) = i

((−a+ b)BφnR + aBφnL aBφL

−aBφL (a− b)BφnR − aBφnL

)(7.31)

We use (7.29) and (6.15), then we get

P2(Ψ) =

(φnL −φL

−φL φnL

)(7.32)

P1(Ψ) = P2(Ψ)i = i

(φnL φL

−φL −φnL

)(7.33)

(W1P1 +W2P2)(Ψ) = i

((−W 1 + iW 2)φL (−W 1 − iW 2)φnL

(W 1 − iW 2)φnL (W 1 + iW 2)φL

)(7.34)

Using W+ and W− defined in (6.74) we get

(W1P1 +W2P2)(Ψ) = i

(W−φL −W+φnL

W+φnL −W−φL

)(7.35)

We have also :

P3(Ψ) = P+(Ψ)(−i) = i

(−φL φnL

−φnL φL

)(7.36)

W3P3(Ψ) = i

(−W 3φnL W 3φL

−W 3φL W 3φnL

)(7.37)

111

(7.37)

The gauge derivative (6.22) is then equivalent to the systemThe gauge derivative (6.22) is then equivalent to the system

Dφn = ∇φn + ig12[aBφnL + (−a+ b)BφnR] + i

g22(W−φL −W 3φnL) (7.38)

DφL = ∇φL + ig12aBφL + i

g22(−W+φnL +W 3φL) (7.39)

With(6.83) we get

g2W3 =

√g21 + g22Z

0 + g1B (7.40)

Then (7.38) reads

Dφn = ∇φn + ig12[(a− 1)BφnL + (−a+ b)BφnR]

+ ig22W−φL − i

2

√g21 + g22Z

0φnL (7.41)

We want to get ∇φn + iQBφn then we must have

g1(a− 1) = g1(b− a) = 2Q (7.42)

The first equality gives b = 2a− 1 and if this condition is satisfied we get

g1 =q

cos(θW )=

e

c cos(θW )

e(a− 1)

c cos(θW )= 2Q =

2g

ce(a− 1)

cos(θW )= 2g =

ce cos(θW )

a− 1 =ce2

=1

α(7.43)

where α is the fine structure constant and we must take

a = 1 +1

α; b = 1 +

2

α(7.44)

This gives in (7.39)

DφL = ∇φL + ig12(1 +

1

α)BφL + i

g22(−W+φnL +W 3φL) (7.45)

which is not the derivative term of an electron and remains to interpret. Sinceterms containing a are much bigger than other terms the magnetic charge termseems dominant in (7.41) and (7.45).

This third spinor is not only a theoretical invention: it is perfectly visibleon figure 29 p. 113 which is a part of our image of cover. We can enlarge thisimage and then see two interlaced spirals in the strong trace and an alone spiralin the weak trace.

112

The gauge derivative (6.22) is then equivalent to the system

Dφn = ∇φn + ig12[aBφnL + (−a+ b)BφnR] + i

g22(W−φL −W 3φnL) (7.38)

DφL = ∇φL + ig12aBφL + i

g22(−W+φnL +W 3φL) (7.39)

With(6.83) we get

g2W3 =

√g21 + g22Z

0 + g1B (7.40)

Then (7.38) reads

Dφn = ∇φn + ig12[(a− 1)BφnL + (−a+ b)BφnR]

+ ig22W−φL − i

2

√g21 + g22Z

0φnL (7.41)

We want to get ∇φn + iQBφn then we must have

g1(a− 1) = g1(b− a) = 2Q (7.42)

The first equality gives b = 2a− 1 and if this condition is satisfied we get

g1 =q

cos(θW )=

e

c cos(θW )

e(a− 1)

c cos(θW )= 2Q =

2g

ce(a− 1)

cos(θW )= 2g =

ce cos(θW )

a− 1 =ce2

=1

α(7.43)

where α is the fine structure constant and we must take

a = 1 +1

α; b = 1 +

2

α(7.44)

This gives in (7.39)

DφL = ∇φL + ig12(1 +

1

α)BφL + i

g22(−W+φnL +W 3φL) (7.45)

which is not the derivative term of an electron and remains to interpret. Sinceterms containing a are much bigger than other terms the magnetic charge termseems dominant in (7.41) and (7.45).

This third spinor is not only a theoretical invention: it is perfectly visibleon figure 29 p. 113 which is a part of our image of cover. We can enlarge thisimage and then see two interlaced spirals in the strong trace and an alone spiralin the weak trace.

112

; (7.38) The gauge derivative (6.22) is then equivalent to the system

Dφn = ∇φn + ig12[aBφnL + (−a+ b)BφnR] + i

g22(W−φL −W 3φnL) (7.38)

DφL = ∇φL + ig12aBφL + i

g22(−W+φnL +W 3φL) (7.39)

With(6.83) we get

g2W3 =

√g21 + g22Z

0 + g1B (7.40)

Then (7.38) reads

Dφn = ∇φn + ig12[(a− 1)BφnL + (−a+ b)BφnR]

+ ig22W−φL − i

2

√g21 + g22Z

0φnL (7.41)

We want to get ∇φn + iQBφn then we must have

g1(a− 1) = g1(b− a) = 2Q (7.42)

The first equality gives b = 2a− 1 and if this condition is satisfied we get

g1 =q

cos(θW )=

e

c cos(θW )

e(a− 1)

c cos(θW )= 2Q =

2g

ce(a− 1)

cos(θW )= 2g =

ce cos(θW )

a− 1 =ce2

=1

α(7.43)

where α is the fine structure constant and we must take

a = 1 +1

α; b = 1 +

2

α(7.44)

This gives in (7.39)

DφL = ∇φL + ig12(1 +

1

α)BφL + i

g22(−W+φnL +W 3φL) (7.45)

which is not the derivative term of an electron and remains to interpret. Sinceterms containing a are much bigger than other terms the magnetic charge termseems dominant in (7.41) and (7.45).

This third spinor is not only a theoretical invention: it is perfectly visibleon figure 29 p. 113 which is a part of our image of cover. We can enlarge thisimage and then see two interlaced spirals in the strong trace and an alone spiralin the weak trace.

112

The gauge derivative (6.22) is then equivalent to the system

Dφn = ∇φn + ig12[aBφnL + (−a+ b)BφnR] + i

g22(W−φL −W 3φnL) (7.38)

DφL = ∇φL + ig12aBφL + i

g22(−W+φnL +W 3φL) (7.39)

With(6.83) we get

g2W3 =

√g21 + g22Z

0 + g1B (7.40)

Then (7.38) reads

Dφn = ∇φn + ig12[(a− 1)BφnL + (−a+ b)BφnR]

+ ig22W−φL − i

2

√g21 + g22Z

0φnL (7.41)

We want to get ∇φn + iQBφn then we must have

g1(a− 1) = g1(b− a) = 2Q (7.42)

The first equality gives b = 2a− 1 and if this condition is satisfied we get

g1 =q

cos(θW )=

e

c cos(θW )

e(a− 1)

c cos(θW )= 2Q =

2g

ce(a− 1)

cos(θW )= 2g =

ce cos(θW )

a− 1 =ce2

=1

α(7.43)

where α is the fine structure constant and we must take

a = 1 +1

α; b = 1 +

2

α(7.44)

This gives in (7.39)

DφL = ∇φL + ig12(1 +

1

α)BφL + i

g22(−W+φnL +W 3φL) (7.45)

which is not the derivative term of an electron and remains to interpret. Sinceterms containing a are much bigger than other terms the magnetic charge termseems dominant in (7.41) and (7.45).

This third spinor is not only a theoretical invention: it is perfectly visibleon figure 29 p. 113 which is a part of our image of cover. We can enlarge thisimage and then see two interlaced spirals in the strong trace and an alone spiralin the weak trace.

112

. (7.39)

With(6.83) we get

The gauge derivative (6.22) is then equivalent to the system

Dφn = ∇φn + ig12[aBφnL + (−a+ b)BφnR] + i

g22(W−φL −W 3φnL) (7.38)

DφL = ∇φL + ig12aBφL + i

g22(−W+φnL +W 3φL) (7.39)

With(6.83) we get

g2W3 =

√g21 + g22Z

0 + g1B (7.40)

Then (7.38) reads

Dφn = ∇φn + ig12[(a− 1)BφnL + (−a+ b)BφnR]

+ ig22W−φL − i

2

√g21 + g22Z

0φnL (7.41)

We want to get ∇φn + iQBφn then we must have

g1(a− 1) = g1(b− a) = 2Q (7.42)

The first equality gives b = 2a− 1 and if this condition is satisfied we get

g1 =q

cos(θW )=

e

c cos(θW )

e(a− 1)

c cos(θW )= 2Q =

2g

ce(a− 1)

cos(θW )= 2g =

ce cos(θW )

a− 1 =ce2

=1

α(7.43)

where α is the fine structure constant and we must take

a = 1 +1

α; b = 1 +

2

α(7.44)

This gives in (7.39)

DφL = ∇φL + ig12(1 +

1

α)BφL + i

g22(−W+φnL +W 3φL) (7.45)

which is not the derivative term of an electron and remains to interpret. Sinceterms containing a are much bigger than other terms the magnetic charge termseems dominant in (7.41) and (7.45).

This third spinor is not only a theoretical invention: it is perfectly visibleon figure 29 p. 113 which is a part of our image of cover. We can enlarge thisimage and then see two interlaced spirals in the strong trace and an alone spiralin the weak trace.

112

(7.40)

Then (7.38) reads

The gauge derivative (6.22) is then equivalent to the system

Dφn = ∇φn + ig12[aBφnL + (−a+ b)BφnR] + i

g22(W−φL −W 3φnL) (7.38)

DφL = ∇φL + ig12aBφL + i

g22(−W+φnL +W 3φL) (7.39)

With(6.83) we get

g2W3 =

√g21 + g22Z

0 + g1B (7.40)

Then (7.38) reads

Dφn = ∇φn + ig12[(a− 1)BφnL + (−a+ b)BφnR]

+ ig22W−φL − i

2

√g21 + g22Z

0φnL (7.41)

We want to get ∇φn + iQBφn then we must have

g1(a− 1) = g1(b− a) = 2Q (7.42)

The first equality gives b = 2a− 1 and if this condition is satisfied we get

g1 =q

cos(θW )=

e

c cos(θW )

e(a− 1)

c cos(θW )= 2Q =

2g

ce(a− 1)

cos(θW )= 2g =

ce cos(θW )

a− 1 =ce2

=1

α(7.43)

where α is the fine structure constant and we must take

a = 1 +1

α; b = 1 +

2

α(7.44)

This gives in (7.39)

DφL = ∇φL + ig12(1 +

1

α)BφL + i

g22(−W+φnL +W 3φL) (7.45)

which is not the derivative term of an electron and remains to interpret. Sinceterms containing a are much bigger than other terms the magnetic charge termseems dominant in (7.41) and (7.45).

This third spinor is not only a theoretical invention: it is perfectly visibleon figure 29 p. 113 which is a part of our image of cover. We can enlarge thisimage and then see two interlaced spirals in the strong trace and an alone spiralin the weak trace.

112

The gauge derivative (6.22) is then equivalent to the system

Dφn = ∇φn + ig12[aBφnL + (−a+ b)BφnR] + i

g22(W−φL −W 3φnL) (7.38)

DφL = ∇φL + ig12aBφL + i

g22(−W+φnL +W 3φL) (7.39)

With(6.83) we get

g2W3 =

√g21 + g22Z

0 + g1B (7.40)

Then (7.38) reads

Dφn = ∇φn + ig12[(a− 1)BφnL + (−a+ b)BφnR]

+ ig22W−φL − i

2

√g21 + g22Z

0φnL (7.41)

We want to get ∇φn + iQBφn then we must have

g1(a− 1) = g1(b− a) = 2Q (7.42)

The first equality gives b = 2a− 1 and if this condition is satisfied we get

g1 =q

cos(θW )=

e

c cos(θW )

e(a− 1)

c cos(θW )= 2Q =

2g

ce(a− 1)

cos(θW )= 2g =

ce cos(θW )

a− 1 =ce2

=1

α(7.43)

where α is the fine structure constant and we must take

a = 1 +1

α; b = 1 +

2

α(7.44)

This gives in (7.39)

DφL = ∇φL + ig12(1 +

1

α)BφL + i

g22(−W+φnL +W 3φL) (7.45)

which is not the derivative term of an electron and remains to interpret. Sinceterms containing a are much bigger than other terms the magnetic charge termseems dominant in (7.41) and (7.45).

This third spinor is not only a theoretical invention: it is perfectly visibleon figure 29 p. 113 which is a part of our image of cover. We can enlarge thisimage and then see two interlaced spirals in the strong trace and an alone spiralin the weak trace.

112

+

The gauge derivative (6.22) is then equivalent to the system

Dφn = ∇φn + ig12[aBφnL + (−a+ b)BφnR] + i

g22(W−φL −W 3φnL) (7.38)

DφL = ∇φL + ig12aBφL + i

g22(−W+φnL +W 3φL) (7.39)

With(6.83) we get

g2W3 =

√g21 + g22Z

0 + g1B (7.40)

Then (7.38) reads

Dφn = ∇φn + ig12[(a− 1)BφnL + (−a+ b)BφnR]

+ ig22W−φL − i

2

√g21 + g22Z

0φnL (7.41)

We want to get ∇φn + iQBφn then we must have

g1(a− 1) = g1(b− a) = 2Q (7.42)

The first equality gives b = 2a− 1 and if this condition is satisfied we get

g1 =q

cos(θW )=

e

c cos(θW )

e(a− 1)

c cos(θW )= 2Q =

2g

ce(a− 1)

cos(θW )= 2g =

ce cos(θW )

a− 1 =ce2

=1

α(7.43)

where α is the fine structure constant and we must take

a = 1 +1

α; b = 1 +

2

α(7.44)

This gives in (7.39)

DφL = ∇φL + ig12(1 +

1

α)BφL + i

g22(−W+φnL +W 3φL) (7.45)

which is not the derivative term of an electron and remains to interpret. Sinceterms containing a are much bigger than other terms the magnetic charge termseems dominant in (7.41) and (7.45).

This third spinor is not only a theoretical invention: it is perfectly visibleon figure 29 p. 113 which is a part of our image of cover. We can enlarge thisimage and then see two interlaced spirals in the strong trace and an alone spiralin the weak trace.

112

(7.41)

We want to get

The gauge derivative (6.22) is then equivalent to the system

Dφn = ∇φn + ig12[aBφnL + (−a+ b)BφnR] + i

g22(W−φL −W 3φnL) (7.38)

DφL = ∇φL + ig12aBφL + i

g22(−W+φnL +W 3φL) (7.39)

With(6.83) we get

g2W3 =

√g21 + g22Z

0 + g1B (7.40)

Then (7.38) reads

Dφn = ∇φn + ig12[(a− 1)BφnL + (−a+ b)BφnR]

+ ig22W−φL − i

2

√g21 + g22Z

0φnL (7.41)

We want to get ∇φn + iQBφn then we must have

g1(a− 1) = g1(b− a) = 2Q (7.42)

The first equality gives b = 2a− 1 and if this condition is satisfied we get

g1 =q

cos(θW )=

e

c cos(θW )

e(a− 1)

c cos(θW )= 2Q =

2g

ce(a− 1)

cos(θW )= 2g =

ce cos(θW )

a− 1 =ce2

=1

α(7.43)

where α is the fine structure constant and we must take

a = 1 +1

α; b = 1 +

2

α(7.44)

This gives in (7.39)

DφL = ∇φL + ig12(1 +

1

α)BφL + i

g22(−W+φnL +W 3φL) (7.45)

which is not the derivative term of an electron and remains to interpret. Sinceterms containing a are much bigger than other terms the magnetic charge termseems dominant in (7.41) and (7.45).

This third spinor is not only a theoretical invention: it is perfectly visibleon figure 29 p. 113 which is a part of our image of cover. We can enlarge thisimage and then see two interlaced spirals in the strong trace and an alone spiralin the weak trace.

112

then we must have

The gauge derivative (6.22) is then equivalent to the system

Dφn = ∇φn + ig12[aBφnL + (−a+ b)BφnR] + i

g22(W−φL −W 3φnL) (7.38)

DφL = ∇φL + ig12aBφL + i

g22(−W+φnL +W 3φL) (7.39)

With(6.83) we get

g2W3 =

√g21 + g22Z

0 + g1B (7.40)

Then (7.38) reads

Dφn = ∇φn + ig12[(a− 1)BφnL + (−a+ b)BφnR]

+ ig22W−φL − i

2

√g21 + g22Z

0φnL (7.41)

We want to get ∇φn + iQBφn then we must have

g1(a− 1) = g1(b− a) = 2Q (7.42)

The first equality gives b = 2a− 1 and if this condition is satisfied we get

g1 =q

cos(θW )=

e

c cos(θW )

e(a− 1)

c cos(θW )= 2Q =

2g

ce(a− 1)

cos(θW )= 2g =

ce cos(θW )

a− 1 =ce2

=1

α(7.43)

where α is the fine structure constant and we must take

a = 1 +1

α; b = 1 +

2

α(7.44)

This gives in (7.39)

DφL = ∇φL + ig12(1 +

1

α)BφL + i

g22(−W+φnL +W 3φL) (7.45)

which is not the derivative term of an electron and remains to interpret. Sinceterms containing a are much bigger than other terms the magnetic charge termseems dominant in (7.41) and (7.45).

This third spinor is not only a theoretical invention: it is perfectly visibleon figure 29 p. 113 which is a part of our image of cover. We can enlarge thisimage and then see two interlaced spirals in the strong trace and an alone spiralin the weak trace.

112

(7.42)

The first equality gives b = 2a − 1 and if this condition is satisfied we get

The gauge derivative (6.22) is then equivalent to the system

Dφn = ∇φn + ig12[aBφnL + (−a+ b)BφnR] + i

g22(W−φL −W 3φnL) (7.38)

DφL = ∇φL + ig12aBφL + i

g22(−W+φnL +W 3φL) (7.39)

With(6.83) we get

g2W3 =

√g21 + g22Z

0 + g1B (7.40)

Then (7.38) reads

Dφn = ∇φn + ig12[(a− 1)BφnL + (−a+ b)BφnR]

+ ig22W−φL − i

2

√g21 + g22Z

0φnL (7.41)

We want to get ∇φn + iQBφn then we must have

g1(a− 1) = g1(b− a) = 2Q (7.42)

The first equality gives b = 2a− 1 and if this condition is satisfied we get

g1 =q

cos(θW )=

e

c cos(θW )

e(a− 1)

c cos(θW )= 2Q =

2g

ce(a− 1)

cos(θW )= 2g =

ce cos(θW )

a− 1 =ce2

=1

α(7.43)

where α is the fine structure constant and we must take

a = 1 +1

α; b = 1 +

2

α(7.44)

This gives in (7.39)

DφL = ∇φL + ig12(1 +

1

α)BφL + i

g22(−W+φnL +W 3φL) (7.45)

which is not the derivative term of an electron and remains to interpret. Sinceterms containing a are much bigger than other terms the magnetic charge termseems dominant in (7.41) and (7.45).

This third spinor is not only a theoretical invention: it is perfectly visibleon figure 29 p. 113 which is a part of our image of cover. We can enlarge thisimage and then see two interlaced spirals in the strong trace and an alone spiralin the weak trace.

112

The gauge derivative (6.22) is then equivalent to the system

Dφn = ∇φn + ig12[aBφnL + (−a+ b)BφnR] + i

g22(W−φL −W 3φnL) (7.38)

DφL = ∇φL + ig12aBφL + i

g22(−W+φnL +W 3φL) (7.39)

With(6.83) we get

g2W3 =

√g21 + g22Z

0 + g1B (7.40)

Then (7.38) reads

Dφn = ∇φn + ig12[(a− 1)BφnL + (−a+ b)BφnR]

+ ig22W−φL − i

2

√g21 + g22Z

0φnL (7.41)

We want to get ∇φn + iQBφn then we must have

g1(a− 1) = g1(b− a) = 2Q (7.42)

The first equality gives b = 2a− 1 and if this condition is satisfied we get

g1 =q

cos(θW )=

e

c cos(θW )

e(a− 1)

c cos(θW )= 2Q =

2g

ce(a− 1)

cos(θW )= 2g =

ce cos(θW )

a− 1 =ce2

=1

α(7.43)

where α is the fine structure constant and we must take

a = 1 +1

α; b = 1 +

2

α(7.44)

This gives in (7.39)

DφL = ∇φL + ig12(1 +

1

α)BφL + i

g22(−W+φnL +W 3φL) (7.45)

which is not the derivative term of an electron and remains to interpret. Sinceterms containing a are much bigger than other terms the magnetic charge termseems dominant in (7.41) and (7.45).

This third spinor is not only a theoretical invention: it is perfectly visibleon figure 29 p. 113 which is a part of our image of cover. We can enlarge thisimage and then see two interlaced spirals in the strong trace and an alone spiralin the weak trace.

112

The gauge derivative (6.22) is then equivalent to the system

Dφn = ∇φn + ig12[aBφnL + (−a+ b)BφnR] + i

g22(W−φL −W 3φnL) (7.38)

DφL = ∇φL + ig12aBφL + i

g22(−W+φnL +W 3φL) (7.39)

With(6.83) we get

g2W3 =

√g21 + g22Z

0 + g1B (7.40)

Then (7.38) reads

Dφn = ∇φn + ig12[(a− 1)BφnL + (−a+ b)BφnR]

+ ig22W−φL − i

2

√g21 + g22Z

0φnL (7.41)

We want to get ∇φn + iQBφn then we must have

g1(a− 1) = g1(b− a) = 2Q (7.42)

The first equality gives b = 2a− 1 and if this condition is satisfied we get

g1 =q

cos(θW )=

e

c cos(θW )

e(a− 1)

c cos(θW )= 2Q =

2g

ce(a− 1)

cos(θW )= 2g =

ce cos(θW )

a− 1 =ce2

=1

α(7.43)

where α is the fine structure constant and we must take

a = 1 +1

α; b = 1 +

2

α(7.44)

This gives in (7.39)

DφL = ∇φL + ig12(1 +

1

α)BφL + i

g22(−W+φnL +W 3φL) (7.45)

which is not the derivative term of an electron and remains to interpret. Sinceterms containing a are much bigger than other terms the magnetic charge termseems dominant in (7.41) and (7.45).

This third spinor is not only a theoretical invention: it is perfectly visibleon figure 29 p. 113 which is a part of our image of cover. We can enlarge thisimage and then see two interlaced spirals in the strong trace and an alone spiralin the weak trace.

112

The gauge derivative (6.22) is then equivalent to the system

Dφn = ∇φn + ig12[aBφnL + (−a+ b)BφnR] + i

g22(W−φL −W 3φnL) (7.38)

DφL = ∇φL + ig12aBφL + i

g22(−W+φnL +W 3φL) (7.39)

With(6.83) we get

g2W3 =

√g21 + g22Z

0 + g1B (7.40)

Then (7.38) reads

Dφn = ∇φn + ig12[(a− 1)BφnL + (−a+ b)BφnR]

+ ig22W−φL − i

2

√g21 + g22Z

0φnL (7.41)

We want to get ∇φn + iQBφn then we must have

g1(a− 1) = g1(b− a) = 2Q (7.42)

The first equality gives b = 2a− 1 and if this condition is satisfied we get

g1 =q

cos(θW )=

e

c cos(θW )

e(a− 1)

c cos(θW )= 2Q =

2g

ce(a− 1)

cos(θW )= 2g =

ce cos(θW )

a− 1 =ce2

=1

α(7.43)

where α is the fine structure constant and we must take

a = 1 +1

α; b = 1 +

2

α(7.44)

This gives in (7.39)

DφL = ∇φL + ig12(1 +

1

α)BφL + i

g22(−W+φnL +W 3φL) (7.45)

which is not the derivative term of an electron and remains to interpret. Sinceterms containing a are much bigger than other terms the magnetic charge termseems dominant in (7.41) and (7.45).

This third spinor is not only a theoretical invention: it is perfectly visibleon figure 29 p. 113 which is a part of our image of cover. We can enlarge thisimage and then see two interlaced spirals in the strong trace and an alone spiralin the weak trace.

112

(7.43)

where α is the fine structure constant and we must take

The gauge derivative (6.22) is then equivalent to the system

Dφn = ∇φn + ig12[aBφnL + (−a+ b)BφnR] + i

g22(W−φL −W 3φnL) (7.38)

DφL = ∇φL + ig12aBφL + i

g22(−W+φnL +W 3φL) (7.39)

With(6.83) we get

g2W3 =

√g21 + g22Z

0 + g1B (7.40)

Then (7.38) reads

Dφn = ∇φn + ig12[(a− 1)BφnL + (−a+ b)BφnR]

+ ig22W−φL − i

2

√g21 + g22Z

0φnL (7.41)

We want to get ∇φn + iQBφn then we must have

g1(a− 1) = g1(b− a) = 2Q (7.42)

The first equality gives b = 2a− 1 and if this condition is satisfied we get

g1 =q

cos(θW )=

e

c cos(θW )

e(a− 1)

c cos(θW )= 2Q =

2g

ce(a− 1)

cos(θW )= 2g =

ce cos(θW )

a− 1 =ce2

=1

α(7.43)

where α is the fine structure constant and we must take

a = 1 +1

α; b = 1 +

2

α(7.44)

This gives in (7.39)

DφL = ∇φL + ig12(1 +

1

α)BφL + i

g22(−W+φnL +W 3φL) (7.45)

which is not the derivative term of an electron and remains to interpret. Sinceterms containing a are much bigger than other terms the magnetic charge termseems dominant in (7.41) and (7.45).

This third spinor is not only a theoretical invention: it is perfectly visibleon figure 29 p. 113 which is a part of our image of cover. We can enlarge thisimage and then see two interlaced spirals in the strong trace and an alone spiralin the weak trace.

112

(7.44)

This gives in (7.39)

The gauge derivative (6.22) is then equivalent to the system

Dφn = ∇φn + ig12[aBφnL + (−a+ b)BφnR] + i

g22(W−φL −W 3φnL) (7.38)

DφL = ∇φL + ig12aBφL + i

g22(−W+φnL +W 3φL) (7.39)

With(6.83) we get

g2W3 =

√g21 + g22Z

0 + g1B (7.40)

Then (7.38) reads

Dφn = ∇φn + ig12[(a− 1)BφnL + (−a+ b)BφnR]

+ ig22W−φL − i

2

√g21 + g22Z

0φnL (7.41)

We want to get ∇φn + iQBφn then we must have

g1(a− 1) = g1(b− a) = 2Q (7.42)

The first equality gives b = 2a− 1 and if this condition is satisfied we get

g1 =q

cos(θW )=

e

c cos(θW )

e(a− 1)

c cos(θW )= 2Q =

2g

ce(a− 1)

cos(θW )= 2g =

ce cos(θW )

a− 1 =ce2

=1

α(7.43)

where α is the fine structure constant and we must take

a = 1 +1

α; b = 1 +

2

α(7.44)

This gives in (7.39)

DφL = ∇φL + ig12(1 +

1

α)BφL + i

g22(−W+φnL +W 3φL) (7.45)

which is not the derivative term of an electron and remains to interpret. Sinceterms containing a are much bigger than other terms the magnetic charge termseems dominant in (7.41) and (7.45).

This third spinor is not only a theoretical invention: it is perfectly visibleon figure 29 p. 113 which is a part of our image of cover. We can enlarge thisimage and then see two interlaced spirals in the strong trace and an alone spiralin the weak trace.

112

The gauge derivative (6.22) is then equivalent to the system

Dφn = ∇φn + ig12[aBφnL + (−a+ b)BφnR] + i

g22(W−φL −W 3φnL) (7.38)

DφL = ∇φL + ig12aBφL + i

g22(−W+φnL +W 3φL) (7.39)

With(6.83) we get

g2W3 =

√g21 + g22Z

0 + g1B (7.40)

Then (7.38) reads

Dφn = ∇φn + ig12[(a− 1)BφnL + (−a+ b)BφnR]

+ ig22W−φL − i

2

√g21 + g22Z

0φnL (7.41)

We want to get ∇φn + iQBφn then we must have

g1(a− 1) = g1(b− a) = 2Q (7.42)

The first equality gives b = 2a− 1 and if this condition is satisfied we get

g1 =q

cos(θW )=

e

c cos(θW )

e(a− 1)

c cos(θW )= 2Q =

2g

ce(a− 1)

cos(θW )= 2g =

ce cos(θW )

a− 1 =ce2

=1

α(7.43)

where α is the fine structure constant and we must take

a = 1 +1

α; b = 1 +

2

α(7.44)

This gives in (7.39)

DφL = ∇φL + ig12(1 +

1

α)BφL + i

g22(−W+φnL +W 3φL) (7.45)

which is not the derivative term of an electron and remains to interpret. Sinceterms containing a are much bigger than other terms the magnetic charge termseems dominant in (7.41) and (7.45).

This third spinor is not only a theoretical invention: it is perfectly visibleon figure 29 p. 113 which is a part of our image of cover. We can enlarge thisimage and then see two interlaced spirals in the strong trace and an alone spiralin the weak trace.

112

(7.45)

which is not the derivative term of an electron and re-mains to interpret. Since terms containing a are much bigger than other terms the magnetic charge term seems dominant in (7.41) and (7.45).

This third spinor is not only a theoretical invention: it is perfectly visible on figure 29 p. 113 which is a part of our image of cover. We can enlarge this image and then see two interlaced spirals in the strong trace and an alone spiral in the weak trace.

7.3.4 Gauge invariant wave equation

Since the pair wave of the monopole - φL wave is the ana-log of the electron- neutrino pair, the wave equation for the Ψ in (7.25) is identical to (6.254):

7.3.4 Gauge invariant wave equation

Since the pair wave of the monopole - φL wave is the analog of the electron-neutrino pair, the wave equation for the Ψ in (7.25) is identical to (6.254):

Ψ(DΨ)γ012 +mρ = 0 ; ρ =√

det(Ψ). (7.46)

This wave equation is form invariant under the transformation R in (1.42) in-duced by M because we have (6.105) and:

Ψ′ = NΨ ; N =

(M 0

0 M

)(7.47)

Ψ′ = ΨN (7.48)

det(Ψ′) = det(N) det(Ψ) = r2 det(Ψ) (7.49)

ρ′ =√

det(Ψ′) = rρ (7.50)

m′ρ′ = m′rρ = mρ. (7.51)

The existence of only one mass term, therefore the existence of one impulse-energy vector, implies a same wavelength for each of these three spinors, andthis is visible on figure 29.

The wave equation (7.46) is also gauge invariant, with the replacement ofρ =

√det(Ψ) by ρ′ =

√det(Ψ′), under the gauge transformation defined by

(6.119) to (6.122), because P0 has the general form used in Appendix B and wethen get:

Ψ′(D′Ψ′)γ012 +m′ρ′ = 0. (7.52)

The mechanism of the spontaneously broken gauge symmetry is not necessary,neither for the electron nor for the magnetic monopole since the wave equationsare simply gauge invariant.

References

[1] G. Bardout, G. Lochak, and D. Fargue. Sur la presence de monopoles legersau pole nord. Ann. Fond. Louis de Broglie, 32:551, 2007.

[2] R. Boudet. The takabayasi moving frame, from a potential to the z boson.In S. Jeffers and J.P. Vigier, editors, The Present Status of the QuantumTheory of the Light. Kluwer, Dordrecht, 1995.

[3] R. Boudet. Quantum Mechanics in the Geometry of Space-Time. Springer,Heidelberg Dordrecht London New York, 2011.

[4] C. Daviau. Cl∗3 invariance of the dirac equation and of electromagnetism.Adv. Appl. Clifford Algebras, 22(3):611–623, 2012.

113

(7.46)

This wave equation is form invariant under the trans-formation R in (1.42) induced by M because we have (6.105) and:

7.3.4 Gauge invariant wave equation

Since the pair wave of the monopole - φL wave is the analog of the electron-neutrino pair, the wave equation for the Ψ in (7.25) is identical to (6.254):

Ψ(DΨ)γ012 +mρ = 0 ; ρ =√

det(Ψ). (7.46)

This wave equation is form invariant under the transformation R in (1.42) in-duced by M because we have (6.105) and:

Ψ′ = NΨ ; N =

(M 0

0 M

)(7.47)

Ψ′ = ΨN (7.48)

det(Ψ′) = det(N) det(Ψ) = r2 det(Ψ) (7.49)

ρ′ =√

det(Ψ′) = rρ (7.50)

m′ρ′ = m′rρ = mρ. (7.51)

The existence of only one mass term, therefore the existence of one impulse-energy vector, implies a same wavelength for each of these three spinors, andthis is visible on figure 29.

The wave equation (7.46) is also gauge invariant, with the replacement ofρ =

√det(Ψ) by ρ′ =

√det(Ψ′), under the gauge transformation defined by

(6.119) to (6.122), because P0 has the general form used in Appendix B and wethen get:

Ψ′(D′Ψ′)γ012 +m′ρ′ = 0. (7.52)

The mechanism of the spontaneously broken gauge symmetry is not necessary,neither for the electron nor for the magnetic monopole since the wave equationsare simply gauge invariant.

References

[1] G. Bardout, G. Lochak, and D. Fargue. Sur la presence de monopoles legersau pole nord. Ann. Fond. Louis de Broglie, 32:551, 2007.

[2] R. Boudet. The takabayasi moving frame, from a potential to the z boson.In S. Jeffers and J.P. Vigier, editors, The Present Status of the QuantumTheory of the Light. Kluwer, Dordrecht, 1995.

[3] R. Boudet. Quantum Mechanics in the Geometry of Space-Time. Springer,Heidelberg Dordrecht London New York, 2011.

[4] C. Daviau. Cl∗3 invariance of the dirac equation and of electromagnetism.Adv. Appl. Clifford Algebras, 22(3):611–623, 2012.

113

(7.47)

7.3.4 Gauge invariant wave equation

Since the pair wave of the monopole - φL wave is the analog of the electron-neutrino pair, the wave equation for the Ψ in (7.25) is identical to (6.254):

Ψ(DΨ)γ012 +mρ = 0 ; ρ =√

det(Ψ). (7.46)

This wave equation is form invariant under the transformation R in (1.42) in-duced by M because we have (6.105) and:

Ψ′ = NΨ ; N =

(M 0

0 M

)(7.47)

Ψ′ = ΨN (7.48)

det(Ψ′) = det(N) det(Ψ) = r2 det(Ψ) (7.49)

ρ′ =√

det(Ψ′) = rρ (7.50)

m′ρ′ = m′rρ = mρ. (7.51)

The existence of only one mass term, therefore the existence of one impulse-energy vector, implies a same wavelength for each of these three spinors, andthis is visible on figure 29.

The wave equation (7.46) is also gauge invariant, with the replacement ofρ =

√det(Ψ) by ρ′ =

√det(Ψ′), under the gauge transformation defined by

(6.119) to (6.122), because P0 has the general form used in Appendix B and wethen get:

Ψ′(D′Ψ′)γ012 +m′ρ′ = 0. (7.52)

The mechanism of the spontaneously broken gauge symmetry is not necessary,neither for the electron nor for the magnetic monopole since the wave equationsare simply gauge invariant.

References

[1] G. Bardout, G. Lochak, and D. Fargue. Sur la presence de monopoles legersau pole nord. Ann. Fond. Louis de Broglie, 32:551, 2007.

[2] R. Boudet. The takabayasi moving frame, from a potential to the z boson.In S. Jeffers and J.P. Vigier, editors, The Present Status of the QuantumTheory of the Light. Kluwer, Dordrecht, 1995.

[3] R. Boudet. Quantum Mechanics in the Geometry of Space-Time. Springer,Heidelberg Dordrecht London New York, 2011.

[4] C. Daviau. Cl∗3 invariance of the dirac equation and of electromagnetism.Adv. Appl. Clifford Algebras, 22(3):611–623, 2012.

113

(7.48)

7.3.4 Gauge invariant wave equation

Since the pair wave of the monopole - φL wave is the analog of the electron-neutrino pair, the wave equation for the Ψ in (7.25) is identical to (6.254):

Ψ(DΨ)γ012 +mρ = 0 ; ρ =√

det(Ψ). (7.46)

This wave equation is form invariant under the transformation R in (1.42) in-duced by M because we have (6.105) and:

Ψ′ = NΨ ; N =

(M 0

0 M

)(7.47)

Ψ′ = ΨN (7.48)

det(Ψ′) = det(N) det(Ψ) = r2 det(Ψ) (7.49)

ρ′ =√

det(Ψ′) = rρ (7.50)

m′ρ′ = m′rρ = mρ. (7.51)

The existence of only one mass term, therefore the existence of one impulse-energy vector, implies a same wavelength for each of these three spinors, andthis is visible on figure 29.

The wave equation (7.46) is also gauge invariant, with the replacement ofρ =

√det(Ψ) by ρ′ =

√det(Ψ′), under the gauge transformation defined by

(6.119) to (6.122), because P0 has the general form used in Appendix B and wethen get:

Ψ′(D′Ψ′)γ012 +m′ρ′ = 0. (7.52)

The mechanism of the spontaneously broken gauge symmetry is not necessary,neither for the electron nor for the magnetic monopole since the wave equationsare simply gauge invariant.

References

[1] G. Bardout, G. Lochak, and D. Fargue. Sur la presence de monopoles legersau pole nord. Ann. Fond. Louis de Broglie, 32:551, 2007.

[2] R. Boudet. The takabayasi moving frame, from a potential to the z boson.In S. Jeffers and J.P. Vigier, editors, The Present Status of the QuantumTheory of the Light. Kluwer, Dordrecht, 1995.

[3] R. Boudet. Quantum Mechanics in the Geometry of Space-Time. Springer,Heidelberg Dordrecht London New York, 2011.

[4] C. Daviau. Cl∗3 invariance of the dirac equation and of electromagnetism.Adv. Appl. Clifford Algebras, 22(3):611–623, 2012.

113

(7.49)

7.3.4 Gauge invariant wave equation

Since the pair wave of the monopole - φL wave is the analog of the electron-neutrino pair, the wave equation for the Ψ in (7.25) is identical to (6.254):

Ψ(DΨ)γ012 +mρ = 0 ; ρ =√

det(Ψ). (7.46)

This wave equation is form invariant under the transformation R in (1.42) in-duced by M because we have (6.105) and:

Ψ′ = NΨ ; N =

(M 0

0 M

)(7.47)

Ψ′ = ΨN (7.48)

det(Ψ′) = det(N) det(Ψ) = r2 det(Ψ) (7.49)

ρ′ =√

det(Ψ′) = rρ (7.50)

m′ρ′ = m′rρ = mρ. (7.51)

The existence of only one mass term, therefore the existence of one impulse-energy vector, implies a same wavelength for each of these three spinors, andthis is visible on figure 29.

The wave equation (7.46) is also gauge invariant, with the replacement ofρ =

√det(Ψ) by ρ′ =

√det(Ψ′), under the gauge transformation defined by

(6.119) to (6.122), because P0 has the general form used in Appendix B and wethen get:

Ψ′(D′Ψ′)γ012 +m′ρ′ = 0. (7.52)

The mechanism of the spontaneously broken gauge symmetry is not necessary,neither for the electron nor for the magnetic monopole since the wave equationsare simply gauge invariant.

References

[1] G. Bardout, G. Lochak, and D. Fargue. Sur la presence de monopoles legersau pole nord. Ann. Fond. Louis de Broglie, 32:551, 2007.

[2] R. Boudet. The takabayasi moving frame, from a potential to the z boson.In S. Jeffers and J.P. Vigier, editors, The Present Status of the QuantumTheory of the Light. Kluwer, Dordrecht, 1995.

[3] R. Boudet. Quantum Mechanics in the Geometry of Space-Time. Springer,Heidelberg Dordrecht London New York, 2011.

[4] C. Daviau. Cl∗3 invariance of the dirac equation and of electromagnetism.Adv. Appl. Clifford Algebras, 22(3):611–623, 2012.

113

(7.50)

7.3.4 Gauge invariant wave equation

Since the pair wave of the monopole - φL wave is the analog of the electron-neutrino pair, the wave equation for the Ψ in (7.25) is identical to (6.254):

Ψ(DΨ)γ012 +mρ = 0 ; ρ =√

det(Ψ). (7.46)

This wave equation is form invariant under the transformation R in (1.42) in-duced by M because we have (6.105) and:

Ψ′ = NΨ ; N =

(M 0

0 M

)(7.47)

Ψ′ = ΨN (7.48)

det(Ψ′) = det(N) det(Ψ) = r2 det(Ψ) (7.49)

ρ′ =√

det(Ψ′) = rρ (7.50)

m′ρ′ = m′rρ = mρ. (7.51)

The existence of only one mass term, therefore the existence of one impulse-energy vector, implies a same wavelength for each of these three spinors, andthis is visible on figure 29.

The wave equation (7.46) is also gauge invariant, with the replacement ofρ =

√det(Ψ) by ρ′ =

√det(Ψ′), under the gauge transformation defined by

(6.119) to (6.122), because P0 has the general form used in Appendix B and wethen get:

Ψ′(D′Ψ′)γ012 +m′ρ′ = 0. (7.52)

The mechanism of the spontaneously broken gauge symmetry is not necessary,neither for the electron nor for the magnetic monopole since the wave equationsare simply gauge invariant.

References

[1] G. Bardout, G. Lochak, and D. Fargue. Sur la presence de monopoles legersau pole nord. Ann. Fond. Louis de Broglie, 32:551, 2007.

[2] R. Boudet. The takabayasi moving frame, from a potential to the z boson.In S. Jeffers and J.P. Vigier, editors, The Present Status of the QuantumTheory of the Light. Kluwer, Dordrecht, 1995.

[3] R. Boudet. Quantum Mechanics in the Geometry of Space-Time. Springer,Heidelberg Dordrecht London New York, 2011.

[4] C. Daviau. Cl∗3 invariance of the dirac equation and of electromagnetism.Adv. Appl. Clifford Algebras, 22(3):611–623, 2012.

113

(7.51)

The existence of only one mass term, therefore the existence of one impulse- energy vector, implies a same wavelength for each of these three spinors, and this is visible on figure 29.

The wave equation (7.46) is also gauge invariant, with the replacement of

7.3.4 Gauge invariant wave equation

Since the pair wave of the monopole - φL wave is the analog of the electron-neutrino pair, the wave equation for the Ψ in (7.25) is identical to (6.254):

Ψ(DΨ)γ012 +mρ = 0 ; ρ =√

det(Ψ). (7.46)

This wave equation is form invariant under the transformation R in (1.42) in-duced by M because we have (6.105) and:

Ψ′ = NΨ ; N =

(M 0

0 M

)(7.47)

Ψ′ = ΨN (7.48)

det(Ψ′) = det(N) det(Ψ) = r2 det(Ψ) (7.49)

ρ′ =√

det(Ψ′) = rρ (7.50)

m′ρ′ = m′rρ = mρ. (7.51)

The existence of only one mass term, therefore the existence of one impulse-energy vector, implies a same wavelength for each of these three spinors, andthis is visible on figure 29.

The wave equation (7.46) is also gauge invariant, with the replacement ofρ =

√det(Ψ) by ρ′ =

√det(Ψ′), under the gauge transformation defined by

(6.119) to (6.122), because P0 has the general form used in Appendix B and wethen get:

Ψ′(D′Ψ′)γ012 +m′ρ′ = 0. (7.52)

The mechanism of the spontaneously broken gauge symmetry is not necessary,neither for the electron nor for the magnetic monopole since the wave equationsare simply gauge invariant.

References

[1] G. Bardout, G. Lochak, and D. Fargue. Sur la presence de monopoles legersau pole nord. Ann. Fond. Louis de Broglie, 32:551, 2007.

[2] R. Boudet. The takabayasi moving frame, from a potential to the z boson.In S. Jeffers and J.P. Vigier, editors, The Present Status of the QuantumTheory of the Light. Kluwer, Dordrecht, 1995.

[3] R. Boudet. Quantum Mechanics in the Geometry of Space-Time. Springer,Heidelberg Dordrecht London New York, 2011.

[4] C. Daviau. Cl∗3 invariance of the dirac equation and of electromagnetism.Adv. Appl. Clifford Algebras, 22(3):611–623, 2012.

113

, un-der the gauge transformation defined by (6.119) to (6.122), because P0 has the general form used in Appendix B and we then get:

7.3.4 Gauge invariant wave equation

Since the pair wave of the monopole - φL wave is the analog of the electron-neutrino pair, the wave equation for the Ψ in (7.25) is identical to (6.254):

Ψ(DΨ)γ012 +mρ = 0 ; ρ =√

det(Ψ). (7.46)

This wave equation is form invariant under the transformation R in (1.42) in-duced by M because we have (6.105) and:

Ψ′ = NΨ ; N =

(M 0

0 M

)(7.47)

Ψ′ = ΨN (7.48)

det(Ψ′) = det(N) det(Ψ) = r2 det(Ψ) (7.49)

ρ′ =√

det(Ψ′) = rρ (7.50)

m′ρ′ = m′rρ = mρ. (7.51)

The existence of only one mass term, therefore the existence of one impulse-energy vector, implies a same wavelength for each of these three spinors, andthis is visible on figure 29.

The wave equation (7.46) is also gauge invariant, with the replacement ofρ =

√det(Ψ) by ρ′ =

√det(Ψ′), under the gauge transformation defined by

(6.119) to (6.122), because P0 has the general form used in Appendix B and wethen get:

Ψ′(D′Ψ′)γ012 +m′ρ′ = 0. (7.52)

The mechanism of the spontaneously broken gauge symmetry is not necessary,neither for the electron nor for the magnetic monopole since the wave equationsare simply gauge invariant.

References

[1] G. Bardout, G. Lochak, and D. Fargue. Sur la presence de monopoles legersau pole nord. Ann. Fond. Louis de Broglie, 32:551, 2007.

[2] R. Boudet. The takabayasi moving frame, from a potential to the z boson.In S. Jeffers and J.P. Vigier, editors, The Present Status of the QuantumTheory of the Light. Kluwer, Dordrecht, 1995.

[3] R. Boudet. Quantum Mechanics in the Geometry of Space-Time. Springer,Heidelberg Dordrecht London New York, 2011.

[4] C. Daviau. Cl∗3 invariance of the dirac equation and of electromagnetism.Adv. Appl. Clifford Algebras, 22(3):611–623, 2012.

113

(7.52)

The mechanism of the spontaneously broken gauge symmetry is not necessary, neither for the electron nor for the magnetic monopole since the wave equations are simply gauge invariant.

49

Page 51: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 49

ПРИКЛАДНАЯ МАТЕМАТИКА ENGLISH

References

1. G. Bardout, G. Lochak, and D. Fargue. Sur laprésence de monopoles légers au pole nord. Ann.Fond. Louis de Broglie, 32:551, 2007.

2. R. Boudet. The takabayasi moving frame, from apotential to the z boson. In S. Jeffers and J.P. Vi-gier, editors, The Present Status of the QuantumTheory of the Light. Kluwer, Dordrecht, 1995.

3. R. Boudet. Quantum Mechanics in the Geometryof Space-Time. Springer, Heidelberg DordrechtLondon New York, 2011.

4. C. Daviau. Cl*3 invariance of the dirac equationand of electromagnetism. Adv. Appl. Clifford Al-gebras, 22(3):611–623, 2012.

5. C. Daviau. Double Space-Time and more. JePub-lie, Pouillé-les-coteaux, 2012.

6. C. Daviau. Nonlinear Dirac Equation, MagneticMonopoles and Double Space-Time. CISP, Cam-bridge UK, 2012.

7. C. Daviau. Invariant quantum wave equationsand double space-time. Adv. in Imaging and Elec-tron Physics, 179, chapter 1:1–137, 2013.

8. C. Daviau and J. Bertrand. A lepton dirac equa-tion with additional mass term and a wave equa-tion for a fourth neutrino. Ann. Fond. Louis deBroglie, 38, 2013.

9. C. Daviau, D. Fargue, D. Priem, and G. Racineux.Tracks of magnetic monopoles. Ann. Fond. Louisde Broglie, 38, 2013.

10. O. Costa de Beauregard. Sur un tenseur encoreininterprété en théorie de dirac. Ann. Fond. Louisde Broglie, 14-3:335–342, 1989.

11. O. Costa de Beauregard. Induced electromagnet-ic inertia and physicality of the 4vector potential.Physics Essays, 10-4:646–650, 1997.

12. Louis de Broglie. L’électron magnétique. Her-mann, Paris, 1934.

13. E. Elbaz. De l’électromagnétique a l’électro-faible. Ellipses, Paris, 1989.

14. D. Hestenes. Space-time structure of weak and electromagnetic interactions. Found. of Phys., 12:153–168, 1982.

15. H.Poincar. Remarques sur une exprience de m. birkeland. C.R.A.S., 123:530–533, 1896.

16. N. Ivoilov. Low energy generation of the strange radiation. Ann. Fond. Louis de Broglie, 31(1):115–123, 2006.

17. G. Lochak. Sur un monopole de masse nulledécrit par l’équation de dirac et sur une équation générale non linéaire qui contient des monopoles de spin

[12] C. Daviau. Nonlinear Dirac Equation, Magnetic Monopoles and DoubleSpace-Time. CISP, Cambridge UK, 2012.

[13] C. Daviau. Invariant quantum wave equations and double space-time. Adv.in Imaging and Electron Physics, 179, chapter 1:1–137, 2013.

[14] Louis de Broglie. Recherches sur la theorie des quantas. Ann. Fond. Louisde Broglie, 17(1), 1924.

[15] Louis de Broglie. L’electron magnetique. Hermann, Paris, 1934.

[16] Louis de Broglie. La mecanique du photon, Une nouvelle theorie de lalumiere : tome 1 La lumiere dans le vide. Hermann, Paris, 1940.

[17] Louis de Broglie. tome 2 Les interactions entre les photons et la matiere.Hermann, Paris, 1942.

[18] Rene Deheuvels. Tenseurs et spineurs. PUF, Paris, 1993.

[19] P.A.M. Dirac. The quantum theory of the electron. Proc. R. Soc. Lond.,117:610–624, 1928.

[20] D. Hestenes. Space-Time Algebra. Gordon and Breach, New-York, 1966,1987, 1992.

[21] D. Hestenes. Space-time structure of weak and electromagnetic interac-tions. Found. of Phys., 12:153–168, 1982.

[22] D. Hestenes. A unified language for Mathematics and Physics and CliffordAlgebra and the interpretation of quantum mechanics. In Chisholm andAK Common, editors, Clifford Algebras and their applications in Mathe-matics and Physics. Reidel, Dordrecht, 1986.

[23] H. Kruger. New solutions of the dirac equation for central fields. InD. Hestenes and A. Weingartshofer, editors, The Electron. Kluwer, Dor-drecht, 1991.

[24] A. Lasenby, C. Doran, and S. Gull. A multivector derivative approach tolagrangian field theory. Found. of Phys., 23:1295–1327, 1993.

[25] G. Lochak. Sur un monopole de masse nulle decrit par l’equation de diracet sur une equation generale non lineaire qui contient des monopoles despin 1

2 . Ann. Fond. Louis de Broglie, 8(4), 1983.

[26] G. Lochak. Wave equation for a magnetic monopole. Int. J. of Th. Phys.,24:1019–1050, 1985.

[27] G. Lochak. Photons electriques et photons magnetiques dans la theoriedu photon de louis de broglie (un renouvellement possible de la theorie duchamp unitaire d’einstein). Ann. Fond. Louis de Broglie, 29:297–316, 2004.

58

. Ann. Fond. Louis de Broglie, 8(4), 1983.

18. G. Lochak. Sur un monopole de masse nulle décrit par l’équation de Dirac et sur une équation générale non lin´eaire qui contient des monopoles de spin

[12] C. Daviau. Nonlinear Dirac Equation, Magnetic Monopoles and DoubleSpace-Time. CISP, Cambridge UK, 2012.

[13] C. Daviau. Invariant quantum wave equations and double space-time. Adv.in Imaging and Electron Physics, 179, chapter 1:1–137, 2013.

[14] Louis de Broglie. Recherches sur la theorie des quantas. Ann. Fond. Louisde Broglie, 17(1), 1924.

[15] Louis de Broglie. L’electron magnetique. Hermann, Paris, 1934.

[16] Louis de Broglie. La mecanique du photon, Une nouvelle theorie de lalumiere : tome 1 La lumiere dans le vide. Hermann, Paris, 1940.

[17] Louis de Broglie. tome 2 Les interactions entre les photons et la matiere.Hermann, Paris, 1942.

[18] Rene Deheuvels. Tenseurs et spineurs. PUF, Paris, 1993.

[19] P.A.M. Dirac. The quantum theory of the electron. Proc. R. Soc. Lond.,117:610–624, 1928.

[20] D. Hestenes. Space-Time Algebra. Gordon and Breach, New-York, 1966,1987, 1992.

[21] D. Hestenes. Space-time structure of weak and electromagnetic interac-tions. Found. of Phys., 12:153–168, 1982.

[22] D. Hestenes. A unified language for Mathematics and Physics and CliffordAlgebra and the interpretation of quantum mechanics. In Chisholm andAK Common, editors, Clifford Algebras and their applications in Mathe-matics and Physics. Reidel, Dordrecht, 1986.

[23] H. Kruger. New solutions of the dirac equation for central fields. InD. Hestenes and A. Weingartshofer, editors, The Electron. Kluwer, Dor-drecht, 1991.

[24] A. Lasenby, C. Doran, and S. Gull. A multivector derivative approach tolagrangian field theory. Found. of Phys., 23:1295–1327, 1993.

[25] G. Lochak. Sur un monopole de masse nulle decrit par l’equation de diracet sur une equation generale non lineaire qui contient des monopoles despin 1

2 . Ann. Fond. Louis de Broglie, 8(4), 1983.

[26] G. Lochak. Wave equation for a magnetic monopole. Int. J. of Th. Phys.,24:1019–1050, 1985.

[27] G. Lochak. Photons electriques et photons magnetiques dans la theoriedu photon de louis de broglie (un renouvellement possible de la theorie duchamp unitaire d’einstein). Ann. Fond. Louis de Broglie, 29:297–316, 2004.

58

(partie 2). Ann. Fond. Louis de Broglie, 9(1), 1984.

19. G. Lochak. Wave equation for a magnetic mono-pole. Int. J. of Th. Phys., 24:1019–1050, 1985.

20. G. Lochak. Liste des publications. Ann. Fond. Louis de Broglie, 26:31–42, 2001.

21. G. Lochak. “photons électriques” and “photons magnétiques” dans la théorie du photon de de broglie. Ann. Fond. Louis de Broglie, 33:107–127, 2008.

22. D. Priem, C. Daviau, and G. Racineux. Transmu-tations et traces de monopoles obtenues lors dedécharges électriques. Ann. Fond. Louis de Bro-glie, 34:103, 2009.

23. T. Takabayasi. Relativistic hydrodynamics of theDirac matter. Theor. Phys. Suppl., 4, 1957.

24. M.A. Tonnelat. Les théories unitaires del’électromagnétisme et de la gravitation. Gauth-ier-Villars, Paris, 1965.

25. V.F. Mikhailov. Observation of the magnet-ic charge effect in the experiments with ferro-magnetic aerosols. Ann. Fond. Louis de Broglie,12(4):491–524, 1987.

26. S. Weinberg. A model of leptons. Phys. Rev. Lett.,19:1264–1266, 1967.

Сведения об авторах Information about the authors

К. Девиан44522, Франция, Апулия холмы. Мулен де ла Ланде

Еmail: [email protected]Ж. Бертранд

95210, Франция, Санкт-Гратиан 15 пр-т Даниэль Казанова

Еmail: [email protected]

Claude Daviau44522, Pouille-les-coteaux. FranceЕmail: [email protected] Bertrand15 avenue Danielle Casanova 95210, Saint-Gratien France, Еmail: [email protected]

48

Page 52: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201450

ПРИКЛАДНАЯ МАТЕМАТИКА

Моделирование вытеснения нефти с учетоМ МассообМенных процессовС.Т. МухаМбеТжанов – доктор физ.-мат. наук, зав. кафедрой Казахский национальный университет имени аль-фараби E-mail: [email protected]Т.С. Кенжебаев – канд. физ.-мат. наук, ассистент-профессор Казахстанско-британский технический университет E-mail: [email protected]

Работа посвящена исследованию математической модели неравновесной фильтрации, описывающей процесс вытесне-ния нефти полимерными растворами. Здесь рассматривается случай вытеснения нефти полимерными растворами, т.е. по-лимер растворяется только в воде. Доказаны существование,

единственность и устойчивость обобщенного решения зада-чи, а также приведены результаты численных расчетов.

Ключевые слова: Фильтрация, полимерные растворы, не-фтяная фаза, водная фаза, численные расчеты.

ModEling of oil displacEMEnt considEring of Mass transfEr procEssEsS.T. MukhaMbeTzhanov – doctor of phys.-Math. sciences, Head of department al-farabi Kazakh national University E-mail: [email protected] T.S. kenzhebaev – cand. of phys.-Math. sciences, assistant professor Kazakh-British technical University E-mail: [email protected]

Work is devoted research of mathematical model of the non-equilibrium filtration describing process of displacement of oil by polymeric solutions. Here the case of displacement of oil is considered by polymeric solutions, i.e. polymer is dissolved only in water. Existence, uniqueness and a stability of the generalised

solution of a problem are proved, and also outcomes of numeri-cal calculations are reduced.

Keywords: Filtration, polymeric solutions, oil phase, water phase, numerical calculations.

введение В данной работе исследуются математические моде-ли неравновесной фильтрации, описывающие про-цессы вытеснения нефти полимерными растворами. Известно, что наличие активной примеси сводится к увеличению или уменьшению доли водной фазы в потоке. В одномерном случае рассматриваемая ма-тематическая модель изучена в работе [1]. В потоке активная примесь может находиться в трех состоя-ниях: растворенной в воде, растворенной в нефти и адсорбированной на стенках поровых каналов. Ниже рассматривается случай вытеснения нефти полимер-ными растворами, т.е. полимер растворяется только в воде. Тогда содержание полимера в растворе увели-чивает вязкость водной фазы, а с ростом количества адсорбированного полимерного вещества уменьша-ется фазовая проницаемость для воды.

1. вывод уравненийВведение дополнительного фактора (активной при-меси) приводит к изменению системы уравнений двухфазной фильтрации, состоящей из уравнений баланса воды и нефти в потоке, обобщенного за-кона фильтрации Дарси и условия капиллярного равновесия:

∂∂

⋅ ⋅( ) +tm s ρ1 div uρ1 1 0⋅( ) = , (1)

∂∂

⋅ −( ) ⋅( ) + ⋅( ) =tm s div u1 02 2 2ρ ρ

, (2)

v k f piii

i= − ∇µ

, i =1 2, , (3)

p p p Sc2 1− = ( ) (4)

где m f ki i i, , , ,ρ µ и p sc ( ) – соответственно пори-стость среды, плотности фаз, вязкости жидкостей, относительные фазовые проницаемости, проницае-мость среды и капиллярное давление.

В уравнениях (1)–(4) все основные характери-стики жидкостей и пористой среды при введении активной примеси меняются, и система не явля-ется замкнутой. Исходя из результатов работы [1] для замыкания модели добавляется следующее уравнение относительно концентрации с-активной примеси:∂∂

⋅ ⋅ ⋅ + ⋅ ⋅ −( ) +( ) =

= ⋅∇ − ⋅ ⋅ − ⋅ ⋅(tm c s m s a c

div D c c v v

ρ ϕ ρ

ρ ϕ ρ

1 2

1 1 2 2

1 ( )

))(5)

51

Page 53: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 51

ПРИКЛАДНАЯ МАТЕМАТИКА

где ϕ( ), ( )c a c – соответственно массовые концентра-ции примеси в нефтяной фазе и адсорбированные примеси в единице объема пористой среды. В соот-ношении (5) при вытеснении нефти полимерными растворами функция ϕ( )c = 0 , а функция a c( ) , как правило, определяется через уравнение Ленгмюра или по закону Генри. Такое предположение не всегда оправдано. В частности, для мицеллярных растворов изотерма сорбции ПАВ в окрестности критической концентрации мицеллообразования c* может быть немонотонной. Указанную трудность можно обойти введением следующей функции: χ c( ) =1 при c > c* , χ c( ) = 0 при c < c* и χ c( )∈[ ]0 1, при c = c* . Тогдафункцию a x t( , ) можно определить из следующего уравнения:

∂∂

= ⋅ −( )at

c a1

τχ( ) , (6)

где τ – время прибывания каждой молекулы в ад-сорбционный центр.

Лемма 1

Пусть u W Qp∈ ( )1 , Q – ограниченная область вRk , p >1 , A x Q u xε ε= ∈ ≤ ( ) . Тогда ∇ =u 0 п.в.в A0.

Лемма 2

Пусть Q – ограниченная область в Rk , vn , v,v g L Qp, ∈ ( ) , p >1 , ∀ ∈x Q A\ , lim ( ) ( )

nnv x f x

→∞= и

∀ ∈n N , v x g xn ( ) ( )″≤v x g xn ( ) ( )″ , где mesA = 0; v vn → слабо в L Qp ( ) . Тогда v f≥ п.в. в Q .

2. Постановка задачиБудем рассматривать фильтрационное течение с ак-тивной примесью в заданной конечной области Ω с кусочно – гладкой границей Γ ≡ ∂Ω . В соответствии с различными видами граничных условий граница Γ может разбиваться на несколько связных компо-нент Γ i . Пусть Q TT = ×[ ]Ω 0, , S TT

i i= ×[ ]Γ 0, , n –внешняя нормаль к границе Γ . Следуя результатам работы [3] систему (1)–(6) можно представить в сле-дующем виде:

m stdiv K a s b v F⋅

∂∂= ⋅ ⋅∇ − ⋅ +( )0 1

, (7)

div K P f⋅∇ +( ) = 0 , − = ⋅∇ +

v K P f , (8)

∂∂

⋅ ⋅ +( ) = ⋅∇ − ⋅( )tm c s a div D c c v (9)

∂∂

= ⋅ −( )at

c a1

τχ( ) , (10)

где функция χ( )c равна единице, если c c> * , χ( )c равна нулю, если c c< * и принимает значения из промежутка [0,1], если c c= * , m – пористость, K K x= 0( ) – тензор фильтрации для однородной жидкости, капиллярное давление обладает следую-

щими свойствами: ∂∂

<Psk 0 и ∂

∂≤

Pck 0 ,

а p p pskkd ghk= −

∂∂

+∫102

1ξ ρ – приведенное давле-

ние, остальные коэффициенты и функций определя-ются из следующих соотношений:

k k s k s a psk kk

F K pskkd

K

k

k

= + = −∂∂

= ∇∂∂

=

01 02 101 02

102

( ) ( ), ,

,

ξ

KK K kK k k K f

K pskkd K p K gk

k

1 2 0 01 02 0

022 2 2 1

+ = = + =

= ∇∂∂

+ ∇ + −

( ) ,

( ) .ξ ρ ρ

∫∫

(11)

Таким образом, требуется найти функции s p v c a, , , , (cоответственно водонасыщенность,

давление, скорость течения, концентрацию активной примеси, функцию адсорбции), определенные в QT , удовлетворяющие уравнениям (7)–(10), начальным:

s s xt= =0 0( ) , c c xt= =

0 0( ) , a a xt= =0 0( ) (12)

а также следующим граничным условиям: vn v n= =1 0 – условие непротекания и для концентрации:

c x t,( ) = 0 при ( , ) , .x t S T∈ = ×[ ]0 0 0Γ (13)

p p x t= 0( , ), s s x t= 0( , ),

− ⋅∂∂

+ ⋅ = ⋅D cnv c v cn n 1 1

при ( , ) , ,x t S T∈ = ×[ ]2 2 0Γ (14)

− ∇ + ≡ = ∈ = ×[ ]( ) ( , ), ( , ) , ,K p f n vn R x t x t S T

1 1 0Γ

− ∇ + ∇ + ≡ = ∈( ) ( , ), ( , ) .K a s K p f n v n bR x t x t S0 1 1 0 11

(15)

− ⋅∂∂

+ ⋅ = ⋅D cnv c q cn n

1* при ( , ) , ,x t S T∈ = ×[ ]1 1 0Γ

где qn – заданный расход на единицу площади, c и с* – известные значения концентрации примеси.

Всюду ниже предполагается, что все коэффици-енты в системе уравнений (7)–(10) определены при всех x s c, ,( ) и имеют непрерывные производные

50

Page 54: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201452

ПРИКЛАДНАЯ МАТЕМАТИКА

вплоть до первого порядка. В дальнейшем систему уравнений (7)–(10) с дополнительными условиями (12)–(15) будем называть задачей 1.

ОпредеЛение

Ограниченные измеримые в QT функции s x t, ,( )p x t, ,( ) c x t, ,( ) a x t( , ) назовем обобщенным реше-

нием задачи 1, еслиа) 0 1≤ ( ) ≤s x t, , 0 ≤ ( )c x t, , 0 1≤ ( ) ≤a x t, почти

всюду в QT ;б) ∇ ∈ ( )∞p L QT2, , a s L QT1 2⋅∇ ∈ ( ),

D c L QT⋅∇ ∈ 2( );

в) at , a L QT∈ ∞ ( );

г) на S2 выполняются граничные условия (14);д) для произвольных допустимых функций таких, что

ϕ x t, ,( ) v x t W QT, ,,( )∈ ( )211 ψ x W( )∈ ( )2

1 Ω ,

ϕ x t v x t xS S S, ,( ) = ( ) = ( ) =2 2 2 0Ψ

при почти всех t T∈[ ]0, выполняются равенства

ℑ ≡ ( ) + ∇( ) =

= ( ) − ( )

1 1

01

ms v

bR ms

t Q Q

St

t t

t

, ,

, ,

ϕ φ

ϕ ϕ

Ω

(16)

ℑ ≡ ∇( ) = ( )2 1

v R, ,ψ ψΩ Γ (17)

ℑ ≡ ⋅ ⋅ +( ) + ⋅∇ − ⋅ ∇( ) =

= ⋅( ) − ⋅ ⋅ +

3 1

1 1

m s c a v D c c v v

v c v m s c a

t Q Q

n S

t t

t

, ,

,

,, .v t( )Ω 0

(18)

Замечание 1

Всюду ниже считается, что в области течения отсут-ствуют застойные зоны, в которых достигаются пре-дельные значения s = 0 1, . Задачу 1 в этом случае будем называть регулярной, т.е. a1 0≥ >δ , а ее решения регу-лярными. Такое определение введено в работе [1].

Замечание 2

В области

E x t Q c x t cc T= ( )∈ ( ) = , , *

выполняются равенства (см. лемму 1). Тогда из урав-нений (9), (10) выводится χ c x t a x t, ,( ) = ( ) для п.в. в x t Ec,( )∈ и из определения функции χ( )c следует,что 0 1≤ ( ) ≤a x t, для п.в. x t Ec,( )∈ .

Здесь и далее обозначения норм и пространств функций совпадают с обозначениями в [1].

3 СущеСтвОвание

Функция χ( )c аппроксимируется непрерывными монотонными функциями χn c( ), совпадающими с

χ( )c при c cnc c> + <* *,

1 , n =1 2, ,. Через 7 10( ) −( )n n

обозначаются система уравнений (7)–(10), где вме-сто функции χ( )c рассматривается функция χn c( ). Тогда задача 1 решается по следующей последова-тельности: эллиптическая задача относительно дав-ления, затем нелинейные параболические задачи от-носительно насыщенности s x t,( ) и с использовани-ем теоремы Шаудера о неподвижной точке концен-трация активной примеси c x t,( ) с функцией

a x t a x e g x e dt

n

tt, , ,( ) = ( ) ⋅ + ⋅ ( )( ) ⋅

−−

∫0

0

1τζτ

τχ ζ ζ (19)

причем c x t g x t, , ,( ) = ( )( )Λ

где Λ : , ,W Q W QT T211

211( ) → ( ) оператор, неподвижная

точка которого дает решение задачи 1. При этом име-ет место следующая

теОрема 1

Пусть коэффициенты в системе уравнений имеют непрерывные производные вплоть до первого поряд-ка и дополнительно

p p s

s c c

Qt

W Q

Q t Q Q

tt

T

T T T

0 0 0 1

0 2 1 0 2

2

1∞ ( )

∇ ∇

, ,

, , ,

;sup ; ;

; ;

Ω

≤ M ;

a x0 ( ) – измерима и 0 1≤ ( ) ≤a x t, , x∈Ω .Тогда существует одно обобщенное решение за-

дачи 1 (в смысле выполнения определения 1) и функ-ций s x t, ,( ) c x t,( ) и a x t( , ) удовлетворяют п.в. в QTнеравенствам:

0

1 1

0 0

0 1

< ≤ ( ) ≤ ( ) ≤≤ ( ) ≤ − <

δ

δ

min , ,

max ,

s x t s x t

s x t(20)

0 1≤ ( ) ≤c x t, , 0 1≤ ( ) ≤a x t, ,± ≤at 1 (21)

дОкаЗатеЛьСтвО

Оценка (19) и первое неравенство в (21) является следствием принципа максимума, а второе неравен-ство в (21) следует из представления (18). Существо-вание решения задачи 1 относительно функций s p,( ) полностью повторяет рассуждения из [2], т.е.

приближенные решения вспомогательной задачи 1 ищется в виде

s x t a t x s x tnkN

kk

N, , ,( ) = ( ) ⋅ ( ) + ( )

=∑ ϕ 0

1

(22)

53

Page 55: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 53

ПРИКЛАДНАЯ МАТЕМАТИКА

p x t b t x p x tnkN

kk

N, , ,( ) = ( ) ⋅ ( ) + ( )

=∑ ψ 0

1

(23)

Аналогичное представление имеет место для функции c x t,( ) :

c x t d t v x c x tNkN

kk

N, ,( ) = ( ) ⋅ ( ) + ( )

=∑

1

(24)

где фундаментальные в

Wx v x W

x v x x21 2 2

1

20Ω

Ω,

, ,

Γ( ) = ( ) ( )∈ ( )

( ) = ( ) = ∈

ϕ

ϕ

системы функций ϕk kv, и ψk нормированы следу-ющим образом:

m k i ikφ ϕ δ, ,( ) = mv vk i ik, ,( ) = δ ∇ ∇( ) =ψ ψ δk i ik, ,

где δik – символы Кронекера. Для определения неиз-

вестных функций a tkN ( ) , bk

N , d tkN ( ) получаем не-

линейную эволюционно – стационарную систему уравнений:

dadt

a akN

jN

jk k kN

j

N

= ⋅ + ( ) ==∑ α β , 0 0

1

(25)

bjN

jk kj

N⋅ + =

=∑ µ λ 0

1

(26)

dddt

d dkN

jN

jk k kN

j

N= ⋅ +ℵ ( ) =

=∑ γ , 0 0

1

(27)

в которой

α φ φ φjk j kK a b vk

= − ⋅ ⋅∇ ∇( ) + ⋅ ∇( )0 1 , , ;Ω Ω

β φ φ φk k kms F K a st k

= −( ) + ∇( ) − ⋅ ⋅∇ ∇( )0 0 1 0, , , ;Ω Ω Ω

µ ψ ψjk jKk

= ⋅∇ ∇( ), ;Ω

µ ψ ψjk kf Rk

= ∇( ) − ( )

, , ;Ω Γ2

γ

τ

jk j k j k

t j k k

D v v v v v

m s v v a p g v

= − ⋅∇ ∇( ) + ⋅ ∇( ) −

− ⋅ ⋅( ) + − ( )

, ,

, ,

Ω Ω

Ω

1

1 (( )Ω ;

ℵ = − ⋅ ⋅( ) −

− ⋅∇ ∇( ) + ⋅ ∇( )k t k

k k

m s c v

D c v c v v

,

, , .

Γ

Γ

2

21Ω

Разрешимость задач (25)–(27) следует из сделан-ных предположений на коэффициенты этой вспомо-гательной системы, т.е. функции µ λ γjk k jk, , огра-ничены, а βk k,ℵ интегрируемые функции по

t T∈[ ]0, при всех значениях akN , bk

N , dkN . Сначала

решается (26) для определения bkN в каждый момент

времени из нелинейной системы алгебраических уравнений. Затем решаются задача Коши для обык-новенных дифференциальных уравнений (25) и (27) для определения функций ak и dkN соответственно. Последняя, в силу указанных выше свойств коэффи-циентов, разрешима для всех значений t T∈[ ]0, , принадлежащих пространству W T

21 0,( ) . Следова-

тельно, при каждом N на интервале (0,T) существует единственное решение задачи Коши при k N=1 2, , , . Тогда следуя результатам работ [2, 3] легко получить равномерные по N оценки приближенных решений, позволяющие совершить предельный переход при N →∞ . Таким образом, полученное решение опре-деляет в W QT2

11, ( ) некоторое выпуклое, ограничен-ное подмножество, которое оператор P переводит в себя. Так как P – вполне непрерывный, то по теореме Шаудера существует неподвижная точка оператора P, которая и дает решение задачи 7 10( ) − ( )n n . Обозна-чим его через s p c an n n n, , , . Тогда в силу априорных оценок для s p c an n n n, , , и ограниченность χn nc( )позволяют выделить подпоследовательность nk, та-кую, что s p c a s p c an n n nk k k k

, , , , , , → п.в. в QT ,

∂→

∂∂

st

st

nk , ∂

∂→

∂∂

ct

ct

nk , ∇ →∇s snk , ∇ →∇c cnk ,

∇ →∇p pnk , слабо в L QT2 ( ) ,

a ank → , ∂

∂→

∂∂

at

at

nk , χn nk kc h( ) → −

* слабо в

L QT∞ ( ) .Из определения функции χn и сходимости cnk к

c п.в. в QT , следует, что h x t c,( ) = ( )χ п.в. в Q ET c\ ,а также из леммы 2 на множестве Ec функция h x t a x t, ,( ) = ( ) .

Окончательно, переходя к пределу в интеграль-ных тождествах, аналогичным (16)–(18), получим искомое решение задачи 1.

4. устойчивостьи единственность решений

теОрема 2

Пусть выполнены условия (а)–(д) из определения и граница Γ ≡ ∂ ∈Ω H

*1 , s p v c aj j j j j, , , , – обоб-

щенные решения регулярных задач 1 соответственно

52

Page 56: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201454

ПРИКЛАДНАЯ МАТЕМАТИКА

с начальными и граничными функциями вида (12) – (15), j =1 2, , и такие, что

∇ ∇

≤s p R Mj Q j Q j

T Tα β α β α β1 1 2 2 0 0, , , , , ,; ; "Γ

(28)

и при этом данные удовлетворяют условиям (11), то для s s s= −1 2, p p p= −1 2 , c c c= −1 2, a a a= −1 2,

s p CV QT; ;

( )20( ) ≤ ⋅µ ∇ ∇( ) ≤ ⋅ −s p Cq QT

; ;, 0

1µ γ

c Cq Qq

T,( ) / ,2

11≤ ⋅λ a a Ct p Q p Q

pT T, ,

/+ ≤ ⋅21λ

(29)

Здесь

µα β

=+ + +

+ + + +

s c p

R a s aV Q V Q V Q

V Q t Q

T T T

T

0 0 0

0 0 2 0

2 2 2

0 0

1

2

( ) ( ) ( )

, , ( ) ,Γ tt V QT2 ( )

,

1≤ < ∞p ,

константы C0 , C1 , C2 зависят от α βi i T, , ,Ω и от норм данных.

Доказательство теоремы следует из результатов работ [1–2]. При этом составляются интегральные тождества вида (16)–(17) и, вычитая соответствую-щие тождества для j =1 и j = 2 друг из друга и с помощью интерполяционных неравенств, получают-ся необходимые оценки. Далее легко показать един-ственность решения, для этого необходимо поста-вить вместо данных s p R a0 0 0 0= = = = и воспользоваться свойствами коэффициентов.

5. Предельный переход при τ→ 0Поведение решений при τ→ 0 исследуется на при-мере задачи Дирихле. Для задачи Неймана верен ана-логичный результат. Пусть χ – единичная функция Хевисайда, K QT( ) – пространство функций, опреде-ленных в области QT , с нормой: .

Рассматриваются функции c x tτ ,( ) , a x tτ ,( ) ,

p x tτ ,( ) , удовлетворяющие исходным уравнениям иусловиям:

c cT t

τ τ−( ) =∪ =( )0 0

, a at

τ τ=

=0 0 ,

где c W Q K Qq T T02 1τ ∈ ( )∩ ( ), , a L0

τ ∈ ( )∞ Ω

и a x c x0 0

0τ τχ( ) = ( )

, , x∈Ω .

Без ограничения общности положим, что D const= > 0 и s x t( , ) =1 . Тогда исходя из результа-тов работ [1–3] имеют места следующие утверждения

теОрема 3

Для решения регуляризованной задачи справед-ливы оценки:

c MQT

τ∞

≤,

,1 c c MtQ TT

τ τ2 0 2

2, , ,

max ,+ ∇ ≤[ ] Ω

χ δ ττ τδ

c a MQT

( ) − ≤ ⋅ ⋅−1

31 2

,

/ , δ > 0 ,

где Q TTδ δ= × ( )Ω 0, , Ω Ω Ωδ δ= ∈ ( ) > x dist x , ,

а константы M ii , , ,=1 2 3 зависят только от ± T ,Ω

и cT0

τΩ,

.

теОрема 4

Если c c a aT0 0 0 0

10τ τ− + − →

Ω Ω, ,при τ→ 0 ,

то c a U m c cτ τ χ+ → ≡ ⋅ + ( ) при τ→ 0 .Пусть U m c c≡ ⋅ + ( )χ – обобщенное решение за-

дачи Стефана, удовлетворяющие начальным и крае-вым условиям:

U x c x a x x( , ) ( , ) ( ),0 00 0≡ + ∈ Ω ,

c x t c x t( , ) ( , ),= 0 ∀ ∈( , )x t TΓ ,

где c x t K QT0( , ) ,∈ ( ) a x L0( )∈ ( )∞ Ω

и a x c x0 0

0( ) = ( )

χ τ , .

Условие (28) и оценки (29) позволяют выбрать подпоследовательность τk → 0 такую, что c ckτ →

слабо в W QT211, ( ) и −

* слабо в ± ∞L QT( ), a ckτ χ→ ( ) −

*

слабо в ± ∞L QT( ). После предельного перехода в соот-ветствующем интегральном тождестве по τk → 0 , получается, что c a U m c cτ τ χ+ → ≡ ⋅ + ( ) и следова-тельно, является обобщенным решением задачи Сте-фана в силу единственности решения.

6. Модельные функции,встречающиеся в расчетах, и значения некоторых величинВ расчете использованы модельные зависимости для F(s,c) и P(s,c), причем фазовые проницаемости и ка-пиллярное давление выбраны в виде:

f sa c

f s1

3

2

30 2

0 8

1

1

0 8

0 6=

+

=

,

, ( ),

,

,,

β (30)

a c c s( ) , / ( , ) .= = −Γ Π Pc 0 2 2

Вязкость воды считалась постоянной, вязкость нефти – функцией от времени:

55

Page 57: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 55

ПРИКЛАДНАЯ МАТЕМАТИКА

РИС. 1 • Фронт водонасыщенности

РИС. 2 • Фронт изменения концентрации

µ µ µ µ γ1 10

2 20= = ⋅ − ⋅; exp( ) t (31)

где ± µ µ10

20, и γ постоянные. Значения постоянных

были следующими:К = 1 дарси, m = 0,2; П = 1; ± µ1

0 = 1 сПз; D=10 5 2− см с/ ,и λ = 36ккал м сут град/ ( * * ). Значения величин β µ γ µ, , , ,

20

2l в расчетах варьировались. С целью уменьшения «размазывания» фронтов концентрации из-за применения явной уголковой схемы, проводи-лись методические расчеты с разными шагами по пространственной переменной. Результаты расчетов приведены на рисунках 1–2, означающие изменение границы относительно водонасыщенности и концен-трации.

Литература

1. Bektemesov M.A., Mukhametzhanov S.T., Kabulkhami-tov G.T. About one inverse problem of the theory of iso-thermal filtration. ABSTRACTS of the International Con-ference «Inverse Problems: Modeling and Simulation»held on June 07–12, 2004 at Fethiye, TURKEY. Fethiye,2004. РР. 21–24.

2. Смагулов Ш.С., Мухамбетжанов С.Т., МусиралиеваШ.Ж. О приближенных решениях нестационарноймодели двух несмешивающихся жидкостей с учетомкапиллярных сил // Сб.: Обратные задачи и инфор-мационные технологии. – Новосибирск, 2002. Т. 1. 1. С. 97–110.

3. Мухамбетжанов С.Т. О свойствах решения одной за-дачи теории фильтрации // Материалы международнойконференции «Задачи со свободными границами: тео-рия, эксперимент и приложения». – Бийск, 2005. 45 с.

54

Page 58: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201456

ПРИКЛАДНАЯ МАТЕМАТИКА

4. Bektemesov M.A., Mukhametzhanov S.T. Inverse Prob-lems of the a filtration. ABSTRACTS of the InternationalSymposium on Inverse Problems in Engineering Mechanics2003: 18–21 February 2003, Nagano City, JAPAN. NaganoCity, 2003. РР. 151–152.

5. Мухамбетжанов С.Т. О разрешимости одной задачинеравновесной фильтрации. III Международная конфе-ренция «Нелокальные краевые и родственные пробле-мы математической биологии, информатики и физики».Нальчик, 2006. С. 201–203.

6. Мухамбетжанов С.Т., Сарсекеева А.С. О разрешимостизадачи теории фильтрации в многосвязной области. IIIМеждународная конференция «Нелокальные краевые иродственные проблемы математической биологии, ин-форматики и физики». Нальчик, 2006. С. 203–204.

7. Мухамбетжанов С.Т., Кабылхамитов Г.Т. Обоснованиеметода фиктивных областей для решения одной задачитеории фильтрации. Материалы Международной на-учно-практической конференции «Таймановские чте-ния». Уральск, 2007. С. 104–109.

8. Мухамбетжанов С.Т., Кабылхамитов Г.Т. Об одномклассе точных решений движения жидкости в пористойсреде. Вестник МГПУ, Москва, 4(14), 2008, С. 52–56.

9. Mukhametzhanov S.T., Akhmed-Zaki Zh. Darkhan. Model-ling of a problem of fhase trasitions at not isothermal fil-tration and qualitive properties of the decision. Wiertctwonafta gaz,Tom 25, Zeszyt 2, 2008. РР. 541–549.

10. Mukhametzhanov S.T., Kenzhebaev T.S. The approximatedmethods of the solution of problems of the filtration the-ory in porous environment. 20th International Conference«Oil-Gas AGH’ 2009». Conference proceedings. Cracow,Poland, May 27–29, 2009. РР. 27–34.

11. Мухамбетжанов С.Т., Кенжебаев Т.С. Приближенныеметоды решения модели теории фильтрации со свобод-ными границами. Abstracts of 5 International Scientific andPractical conference, Almaty, KBTU, February 21–22, 2013.

References

1. Bektemesov M.A., Mukhametzhanov S.T., Kabulkhami-tov G.T. About one inverse problem of the theory of iso-thermal filtration. ABSTRACTS of the International Con-ference «Inverse Problems: Modeling and Simulation»held on June 07–12, 2004 at Fethiye, TURKEY. Fethiye,2004. РР. 21–24.

2. Smagulov Sh.S., Mukhambetzhanov S.T., Musiralie-va Sh.Zh. O priblizhennykh resheniyakh nestatsionar-noy modeli dvukh nesmeshivayushchikhsya zhidkostey suchetom kapillyarnykh sil [On approximate solutions ofnon-stationary model of two immiscible liquids, takinginto account capillary forces]. Sb.: Obratnye zadachi i in-formatsionnye tekhnologii [collection.: Inverse problemsand information technology]. Novosibirsk, 2002. Vol. 1. 1. РР. 97–110.

3. Mukhambetzhanov S.T. O svoystvakh resheniya odnoyzadachi teorii filtratsii [On the properties of solutions of

a problem in the theory of filtration]. Materialy mezhdun-arodnoy konferentsii «Zadachi so svobodnymi granitsami: teoriya, eksperiment i prilozheniya» [International Confer-ence «Free Boundary Problems: Theory, Experiment and Applications»]. Biysk. 2005. 45 p.

4. Bektemesov M.A., Mukhametzhanov S.T. Inverse Prob-lems of the a filtration. ABSTRACTS of the InternationalSymposium on Inverse Problems in Engineering Mechanics2003: 18–21 February 2003, Nagano City, JAPAN. NaganoCity, 2003. РP. 151–152.

5. Mukhambetzhanov S.T. O razreshimosti odnoy zadachineravnovesnoy filtratsii [On the solvability of a problemnonequilibrium filtration]. III Mezhdunarodnaya kon-ferentsiya «Nelokalnye kraevye i rodstvennye problemymatematicheskoy biologii, informatiki i fiziki» [III Interna-tional Conference «Nonlocal boundary-value problems andrelated mathematical biology, computer science and phys-ics.»] Nalchik, 2006. РР. 201–203.

6. Mukhambetzhanov S.T., Sarsekeeva A.S. O razreshimostizadachi teorii filtratsii v mnogosvyaznoy oblasti [On thesolvability of filtration theory in multiply connected do-mains.]. III Mezhdunarodnaya konferentsiya «Nelokalnyekraevye i rodstvennye problemy matematicheskoy bi-ologii, informatiki i fiziki» [III International Conference«Nonlocal boundary-value problems and related math-ematical biology, computer science and physics»] Nalchik,2006. РР. 203–204.

7. Mukhambetzhanov S.T., Kabylkhamitov G.T. Obosnovaniemetoda fiktivnykh oblastey dlya resheniya odnoy zada-chi teorii filtratsii. [Justification of the fictitious domainmethod for solving a problem in the theory of filtration].Materialy Mezhdunarodnoy nauchno-prakticheskoy kon-ferentsii «Taymanovskie chteniya» [International scientificand practical conference «Taymanovskie reading»]. Uralsk,2007. PP. 104–109.

8. Mukhambetzhanov S.T., Kabylkhamitov G.T. Ob odnomklasse tochnykh resheniy dvizheniya zhidkosti v poristoysrede. [A class of exact solutions of fluid motion in a porousmedium.]. Vestnik MGPU, Moskva, [Bulletin of MoscowState Pedagogical University, Moscow] 4(14), 2008,РР. 52–56.

9. Mukhametzhanov S.T., Akhmed-Zaki Zh. Darkhan. Model-ling of a problem of fhase trasitions at not isothermal fil-tration and qualitive properties of the decision. Wiertctwonafta gaz, Vol. 25, Zeszyt 2, 2008. PP. 541–549.

10. Mukhametzhanov S.T., Kenzhebaev T.S. The approximatedmethods of the solution of problems of the filtration the-ory in porous environment. 20th International Conference«Oil-Gas AGH’ 2009». Conference proceedings. Cracow,Poland, May 27–29, 2009. РР. 27–34.

11. Mukhambetzhanov S.T., Kenzhebaev T.S. Priblizhennyemetody resheniya modeli teorii filtratsii so svobodnymigranitsami. [Approximate methods for solving model filtra-tion theory with free boundaries.] Abstracts of 5 Interna-tional Scientific and Practical conference, Almaty, KBTU,February 21–22, 2013.

сведения об авторах information about the authors

Мухамбетжанов салтанбек талапеденовичдоктор физ.-мат. наук, зав. кафедрой

Казахский национальный университет имени аль-Фараби050040, г. Алматы, аль-Фараби, 71 E-mail: [email protected]

Кенжебаев талгатбек садуахасовичканд. физ.-мат. наук, ассистент-профессор

Казахстанско-Британский технический университет050000, г. Алматы, Толе би 59

E-mail: [email protected]

Mukhambetzhanov saltanbek talapedenovichDoctor of Phys.-Math. Sciences, Head of Department al-Farabi Kazakh National University 050040, Almaty, al-Farabi, 71E-mail: [email protected] Kenzhebaev talgatbek saduakhasovichCand. of Phys.-Math. Sciences, Assistant Professor Kazakh-British Technical University 050000, Almaty, Tole Bi 59E-mail: [email protected]

57

Page 59: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 57

ПРИКЛАДНАЯ МАТЕМАТИКА

Теория уравнений смешанного типа имеет сравни-тельно недолгую историю. Уравнения смешанного типа стали объектом систематических исследований с конца сороковых годов. Это направление стало од-ним из важнейших разделов современной математи-ческой физики. Проблемы, возникшие в приложениях описываются уравнениями смешанного типа второго порядка, для которых задача Трикоми, а также, другие ее математические обобщения имеют вполне опреде-ленный физический или геометрический смысл.

Исследование краевых задач для уравнений смешанного типа было начато в известных рабо-

тах Ф Трикоми [1] и С. Геллерстедта [2], в которых были впервые поставлены и исследованы краевые задачи для модельных уравнений смешанного типа, известные теперь как «Задача Трикоми» и «Задача Геллерстедта».

Ф.И. Франкль обнаружил важные приложения задачи Трикоми и других родственных ей задач в трансзвуковой газодинамике. И.Н. Векуа указал на важность проблемы уравнений смешанного типа при решении задач, возникающих в теории бесконечно малых изгибаний поверхностей, а также в безмомент-ной теории оболочек с кривизной переменного знака.

Г.Ф. еФиМова – кандидат физ.-мат. наук, доцент филиал уфимского Государственного авиационного технического университетан.Г. ШМеЛёва – кандидат физ.-мат. наук, доцент заместитель декана по учебной работе факультета педагогики и психологии стерлитамакский филиал башкирского Государственного университета E-mail: [email protected]республика башкортостан, г. стерлитамак

о приМенении интеГралЬноГо представления при реШении Краевых Задач

Основным направлением работы является обоснование одно-значной разрешимости решения обобщенной задачи Трикоми для уравнения Лаврентьева–Бицадзе с вещественным параме-тром при условии, что эллиптическая часть границы области при подходе к линии изменения типа оканчивается сколь угодно малыми дугами полуокружности. При доказательстве существо-вания решения поставленной задачи применяется интеграль-ное представление полученное в работах И.Н. Векуа, В.И. Же-галова, К.Б. Сабитова и используется метод сведения краевых задач к сингулярному интегральному уравнению, которое мето-дом регуляризации Карлемана–Векуа сводится к интегральному уравнению Фредгольма второго рода. При доказательстве един-ственности решения краевой задачи используются:

1) принцип экстремума для эллиптических систем второгопорядка;2) метод введения новой функции и новой переменной;3) преобразование Лапласа на линии изменения типа.Полученные результаты являются новыми и имеют теорети-ческий характер. Они могут быть использованы при даль-нейшей разработке теории краевых задач для уравнений смешанного типа и были представлены в виде докладов на научных конференциях.Ключевые слова: Обобщенная задача Трикоми, уравнения смешанного типа, краевые задачи, интегральное представ-ление, однозначная разрешимость, доказательство, теоре-ма, функции.

G.F. eFiMova – cand. of phys.-Math. sciences, associate professor ranch Ufa state aviation technical Universityn.G. ShMeleva – cand. of phys.-Math. sciences, associate professor аssociate dean for academic affairs faculty of pedagogy and psychology sterlitamakskij branch of the Bashkir state University E-mail: [email protected] of Bashkortostan, sterlitamak

tHE application of intEgratEd prEsEntation to BoUndary proBlEMs

The main focus of the study is unique solvability of generalized solutions of the Tricomi problem for the Lavrent’ev–Bicadze with real parameter, provided that the elliptic part of the boundary line at the approach to change the type of ends arbitrarily small semicircle arcs. To prove the existence problem is solved using the integral representation obtained in I.N. Vekua, V.I. Zhegalova, K.B. Sabitova used and the method of reducing boundary prob-lems to a singular integral equation, which is the method of regu-larization Carleman–Vekua reduced to a Fredholm integral equa-tion of the second kind. In the proof of uniqueness of the solution of the boundary value problem are used:

1) extremum principle for second order elliptic systems ;2) the method of introducing new features and a new variable ;3) the Laplace transform on the line type change.The results obtained are new and have a theoretical charac-ter. They can be used in the further development of the the-ory of boundary value problems for equations of mixed type, and were presented in the form of presentations at scientific conferences.Keywords: The generalized Tricomi equation of mixed type, boundary value problems, integral representation, the unique solvability of the proof, the theorem, the function.

56

Page 60: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201458

ПРИКЛАДНАЯ МАТЕМАТИКА

А.В. Бицадзе впервые сформулировал принцип экс-тремума для задачи Трикоми. Позднее он был доказан и для других краевых задач для уравнений смешан-ного типа. В дальнейшем были поставлены и ис-следованы новые задачи для уравнений смешанного типа как в нашей стране (В.Ф. Волкодавов, В.Н. Вра-гов, Т.Д. Джураев, В.И. Жегалов, Т.Ш. Кальменов, А.И. Кожанов, Ю.М. Крикунов, О.А. Ладыженская, М.Е. Лернер, В.П. Михайлов, Е.И. Моисеев, А.М. На-хушев, Н.Б. Плещинский, С.М Пономарев, С.П. Пуль-кин, О.А. Репин, К.Б. Сабитов, М.С. Салахитдинов, М.М. Смирнов, А.П. Солдатов, Л.И. Чибрикова, Хе Кан Чер, Р.С. Хайруллин и другие), так и за рубежом (S. Agmon, L. Nirenberg, M.N. Protter, C.S. Morawetz, P. Germain, R. Bader, P.O. Lax, R.P. Phillips, M. Schnei-der, Г.Д. Каратопраклиев, Г.Д. Дачев, Н.И. Попиванов и другие). Основные результаты этих исследований и соответствующие им библиографии приведены в монографиях А.В. Бицадзе, Л. Берса, К.Г. Гудерлея, М.М. Смирнова, М.С. Салахитдинова, Е.И. Моисеева.

Разработкой теории вырождающихся диффе-ренциальных уравнений в частных производных занимались М.В. Келдыш, Г.К. Фикера, М.И. Ви-шик, С.А. Терсенов, А.И. Киприянов, Н.Р. Раджа-бов, Ф.Г. Мухлисов и другие. Спектральной теории сингулярных дифференциальных операторов по-священы работы В.А. Ильина, В.А. Садовничего, Я.Т. Султанаева, Х.Х. Муртазина и многих других математиков.

В силу прикладной важности теория уравнений смешанного типа является одним из основных раз-делов современной теории дифференциальных урав-нений с частными производными.

В работе И.Н. Векуа [3, c.69] в области D R∈ 2, звездной относительно начала координат, получена формула

u x y u x y

u xt yttJ x y t dt

( , ) ( , )

( , ) [ ( )( )]

= −

−∂∂

+ −∫

0

0

0

1

02 2 1λ

, (1)

связывающая все регулярные (дважды – непрерывно дифференцируемые) решения метагармонического уравнения

u u uxx yy+ + =λ 0 , (2)

где λ – числовой параметр, с гармоническими функ-циями u x y0 ( , ) , то есть решениями в D уравнения Лапласа

u uxx yy0 0 0+ = . (3)

В.И. Жегалов [4], К.Б. Сабитов [5] каждому ре-гулярному решению уравнения с комплексным параметром

u y u uxx yy+ ⋅ + =sgn λ 0 (4)

сопоставили регулярное решение u x y0 ( , ) уравнения Лаврентьева – Бицадзе

u y uxx yy0 0 0+ ⋅ =sgn (5)

в области D через интегральное представление

u x y u x y

u xt yttJ x y y t dt

( , ) ( , )

( , ) [ ( sgn )( )]

= −

−∂∂

+ ⋅ −∫

0

0

0

1

02 2 1λ

(6)

и указали метод сведения решения краевых задач для уравнения (4) к соответствующим задачам для уравнения (5). Там же получена теорема единствен-ности решения задачи Трикоми для уравнения (4) при λ < 0 .

В исследованиях К.Б. Сабитова, Н.Г. Шмелёвой [6, 7] проверена справедливость интегрального пред-ставления (6) решений уравнения (4) с комплексным параметром λ и доказана его обратимость, а также получена теорема единственности решения задачи Трикоми и доказана теорема существования решения задачи Трикоми при более слабых ограничениях на граничные данные. Также указаны приложения ин-тегрального представления решений уравнения (4) при решении задачи Франкля для этого уравнения

В данной статье нами рассмотрено применение указанного метода к решению обобщенной задачи Трикоми для уравнения Лаврентьева–Бицадзе с ве-щественным параметром (4).

Основным направлением работы является обо-снование однозначной разрешимости решения обоб-щенной задачи Трикоми для уравнения Лаврентье-ва – Бицадзе с вещественным параметром при условии, что эллиптическая часть границы области при подходе к линии изменения типа оканчивается сколь угодно малыми дугами полуокружности.

При доказательстве существования решения поставленной задачи применяется интегральное представление полученное в работах [3–5], а также используется метод сведения краевых задач к син-гулярному интегральному уравнению, которое сво-дится методом регуляризации Карлемана – Векуа к интегральному уравнению Фредгольма второго рода.

При доказательстве единственности решения кра-евой задачи используются:

59

Page 61: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 59

ПРИКЛАДНАЯ МАТЕМАТИКА

1) принцип экстремума для эллиптических системвторого порядка;

2) метод введения новой функции и новой перемен-ной;

3) преобразование Лапласа на линии изменениятипа.Полученные в исследовании результаты име-

ют теоретический характер и обладают новизной. Основные положения разрабатываемой проблемы представлены в виде докладов [8–9] на научных кон-ференциях. Они могут быть использованы при даль-нейшей разработке теории краевых задач для уравне-ний смешанного типа.

п.1. Рассмотрим уравнение (4), где λ∈R в обла-сти Dk , ограниченной кривой Ляпунова Г, лежащей в полуплоскости y > 0, с концами в точках A= (0,0) и B= (1,0), и при y < 0 прямой ACk (kx + y = 0, 0 < k < 1), и характеристикой C Bk (x – y = 1).

Пусть D D yk k+ = ∩ > 0 , D D yk k− = ∩ < 0 .Обобщенная задача трикоми. Найти функцию

u(x,y), удовлетворяющую условиям:

u x y C D C D C D Dk k k k( , ) ( ) ( ) ( )∈ ∩ ∩ ∪+ −1 2 ; (7)

Lu x y( , ) ≡ 0 , ( , )x y D Dk k∈ ∪+ − ; (8)

u x y u x s y s s( , ) ( ( ), ( )) ( )Γ = = ϕ , 0 ≤ s ≤ l, (9)

где x = x(s), y = y(s) – параметрические уравнения кривой Г, s – длина дуги отсчитываемая от точки В, l – длина кривой Г;

u x y u x kx xAC( , ) ( , ) ( )= − = ψ , 0 1

1≤ ≤

+x

k, (10)

где 0 < k < 1, ϕ ψ( ) ( )0 0= , ϕ( )x и ψ( )x – заданные до-статочно гладкие функции.

Определение 1. Под регулярным в области Dk решением уравнения (4) понимается функция u(x,y), удовлетворяющая условиям (7) и (8) обобщенной за-дачи Трикоми, и, кроме того, производные u ux y, не-прерывны в Dk , за исключением точек A, B, где они могут обращаться в бесконечность порядка меньше единицы.

Заметим, что уравнение (6) однозначно обратимо относительно функции u x y0 ( , ) в классе функций C Dk( ). Действительно, равенство (6) перепишем в следующем виде

u r u r u ssJ r r s ds

r

( ) ( ) ( ) [ ( )] ,= −∂∂

−∫0 0

0

0 λ (11)

где r x y y2 2 2= + ⋅sgn ,

u x y u xrr yrr u r( , ) ( , ) ( )= = ,

u xrs yrs u s0 0( , ) ( ).=

Тогда, в силу результатов [3, 10], решением урав-нения (11) является функция вида

u r u r u s rs r

I s r s dsr

0

0

0( ) ( ) ( ) [ ( )] ,= +∂∂

−∫ λ (12)

где I0 ( )⋅ – модифицированная функция Бесселя.Если функции u r0 ( ) и u r( ) непрерывны в Dk , то

равенства (11) и (12) являются формулами взаимного обращения [10].

Таким образом, справедлива следующаятеорема 1. Если функции u x y0 ( , ) и u x y( , ) явля-

ются соответственно регулярными в Dk решения-ми уравнений (5) и (4), то между решениями этих уравнений существует взаимно – однозначное соот-ветствие, которое устанавливается по формулам (11) и (12).

теорема 2. Пусть кривая Г – из класса Ляпунова и на ней отсутствуют точки, при переходе котoрых n s1( ) меняет знак, а n s2 1( ) = . Тогда, если в классе регулярных в Dk решений уравнения (4) су-ществует решение обобщенной задачи Трикоми, то оно единственно при всех λ , удовлетворяющих неравенству

9

16 4

2

2

2

2

πλ

πy ymin max

< < ,

где n n s n s= ( ( ), ( ))1 2 – единичный вектор внутренней

нормали к границе области, n s dyds1( ) = − , n s dx

ds2 ( ) = .

Предварительно отметим, что в работе [5] для уравнения типа Чаплыгина

K y u u y uxx yy( ) ( )+ − =α 0 (13)

доказанатеорема 3 [3]. Пусть:

1) кривая Г – из класса Ляпунова и на ней отсут-ствуют точки, при переходе котoрых n s1( ) меняет знак, а n s2 1( ) = ; 2) K y C y C y C y C y( ) [ , ] [ , ) [ , ] ( , ]min min max max∈ ∩ ∩ ∩0 0 0 01 1 ; 3) функция α( ) [ , ]maxy C y∈ 0 такова, что существу-ет решение μ ( y) уравнения Риккати

′ + =µ µ λ( ) ( ) ( )y y y2 (14)

58

Page 62: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201460

ПРИКЛАДНАЯ МАТЕМАТИКА

на интервале ( , )max0 y из класса C y1 0[ , ]max , удовлет-воряющее условию µ( )0 0≤ ; α( ) [ , ]miny C y∈ 0 и α( )y ≥ 0 при y < 0.

Тогда, если в классе регулярных в D решений урав-нения (13) существует решение обобщенной задачи Трикоми, то оно единственно.

доказательство теоремы 2.Умножим уравнение (4) на sgny. Тогда оно примет

вид

sgn sgny u u y uxx yy⋅ + + ⋅ =λ 0 . (15)

Теперь покажем, что при некоторых условиях на λ для уравнения (15) справедлива теорема 3. В слу-чае уравнения (15): K( y)=sgn y, α λ( ) sgny y= − .

Пусть λ ≥ 0 . Решением уравнения Риккати (14) на интервале ( , )max0 y является функция µ λ λ( ) [ ( )]y tg k y= − , где постоянная k определя-

ется из условий − < − ≤π λ2

0( )k y , 0 ≤ y ≤ ymax . От-

сюда вытекает, что функция μ ( y ), удовлетворяющая условиям теоремы 3, существует, если λ π< / max2y .

При λ < 0 теорему 3 прямо не удается использо-вать для получения единственности решения обоб-щенной задачи Трикоми для уравнения (4). В этом случае введем функцию

z x y u x y t dty

( , ) ( , )exp ( )= ∫µ0

,

которая является решением уравнения

sgn ( )y z z y zxx yy y⋅ + + =2 0µ , (16)

где функция ± µ( )t определяется как решение уравне-ния Риккати

′ + + ⋅ =µ µ λ( ) ( ) sgny y y2 0 . (17)

Пусть

µµµ

( )( ), ,

( ), .y

yy y

=≤ ≤

≤ ≤

+

0 y y

ymax

min 0

Тогда из уравнения (17) получим

µ λ+ = −( )y , 0 ≤ y ≤ ymax ,

µ λ λ− = −( ) [ ( )],y tg k y ymin ≤ y ≤ 0,

где постоянная k находится из условий

− < − <π

λπ

2 2( ) ,k y ymin ≤ y ≤ 0.

На плоскости (x,y) введем новые переменные ( , )θ σ

x = θ , y K t dt= ∫ ( )0

σ

, (18)

KK y k k

K d( )

( ) exp( ) , ,

( ) cos [σ

σ λ σ

σ λ=

= − = > ≥

=−

+

4 002

02 4

0 0,const

(( )], ,k y d− = > ≤

0 0.const 0 σ

Тогда уравнение (16) принимает вид

K z z( )σ θθ σσ+ = 0 . (19)

Следовательно, обобщенная задача Трикоми для уравнения (4) при λ < 0 сведена к обобщенной зада-че Трикоми для уравнения (19) на плоскости ( , )θ σ , но с разрывным условием склеивания на линии из-менения типа σ = 0 : z zσ σθ θ( , ) ( , )0 0 0 0− ≠ + .

Из доказательства теоремы 3 следует, что для ре-шения однородной обобщенной задачи Трикоми для уравнения (19) справедливо неравенство

z z d

z x z x d k dx

t

x y

t

θ σθ θ θ

λ

( , ) ( , )

( , ) ( , ) cos ( ) ,

0 0 0 0

0 0 0 0

0

02

0

− − =

= − ≥

∫∫(20)

при 0 ≤ t ≤ l. Теперь для справедливости теоремы 3 для уравнения (17) достаточно показать, что

z z dt

θ σθ θ θ( , ) ( , ) ,0 0 0 0 00

+ + ≥∫ 0 ≤ t ≤ l.

Действительно, из (18) и (20) имеем

z z d z x z x k dxx y

tt

θ σθ θ θ( , ) ( , ) ( , ) ( , )0 0 0 0 0 0 0 0

00

+ + = + =∫∫

= − + − =∫ − +k z x z x z x dxx y

t

0

0

0 0 0 0 0 0( , )[ ( , ) ( , )( ( ) ( ))]µ µ

= − − + −

− ≥

+

∫k z x z x dx

z t k

x y

t

0

0

2 0

0 0 0 0 0

0 02

0

( , ) ( , ) [ ( )

( )] ( , ) ,

µ

µ

если µ µ λ λ− +− = + ≥( ) ( ) [ ( ) ] .0 0 1 0tg k Последнее

неравенство справедливо, когда − ≤ − <π

λπ

4 2( )k y ,

61

Page 63: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 61

ПРИКЛАДНАЯ МАТЕМАТИКА

ymin ≤ y ≤ 0. Отсюда получим условие относительно

параметра λπ

> −9

16

2

ymin. Тем самым теорема 2

доказана.п.2. Докажем существование решения задачи

(7) – (10). Интегральное представление (6) в классе регулярных в Dk решений уравнения (4) позволяет свести решение задачи (7)–(10) к решению обобщен-ной задачи Трикоми для уравнения (5) в области Dk с пока неизвестными краевыми условиями u0 0= ϕ на Г и u0 0= ψ на АС.

Прежде всего заметим, что

ψ ψ ψ λ0

0

21( ) ( ) ( ) [ ( ) ( )] .x x s xs x

I k s x s dsx

= +∂∂

− −∫

В самом деле, подставим в интегральный член формулы (6) значение

u x y x y

x C x yn n

n

0 0

0 011

2

( , ) ( )

( ) [ ( )]

= + −

−+

+

− +

+

=

τ

ψαα τ α

00

∑ +

++

+ −

+

=

∑ ψαα τ α0 0

1

0

1

2

n n

nx y x y( ) [ ( )] ,

где α = −+

11

kk

, являющееся решением обобщенной

задачи Дарбу для уравнения (5) в области Dk− с дан-

ными: u x kx x0 0( , ) ( ),− = ψ 0 1

1≤ ≤

+x

k; u x x0 00( , ) ( )= τ ,

0 ≤ x ≤ 1. Если известно, что

ψ01 20

1

10

1

10

1

1( ) [ , ] [ , ) ( , )x C

kC

kC

k∈

+∩

+∩

+,

τ01 20 1 0 1 0 1( ) [ , ] [ , ) ( , )x C C C∈ ∩ ∩ , τ ψ( ) ( )0 0 00= = ,

функции τ α α0 ( )s n n и ψ α α0 ( )s n n ограничены по n при любом фиксированном x. Получим

u x y u x y

xt yt t x yn

n

( , ) ( , )

( ) ( )

= −

− + −+

+

=

0

0 0

00

1

2τ ψ

αα

11

∫ −

−+

− + +

+ − × ∂∂

+

+

ψαα τ α

τ α

0 01

01

1

2

n n

n

t x y t x y

t x ytJ

( ) [ ( )]

[ ( ) ] 002 2 1[ ( )( )] .λ x y t dt− − (21)

Теперь в равенстве (21), полагая y=-kx с учетом граничного условия u0 0= ψ на АС, будем иметь

ψ ψ ψ λ( ) ( ) ( ) [ ( ) ( )]x x xttJ k x x t dt= −

∂∂

− −∫0 0

0

1

02 21

или

ψ ψ ψ λ( ) ( ) ( ) [ ( ) ( )] .x x ssJ k x x s ds

x

= −∂∂

− −∫0 0

0

021

Получено интегральное уравнение Вольтерра второго рода. Его решение в силу [10] имеет вид

ψ ψ

ψ λ

0

0

021

( ) ( )

( ) [ ( ) ( )] ,

x x

s xs x

I k s s x dsx

= +

+∂∂

− −∫(22)

где ψ0 ( )x обладает той же гладкостью, что и ψ( )x .Теперь найдем функцию ϕ0 ( )x с помощью анало-

гичных рассуждений, как и в случае решения задачи Трикоми [6]. Функцию u x y0 ( , ) в области Dk+ опре-делим как решение задачи Хольмгрена для уравне-ния Лапласа с граничными условиями:

u x y u x s y s s0 0 0( , ) ( ( ), ( )) ( ),Γ= = ϕ 0 ≤ s ≤ l, (23)

∂∂

==u x yy

xy0

0 0

( , )( )ν , 0 1< <x . (24)

Известно [11, гл. 4;5], что решение этой задачи с граничными условиями (23) и (24) методом Грина выписывается в явном виде

u x y G x y d

s G s s x yN

dl

0 0

0

1

0

0

0( , ) ( ) ( , ; , )

( )( ( ), ( ); , )

= +

+∂

ν ξ ξ ξ

ϕξ η ss,

(25)

где G x yr

p x y( , ; , ) ln ( , ; , )ξ ηπ

ξ η= +1

2

1 – функция

Грина задачи Хольмгрена уравнения Лапласа, r x y2 2 2= − + −( ) ( )ξ η , p x y( , ; , )ξ η – функция гармо-ническая в области Dk+ по координатам точек ( , )ξ η и (x,y) строится аналогично [11, c.184].

60

Page 64: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201462

ПРИКЛАДНАЯ МАТЕМАТИКА

Отсюда найдем соотношение между функциями τ0 ( )x и ν0 ( )x . Полагая в (25) y = 0, будем иметь

τ ξ ν ξ ξ ϕ0 0

0

1

0( ) ( , ; , ) ( )*x G x y d x− =∫ , 0 ≤ x ≤ 1, (26)

где

ϕ ϕ* ( ) ( )x s GNds

l

=∂∂∫ 0

0

, τ0 0 0( ) ( , )x u x= .

Далее на основании решения задачи Дарбу для уравнения (5) с данными u x x0 00( , ) ( )= τ , 0 ≤ x ≤ 1,

u x kx x0 ( , ) ( ),− = ψ 0 1

1≤ ≤

+x

k найдем второе соот-

ношение между функциями τ0 ( )x и ν0 ( )x на отрезке АВ, привнесенное из гиперболической части сме-шанной области Dk :

′ − = + ′ +

=

∑τ ν α α ψαα0 0 0

0

11

2( ) ( ) ( ) [ ],x x xn

n

n 0 1< <x . (27)

Исключая τ0 ( )x из (26) и (27), получаем инте-гральное уравнение для определения функции ν0 ( )x

νπ

ν0

0

1

0

1 1 1 2

2( ) ( ) ( ),x

t xt

t x txt dt M x+

−+

−+ −

=∫ (28)

где

M x F x K t x t dt( ) ( ) ( , ) ( ) ,= − ∫ ν00

1

F x x n

n

nx( ) ( ) ( ) ,*= ′ − + ′ +

=

∑φ α α ψαα1

1

20

0

0 1< <x .

K t xxp t x t x tx( , ) [ ( , ; , ) ln( )].=

∂∂

− + −1

0 0 2π

Как известно, [11, с. 312] в случае, когда кривая Г оканчивается сколь угодно малой длины дугами по-луокружности, ядро K(t,x) непрерывно дифферен-цируемо в квадрате 0 ≤ x, t ≤ 1, за исключением точек (0,0) и (1,1), где оно имеет слабую особенность.

Если ϕ0 0( ) [ , ]s C l∈ , ϕ ϕ0 00 0( ) ( )= =l и в малой окрестности точек 0 и l удовлетворяет условию Гель-дера с показателем α из [1/2,1], то функция F x C( ) ( , )∈ 1 0 1 и при x → 0 и x →1 имеет оценку F x O x x( ) ([ ( )] )./= − −1 1 2α

Теперь на основании отмеченного выше нетруд-но получить решение сингулярного интегрального

уравнения (28), которое непрерывно дифференциру-емо в интервале (0,1) и на его концах может допу-скать интегрируемые особенности порядка меньше единицы. Такое решение методом Карлемана – Векуа определяется по формуле

ν

π

0

0

1

1

2

1

2

1

1

1 1 2

2

( ) ( )

( )

( )( )

x M x

x tt x t x

tt x tx

M t

= −

−−− −

+−

+ −

∫ ddt.

Вместо функции M(x), подставляя ее выражение, получим интегральное уравнение Фредгольма второ-го рода

ν ν0

0

1

0( ) ( , ) ( ) ( ),x H t x t dt f x= +∫ (29)

где

H t x K t x

xx x x x

( , ) ( , )

( )

( )

= − +

+−− −

+−

+ −

1

2

1

2

1

1

1 1 2

20

1

πτ

τ ττ

τ τKK t d( , ) .τ τ

(30)

f x F x

x tt x t x

tt x tx

F t d

( ) ( )

( )

( )( )

= −

−−− −

+−

+ −

1

2

1

2

1

1

1 1 2

20

1

πtt.

(31)

Ядро H(t,x), как показано [11, c.317], может иметь особенности в точках (0,0) и (1,1) порядка меньше, чем 1/2. Свободный член f(x) ограничен вблизи точ-ки 0, может иметь особенность порядка не выше 1/2 в окрестности точки 1 и принадлежит классу C1 0 1, .( )

Теперь покажем, что соответствующее уравне-нию (29) однородное уравнение

ν ν0

0

1

0 0( ) ( , ) ( )x H t x t dt− =∫ (32)

имеет только нулевое решение. Действительно, если ϕ( )x ≡ 0 и ψ( )x ≡ 0 , то в силу теоремы 2 о единствен-ности решения обобщенной задачи Трикоми для уравнения (4) u x y( , ) ≡ 0 в D . Тогда из формулы об-ращения (12) следует u x y0 0( , ) ≡ в D . Отсюда вы-текает, что ν0 0( )x = на интервале (0,1), т.е. однород-ное уравнение (32) имеет только нулевое решение в классе C l L1

10 0 1( , ) ,∩ [ ] . Тогда на основании теории Фредгольма решение уравнения (27) может быть за-писано в виде

63

Page 65: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 63

ПРИКЛАДНАЯ МАТЕМАТИКА

ν00

1

( ) ( ) ( ) ( , ) ,x f x f t R t x dt= + ∫ (33)

где R(t,x) – резольвента ядра H(t,x).Далее, подставляя (33) в (25) и меняя пределы ин-

тегрирования, получим

u x y s R s x y ds g x yl

0 0

0

( , ) ( ) ( ; , ) ( , ),= +∫ϕ (34)

R s x y

dd N

G s s G x y d

( ; , )

[ ( ), ( ); , ] ( , ; , )

=

=∂∂

+∫1

20 0

0

1

π θξ η θ θ θ

+∂∂

∫ ∫G x y d

dt NG s s t R t dtd( , ; , ) [ ( ), ( ); , ] ( , ) ,θ ξ η θ θ0 0

0

1

0

1

g x y G x y d

G x y R t

( , ) ( ) ( , ; , )

( , ; , ) ( ) ( ,

= − ′ −

− ′

∫1

2 20

1

40

2

0

0

1

0

ψθ

θ θ

πθ ψ

θθθ θ) .dtd

0

1

0

1

∫∫Функцию u x y0 ( , ) , заданную формулой (34), под-

ставим в интегральный член формулы (6) при y > 0, и, cнова меняя пределы интегрирования, будем иметь

u x y u x y

s R xt yttJ x y t d

l

( , ) ( , )

( ) ( ; , ) [ ( )( )]

= −

−∂∂

+ −∫ ∫

0

0

0 0

1

02 2 1ϕ τ λ ttds −

−∂∂

+ −∫ g xt yt tJ x y t dt( , ) [ ( )( )] .

0

1

02 2 1λ (35)

Переходя в (35) к пределу при

( , ) ( ( ), ( ))x y x s y s→ ∈Γ ,

получим

ϕ ϕ τ τ τ0 0

0

( ) ( ) ( , ) ( ),s P s d q sl

− =∫ (36)

где

P s

R x s t y s ttJ x s y s t dt

( , )

( ; ( ) , ( ) ) [ [ ( ) ( )]( )] ,

τ

τ λ

=

=∂∂

+ −∫0

1

02 2 1

q s s

g x s t y s ttJ x s y s t dt

( ) ( )

[ ( ) , ( ) ] [ [ ( ) ( )]( )] .

= +

+∂∂

+ −∫

ϕ

λ0

1

02 2 1

Поскольку ядро P s( , )τ непрерывно в квадрате 0 1≤ ≤τ, s и правая часть q(s) непрерывна на [0,1], то к уравнению (36) применима теория Фредгольма. В силу теоремы 2 о единственности решения обобщен-ной задачи задачи Трикоми для уравнения (4) и фор-мулы обращения (12) соответствующее однородное интегральное уравнение

ϕ ϕ τ τ τ0 0

0

0( ) ( ) ( , )s H s dl

− =∫

имеет только нулевое решение. Тогда на основании альтернативы Фредгольма неоднородное интеграль-ное уравнение (36) имеет единственное решение в классе непрерывных на [0,l] функций.

Таким образом, доказана следующаятеорема 4. Если ϕ0 0( ) [ , ]s C l∈ и в достаточно

малой окрестности точек s = 0 и s = l удовлетворяет условию Гельдера с показателем α∈[ / , ]1 2 1 , ψ( ) [ , / ] ( , / ),x C C∈ ∩1 20 1 2 0 1 2 ′ ∈ψ ( ) [ , ]x L2 0 1 ,ϕ ϕ ψ( ) ( ) ( )0 0 0= = =l и кривая Г и λ удовлетворяют условиям теоремы 2, то существует единственное решение обобщенной задачи Трикоми для уравне-ния(4) в классе его регулярных в Dk решений, кото-рое определяется формулой (11), где u x y0 ( , ) – реше-ние обобщенной задачи Трикоми для уравнения (5) с граничными условиями u x y s0 0( , ) ( )= ϕ на Г, u x y x0 0( , ) ( )= ψ на АС а ϕ0 ( )s есть решение инте-грального уравнения Фредгольма (36), ψ0 ( )x нахо-дится по формуле (22).

Литература

1. Трикоми Ф. О линейных уравнениях в частных про-изводных второго порядка смешанного типа: Пер. ситал. М.: Гостехиздат, 1947. 192 с.

2. Gellerstedt S.G. Sur on probleme aux limites pour uneequation lineaire aux derivees partielles du second ordrede type mixte: These pour le doctorat. – Uppsala, 1935.92 p.

3. Векуа И.Н. Новые методы решения эллиптическихуравнений. М.: Гостехиздат, 1948. 296с.

4. Жегалов В.И. Об одном случае задачи Трикоми //Труды семинара по краевым задачам. Изд-во Ка-занск. ГУ, 1966. Вып. 3. С. 28–36.

5. Сабитов К.Б. Некоторые вопросы качественной испектральной теории уравнений смешанного типа:Дис. ... д-ра физ.-мат. наук. М., 1991.

6. Сабитов К.Б., Шмелёва Н.Г. Краевые задачи дляуравнения Лаврентьева-Бицадзе с комплекснымпараметром // Известия ВУЗов. Математика, 2003. 3(490). С. 49–58.

7. Сабитов К.Б., Шмелёва Н.Г. О единственности ре-шения задачи Франкля для уравнений смешанноготипа // Вестник Башкирского университета, 1998. 2(1). C. 8–12.

62

Page 66: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201464

ПРИКЛАДНАЯ МАТЕМАТИКА

8. Шмелёва Н.Г. Обобщенная задача Трикоми дляуравнения Лаврентьева-Бицадзе с вещественнымпараметром // Современные проблемы физики и ма-тематики: Труды Всероссийской научной конферен-ции. Уфа: Гимм, 2004. Т. 1. С. 174–179.

9. Шмелёва Н.Г., Ефимова Г.Ф. К вопросу об одномспособе решения краевых задач для уравнениясо спектральным параметром // Информационноепространство современной науки: материалы IIIМеждународной заочно-практической конферен-циии. 28 марта 2011 г. – Чебоксары: НИИ педаго-гики и психологии, 2011. С. 145–149.

10. Сабитов К.Б. Обращение некоторых интегральныхуравнений типа Вольтера // ДАН СССР, 1990. Т.314. 2. С. 300–303.

11. Бицадзе А.В. Некоторые классы уравнений в част-ных производных. – М.: Наука, 1981. 448 с.

12. Бицадзе А.В. О единственности решения задачиФранкля для уравнения Чаплыгина // Докл. АНСССР, 1957. Т.112. 3. C. 375–376.

References

1. Trikomi F. O lineynykh uravneniyakh v chastnykh proiz-vodnykh vtorogo poryadka smeshannogo tipa [On lin-ear partial differential equations of second order mixedtype: Per. from the Italian]. M.: Gostekhizdat [Moscow:Publishing house «Gostekhizdat»], 1947. 192 p.

2. Gellerstedt S.G. Sur on probleme aux limites pour uneequation lineaire aux derivees partielles du second ordrede type mixte: These pour le doctorat. Uppsala, 1935.92 p.

3. Vekua I.N. Novye metody resheniya ellipticheskikhuravneniy [New methods for solving elliptic equations].M.: Gostekhizdat [Moscow: Publishing house «Gos-tekhizdat»], 1948. 296 p.

4. Zhegalov V.I. Ob odnom sluchae zadachi Trikomi [Onone occasion the Tricomi]. Trudy seminara po kraevymzadacham. Izd-vo Kazansk. GU [Proceedings of theSeminar on boundary value problems – Publisher Ka-zan. GU], 1966. Vyp. 3. PP. 28–36.

5. Sabitov K.B. Nekotorye voprosy kachestvennoy i spe-ktralnoy teorii uravneniy smeshannogo tipa [Someproblems of the qualitative and the spectral theory ofequations of mixed type]: Dis. ... d-ra fiz.-mat. nauk. –M., 1991.

6. Sabitov K.B., Shmeleva N.G. Kraevye zadachi dlyauravneniya Lavrenteva-bitsadze s kompleksnym para-metrom [Boundary-value problem for the Lavrent’ev-Bitsadze with complex parameter]. Izvestiya VUZov.Matematika [Proceedings of the universities. mathemat-ics], 2003, 3(490). PP. 49–58.

7. Sabitov K.B., Shmeleva N.G. O edinstvennosti resheni-ya zadachi Franklya dlya uravneniy smeshannogo tipa[Uniqueness of the solution of the problem of Franklfor equations of mixed type]. Vestnik Bashkirskogo uni-versiteta [Bashkir University Gazette], 1998. 2(1).PP. 8–12.

8. Shmeleva N.G. Obobshchennaya zadacha Trikomidlya uravneniya Lavrenteva-Bitsadze s veshchestven-nym parametrom [Generalized Tricomi problem for theLavrent’ev-Bitsadze with real parameter]. Sovremen-nye problemy fiziki i matematiki: Trudy Vserossiyskoynauchnoy konferentsii [Modern problems of mathemat-ics and physics: Proceedings of the Scientific Confer-ence]. Ufa: Gimm, 2004. Vol. 1. PP. 174–179.

9. Shmeleva N.G., Yefimova G.F. K voprosu ob odnomsposobe resheniya kraevykh zadach dlya uravneniya sospektralnym parametrom [On the question of a methodfor solving boundary value problems for equations withspectral parameter]. Informatsionnoe prostranstvo sovre-mennoy nauki: materialy III Mezhdunarodnoy zaochno-prakticheskoy konferentsiii 28 marta 2011 g. Cheboksary:NII pedagogiki i psikhologii [Information space of mod-ern science: Materials III absentia International PracticalConference Cheboksary: Research Institute of Pedagogyand Psychology], 2011. PP. 145–149.

10. Sabitov K.B. Obrashchenie nekotorykh integralnykhuravneniy tipa Voltera [Inversion of integral equationsof Volterra type]. DAN SSSR [DAN SSSR], 1990.Vol. 314. 2. PP. 300–303.

11. Bitsadze A.V. Nekotorye klassy uravneniy v chastnykhproizvodnykh [Some classes of partial differential equa-tions]. M.: Nauka [Moscow: Publishing house «Sci-ence»], 1981. 448 p.

12. Bitsadze A.V. O edinstvennosti resheniya zadachiFranklya dlya uravneniya Chaplygina [Uniqueness ofthe solution of the problem for the Chaplygin equationFrankl]. Dokl. AN SSSR [Dokl. USSR Academy of Sci-ences], 1957. Vol. 112. 3. PP. 375–376.

сведения об авторах information about the authors

ефимова Галина федоровнакандидат физ.-мат. наук, доцент

Филиал Уфимского Государственного Авиационного технического университета

453104, г. Стерлитамак, ул. Химиков 21Шмелёва наталия Георгиевна

кандидат физ.-мат. наук, доцент заместитель декана по учебной работе

факультета педагогики и психологии Стерлитамакский филиал

Башкирского Государственного университета453103, г. Стерлитамак, пр. Ленина 49

E-mail: [email protected]

Efimova galina fedorovnaCand. of Phys.-Math. SciencesAssociate Professor Ranch Ufa State Aviation Technical University453104, Sterlitamak, street Сhemists 21shmeleva nataliya georgievnaCand. of Phys.-Math. SciencesAssociate Professor Аssociate Dean for Academic Affairs Faculty of Pedagogy and Psychology Sterlitamakskij branch of the Bashkir State University453103, Sterlitamak, аvenue Lenina 49E-mail: [email protected]

PB

Page 67: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 65

E.С. РатнеР – ведущий научный сотрудник ветеран Всероссийского НИИ минерального сырья им. Н.М. Федоровского Москва, Российская Федерация, Email: [email protected]

Об уРаНОВОМ пРОекте гИтлеРОВскОй геРМаНИИОткрытие немецких физиков О. Гана и Ф. Штрассмана де-ления ядра урана-235 нейтроном с выделением огромной удельной энергии дало толчок к исследованию возможно-стей военного применения ядерной взрывчатки в Германии, Англии, Франции, США, Японии и СССР. Выяснилось, что для нейтронов нужны замедлители с большим сечением рассе-яния и минимальным сечением захвата нейтрона. Таковы-ми могли стать углерод и тяжелая вода. Немецкие физики, которыми руководили Вернер Гейзенберг и Курт Дибнер, пошли по пути создания уран-тяжеловодных реакторов, поскольку они совершили экспериментальную ошибку, не-правильно измерив слишком большое сечение захвата ней-трона в недостаточно очищенном графите. США и Англия,

а вслед за ними и СССР сделали основную ставку на более удобный уран-графитовый реактор. Немцы не успели до конца войны создать действующий ядерный реактор, хотя и подошли к этой цели очень близко. Причиной было совер-шенно недостаточное финансирование ядерно-физических работ со стороны правительства, так как Гитлер заявлял еще в 1941–1942 гг., что он разобьет своих врагов раньше, чем будет создано ядерное оружие. К счастью, он грубо ошибся, тогда как США, вложив огромные средства в создание атом-ной промышленности сумели создать атомную бомбу, опе-редив Германию и Японию.Ключевые слова: немецкая атомная бомба, уран-тяжело-водный реактор, Вернер Гейзенберг, Курт Дибнер.

E.S. RatnER – Leading Researcher veteran of All-Russia Institute of Mineral Resources after N.M. Fedorovskiy Moscow, Russian Federation, Email: [email protected]

URANIUM pRojEct IN NAzI GERMANyThe discovery of German physicists О. Hahn and Fritz Strassman of fission of nucleus of uranium-235 by a free neutron, accom-panied by emission of huge energy, gave impetus to the study of the military use of nuclear explosives in Germany, England, France, the USA, Japan and the USSR. It was cleared that this ef-fect needs inhibitors having a large cross-section of scattering and the minimum cross-section of neutron capture. In principle, as such can be used carbon and deuterium (heavy water). Ger-man physicists began to construct uranium-heavy water reactors because they committed an experimental error, evaluating as too large cross-section of neutron capture because of tests with insuf-ficiently purified graphite. The United States and the USSR avoid-ed such an error, they began to construct less complicated and

more convenient uranium-graphite reactor. Until the end of the war, the Germans did not have time to create a working nuclear reactor, although they approached very close to this purpose. Still they stayed too far from creation real atomic bomb. The main rea-son was absolutely insufficient financing of the nuclear-physical works from the government, as Hitler announced in 1941–1942, that he will break his enemies before anyone succeed to construct nuclear weapons. Fortunately, he was grossly mistaken, whereas the United States, who invested huge funds for the creation of the nuclear industry have managed to build a nuclear bomb, ahead of Germany and Japan.Key words: German atomic bomb, uranium-heavy water reac-tor, Werner Heisenberg, Kurt Dibner.

Гитлер с самого начала войны сказал, что его наука не интересует, потому что он надеется, что разобьет своих врагов-неприятелей в течение нескольких месяцев. Его могут интересовать только такие научные работы, которые

могут дать практический результат в течение буквально нескольких месяцев. А на длительное время они ему не потребуются, потому что он войну закончит раньше,

чем всякая работа успеет сделаться.Со слов д-ра М. фон Арденне, сказанных академику И.К. Кикоину35

Я уверенно смотрю в будущее. «Оружие возмездия», которым я располагаю, изменит обстановку в пользу Третьего Рейха.

Адольф Гитлер, 24 февраля 1945 г.36

Никакие отчаянные письма Г.Н. Флёрова Сталину по поводу создания атомной бомбы не смогли бы подействовать, если бы не были получены данные разведки об аналогичных работах за рубежом.

Академик С.С. Герштейн, участник Атомного проекта СССР37

35 [1, 2008, с. 888].36 [2] Электронный ресурс: kosmopoisk.nm.ru›zagadka6.htm.37 [3, с. 888].

историяФиЗиКи и МАтЕМАтиКи

PB

Page 68: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201466

ИСТОРИЯ ФИЗИКИ И МАТЕМАТИКИ

Германия, канун войны. Старт Уранового проекта

За полгода до начала Второй мировой войны, в дека-бре 1938 г., физики Химического института кайзера Вильгельма в Берлине Отто Ган (1979–1968) и Фри-дрих Штрассман (1902–1980) опубликовали сообще-ние о том, что им удалось разделить атом урана-235 на две части, ударив его нейтроном. Их сообщение было немедленно опубликовано в журнале «Ди На-турвиссеншафтен» 6 января 1939 г. Очень быстро такие опыты были повторены в других лабораториях мира. Только недавно стало известно, что директор издательства «Шпрингер», печатавший этот журнал, Пауль Розбауд был глубоко законспирированным агентом англичан, работавшим под кодовым именем «Гриффин» [4]. Получив номер указанного журнала, буквально через пару недель, их соотечественники, евреи, жившие в эмиграции в Швеции, Лизе Мейтнер (1878–1968) и Отто Фриш (1904–1979), в английском журнале «Нэйчур» от 18 февраля 1939 г. правильно объяснили наблюдавшееся явление, отметив, что вы-деляющийся при делении ядра урана новый нейтрон может разделить следующее ядро урана-235, причем при каждом акте деления выделяется очень большая энергия, около 200 МэВ. Они предсказали возмож-ность разветвляющейся цепной нейтронной реакции с выделением огромной суммарной энергии, в тыся-чи раз превосходящей энергию от взрыва химических взрывчатых веществ. Указанные публикации быстро разлетелись по научным кругам развитых стран. И это были последние публикации о возможностях из-влечения энергии при делении урана. Следующие результаты исследований были засекречены как в Англии, так и в Германии. Но англичане продолжали получать довольно обширную научно-техническую информацию из Германии с помощью своей военной разведки [4].

24 апреля 1939 г. имперское министерство во-оружений было проинформировано своим консуль-тантом по взрывчатым веществам профессором Гамбургского университета Паулем Хартеком (1902–1985) и инженером-физиком Николаусом Рилем (1901–1993), бывшим студентом Гана и Мейтнер, о возможностях создания принципиально нового не-химического ВВ [5, m. 3, c. 282]. Они утверждали, что «та страна, которая первой сумеет практически овладеть достижениями ядерной физики, приобретет абсолютное превосходство над другими». 29 апреля в Министерстве науки и просвещения Германии со-стоялся научно-технический коллоквиум под пред-седательством профессора Абрахама Эзау (1884–1955), президента Физико-технического общества,

государственного советника и руководителя специ-ального отдела физики имперского исследователь-ского совета. Обсуждался вопрос «о самостоятельно распространяющейся ядерной реакции». Был при-глашен профессор Эрих Шуман, руководитель ис-следовательского отдела Управления вооружений сухопутных сил вермахта. Письмо Хартека было передано на экспертизу крупному физику-ядерщику Курту Дибнеру (1905–1964) из этого же отдела, по-мощником которого был молодой физик-теоретик Эрих Багге (1912–1996), ученик Вернера Гейзенбер-га (1901–1976). Управление вооружений, не дожида-ясь принятия официального решения своего военно-го руководства, освободило Дибнера от выполнения всех текущих работ и поручило ему заниматься только проблемой ядерной физики, создав для этого специальный сектор. В июне 1939 года под руковод-ством Дибнера была сооружена первая в Германии и мире реакторная сборка, разместившаяся на полиго-не Куммерсдорф близ Берлина [6, т. I. ч. 2, с. 630].

22 августа 1939 г. Хартек получил положительный ответ на свое письмо из Управления вооружений, в котором сообщалось, что Управление сосредоточит усилия на урановой проблеме. В 1939 году профессор А. Эзау инициировал закупку большого количества урановой руды у бельгийской фирмы Union Miniere, добывавшей ее в Бельгийском Конго с целью извле-чения радия. Эзау добился принятия закона о запрете вывоза урана из Германии, куда после начала войны была импортирована вся бельгийская руда.

В первый же месяц начавшейся войны, 26 сентя-бря 1939 года Управление вооружений собрало сове-щание специалистов в области ядерной физики для рассмотрения вопроса о создании ядерного оружия. На совещании присутствовали Пауль Хартек, Ганс Гейгер (1882–1945), Вальтер Боте (1891–1957), Курт Дибнер, Карл-Фридрих фон Вайцзеккер (1912–2007) и Вернер Гейзенберг.. Было принято решение засе-кретить все работы, имеющие отношение к урано-вой программе, получившей официальное название «Урановый проект» – (нем. Uran Kernwaffenprojekt). Среди физиков, привлеченных к урановому проекту были, наряду с только что упомянутыми, именитые профессора: Отто Ган (1979–1968), Хорст Коршинг (р. 1912), Карл Виртц (1910–1994), Фриц Бопп (1909–1987), Зигфрид Флюгге (1912–?), Вальтер Мюллер (1905–?) и Карл-Хайнц Хёккер. Всего же в немецком Урановом проекте участвовали в течение всех лет во-йны немногим более 70 ученых.

На указанном научно-техническом совете (НТС) в Управлении вооружений, в Берлине, был выработал план, состоящий из двух частей: 1) создание устой-чиво управляемого уранового реактора; 2) получение

67

Page 69: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 67

ИСТОРИЯ ФИЗИКИ И МАТЕМАТИКИ

изотопа урана-235 для создания урановой бом-бы [6, т. 3. С. 281–289; оригинал на нем. яз.: V. 2. PР. 57–67]. Гейзенбергу было поручено создать тео-рию ядерного реактора типа «уран – тяжелая вода».

Участники НТС в сентябре 1939 г. посчитали, что срок создания ядерного оружия составит около одного года. В 1940 г. Абрахам Эзау был назначен уполномоченным Имперского совета обороны по ядерной физике, а в 1942–1943 гг. – официальным руководителем Уранового проекта Германии [6, т. I, ч. 2, c. 721].

Основные научно-исследовательские органи-зации, занявшиеся работами по Урановому проек-ту, были: Физический институт Общества кайзера Вильгельма; Институт физической химии Гамбург-ского университета; Физический институт Высшей технической школы в Берлине; Физический инсти-тут Института медицинских исследований (Гей-дельберг); Физико-химический институт Лейпциг-ского университета (профессор Хейн: органические соединения урана); Лаборатория неорганической химии Высшей технической школы в Мюнхене (профессор Хибер: исследование карбонильных соединений урана); Химический институт Бонн-ского университета (профессор Ш. Монт: изучение галогенидов урана, прежде всего газообразного шестифтористого урана); Институт органической химии Высшей технической школы в Данцигe (про-фессор Г. Альберс: алкоголяты урана). Всего в Гер-мании было 22 научные организации, напрямую связанные с атомным проектом [7].

В январе 1940 г. Общество кайзера Вильгельма и министерство вооружений Германии подписали до-говор о передаче армии на время войны Физического института этого Общества. От правительства Рейха атомными разработками стал ведать имперский ми-нистр вооружений Альберт Шпеер, административ-ным руководителем группы ученых: Гейзенберга, Гана, Вайцзеккера и других стал физик Эрих Шуман.

Концерн «ИГ Фарбениндустри» начал изготов-ление шестифтористого урана, единственного газо-образного химического соединения, в которое спо-собен вступать уран. Было правильно предположено, что разделение изотопов урана-238 и урана-235, со-отношение которых в природном уране составляет 99,29 и 0,71%, легче всего будет производить из ука-занной газообразной фазы гексафторида урана. Во дворе Физического института стали строить полу-промышленную установку для этой цели. Она пред-ставляла собой две концентрические трубы, вну-тренняя труба нагревалась, а наружная охлаждалась. Между трубами подавался гексафторид урана. При этом более легкий уран-235 должен был подниматься

вверх быстрее, чем более тяжелый уран-238 (метод Клаузиуса-Диккеля). Однако этот метод оказался не-удачным, опыты с ним были прекращены.

Вернер Гейзенберг начал теоретические расче-ты по конструированию ядерного реактора. В своем отчете, законченном еще в декабре 1939 г. и назы-вавшемся «Возможность технического получения энергии при расщеплении урана», Гейзенберг сделал такой вывод: «В целом можно считать, что в гомо-генной смеси уран – тяжелая вода в шаре радиусом около 60 см, окруженном водой (около 1000 кг тя-желой воды и 1200 кг урана), начнется спонтанное выделение энергии». Одновременно Гейзенберг рассчитал параметры другого реактора, в котором уран и тяжелая вода располагались слоями. По его мнению, «процесс расщепления поддерживался бы долгое время», если бы установка состояла из слоев урана толщиной 4 см и площадью около 1 кв м, пере-межаемых слоями тяжелой воды толщиной около 5 см. При этом после каждой тройки слоев урана и тяжелой воды должен находиться слой чистого гра-фита (10–20 см), а весь реактор снаружи также дол-жен быть окружен слоем графита.

В феврале 1940 г. ученик Гейзенберга фон Вейц-зеккер совместно с Мюллером и Хеккером пред-ставили секретный отчет, в котором предлагалось использовать в качестве замедлителей нейтронов графит или тяжелую воду. Однако графит у немцев оказался недостаточно очищенным. В результате В. Боте определил средний свободный пробег ней-тронов в графите и пересчитал его на сечение захва-та (а не упругого рассеяния!) нейтрона графитом так, что вероятность захвата и поглощения нейтрона ока-залась в несколько раз большей, чем была достигну-та у графита так называемой ядерной чистоты амери-канскими и советскими химиками и физиками (о чем немцы, естественно, не знали). В опытах союзников сечение захвата нейтрона графитом ядерной чисто-ты оказалось не более 5 ⋅10–27 кв см. Получив гораздо большее значение, немцы решили, что графит во-обще не подходит как замедлитель нейтронов, так как он их слишком быстро поглощает и очень мало рассеивает, что необходимо на поддержание цепной реакции. Теперь все их внимание переключилось на тяжелую воду как эффективный замедлитель (и рас-сеиватель) нейтронов.

В природе тяжелая вода существует в смеси с обычной водой в соотношении 1 : 6400. Выделение тяжелой воды можно осуществлять разными спо-собами, но наиболее производительный из них – многокаскадный электролиз. Дейтерий, а тем самым и тяжелую воду открыл в 1932 г. американский фи-зик-химик Гарольд Юри (1893–1981) Получение

66

Page 70: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201468

ИСТОРИЯ ФИЗИКИ И МАТЕМАТИКИ

30 тонн воды, обогащенной дейтерием до 1–2 %, за-нимает около 3 месяцев. Для использования в уран-тяжеловодном реакторе в качестве замедлителя тре-буется поднять концентрацию дейтерия до 98–99 %. Этот этап производится путем многократной дистил-ляции и ректификации воды при сверхнизкой темпе-ратуре, в технологии он получил название доводки; здесь уместно привести шутку П.Л. Капицы, кото-рый обещал правительству найти способ производ-ства тяжелой воды по цене водки.38

Французы выкупают у норвегии запас тяжелой воды Выдающийся французский физик-ядерщик Ф. Жо-лио-Кюри (1900–1958) был первым, кто еще в начале 1939 г. проводил опыты с облучением нейтронами природного урана, погруженного в тяжелую воду и показал, что ядро урана-235 делится, испуская в среднем 1,05–1,06 вторичных нейтронов. Этот ре-зультат имел принципиальное значение: расчеты показали, что, начиная с некоторых концентраций порядка 3–4 % 235U в смеси с изотопом 238U в ней мо-жет развиваться цепная реакция с огромным выделе-нием энергии. Жолио измерил важнейшие ядерные константы – сечения захвата и рассеяния тепловых нейтронов ядром дейтерия. Оказалось, что в реакто-ре с тяжеловодным замедлителем нейтронов можно использовать урана примерно в 15 раз меньше, чем в реакторе той же мощности с графитом. При этом необходимое количество тяжелой воды было в 60 раз меньше, чем сверхчистого графита, что в принципе позволяло конструировать реакторы гораздо мень-шего размера при той же мощности. До начала во-йны по заявке Жолио-Кюри правительство Франции закупило почти все мировые запасы тяжелой воды, около 180 кг [7]. Кстати, стоимость тяжелой воды тогда была 8 тыс. долларов США за 1 кг (т.е. сейчас это было бы на два-три порядка больше.) Практиче-ски все ее количество, начиная с 1934 г., производил методом электролиза единственный в мире завод тя-желой воды, построенный в Норвегии и принадле-жавший фирме «Норск-Гидро».

38 Когда П.Л. Капица пообещал на НТС ПГУ разработать низкотемпературный метод получения тяжелой воды по цене водки [8, c. 121], то все присутствующие восприня-ли это за шутку. Но Капица и его институт, действительно, вскоре выработали самую оптимальную технологию полу-чения тяжелой воды. И, хотя тяжелая вода оставалась не-сопоставимо дороже цены водки, коллектив Капицы был награжден Сталинской премией. В целом же в СССР было налажено производство тяжелой воды суммарно пример-но в 20 тонн в год на приблизительно десяти заводах, раз-бросанных по всей стране. Это было сделано как с целью безопасности, так и с учетом близости мощных электро-станций, энергия которых требовалась для электролиза.

После успеха с тяжелой водой Жолио убедил ми-нистра вооружений Франции Дотри в том, что можно добиться цепной реакции деления атомов урана не только в тяжелой воде, но и в чистом графите, что также приведет к взрыву необычайной силы. А гра-фит неизмеримо дешевле тяжелой воды. Министр доверял этому всемирно известному физику и отдал распоряжение о поставке ему особо чистого графита. Однако опыты Жолио с ураном и графитом не дали ожидаемого результата. По-видимому, это случилось по той же причине, что и у немцев: графит не был достаточно чистым. Пригодным замедлителем оста-вался дейтерий или фактически тяжелая вода. Нача-лась война, работать на немцев Жолио категориче-ски не захотел. Он и его близкие сотрудники вместе с военными предприняли операцию по доставке во Францию всех запасов тяжелой воды из Норвегии. Эта чрезвычайно сложная, многоходовая история подробно описана в материале [9].

Английские ядерщики не менее прочих понима-ли особую ценность тяжелой воды для извлечения энергии из разветвленных цепных реакций в уран-тяжеловодных котлах. После начала войны англий-ская разведка донесла, что завод в Веморке в Нор-вегии продолжает работать на полную мощность. Немцы решили перейти от схемы уран-графитового к схеме уран-тяжеловодного реактора с целью нара-ботки плутония в урановых стержнях, облучаемых нейтронами, замедленными в тяжелой воде. Тогда правительство Черчилля приняло решение о прове-дении массированной диверсионной операции. В ре-зультате завод тяжелой воды был взорван и надолго остановлен. Спустя примерно полгода немцы вос-становили завод. К началу 1944 г. он произвел для них 15 т. тяжелой воды, однако ее не смогли перепра-вить в Германию (что с ней стало, не сообщается [10, с. 291]). В конце 1940 г. в «Норск-Гидро» поступил заказ от концерна «ИГ Фарбениндустри» на 500 кг тяжелой воды. Поставки начались 23 января 1941 г. (10 кг), и затем до 17 февраля 1941 г. было отправле-но еще шесть партий по 20 кг. Производство тяжелой воды было расширено. Была достигнута договорен-ность, что «Норск-Гидро» до конца 1941 г. поставит в Германию 1000 кг тяжелой воды, а в 1942 г. – 1500 кг. Уже к ноябрю 1941 г. Германия получила дополни-тельно 500 кг тяжелой воды.

англия и СШа, 1941 г. Старт на полшага позжеПосле публикации вышеуказанных результатов Гана и Штрассмана 6 января 1939 г. физики-ядер-щики во всем мире оценили потенциальную опас-ность использования нейтронной цепной реакции

69

Page 71: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 69

ИСТОРИЯ ФИЗИКИ И МАТЕМАТИКИ

для создания урановой (атомной) бомбы огромной мощности. В первую очередь тревогу забили фи-зики-ядерщики из числа иммигрантов, уехавших из Германии в США. В 1939 г. венгерский еврей Лео Сцилард (1898–1964), занимавшийся оценкой числа нейтронов, испускаемых при делении ядра урана-235, убедил самого знаменитого физика мира, создателя теории относительности Альбер-та Эйнштейна (1879–1955), обратиться с письмом к президенту США Франклину Рузвельту (1882–1945). В письме объяснялось, почему вскоре может возникнуть угроза над всем миром, если Гитлеру удастся создать урановую бомбу. Рузвельт оценил реальность и серьезность этой угрозы и отдал рас-поряжение о создании нескольких научных и про-изводственных центров, необходимых для исследо-ваний по ядерной физике и поиску практических применений ядерной энергии в военных целях. В пустынном американском штате Невада был бы-стро выстроен комфортный городок Лос Аламос, где и было решено сконцентрировать всех ядерных физиков вместе с вспомогательным персоналом и оборудованием.

Энрико Ферми (1901–1954), Эдвард Теллер (1908–2003), Станислав Улам (1909–1984), Ганс Бёте (1906–2001), Рудольф Пайерлс (1907–1995), Клаус Фукс (1911–1988) и многие другие первоклассные физики – как иммигранты, бежавшие от нацистов, так и собственно американские ядерщики физики, химики инженеры и технологи – все они под науч-ным руководством Роберта Оппенгеймера и военно-административным руководством генерал-майора Лесли Гровза (1996–1970) были объединены в одну сплоченную команду, занявшуюся атомной пробле-мой США, которая кодироваласть под названием «Манхеттенский проект».

Ради исторической справедливости следует под-черкнуть, что опасность раньше почувствовали ан-глийские физики [11, с. 206–215]. Пользуясь всеми возможными источниками информации – как от-крытыми, так и засекреченными, они составили пространный экспертный доклад премьер-министру Уинстону Черчиллю (1874–1965), который положи-ли ему в папку осенью 1941 г. О письме немедленно стало известно советской разведке, имевшей своего агента Маклейна в МИД Великобритании.39 В шиф-ротелеграмме от 10.08.1941, переданной из Лондона начальнику Разведуправления Генштаба Красной

39 Маклейн (Маклин) Доналд (1913–1983), английский ди-пломат, входил в «кембриджскую пятерку». В 1951 г. нахо-дился на грани провала из-за декодирования американцами советского шифра и был переправлен в СССР [3, т. I. ч. II. с. 661].

Армии40 советский разведчик под 400 «Брион»41 пишет, ссылаясь на слова своего агента К. Фукса:

«Он сообщил военному министерству, что в Гер-мании, в Лейпциге проблема ураниевой бомбы раз-рабатывается профессором Хейсенберг.42 Он дал краткий доклад о принципе использования урана. При реализации хотя бы 1% энергии 10-килограм-мовой бомбы урана взрывное действие будет равно 1000 тонн динамита <…>».

В Примечании к этой телеграмме современные архивисты дают такой комментарий.

«Общеизвестно, что решающим толчком к разви-тию ядерных работ в Англии и США стало осозна-ние учеными опасности, связанной с возможностью создания атомного оружия в Германии. Во время во-йны военное ведомство Англии анализировало ин-формацию, поступающую по этой проблеме из раз-ных источников, в том числе от немецких физиков, переехавших в Англию, из агентурных источников в самой Германии и др. Предпринималось и активное противодействие – как уже упомянутые диверсии на заводе тяжелой воды в Веморке <Норвегия> [3, т. I. ч. II. с. 434].

Советский Союз, 1941–1942 годы: предстартовое состояниеКакие же события, сложившись в единый мощный фактор, привели к тому, что в руководстве Советско-го Союза примерно в это же время признали необ-ходимость поставить на государственный уровень программу по созданию атомной промышленности для производства ядерных бомб? Принять такую до-рогостоящую и с не вполне ясными перспективами программу в те месяцы, которые оказались самыми тяжелыми и разрушительными для Советского Со-юза, отступавшего по всем фронтам, потерявшего почти всю свою промышленность в западной части и еще не успевшего установить и пустить ее на Вос-токе страны.

В истории советской физики и, в частности, соз-дании атомной бомбы навсегда останется блестящая страница о поразительно провидческой и инициатив-ной роли 28-летнего физика Георгия Николаевича Флерова (1913–1990), ядерщика из Ленинградского физико-технического института (ЛФТИ), будуще-го академика и Героя Социалистического Труда, а в

40 В 1941–1942 гг. им был А.В. Панфилов (1898–1966). В ав-густе 1942 переведен.в действующую армию, стал замко-мандующего 3-й, затем 5-й танковыми армиями, генерал-лейтенант танковых войск [Там же, с. 676].

41 Псевдоним до сих пор не рассекречен [Там же]. 42 Стиль и орфография оригинала сохранены. У нас принято

писать: Гейзенберг.

68

Page 72: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201470

ИСТОРИЯ ФИЗИКИ И МАТЕМАТИКИ

1941–1942 гг. лейтенанта, занимавшегося аэродром-ным обслуживанием в двухстах километрах от Ка-зани (многочисленные сведения об этом собраны в компактном виде в книге [11, с. 206–215]).

Напомним, что незадолго до мобилизации Г.Н. Флеров и К.А. Петржак сделали под руковод-ством Курчатова крупнейшее открытие. Они обна-ружили самопроизвольное деление ядер урана, т.е. их деление без воздействия внешних нейтронов. А.Ф. Иоффе посчитал этот эффект важнейшим от-крытием года и выдвинул авторов на Сталинскую премию, но авторы ее не получили. Основной ре-цензент написал в отзыве, что открытие сомнитель-но: оно не вызвало интереса за рубежом, там нет сообщений в научной печати о том, что кто-либо из западных ядерщиков воспроизвел этот эффект, как это почти всегда бывает, когда делается серьезное открытие.

Между тем осенью 1941 г., бывая иногда в уволь-нительной, и, приезжая в библиотеку Казанского университета, Флеров обратил внимание на полное исчезновение из физических журналов Америки и Англии публикаций по ядерной тематике. Он понял, что это направление засекретили и, следовательно, за рубежом идут поиски возможных военных при-менений атомной энергии. Г.Н. Флеров написал обстоятельное письмо И.В. Сталину. Ответа не было. Тогда он стал писать своему научному руко-водителю по ЛФТИ Игорю Васильевичу Курчатову (1903–1960), написав из воинской части не менее пяти писем. Одно из них приведено в виде фото-копии в брошюре [12, книга 14. с. 164–184]. Письмо подробное, с расчетами, в нем даже содержится на-бросок принципиально правильной схемы атомного заряда, подрыв которого осуществляется пушечным способом – для мгновенного соединения двух под-критических масс.

Несмотря на страшное время первой военной осени, письма Флёрова не пропали. Из секретариата Сталина письмо Флёрова было переправлено Сергею Васильевичу Кафтанову (1905–1978), уполномочен-ному Госкомитета обороны по науке и вузам [13].

Кафтанов собрал справки о проведении работ по урану за рубежом и в СССР, убедился, что на эту тему в архиве Совнаркома уже имелись письма авторитет-нейших ученых страны, академиков В.И. Вернадско-го, В.Г. Хлопина, А.Е. Ферсмана, Н.Н. Семенова, и сопоставил все это с новейшими данными советской разведки [14, 15].

Поначалу сведения о работах по урановой бомбе в Германии приходили главным образом по линии во-енной разведки Красной Армии. Опишем подробнее важное событие, которое, наряду с параллельными

сведениями, подтолкнуло СССР к решению начать масштабные работы по урану. Будем пока следовать в основном историко-художественной книге С.А. Сне-гова «Творцы» [15, с. 262–265].

1942 год. Полковник Илья Григорьевич Стари-нов (1900–2000) командовал на Южном фронте оперативной инженерно-диверсионной группой, помогавшей, в частности, партизанским отрядам. В мае 1942 г. его вызвали по этим делам в Москву. «Прямого задания в ведомство Кафтанова на этот раз не было. <…> Было еще одно дело, возможно, пустячное, но уже с месяц беспокоящее Старинова, только кафтановские профессора могли установить, стоит ли оно выеденного яйца. <…> Старинов до-стал из командирской сумки немецкий блокнот в твердом переплете, размером почти в тетрадь – ал-фавит сбоку, линованные страницы тонкой бумаги, на каждой – формулы, вычисления, комментарии к вычислениям. Четкий, ясный почерк. – Трофей. По впечатлению – что-то научное.

– Если научное, значит, по нашей части. Посмо-трим! – Балезин <старший помощник С.В. Кафта-нова профессор С.А. Балезин> полистал записную книжку, захлопнул блокнот и весело посмотрел на полковника: – Занятный документик. Автор, по-видимому, физик.43 И его очень интересует урановая взрывчатка. Подсчитывает, что может дать высво-бождение урановой энергии, какие нужны материа-лы и оборудование. Рассказывайте теперь, как этот трофей достался вам».

Записная книжка попала к полковнику после ди-версионного налета на немецкий гарнизон поселка Кривая Коса на северном берегу Таганрогского за-лива <в феврале 1942 г.>. В числе трофеев оказалась легковая машина. Пленные сказали, что в ней сидел какой-то майор инженерных частей со своим шофе-ром. Три дня назад машина проследовала из Мариу-поля в Таганрог, сегодня вечером возвращалась. Ноч-ная езда запрещена, майору пришлось заночевать в Кривой Косе. Когда открылась стрельба, он кинул-ся к машине, но и его, и шофера убили. В портфеле у него и нашли этот блокнот. <…> Старинов хотел сдать блокнот в штаб армии, но переводчик сказал, что штабу не до физики. Вскоре Старинова вызвали в Москву. А в Москве к кому же идти, как не к «на-учникам» аппарата ГКО?

После ухода полковника Балезин еще раз перели-стал блокнот. Это, конечно, не были записи учебных лекций. Гитлеровский майор высчитывал эффекты ядерных реакций. <…> Балезин прикинул, что было

43 Действительно, это был физик-атомщик Г. Вандервельде [6, т. I, ч. 2, с. 697].

71

Page 73: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 71

ИСТОРИЯ ФИЗИКИ И МАТЕМАТИКИ

известно о майоре. Офицер инженерных войск, своя машина с шофером, пропуск на передовую, марш-рут: Мариуполь–Таганрог–Мариуполь… И Таганрог, и Мариуполь – металлургические центры: стальной прокат, трубы, фасонное литье… Не осматривал ли майор захваченные немцами предприятия в поисках материалов и оборудования, которые могли бы при-годиться для работ по урану?

– Нужна экспертиза! – вслух сказал Балезин. Онмысленно перебрал известных физиков. Он знал, над чем они работают, где находятся, прикинул, как быстро могут дать заключение. Один показался ему самым подходящим. Специалист-ядерщик, сейчас эвакуирован на Урал, много делает для нужд обо-роны. Балезин вынул свой бланк, отстучал на ма-шинке просьбу дать отзыв о трофейном научном документе. <…> Балезин знал, что пакет в этот же день уйдет по адресу, а эксперт не станет медлить с ответом. <Через несколько дней С.А. Балезину было доставлено экспертное заключение.> Кафтанов пе-релистал записную книжку, прочел небольшое – на полутора страницах – экспертное заключение. Экс-перт <…> писал, что в записях немецкого физика нет ни одного факта, о котором бы не знали совет-ские ученые. Несомненен интерес немецкого майо-ра к военной стороне урановой проблемы, но чего-либо нового и здесь не видно. Очевидно, немецкие ученые, несмотря на войну, продолжают трудиться в области военного применения энергии распада <деления> урана. Реального успеха в этом направ-лении вряд ли можно ожидать раньше, чем через 15–20 лет. В военное время, когда так дороги ресур-сы и люди, нет острой потребности возвращаться к исследованиям распада урана.

– Все же реальность самой проблемы он под-тверждает. – Кафтанов, покачав головой, доба-вил: – Немцы с ураном работают, а мы прекратили… не сделали ли мы ошибку?» [Там же].

В рассекреченных документах сборников [6, т. I, ч. 2, с. 97 и 260] содержатся заключения И.В. Курчатова на донесения, поступавшие из ГРУ Генштаба Красной Армии. В первом из них от 11.07.1944 Курчатов пишет, что «сведения… представляют для нас громадный интерес». Он констатирует, что, по данным разведки, работы в Германии аналогичны работам в Америке» и до-бавляет, что было бы «крайне важно получить бо-лее подробную информацию о направлении работ в Германии. В частности, <…> какие методы по-лучения урана-235 нашли в Германии наибольшее развитие, ведутся ли там работы по диффузионно-му методу или же приняты другие способы разде-ления изотопов. <…> [П]роводятся ли в Германии

работы над атомными котлами из урана и тяжелой воды <…> и какова конструкция этих котлов». Да-лее Курчатов спрашивает, имеется ли в Германии достаточно тяжелой воды, полученной из Норве-гии; достаточно ли урановой руды для загрузки уран-графитового котла, откуда немцы берут эту руду, из месторождения Иоахимсталь (г. Яхимов) в оккупированной Чехии или же везут ее из место-рождения в центральной Швеции; чему равна там добыча урана» [6, т. I, ч. 2, с. 98].

      Вот выдержки из еще одного документа с впечатля-ющим заголовком:

Отзыв И.В. Курчатова «О материале под заголов-ком “О немецкой атомной бомбе” , поступившем из ГРУ Генштаба КА” 30 марта 1945 г.»

Совершенно секретно (Особой важности)

Материал исключительно интересен. Он со-держит описание конструкции немецкой атомной бомбы, предназначенной к транспортировке на ракетном двигателе «Фау».

Перевод урана-235 через критическую массу, который необходим для развития цепного атом-ного процесса, производится в описываемой кон-струкции взрывом окружающей уран-235 смеси тринитротолуола и жидкого кислорода. Запал урана осуществляется быстрыми нейтронами, генерируемыми при помощи высоковольтной раз-рядной трубки, питаемой от специальных генера-торов. <…>.

Все эти детали конструкции вполне прав-доподобны. Надо отметить, что <…> у меня не осталось полной уверенности, что немцы дей-ствительно делали опыты с атомной бомбой. Эф-фект разрушения от атомной бомбы должен быть бόльшим, чем указано, и распространяться на не-сколько километров, а не сотен метров. Опыты, о которых идет речь в материалах, могли быть предварительными и делаться на конструкциях, предназначенных для атомных бомб, но без сна-ряжения ее ураном-235.

Желательно получить дополнительные сведе-ния о ходе опытов, которые помогли бы уяснить положение, и образцы урана-235 (здесь и ниже курсив И.В.К.).

Некоторые моменты <…> остаются для меня неясными. К ним относятся: 1) предварительное, подготовительное действие на уран гамма-лучей с энергией не большей 6 миллионов электрон-вольт; 2) указание, что на разрушение урана-235 весьма благоприятно действует радиоактивный

70

Page 74: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201472

ИСТОРИЯ ФИЗИКИ И МАТЕМАТИКИ

элемент 93, который получается из урана облуче-нием нейтронами. Трудно себе представить, что какое бы то ни было воздействие гамма-лучей или нейтронов могло существенным образом из-менить взрывные свойства урана-235. Только при больших интенсивностях этого облучения при помощи атомных котлов можно заметно изме-нить свойства урана-235. Скорее, здесь речь мо-жет идти о тонкостях начала взрывного процес-са, базирующихся на каких-то новых физических данных по процессу взаимодействия нейтронов с атомными ядрами урана.

Было бы исключительно важно получить по этим вопросам более подробную и точную ин-формацию. Еще более важно было бы знать подробности о процессе извлечения урана-235 из обычного урана.

Считаю, что было бы исключительно важно провести беседу нашего физика с лицом, давшим рецензируемую информацию.

И. КурчатовЭкз. единст.

Как видим, за месяц с небольшим до конца войны у Германии не было атомной бомбы, которая нахо-дилась бы в конечной стадии изготовления. Вместе с тем полученные разведсведения доказывают, что работы над атомной бомбой в Германии велись.

В плане мероприятий 1-го управления НКГБ СССР «по агентурно-оперативной разработке “Энормоз”» от 05.11.1944., которая представляла собой краткий обзор работ по урановым проек-там в различных странах (США, Англия, Канада, Франция, Германия) относительно последней было сказано:

«Точных данных о состоянии научной разра-ботки проблемы “Энормоз” в этой стране у нас не имеется. Имеющиеся сведения противоречи-вы. По одним из них немцы добились значитель-ных результатов, по другим – Германия при ее экономическом и военном положении не может вести сколько-нибудь серьезных научных работ в области “Энормоз”. Известно, что работы ведут-ся учеными: Хайсенбергом, Вейsakером, Ханом, Эзау и др.

Нач 4 отд. 3 отдела 1-го Управления НКГБ СССР майор гос.безопасности Соловьев»

[6, т. I. ч. II. с. 155].

Как сообщает немецкий историк Х. Кант, в дей-ствительности события в Германии происходили примерно так. После начала Второй мировой войны

проблемой цепной реакции деления урана со взры-вом в Германии заинтересовалось Управление во-оружений сухопутных войск, в котором работал крупный эксперт по ядерной физике Курт Дибнер (1905–1964). Очень скоро появился секретный от-чет В. Гейзенберга «Возможность технического получения энергии путем расщепления урана» (06.12.1939). В нем, согласно Х. Канту, содержатся такие положения:

«Обогащение ураном-235 дает нам уникальную возможность уменьшить объем реактора <…>. Более того, это дает уникальный метод производить взрыв-чатое вещество, превосходящее по своей мощности самые сильные современные средства на несколько порядков величины» [Там же, с. 284].

Как уже говорилось выше, из-за неверной оцен-ки сечения захвата нейтрона ядром графита Гейзен-берг, его ученик фон Вейцзеккер, а также Мюллер и Хёккер предполагали еще с февраля 1940 г., что уран-графитовый реактор потребовал бы много-кратно больше чистого урана, чем тяжеловодный. Ученые сконцентрировались на разработке теории и создании уран-тяжеловодного котла, а немец-кие военные – на доставке любой ценой десятков тонн тяжелой воды с завода в Норвегии, несмотря на то, что его несколько раз взрывали английские диверсанты.

В урановой программе немцев 1941–1942 гг. пре-обладали модельные опыты с ядерным реактором. Эта программа продвигалась медленно, ибо у физи-ков были слишком малые количества урана и тяже-лой воды. Тем не менее, результаты, полученные в 1941 г., были для немцев обнадеживающими. Дёп-пель в Лейпциге, основываясь на теории Гейзенбер-га, расположил уран и тяжелую воду сферическими слоями, что требовало меньшего количества этих ценных веществ, по сравнению с упомянутой выше плоскостной чередующейся моделью берлинской группы К. Виртца. Наконец, в мае 1942 г. лейпцигская группа впервые зарегистрировала превышение числа рождающихся нейтронов над числом поглощенных. Это случилось за месяц до того, как аналогичного результата добилась группа Э.Ферми в США. В ито-ге можно констатировать, что достижения немецких ученых к весне 1942 г. были на примерно том же уровне, что и у англо-американцев. Все направления их работ продвигались вполне успешно, за исклю-чением проблемы разделения изотопов урана-238 и урана-235, которые у немцев не пошли удачно.

В конце февраля 1942 в Физическом институте кайзера Вильгельма, в Берлине состоялась трех-дневная конференция о дальнейшем развитии ура-нового проекта.

73

Page 75: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 73

ИСТОРИЯ ФИЗИКИ И МАТЕМАТИКИ

«…[О]чевидно, что все участвующие ученые, несомненно, полностью сознавали военную значи-мость этих исследований, т.е. знали, что основной целью военных интересов была атомная бомба. Я подчеркиваю это – пишет Х. Кант – потому что по-сле войны многие немецкие ядерщики (в том числе Гейзенберг и фон Вейцзеккер) высказывали точку зрения, что немецкие ученые не создали атомную бомбу, потому что не хотели этого делать. Конеч-но, по разным причинам кто-то хотел этого боль-ше, кто-то меньше, но, как отметил позднее Виртц, “с самого начала немецкие ученые также нисколько не сомневались в том, что атомная бомба является конечной целью этих исследований”. В этом плане ученые рассматривали февральскую конференцию как возможность получить для своих работ финан-совую и материальную поддержку от промышлен-ности и армии».

С другой стороны, стало ясно, что, несмотря на реальную возможность создания как реактора, так и атомной бомбы, эти цели не будут достижимы в течение года или близкого к этому периоду време-ни. «Учитывая военное и экономическое положение Германии того времени, военные деятели, куриро-вавшие проект <прежде всего, министр вооруже-ний Альберт Шпеер>, пришли к выводу, что Герма-ния не успеет создать атомную бомбу за время этой войны, и сложили с себя финансовые обязательства [5, c. 284]».

Интересную информацию сообщил выдающий-ся инженер-физик Манфред фон Арденне, в частной лаборатории которого под Берлином было начато строительство циклотрона и уже успели установить ультрамагнит. Эту работу финансировало почему-то Министерство связи. Летом 1942 г. урановый проект перешел под начало Имперского исследо-вательского совета, который намеревался целиком взять под контроль работы по ядерной энергии, как это делала прежде армия. В мае 1945 г. Арденне рассказал Кикоину, что, «Гитлер с самого начала войны сказал, что его наука не интересует, потому что он надеется, что разобьет своих врагов-непри-ятелей в течение нескольких месяцев»…. и далее см. фразы, вынесенные в эпиграф данного очерка... Поэтому наука практически в начале войны не по-могала, не занималась вопросами военными, кроме мелких вещей, которые можно было сделать сегод-ня. А вот когда война затянулась, то Гитлер, по-видимому, понял, что это зря. Он сделал крупную ошибку. И уже в 42-м году, когда немцы тоже пред-ложили заняться атомным оружием, по-видимому, по тем же причинам, по которым все занялись, по-тому что кончились в 41-м году публикации всех

работ по делению урана, то он к этому отнесся не с очень большим энтузиазмом, но все-таки поручил Герингу этим заняться. И тогда только стали при-влекать физиков к этой проблеме. Поэтому физики существенной роли в развитии военной техники при Гитлере не сумели сыграть. Только в последние два года физики занялись усиленно вопросами ура-новой проблемы» [1, с. 888].

В 1944 г. Институт Кайзера Вильгельма возглавил Гейзенберг. В течение этого года в Берлине было осу-ществлено 5 крупных экспериментов по повышению коэффициента размножения нейтронов в реакторе, но недостаток материалов создавал множество труд-ностей. «В ноябре–декабре 1944 г. был выполнен по-следний берлинский эксперимент (В-VII), который дал существенно больший, по сравнению с предыду-щими, выход нейтронов.

Но в связи с положением на фронте началась эва-куация важнейших институтов из Берлина. Физи-ческий институт был перемещен в Эхинген, тихое местечко в Южной Германии. И там продолжались испытания нового уран-тяжеловодного котла, ко-торый, по предложению одного из ведущих физи-ков проекта, д-ра Дибнера, приобрел решеточную конструкцию. Этот эксперимент, обозначенный как В-VIII, оказался последним в Германии. Он был про-веден в феврале 1945 г. в скальной пещере близ де-ревушки Хайгерлох. В этом последнем опыте немцы подошли вплотную к самоподдерживающейся цеп-ной реакции. Но вскоре американская секретная мис-сия АЛСОС, задачей которой было найти и захватить как можно больше немецких ядерщиков и их обору-дования, прибыла в Эйхинген и увезла с собой Багге, Дибнера, Гейзенберга, фон Вейцзеккера и Виртца.

И. Кант заключает:«То, что усилия для достижения военных целей

не были увеличены, а наоборот, даже уменьшились в 1942 г., не было заслугой немецких ученых. Это не имело ничего общего ни с моральными соображени-ями или с чем-то еще в этом роде, ни с недостаточ-ными научными знаниями, но было связано только с военным и экономическим положением Германии <…>. Германским ядерщикам просто повезло, что им не пришлось, в конце концов, принимать решение о создании атомной бомбы» (цит. по статье И. Канта из кн. [5, т. 3. с. 288].

Отдельный вопрос – морально-этический, касаю-щийся участия в урановом проекте Вернера Гейзен-берга (1901–1976), одного из величайших физиков современности, создателя квантовой механики, имя которого стоит в одном ряду с такими великими уче-ными, как Бор, Паули, Шредингер. Этот вопрос под-робно попытался проанализировать наш известный

72

Page 76: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 201474

ИСТОРИЯ ФИЗИКИ И МАТЕМАТИКИ

физик-теоретик академик Евгений Львович Фейн-берг (1905–2005) в своей книге «Эпоха и личность», в главе, посвященной Гейзенбергу и названной «Тра-гедия Гейзенберга» [15, с. 305–367].

Факт есть факт: ставший нобелевским лауреатом в 31 год Вернер Гейзенберг оставался на террито-рии гитлеровской Германии в течение всей войны и был одним из руководителей германского уранового проекта. Когда в 1961 г. Нильс Бор был в Москве и встречался в ФИАНе с ведущими советскими тео-ретиками (Ландау, Гинзбург, Тамм, Фейнберг и др.), то Фейнберг задал ему вопрос о Гейзенберге. И по-лучил такой ответ (следуя запискам самого Евгения Львовича): Гейзенберг – очень честный человек. Но поразительно, как человек способен забывать свои взгляды, если он их постепенно изменял… Гейзенберг приехал <к Бору> осенью 41-го года, когда Гитлер завоевал Францию и быстро продви-гался в России. Гейзенберг уговаривал, что победа Гитлера неизбежна, глупо в ней сомневаться. Наци-сты не уважают науку и поэтому плохо относятся к ученым. Нужно объединиться и помогать Гитле-ру, и тогда, когда он победит, отношение к ученым изменится. Нужно сотрудничать с созданными на-цистами институтами. <…> Ландау потом говорил мне, что в личном разговоре с ним Бор, рассказав то же самое, был не “удивлен”, а “возмущен ”. <…> Я не мог прямо сказать ему “нет”, (т.е. отказаться от сотрудничества с Гитлером – Е.Ф.). Я сказал, что не могу решать такой вопрос единолично, необхо-димо посоветоваться с сотрудниками. <…> Из того, что Гейзенберг говорил, мы пришли к выводу, что у Гитлера будет атомное оружие. Иначе, почему же победа неизбежна? <…> Говорил, что Гейзенберг, хотя и националист, “не любит нацистов и антисе-митов” и т.п.».

Вот в сущности и вся фактическая сторона дела. Далее на десятках страниц своей книги Е.Л. Фейн-берг пытается провести психологический анализ, хотел ли Гейзенберг участвовать в немецком ура-новом проекте или нет. Саботажник ли Гейзен-берг? «Положение сложнее и тоньше», – пишет Е.Л. [2003. С. 308]. Возможно, у части читателей возникнет желание присоединиться к психоанали-зу, проводимому известным советским ученым и гуманистом. Mне кажется, что ситуацию незачем переусложнять. Большая часть ученых, не толь-ко евреев, уехали из нацистской Германии, что-бы не иметь никакого дела с Гитлером. Гейзенберг был немецким патриотом и националистом, как его квалифицировали близко знавшие его физики. Предугадать исход войны он не сумел. Был убеж-ден в близкой победе Германии. Ну, так что ж?

Многие были убеждены в близкой победе Гитлера: в его стране – почти все, в мире – десятки процен-тов задававших себе этот вопрос. Гитлер, возмож-но, и был неприятен Гейзенбергу (как и Сталин у нас ряду ученых, например, тому же Ландау). Но Гейзенбергу и его сотрудникам было комфортно у себя на родине, лично им ничто не угрожало. Стал ли бы он работать над атомной бомбой для нее? Стал бы на 100 %! Так же, как 100 % советских ученых, привлеченных к работам над атомным проектом, отдавали все свои силы и талант этому делу – чтобы победила наша Родина, а не ее злей-ший враг Гитлер. Все довольно просто и, на наш взгляд, не требует трансцендентально-апологетич-ных умопостроений в духе Е.Л. Фейнберга.

Литература

1. Кикоин И.К. Физика и Судьба. М.: Наука. 2008. 935 с.2. Электронный ресурс: kosmopoisk.nm.ru›zagadka6.htm.3. Знакомый незнакомый Зельдович (в воспоминаниях

друзей, коллег, учеников). Под ред. С.С. Герштейнаи Р.А. Сюняева. М.: Наука, 1993. 352 с.

4. Лота Владимир. ГРУ и атомная бомба. 2002. Элек-тронный ресурс: Издательство: Олма-Пресс 2002.:384 с.. Формат: fb2 Размер: 1,2 Мб. maxima library.org›Книги›b/104415/read.

5. Кант Хорст. Германский Урановый проект и фи-зический институт Кайзера Вильгельма. В книге:Наука и общество: история советского атомногопроекта (40–50 гг.) / Труды международного сим-позиума ИСАП-96. В 3-х томах, М: ИздАТ. 2003.Том. 3. 416 с.

6. Атомный проект СССР. Документы и материалы: В3 т. / Под общ. ред. Л.Д. Рябева. Т. I. 1938–1945: в2 ч. Часть 1 / М-во РФ по атом. энергии; отв. сост.Л.И. Кудинова. М.: Наука, Физматлит, 1998. 432 с.Часть 2: М.: Изд-во МФТИ. 2002. 800 с. Т. II в 7книгах. Атомная бомба. 1945–1954: Книга 1, 1999.719 с.; Книга 2, 2000; 640 с.; Книга 3, 2003. 896 с.Книга 4, 2003. 816 с.; Книга 5, 2005. 976 с.; Книга6; 2006. 896 с.; Книга 7, 2007. 696 с. / Федеральноеагентство РФ по атом. энергии; Отв.сост. Г.А. Гон-чаров. Саров: РФЯЦ-ВНИИЭФ; М.: ФИЗМАТЛИТ.

7. Немецкая ядерная программа. Википедия (свобод-ная энциклопедия).

8. Александров П.А. Академик Анатолий ПетровичАлександров. Прямая речь. 2-е изд. М.: Наука.2002. 248 с.

9. Норвегия, год 1940. Охота за тяжелой водой. Элек-тронный ресурс. militera.lib.ru›research/abomb/05.html.

10. Создание первой советской ядерной бомбы. /Подред. В.Н.Михайлова и др. М.: Энергоатомиздат,1995. 448 с.

11. Горобец Борис. Ядерный реванш Советского Со-юза. Кн.1 «Об истории атомного проекта СССР».Предисл. А.А. Рухадзе, Foreward by Istvan HargittaiМ.: КРАСАНД/УРСС. 2014. 352 р.

75

Page 77: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА и МАТЕМАТИКА · 2 · 2014 75

ИСТОРИЯ ФИЗИКИ И МАТЕМАТИКИ

12. Флёров Г.Н. К вопросу об использовании внутриа-томной энергии. Предисловие Р.В. Кузнецовой. Кур-чатовский институт. История Атомного проекта. М.:изд-во РНЦ КИ, 1998. вып. 14. С. 164–184.

13. По тревоге. Рассказ уполномоченного Государ-ственного Комитета обороны С.В. Кафтанова (За-писал В.Степанов). Химия и жизнь. 1985, 3.С. 6–10.

14. Квасникова Е., Матущенко А. Конструкцию первойатомной бомбы он помнил наизусть, или Л.Р. Квас-ников – первый разведчик, работавший в интересахсоветского атомного Проекта. Бюллетень по атом-ной энергии. 2005. 8. С. 83–86.

15. Снегов С.А. Творцы. Историческая повесть о совре-менниках. М.: Сов. Россия. 1979. 364 с.

16. Фейнберг Е.Л. Эпоха и личность. Физики. Очерки ивоспоминания. М.: Физматлит, 1-е изд. 1999; 2-е изд.2003, 416 с.

References

1. I.K. Kikoin. Physics and Destiny. M.: Nauka [Moscow:Publishing house «Science»], 2008. 935.

2. Electron resourсe: kosmopoisk.nm.ru›zagadka6.htm3. Znakomyi neznakomyi Zel’dovich (v vospominaniyakh

druzey, kolleg, uchenikov). Pod red. S.S. Gershtein &R.A. Syunyaev [Known unknown Zeldovich (in memo-ry of friends, colleagues, apprentices). Ed. by S.S. Ger-shtein & R.A. Syunyaev]. M.: Nauka [Moscow: Pub-lishing house «Science»], 1993. 352 p.

4. Lota Vladimir. Chief Intelligence Directorate of RedArmy and Atomic Bomb]. Moscow: OLMA-Press.2002; Internet resource: http://www.e-reading-lib.com/bookreader.php/150079/Lota_-_GRU_i_atomnaya_bomba.html.

5. Kant Horst. The German Uranium project and the Kai-ser Wilhelm Institute of Physics. In: Science and Soci-ety. History of the Soviet Atomic Project (40’s–50’s).Proceedings of International Symposium HISAP’96.In 3 Vs. М.: IzdAt. Vol. 2. 1999. 528 p.

6. Atomnyi Proect SSSR. Dokumenty i Materialy: v3-kh Tomakh. Pod obshchey red. L.D.Riabeva. TomI. 1938–1945: v 2 chastiakh: Chast 1: MinisterstvoRF poatomnoy energii; otv. sost. Kudinova L.I. M.:Nauka, Physmatlit. 1998. 432 p.; Chast 2: М.: Izd-voMFTI.2002. 2002. 800 p. [USSR Atomic Project.Documents and Materials. In 3 Vs Ed. L.D. Riabev.Vol. I. 1938–1945: in 2 parts. Part I. Min. of AtomicEnergy RF, compiler Kudinova L.Y. [Moscow: Pub-lishing house «Science»]. Physmatlit; Part II: M.:MFTI, 2002. 800 p.]. Tom II v 7 knigakh. AtomnayaBomba. 1945–1954. Kniga 1, 1999. 719 c., Kniga 2,2000, 640 c., Kniga 3, 2003. 896 р., Kniga 4, 2003.816 р., Kniga 5, 2005, 976 р., Kniga 6, 2006. 896 c.,

Kniga 7, 2007. 696 c. [Vol. II. Atomic Bomb. 1945–1954. In 7 Books. Book 1, 1999. 719 p.; Book 2, 2000; 640 p.; Book 3, 2003. 896 p.; Book 4. 2003. 816 p.; Book 5, 2005. 976 p.; Book 6, 2006. 896 p.; Book 7, 2007. 696 p. Federal Agency of Atomic Energy RF, compiler Goncharov G.A. Sarov: RFNC-VNIIEF].

7. German nuclear energy project – Wikipedia, the freeencyclopedia.

8. Alexandrov P.A. Academician Anatolii Petrovich Alex-androv. Pryamaya rech [Direct Speech]. 2d ed. M.: Nau-ka [Moscow: Publishing House «Science»], 2002. 248.

9. Norvegia. Okhota, god 1940 [Okhota za tiazholoywodoy]. Электронный ресурс. militera.lib.ru›research/abomb/05.html.

10. Sozdanie pervoy sovetskoy yadernoy bomby [TheCreation of the first Soviet Nuclear Bomb]. Pod red.Mikhailova V.N. i dr. M.: Еnergoatomizdat [Moscow:Publishing house «Energoatomizdat»], 1995. 448 p.

11. Gorobets Boris. Yadernyi Revansh Sovetskogo Soyu-za. Kniga 1: Ob Istorii Atomnogo Proecta SSSR [TheNuclear Revenge of the USSR. Book 1: On the His-tory of the Atomic project of The USSR / Preface byProf. А.А. Rukhadze, Foreward by Istvan Hargittai.M.: КRASAND/URSSM [Moscow: Publishing House«КRASAND/URSSM»], 2014. 352 р. (cf. Ch.13).

12. Fliorov G.N. K voprosu ob ispol’zovanii vnutriatomnoyenergii. Predislovie R.V. Kuznetsovoy. Kurchatovskiyinstitut. Istoriya Atomnogo proekta [On the use of atom-ic energy. Foreword by R.V. Kuznetsova. KurchatovInstitute. History of the Atomic Project]. M.: RNC KI[Moscow: Publishing House «RNC KI»], 1998. Vol. 14.PР. 164–184.

13. Po trevoge. Rasskaz upolnomochennogo Gosudarst-vennogo Komiteta oborony S.V. Kaftanova (ZapisalV. Stepanov) [The Alarm. The story of Commissioner ofthe State Defense Committee S.V. Kaftanov (recordedby V. Stepanov)] «Khimiya i zhizn» [«Chemistry andLife»], 1985. 3. PР. 6–10.

14. Kvasnikova E., Matushchenko A. Коnstrukcyiu per-voy atomnoy bomby on pomnil naizust’, ili L.R. Kvas-nikov – pervyi razvedchik rabotavshyi v interesakh So-vietskogo atomnogo proecta [He who remembered byheart the construction of the first atomic bomb], Biul-leten’ po Atomnoy Energii [Bull. on Atomic Energy].2005. 8. PР. 83–86.

15. Snegov S.A. Tvorcy. Istoricheskaya povest' o sovre-mennikah. M.: Sov. Rossiya [Moscow: PublishingHouse «Sov. Rossiya»], 1979. 364 p.

16. Feinberg E.L. Epoch and Personality. Physicists. Essaysand Reminescences. M.: Physmatlit, [Moscow: Publish-ing house «Physmatlit»],2003. 416 p.

сведения об авторе Information about the author

Ратнер евгений соломоновичведущий научный сотрудник

ветеран Всероссийского НИИ минерального сырья им. Н.М. Федоровского

109017, Москва, Российская Федерация, Старомонетный пер. 31 Email: [email protected]

Ratner Evgenij SolomonovichLeading Researcher veteran of All-Russia Institute of Mineral Resources after N.M. Fedorovskiy109017, Moscow, Russian Federation, Staromonetnyi pereulok, 31 Email: [email protected]

74

Page 78: Прикладная физика и математика 2014 №2

1. при направлении материалов для публикации в журнале необходи-мо заполнить карточку «сведения об авторе» (на русском и англий-ском языках).

Фамилия...... Имя...... Отчество...... Дата и место рождения......адрес регистрации (прописки) по паспорту с указанием почтового индекса.......адрес фактического проживания с указанием почтового индекса.......контактная информация (домашний, служебный и мобильный телефоны, электронный адрес).......Название организации (место работы (учебы)) вместе с ведомством, к которому она принадлежит, занимаемая должность, адрес организации с указанием почтового индекса...ученая степень и звание ( диплома, аттестата, кем и когда выдан).......

2. Объем статьи не должен превышать 40 страниц машинописноготекста. текст необходимо набирать в редакторе Word шрифтом 12, times New Roman; текст не форматируется, т.е. не имеет та-буляций, колонок и т.д. статьи должны быть свободны от сложныхи громоздких предложений, математических формул и особенноформульных таблиц, а также промежуточных математических вы-кладок. Все сокращения и условные обозначения в схемах и фор-мулах следует расшифровать, размерности физических величиндавать в сИ, названия иностранных фирм и приборов – в транс-крипции первоисточника с указанием страны.

3. аннотация и ключевые слова должны быть на русском и английском языках. В аннотации полностью должна быть раскрыта содержатель-ная сторона публикации и полученные результаты (выводы). аннота-ция должна иметь объeм от 100 до 250 слов. после нее дается пере-чень ключевых слов – от 5 до 10.

4. список использованной литературы (лишь необходимой и органи-чески связанной со статьей) составляется в порядке упоминанияи дается в конце статьи. ссылки на литературу в тексте отмечают-ся порядковыми цифрами в квадратных скобках, а именно: [1, 2].Желательно, чтобы список литературы содержал не менее 10–12источников, в том числе как минимум – 3 зарубежные публикации(желательно из трех стран) в данной области за последние 5–10лет. после списка литературы приводится список литературы в ро-манском алфавите, который озаглавливается References и являетсякомбинацией англоязычной [перевод источника информации на ан-глийский язык дается в квадратных скобках] и транслитерированной частей русскоязычных ссылок. В конце статьи приводится названиестатьи, фамилия, имя, отчество автора (ов), ученая степень, ученоезвание, должность и место работы, электронный адрес хотя бы одно-го из авторов для связи и точный почтовый адрес организации (местоработы автора) на русском и английском языках, при этом названиеулицы дается транслитерацией. список литературы следует оформ-лять в соответствии с Международными стандартами.

ПРИМеР ОФОРМЛенИЯ ЛИтеРатУРЫ

Баранов М.И., Веселова н.В. Основные достижения отече-ственных и зарубежных научных школ в области техники вы-соких напряжений. Часть 1: Московская, Ленинградская, том-ская и Киевская школы тВн // История науки и техники. 2012. т. 2. 3. C. 38–52.Baranov M.I., Veselova n.V. Osnovnye dostizheniya otechestven-nykh i zarubezhnykh nauchnykh shkol v oblasti tekhniki vysokikh napryazheniy. Chast 1: Moskovskaya, Leningradskaya, tomskaya i Kievskaya shkoly tVn [the main achievements of Russian and for-eign scientific schools in the art of high voltages. Part 1: Moscow, Leningrad, tomsk and Kiev school tVn]. Istoriya nauki i tekhniki [History of science and Engineering], 2012. Vol. 2. 3. PP. 38–52.

Ищенко а.М. Отечественное приборостроение: становление и развитие. М.: научтехлитиздат, 2011. 240 с.Ishchenko a.M. Otechestvennoe priborostroenie: stanovle-nie i razvitie [Domestic instrument: Development and Evolution] M.: nauchtekhlitizdat [Moscow: Publishing house «nauchtehlitiz-dat»], 2011. 240 p.

Название издательства «Научтехлитиздат» на английский язык не пе-реводится, поэтому пишется латинскими буквами. если книга и/или монография издана в издательстве название, которого переводится на английский, то сначала надо дать транслитерацию названия издатель-ства, а потом в квадратных скобках указать перевод этого названия на английский язык.

Иванов И.И. Проблемы разработки недр. М.: наука, 2012. 320 с. Ivanov I.I. Problemy razrabotki nedr [Problems of deve lopment of mineral resources]. M.: nauka [Moscow: Publishing house «Sciences»], 2012. 320 p.

Особо обращаем внимание авторов, что если Вы ссылаетесь на статью, то обязательно надо указать страницы от и до, на которых она напеча-тана, при этом букву «с» надо ставить перед страницами. если дается ссылка на монографию, то буква «с» ставится после указания количе-ства страниц.

ЭтаПЫ РаССМОтРенИЯ И ПУБЛИКаЦИИ СтатЬИ

Регистрация статьи и присвоение ей индивидуального номера. Опреде-ление соответствия содержания статьи тематике журнала. если содер-жание не совпадает с тематикой публикуемых статей в журнале, статья снимается с рассмотрения; об этом сообщается автору (или авторам). Неопубликованный материал авторам не возвращается. Направление статьи рецензенту, крупному специалисту в данной области. Рассмо-трение замечаний и пожеланий рецензента; при необходимости обра-щение к автору с просьбой учесть замечания и пожелания рецензента. при получении от рецензента отрицательной рецензии статья передает-ся другому рецензенту. при отрицательном результате повторного ре-цензирования статья снимается с рассмотрения. Научное редактирова-ние. литературное редактирование. корректура статьи. Верстка статьи.

после прохождения вышеперечисленных этапов статья включается в список подготовленных для публикации статей и публикуется в по-рядке общей очереди.

ПРаВИЛа РеЦенЗИРОВанИЯ СтатеЙ

любая статья, поступающая в редакцию журнала, независимо от лич-ности автора(ов) направляется рецензенту, крупному специалисту в данной области. статья рецензенту передается безличностно, т.е. без указания фамилии автора (ов), места работы, занимаемой должности и контактной информации (адреса, телефона и E-mail адреса).

Рецензент на основе ознакомления с текстом статьи обязан в разумный срок подготовить и в письменной форме передать в редакцию рецен-зию, в обязательном порядке содержащую оценку актуальности рас-смотренной темы, указать на степень обоснованности положений, вы-водов и заключения, изложенных в статье, их достоверность и новизну. В конце рецензии рецензент должен дать заключение о целесообраз-ности или нецелесообразности публикации статьи.

при получении от рецензента отрицательной рецензии статья пере-дается другому рецензенту. Второму рецензенту не сообщается о том, что статья была направлена рецензенту, и что от него поступил отрицательный отзыв. при отрицательном результате повторного ре-цензирования статья снимается с рассмотрения и об этом сообщается автору(ам). автору(ам) редакция направляет копии рецензии без ука-зания личности рецензента.

В исключительных случаях, по решению редакционной коллегии, при получении от двух рецензентов отрицательного отзыва, статья может быть опубликована. такими исключительными случаями являются: предвзятое отношение рецензентов к рассмотренному в статье новому направлению научного нововведения; несогласие и непризнание рецен-зентами установленных автором фактов на основе изучения и анализа экспериментальных данных, результатов научно-исследовательских, опытно-конструкторских и других работ, выполненных на основании и в рамках Национальных и государственных программ и принятых заказ-чиком; архивных и археологических изысканий, при условии предостав-ления автором документальных доказательств и т.д.

ПрАВиЛА оФорМЛЕНия, рАссМотрЕНия,

ПУБЛиКАЦии и рЕЦЕНЗироВАНия стАтЕЙ

Page 79: Прикладная физика и математика 2014 №2
Page 80: Прикладная физика и математика 2014 №2

ПРИКЛАДНАЯ ФИЗИКА

И МАТЕМАТИКА

APPLIED PHYSICS AND MATHEMATICS

2

∙ 2

01

4

ISSN 2307-1621