25
1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group ntents Comparison between Scintillator and Ga Digital and Analog Hadronic calorimete

1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital

Embed Size (px)

DESCRIPTION

3 Test Detector A scintillator cell 1cm x 1cm x 2mm 1 m 100 Layers 1 cm Total number of cells 1,000,000 Z X Y

Citation preview

Page 1: 1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital

1

Hadronic calorimeter simulation

S.Itoh, T.Takeshita ( Shinshu Univ.)GLC calorimeter group

Contents- Comparison between Scintillator and Gas- Digital and Analog Hadronic calorimeter

Page 2: 1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital

2

Introduction

Our plan of Hadronic calorimeter(HCAL) is a Lead/Scintillator sampling type.We study the HCAL by GEANT4 simulation.Hadronic model is GEISHA based.

Lead : 8mm Scintillator : 2mm

Page 3: 1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital

3

Test Detector

A scintillator cell 1cm x 1cm x 2mm

1 m

1 m

1 m10

0 Lay

ers

1 cm

Total number of cells1,000,000

ZX

Y

Page 4: 1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital

4

Test of PFASet up for Multi particles

Iron Block

50cm

10cm

Multi particle event to simulated jet is generated.

pi-100GeV

Page 5: 1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital

5

Multi particle event

Iron Block

pi –100GeV

Hit cell energy ( >0.1mips ) in the HCAL

There are hit cells apart from the track.We try to study these cells.

Page 6: 1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital

6

Simulation for Gas

You can see the track clearer in Gas than in Scintillator.

Iron Block

pi –100GeV

Hit cell energy( >0.1mips )

Page 7: 1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital

7

Purpose of this study

Scintillator is our choice for the HCAL.

We study• The hits apart from the track in the scintillatorand• The difference in the measurement of the

scintillator and the gas.

Page 8: 1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital

8

A single pion

0.1

1

10

100

1000

0 20 40 60 80 100z position ( cm )

Hit

time

( ns

)pi-4GeV

The green cells are neutron hits. (by G4Track Information)

E(neutron) = 50MeV

Z

The hits are due to neutron scattering.

Page 9: 1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital

9

The effect of neutronsScintillator Gas(Xenon)neutron 50MeV

The box size: 1m x 1m x 1m

Neutrons incident at random positions to the pure scintillator and the gas.

Page 10: 1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital

10

Time cut parameter

0.1

1

10

100

1000

0 20 40 60 80 100z position ( cm )

Hit

time

( ns

)The neutron hit time is slower than other hits.

We study from the view point of the hit cell time. 2ns

5ns10ns

no time cut

Page 11: 1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital

11

Number of hit cells (Time Cut Dependence)

020406080100120

1 10 100 1000 10000

4GeV pion

Time cut ( ns )

Nhi

t

Nhit distribution Hit cell energy > 0.1mip

5

It stands for no time cut.

Page 12: 1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital

12

Hit time distribution

The hit time distribution for the scintillator is similar to that of the gas after the time cut(5ns).

Lead/Sci

Lead/Gas

Hit time ( ns )

Page 13: 1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital

13

Shower radiusTo see the effect of the time cut parameter to the hits, we define Shower radius as the mean of the distribution of r(i).

wherer(i) = for Cell position ( x(i), y(i), z(i) )

1m

22 )()( iyix r(i)

Z

Page 14: 1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital

14

Shower radius (Time Cut Dependence)

012345678

1 10 100 1000 10000

r(i) distribution

Time cut ( ns )

Show

er ra

dius

( c

m )

4GeV pion

Two SR approach as the time cut is small.

(Hit cell energy > 0.1mip)

Page 15: 1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital

15

Energy resolution - analog (Time Cut Dependence)

00.050.10.150.20.250.30.35

1 10 100 1000 10000

ScintillatorGas

The total energy

Time cut ( ns )

Ener

gy R

esol

utio

n 4GeV pion

It is independent of the time cut.

(Hit cell energy > 0.1mip)

Page 16: 1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital

16

Cell energy v.s. r(i)( @Time cut 5ns )

Lead/Sci Lead/Gas

Fluctuation of cell energy is large in the gas.

r(i) ( cm ) r(i) ( cm )

Cel

l ene

rgy

( m

ip )

Cel

l ene

rgy

( m

ip )

(Hit cell energy > 0.1mip)

Page 17: 1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital

17

Summary of analog HCAL(For 4GeV pion)

• We can cut the neutron hit cells in the scintillator by the time cut parameter.

In using the time cut parameter( 5ns )• Shower radius Scintillator : 4.2 cm Gas : 3.8 cm• Energy resolutionScintillator : 0.27 Gas : 0.31

Page 18: 1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital

18

Digital calorimeter

We have 1,000,000 cells in the HCAL.We can try to digital readout.

The measurement of the Digital HCAL only count the number of hit cells (Nhit).It is independent of cell energy.

Page 19: 1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital

19

Linearity for pion (1, 2, 4, 16, 32 GeV)

02004006008001000

0 10 20 30

pion

Incident energy (GeV)

Data by J.Yamada

We can use the digital readout for the HCAL.

Nhi

t for

dig

ital

Mip

for a

nalo

g

Page 20: 1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital

20

Resolution of Digital and Analog

-0.10

0.10.20.30.40.50.60.7

0 0.5 1

Res

olut

ion

E/1

ResolutionDigital 0.62 Analog 0.63

(incident,GeV)

Page 21: 1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital

21

Nhit distribution(With the time cut parameter : 5ns)

Lead/Sci Lead/Gas

Nhit Nhit

(Hit cell energy > 0.1mip)

Page 22: 1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital

22

Nhit Resolution - digital(Time Cut Dependence)

00.10.20.30.4

1 10 100 1000 10000

Nhi

t Res

olut

ion

Time cut ( ns )

4GeV pion

Nhit distribution (Hit cell energy > 0.1mip)

Page 23: 1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital

23

Summary of Digital HCAL

• The ability of Digital HCAL is similar to that of Analog HCAL for pions.

In using the time cut parameter( 5ns )• Nhit resolution (for 4GeV pion)Scintillator : 0.28 Gas : 0.32

Page 24: 1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital

24

Summary• We can control the neutron events in the

scintillator by the time cut parameter.

In using the time cut parameter • Resolution(analog/digital) of the scintillator

is similar to that of the gas.• Shower radius of the scintillator is similar to

that of the gas.

Page 25: 1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital

25

Outlooks

Time cut

Thank you very much.

The time cut parameter may help for the clustering in PFA.