10 Ukr Hungary Dynam

Embed Size (px)

Citation preview

  • 8/11/2019 10 Ukr Hungary Dynam

    1/31

    IPS NASU

    DYNAMICAL ANALYSIS AND ALLOWABLE

    VIBRATION DETERMINATION FOR THE PIPING

    SYSTEMS.

    G.S. Pisarenko Institute for Problems of Strength

    of National Academy of Science of Ukraine

    Kiev, Ukraine

  • 8/11/2019 10 Ukr Hungary Dynam

    2/31

    IPS NASUSoftware complex

    3D PipeMaster

    Method of calculation of piping at harmonical vibrations

    Modeling of dynamical behavior of pipe bend as thebeam as well as the shell

    The abilities of the complex for vibrodiagnostics

    Accident of the oil

    pipeline

  • 8/11/2019 10 Ukr Hungary Dynam

    3/31

    IPS NASU3D PipeMaster

    Harmonical analysisDynamic stiffness method

    x

    y

    dx

    X0X1

    01 ),( XdxAX

    stiffness matrixy

    with method of initial parameters

    x

    X10

    2 n-1 n

    X11 X2

    0 X2

    1 Xn-1

    0 Xn

    0Xn-1

    1 Xn

    1

    1

    ;11

    0

    ii XX ;)( 001

    XAXn

    n

    i

    ini dxAA1

    1,)(

    The sweeping

    procedure

  • 8/11/2019 10 Ukr Hungary Dynam

    4/31

    IPS NASU

    The inertial term

    3D PipeMaster

    Harmonical analysisDynamic stiffness method

    02

    4

    4

    yz

    yW

    EI

    F

    dx

    Wd z

    y

    dx

    dW

    z

    zz

    EI

    K

    dx

    d

    y

    z Qdx

    dK

    the equations of motion at transversal vibrations

    - frequency of vibration

    the equations of the method of initial parameters:

    xkYkEI

    QxkY

    kEI

    KxkY

    kxkYWW y

    yz

    y

    y

    yz

    z

    y

    y

    z

    yyy 433221000

    0

    xkYWkxkYkEI

    QxkY

    kEI

    KxkY yyyy

    yz

    y

    y

    yz

    z

    yzz 43221 0

    00

    0

    xkYEIkxkYEIkWxkYk

    QxkYKK yzyzyzyyy

    y

    y

    yzz 43

    2

    21 00

    0

    0

    xkYkKxkYEIkxkYEIkWxkYQQ yyzyzyzyzyyyyy 432

    2

    3

    1 0000

    zy

    EI

    Fk

    24

  • 8/11/2019 10 Ukr Hungary Dynam

    5/31

    IPS NASU3D PipeMaster

    Harmonical analysis

    The algorithms for branched and curvelinear ele

    ments

    1

    1

    2

    2

    3

    3

    4

    45

    1

    ;,1,e

    iz

    b

    iz

    ;sincos,1, ie

    ii

    e

    iy

    b

    iy

    ;sincos ,1 ie

    iyi

    e

    i

    b

    i

    ;sincos,1 ie

    ii

    e

    iy

    b

    iy, UWW

    ;1e

    iz,

    b

    iz, WW

    .sincos1 ie

    iy,i

    e

    i

    b

    i WUU

    the conditions in the junctions

    equations for pipe bend

    The matrix of the turning

    element

    ;)( 11

    0

    ii XBXi

    ;)( 001 XCXn ;)(,)( 1

    1

    1

    inn

    i

    ini BdxAC

    ...321 WWW

    ...321

    0M

    0Q

    1

    2

    3

    m

  • 8/11/2019 10 Ukr Hungary Dynam

    6/31

    IPS NASU3D PipeMaster

    Harmonical analysis

    Method of the breaking of displacements for thedetermination of the natural frequencies and forms

    0

    0

    0,

    11,

    QQ

    orQQ

    i

    y

    iyxi-1 i

    Xi-10 Xi0X

    i-11 X

    n1

    y 11,0

    iyi

    y, WW 1

    1,0

    iyi

    y,y WWW

    the criteria of the determination of the natural frequency

    - natural frequency 0)(yW

    The example of the graph for T

    like frame)(yW

  • 8/11/2019 10 Ukr Hungary Dynam

    7/31

    IPS NASU3D PipeMaster

    Harmonical analysis

    Method of the breaking of displacements continuity

    The role of the estimator is essential !!!

    The additional frequency can be noticed only at very small step of

    frequency.

  • 8/11/2019 10 Ukr Hungary Dynam

    8/31

    IPS NASU3D PipeMaster

    Harmonical analysis

    Method of the breaking of displacements continuity

    The examples of finding the natural frequencies and forms for T-

    like frame

    =148 -1 =212.4 -1 =214.4 -1

    The additional form

    of vibration !!!

    -1

    -1

    1

    0.03

    -1 -1 -1

    1

    1

    The forms given in the handbooks

  • 8/11/2019 10 Ukr Hungary Dynam

    9/31

    IPS NASU3D PipeMaster

    Harmonical analysisMethod of the breaking of displacements

    modeling of curvilinear elementExample: frequencies of the circular ring

    = 2106; G = 8105;

    = 0.3; = 8000 /3;

    0= 2 ;R= 0.1

    n = 2 n = 3 n = 4 n = 5

    Vibration in the plane of circular ring

    theoretical 167.7051 474.3416 909.5086 1470.8710

    Our results 167.569 473.857 908.4868 1469.146

    Out-of-plane vibration of circular ring

    163.6634 468.5213 902.8939 1463.8510

    163.36 467.371 900.391 1459.662

    Kang K.J., Bert C.W. and Striz A.G.

    Vibration and buckling analysis of circular

    arches using DQM

    // Computers and Structures.1996.V.60,1.

    pp. 49-57.

    ,

    1

    12

    222

    4

    0

    n

    nn

    FB

    EIz

    2n

    vibrations in plane

    Out-of-plane

    ,

    1

    14

    02

    22

    FB

    GI

    EI

    GIn

    nn y

    y

    2n

  • 8/11/2019 10 Ukr Hungary Dynam

    10/31

    IPS NASU3D PipeMaster

    Harmonical analysis

    Method of the breaking of displacementsmodeling of curvilinear elementExample: frequencies of the circular arc

    1. In-plane vibrations

    Austin W.J. and Veletsos A.S. Free vibration ofarches flexible in shear // J. Engng Mech. ASCE.1973.V.99.pp. 735-753.2. Out-of-plane

    Ojalvo U. Coupled twisting-bending vibrations of

    incomplete elastic rings // Int. J. mech. Sci.1962.V.4.pp. 53-72.

  • 8/11/2019 10 Ukr Hungary Dynam

    11/31

    IPS NASU3D PipeMaster

    Harmonical analysis

    Advantages1. The strict analytical solutions are used.

    2. The continuity is provided at transition from static to dynamic

    3. The infinite number of natural frequencies can be obtained for

    finite number of elements.

    4. The method of sweeping allows to speed up the calculation.

    5. Analytical accuracy of modeling of curved element is attained.

    6. Any complex spatial multibranched piping system can be

    treated.

    7. The vibration direction (modes) of interest can be separated8. The influence of the subjective factors are excluded (the

    breaking out on the elements)

  • 8/11/2019 10 Ukr Hungary Dynam

    12/31

    IPS NASU

    Dynamical model of pipe bend

    as the beam as well as the shell

    ,02

    4

    4

    WEI

    FK

    dx

    Wd d

    A

    C

    B

    D

    A

    C

    B

    D

    zK

    zK

    1d

    0d

    B

    O

    R

    bendpipeforxPfK

    pipestraightforK

    ,,,,

    1

    B

    R

    Bt

    R2

    - flexibility parameter

    - parameter of curvature

    The curved beam element is strict but pipe bend have theincreased flexibility!

    Depends from the frequency !

    Physical equation is correctedEI

    MK

    dx

    d

    Equation of the transversal vibration with accounting of

    increased flexibility:

  • 8/11/2019 10 Ukr Hungary Dynam

    13/31

    IPS NASU

    Equation for bend as a shell

    r

    R

    O

    B

    O1

    t

    x

    y

    z

    v u

    wEquilibrium equations:

    0sin1

    2

    2

    0

    t

    wh

    B

    N

    x

    QQ

    RR

    Nxx

    0cos1

    2

    2

    0

    t

    vh

    B

    N

    x

    L

    R

    QN

    Rx

    0

    sin2

    2

    0

    t

    u

    hB

    Q

    x

    NL xx

    01

    x

    MM

    RQ

    x

    01

    xMM

    RQ xxx

    HN

    HNx

    12

    HL

    HM

    HMx

    2

    1 HM x

    Physical equations

    Determination of the flexibility

    of the pipe bend

  • 8/11/2019 10 Ukr Hungary Dynam

    14/31

    IPS NASU

    0

    sincos

    B

    wv

    x

    u

    R

    wv

    R

    12

    2

    x

    w

    22

    2

    2

    1

    R

    ww

    R

    2

    2

    x

    w

    x

    w

    Rx

    v

    R

    222

    deformations

    curvatures

    Geometrical equations:

    Determination of the flexibility

    of the pipe bend

    The simplifications:

    semimomentless Vlasovs theory: 0,...,0

    vw

    x

    vR

    u,...,

    geomtrical characteristics: ,62 BtR 0 B

    R

    restrictions on the wave length in the axial direction2

    2

    2

    2

    v

    x

    v

    0sincos21

    4

    4

    2

    2

    2

    2

    002

    2

    2

    3

    2

    2

    4

    4

    vv

    th

    N

    BB

    N

    x

    NR

    QQ

    R

    xxx

  • 8/11/2019 10 Ukr Hungary Dynam

    15/31

    IPS NASU

    Determination of the flexibility

    of the pipe bend

    Solution for the cylindrical shell

    0112

    11

    ,sinsin,,,

    6

    2

    2

    22422

    2

    2

    0

    n

    IV

    n

    n

    VR

    hnnnn

    ERV

    tnxVtxvB

    AS

    R

    R

    hnn

    nnR

    E

    m

    m

    ,

    112

    1

    1 2

    2

    2

    222

    2

    4

    22

    2

    600

    800

    1000

    1200

    1400

    1600

    0,2 1,1 1,2 2,2 3,2

    (m, n)

    ,

    experiment

    FEA [Salley and Pan]

    our results

    Salley L. and Pan J.A study of the modal

    characteristics of curved

    pipes// Applied

    Acoustics.2002.

    V.63.pp. 189-202.

  • 8/11/2019 10 Ukr Hungary Dynam

    16/31

    IPS NASU

    Determination of the flexibility

    of the pipe bend

    ERBtxVxVRtxv 032 ,sin...3cos,2sin,,,

    ,2

    31, 2 xV

    xkxK

    The sought for solution:

    The resulting equations:

    n

    IV

    nnnnnnnnnnn faVVaVaVaVaVa 1,51,42,32,2,1

    3,161,1

    2,12144,1

    22224

    ,1

    22

    ,1,1

    ,1

    22

    ,1,1

    nnnAnnaBnnaa

    nAaBnnaa

    nnn

    nnn

    ;133 2,2 nnnAa n

    ;1 22,4,4h

    RRaa nn

    ;1

    11223

    1

    ,4

    n

    nnna

    n

    n

    ;)1()1( 22

    22

    0

    24

    hB

    RA

    ;112 42

    22 R

    h

    Ra

    ;133 2,3 nnnAa n

    ;1 22,5,5h

    RRaa nn

    ;1

    11223

    ,5

    n

    nnna

    n

    n

    ;3,0

    ;2,722

    nf

    nxAkf

    n

    Eh

    RB

    2

    242 )1(12

  • 8/11/2019 10 Ukr Hungary Dynam

    17/31

    IPS NASU

    Determination of the flexibility

    of the pipe bend

    - The coefficient of flexibilityat harmonical vibrations

    B

    BABBABAK

    2

    10607241167211672 2

    22

    )1( A

    0

    5

    10

    15

    20

    25

    30

    0 10 20 30 40 50 60

    A=1

    A=3

    A=6

    A=10A=15

    A=30

    K

    B

    Eh

    RB 2

    242)1(12

    BhR2

    n

    z

    IV

    n V

    EI

    FKV

    22 ),( Assume:

    451

    38.28K

    ABB

    if

    then we obtain :

    3,161

    ,

    2,12144

    ,1

    22224

    ,1

    ,1,1

    ,1

    22

    ,1,1

    nnnAnna

    aa

    nAa

    Bnnaa

    n

    nn

    n

    nn

    Results:

  • 8/11/2019 10 Ukr Hungary Dynam

    18/31

    IPS NASU

    200

    600

    1000

    1400

    1800

    2200

    2600

    3000

    R,2s R,2a 1,2s 1,2a 3,2s 3,2a 1,1a

    (m, n)

    ,

    experiment

    FEA [Salley and Pan]

    our results with

    dynamical

    K=1

    the Saint-Venant

    (static) solution

    L. Salley and J. Pan. A study of the modal characteristics of curved pipes

    // Applied Acoustics.2002.V.63.pp. 189-202.

    = 2.07106 ;

    = 0.3;= 8000 /3;

    R = 0.0806 ;

    h = 0.00711 ;

    = 0.457 l=0.2

    l

    l

    Rh

    B

    Determination of the flexibility

    of the pipe bend

  • 8/11/2019 10 Ukr Hungary Dynam

    19/31

    IPS NASU

    P

    A B

    l

    W

    thtglPl

    M

    82

    04

    42

    2

    1

    EI

    lF

    tPtP cos

    0

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    0 50 100 150 200 250 300

    M(l/2)

    , /c

    = 2106; G = 8105;

    = 0.3; = 8000 /3;

    l= 5 ;R= 0.1 ;h= 0.005 .

    1. The graph of bending moment in the

    central point of supported-supported beam

    srad136

    1.25

    2. Restoration of the outer force from theknown displacements in arbitrary point

    P0, H

    -4.E+07

    -3.E+07

    -2.E+07

    -1.E+07

    0.E+00

    1.E+07

    2.E+073.E+07

    4.E+07

    5.E+07

    6.E+07

    0 500 1000 1500

    , /c

    110 P10 W

    Abilities of 3D PipeMaster for

    vibrodiagnostics

  • 8/11/2019 10 Ukr Hungary Dynam

    20/31

    IPS NASUAbilities of 3D PipeMaster for

    vibrodiagnosticsThe problems of vibrodiagnostics

    1. The points of application of the outer forces, their directions andfrequencies are unknown.

    2. The gauges can measure the displacements of pipe points,

    their velocities and accelerations

    3. The number of gauges is finite.

    The functions of the calculation software1. The correct determination of the dynamical characteristics.

    2. Correct modeling of the piping behavior when the correct

    measurement data are provided.3. The best possible assessment of the behavior with restricted

    input data.

    4. The best possible assessment of the dynamical stresses based

    on the incomplete measurements

  • 8/11/2019 10 Ukr Hungary Dynam

    21/31

    IPS NASUAbilities of 3D PipeMaster for

    vibrodiagnostics

    yy WF,

    A B

    ll 20

    yQWM ,,

    yQWM ,,

    tFtFy

    sin0

    = 2.0689106;= 0.3;

    = 7836.6 /3; l= 6.096 ;

    l=0.3048;R= 0.05715 ;

    t= 0.0188 .

    11.66 , 37.65 ,

    78.18 .

    1 2

    3

    1. Input data are the results of excitation of beam by harmonical force applied at its

    center. The calculated values of transverse forces, bending moment, displacementsin 21 points are recorded. This is so called real case.

    2. The system (beam) is loaded by the real displacements in a few (or one) points,

    the moments and displacements are calculated.

    3. The calculated in 2 results are compared with real data.

    The frequency of outer force is given but the point of

    its application is unknown. The gauges measure the

    displacements

  • 8/11/2019 10 Ukr Hungary Dynam

    22/31

    IPS NASUAbilities of 3D PipeMaster for

    vibrodiagnostics

    A B

    l3 l3

    -0.0008

    -0.0007

    -0.0006

    -0.0005

    -0.0004

    -0.0003

    -0.0002

    -0.0001

    0

    0.0001

    0 2 4 6 8 10 12 14 16 18 20

    , de ltaL

    W

    -600

    -400

    -200

    0

    200

    400

    600

    M

    W . W "." M . M "."

    =21

    0

    0.0005

    0.001

    0.0015

    0.002

    0.0025

    0.003

    0 5 10 15 20 25

    , de ltaL

    W

    -2500

    -2000

    -1500

    -1000

    -500

    0

    500

    1000

    1500

    2000

    2500

    M

    W . W "." M . M "."

    =8

    2 points of measurements

  • 8/11/2019 10 Ukr Hungary Dynam

    23/31

    IPS NASUAbilities of 3D PipeMaster for

    vibrodiagnostics

    =100 =80

    =60 -0.00015

    -0.0001

    -0.00005

    0

    0.00005

    0.0001

    0 2 4 6 8 10 12 14 16 18 20

    , delta L

    W

    -600

    -400

    -200

    0

    200

    400

    600

    M

    W . W "." M . M "."

    -0.0008

    -0.0006

    -0.0004

    -0.0002

    0

    0.0002

    0.0004

    0.0006

    0.0008

    0 2 4 6 8 10 12 14 16 18 20

    ,deltaL

    W

    -4000

    -3000

    -2000

    -1000

    0

    1000

    2000

    3000

    4000

    M

    W . W "." M . M "."

    -0.0004

    -0.0003

    -0.0002

    -0.0001

    0

    0.0001

    0.0002

    0.0003

    0.0004

    0.0005

    0 2 4 6 8 10 12 14 16 18 20

    , deltaL

    W

    -4000

    -3000

    -2000

    -1000

    0

    1000

    2000

    3000

    4000

    M

    W . W "." M . M "."

  • 8/11/2019 10 Ukr Hungary Dynam

    24/31

    IPS NASUAbilities of 3D PipeMaster for

    vibrodiagnostics

    A B

    l l

    =140 =60

    2 points ofmeasurements

    -0.00014

    -0.00012

    -0.0001

    -0.00008

    -0.00006

    -0.00004

    -0.00002

    0

    0.00002

    0 2 4 6 8 10 12 14 16 18 20

    , del taL

    W

    -600

    -400

    -200

    0

    200

    400

    600

    M

    W . W "." M . M "."

    -0.00006

    -0.00004

    -0.00002

    0

    0.00002

    0.00004

    0.00006

    0 2 4 6 8 10 12 14 16 18 20

    , de ltaL

    W

    -600

    -400

    -200

    0

    200

    400

    600

    M

    W . W "." M . M "."

  • 8/11/2019 10 Ukr Hungary Dynam

    25/31

    IPS NASUAbilities of 3D PipeMaster for

    vibrodiagnostics

    =100 =60

    A B

    l3 l3 l2 l2

    4 points ofmeasurements

    -0.00014

    -0.00012

    -0.0001

    -0.00008

    -0.00006

    -0.00004

    -0.00002

    0

    0.00002

    0 5 10 15 20

    , deltaL

    W

    -600

    -400

    -200

    0

    200

    400

    600

    M

    W . W "." M . M "."

    -0.00014

    -0.00012

    -0.0001

    -0.00008

    -0.00006

    -0.00004

    -0.00002

    0

    0.00002

    0.00004

    0.00006

    0.00008

    0 2 4 6 8 10 12 14 16 18 20

    , del taL

    W

    -600

    -500

    -400

    -300

    -200

    -100

    0

    100

    200

    300

    400

    500

    M

    W . W "." M . M "."

  • 8/11/2019 10 Ukr Hungary Dynam

    26/31

    IPS NASUAbilities of 3D PipeMaster for

    vibrodiagnosticsAll measurements in all

    points are used Complete coincidence

    Conclusions from modeling:

    1. To evaluate stresses the most importance have the proximity ofthe points of measurements to the point of the force application.

    2. The accuracy grows with the number of the points of

    measurement

    3. The accuracy nonmonotically decrease with the frequency of

    the excitation

  • 8/11/2019 10 Ukr Hungary Dynam

    27/31

    1

    ,2

    form

    form

    MAXt

    MAX

    C

    ECW

    IPS NASUAbilities of 3D PipeMaster for

    vibrodiagnosticsDetermination of the maximal stresses based

    on the measurements of velocities

    kt

    k

    MAX

    L

    xkAW

    EI

    mk

    ERkL

    AEIdx

    WdMR

    I

    M

    *sin

    )(

    ,

    24

    2

    2

    2

    2

    2

    For simply supported beam:

    I

    FRE

    IE

    ERm

    WMAXt

    MAX

    2

    For a thin walled pipe:

    for a solid circular beam:

    For the real complex piping systems:

    EWMAXt

    MAX

    2

    EWMAXt

    MAX

    4

    dynamic

    susceptibility

    coefficient

  • 8/11/2019 10 Ukr Hungary Dynam

    28/31

    IPS NASUAbilities of 3D PipeMaster for

    vibrodiagnosticsExamples of the piping configuration

  • 8/11/2019 10 Ukr Hungary Dynam

    29/31

    IPS NASUAbilities of 3D PipeMaster for

    vibrodiagnosticsDetermination of the maximal stresses based onthe measurements of velocities

    = 2.06843106;

    = 7834 /3; l= 18 ;

    R= 0.1 ; t= 0.01 .

    J. C. Wachel, Scott J.

    Morton, Kenneth E.

    Atkins. Piping vibrationanalysis

    m

    sP10*98.5

    7 MAXt

    MAX

    W

    Theoretical value:

  • 8/11/2019 10 Ukr Hungary Dynam

    30/31

    IPS NASUAbilities of 3D PipeMaster for

    vibrodiagnosticsDetermination of the maximal stresses based onthe measurements of velocities

    When the exciting frequency exceeds the first natural frequency the correlation

    between the vibrovelocity and maximal stresses is good

    = 2.0689106;=7836.6 /3; R= 0.05715 ; t= 0.0188 mFor parameters

    Theoretical value

    11.66 hertz m

    P10*5.69 7 s

    WMAXt

    MAX

    , 2 8 21 40 60 80

    3.08E+08 7.78E+07 2.87E+07 5.71E+07 5.12E+07 5.55E+07

    obtained value 5.4 1.4 0.51 1 0.9 0.98

    MAXt

    MAX

    W

    The results of calculation:

    1

  • 8/11/2019 10 Ukr Hungary Dynam

    31/31

    IPS NASUConclusion

    1. Due to application of dynamical stiffness method the continuitybetween the static and dynamic solution is provided.

    2. The procedure of the breaking of the displacements in any point

    and in any direction allow to find all natural frequencies and forms

    3. In a first time in a literature the notion of dynamic coefficient ofpipe bend flexibility is introduced and analytical expression for it is

    obtained. This allowed to perform calculation for the piping

    systems with a higher accuracy

    4. The option of determination of exciting force in some pointbased on given displacement or velocity in any other point of the

    piping allows to efficiently perform the vibrodiagnostic analysis