11 Synthesis of Heat Exchanger Networks.pdf

Embed Size (px)

Citation preview

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    1/54

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    2/54

    Chen CL 1

    Heat Exchanger Network Synthesis

    Given a minimum temperature approach, the exactamount for minimum utility consumption can be

    predicted prior to developing the network structure

    Based on the pinch temperature for minimum utilityconsumption, the synthesis of the network can be

    decomposed into subnetworks

    It is possible to develop good a priori estimates of theminimum total area of heat exchange in a network

    Q: explicit procedure for deriving configuration of

    a heat exchanger network ?

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    3/54

    Chen CL 2

    An optimal or near optimal network exhibits the

    following characteristics:

    Rule 1: minimum utility cost Rule 2: minimum number of units

    Rule 3: minimum investment cost

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    4/54

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    5/54

    Chen CL 4

    Heat Cascade Diagram

    C C

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    6/54

    Chen CL 5

    Heat Balances around each temp interval

    R1+ 30 = Qs

    R2+ 90 = R1+ 60

    R3+ 357 = R2+ 480

    Qw+ 78 = R3+ 180 (4 eq.s, 5 var.s)

    LP Transshipment Problem:

    min Z=Qs+ Qw

    s.t. R1 Qs= 30

    R2 R1= 30

    R3 R2= 123

    Qw R3= 102

    Qs, Qw, R1, R2, R3 0

    Qs= 60 MW, Qw= 225 MW

    R1= 30, R2= 0, R3= 123

    a pinch at temp interval 340o

    320o

    C

    Ch CL 6

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    7/54

    Chen CL 6

    Note:

    min Z=Qs+ Qw

    s.t. R1 Qs= 30

    R2 R1= 30

    R3 R2= 123

    Qw R3= 102

    min Z=Qs+ Qw = 2Qs+ 165 (?)

    s.t. R1= Qs 30 0

    R2= R1 30 =Qs 60 0

    R3= R2+ 123 =Qs+ 63 0

    Qw=R3+ 102 =Qs+ 165 0

    Qs= 60Qw= 225

    R1= 30

    R2= 0

    R3= 123

    Ch CL 7

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    8/54

    Chen CL 7

    General Transshipment Model forPredicting Min Utility Cost

    Sets

    Hk = {i| hot stream i supplies heat to interval k (k= 1, , K)}

    Ck = {j| cold stream j demands heat from interval k}Sk = {m| hot utility m supplies heat to interval k}

    Wk = {n| cold utility n extracts heat from interval k}

    Par.s

    QHik, QCjk heat content of hot/cold streams i/j in interval k

    cm, cn unit cost of hot utility m and cold utility n

    Var.s

    QSm, QWn heat load of hot utilitym and cold utility n

    Rk heat residual exiting intervalk

    Ch CL 8

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    9/54

    Chen CL 8

    Heat Flows in Interval k

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    10/54

    Chen CL 10

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    11/54

    Chen CL 10

    Transshipment Model: Example

    F Cp (MW/K) Tin (K) Tout (K)

    H1 2.5 400 320

    H2 3.8 370 320

    C1 2.0 300 420

    C2 2.0 300 370

    HP Steam: 500K, $80/kW yr, LP Steam: 380K, $50/kW yrCW: 300K, $20/kW yr, Min recovery app temp = 10K

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    12/54

    Chen CL 12

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    13/54

    Chen CL 12

    Expanded Transshipment Model:Min Utility Cost with Constrained Matches

    Constrained Matches:

    too far apart streams, for operational considerations,

    Expanded Transshipment Model: Single overall heat residual Rk exiting at each temp interval k

    individual heat residuals Rik, Rmk for each hot stream i and

    each hot utility mthat are present at or above that

    temp interval k Define variable Qijk to denote heat exchange between hot

    stream i and cold stream j (and also QSjk, QiWk)

    Chen CL 13

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    14/54

    Chen CL 13

    Expanded Transshipment Model for Previous Example

    Chen CL 14

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    15/54

    Chen CL 14

    Interval k for Expanded Transshipment Model

    Chen CL 15

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    16/54

    Chen CL 15

    Chen CL 16

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    17/54

    Chen CL 16

    The Expanded LP Transshipment Model:

    Hk = {i| hot stream i is present at interval k or at a higher interval}

    S

    k

    = {m| hot utility m is present at interval k or at a higher interval}

    Qijk exahange of heat of hot streami and cold stream j at interval k

    Qmjk exahange of heat of hot utility m and cold stream j at interval k

    Qink exahange of heat of hot streami and cold utility m at interval k

    Rik heat residual of hot stream i exiting interval k

    Rmk heat residual of hot utility m exiting interval k

    Chen CL 17

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    18/54

    Chen CL 17

    min Z=

    mScmQ

    Sm+

    nWcnQ

    Wn

    s.t. Rik Ri,k1+jCk

    Qijk +nWk

    Qink=QHik i Hk

    Rmk Rm,k1+jCk

    Qmjk =QSm m S

    k

    iHk

    Qijk +mSk

    Qmjk =QCjk j Ck

    iHk

    Qink=QWn n Wk, k= 1, , K

    Rik, Rmk, Qijk, Qmjk, Qink, Q

    S

    n, Q

    W

    n 0Ri0=RiK= 0

    QLij K

    k=1Qijk Q

    Uij

    Chen CL 18

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    19/54

    Chen CL 18

    Expanded LP Transshipment Model withRestricted Match: Example

    F Cp (MW/C) Tin (C) Tout (C)

    H1 1.0 400 120

    H2 2.0 340 120

    C1 1.5 160 400

    C2 1.3 100 250

    Steam: 500oC, CW: 20 30oC, Min recovery app temp = 20oCNote: match for H1 and C1 is forbidden (Q112=Q113= 0)

    Minimum utility cost Z = $9, 300, 000/yr $15, 300, 000/yr

    Heating utility load QS = 60 MW 120MW

    Cooling utility load QW = 225 MW 285MW

    Chen CL 19

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    20/54

    Chen CL 19

    Chen CL 20

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    21/54

    Chen CL 20

    Prediction of Matches for MinimizingNumber of Units

    qsubnetworks, K1 temperature intervals in subnetwork q

    yqij =

    1 hot streami, cold stream j exchange heat

    0 hot streami, cold stream j do not exchange heat

    miniH

    jC

    yqij

    Rik Ri,k1+

    jCkQijk =Q

    Hik i H

    k, k= 1, , Kq

    iHk

    Qijk =QCjk j Ck

    Kqk=1

    Qijk Uijyqij 0 Rik, Qijk 0

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    22/54

    Chen CL 22

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    23/54

    Chen CL 23

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    24/54

    Chen CL 24

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    25/54

    Results:

    Above Pinch:

    Match Steam-C1 60 MW yAS1= 1, QS11= 30, QS12= 30

    Match H1-C1 60 MW yA11= 1, Q112= 60Below Pinch:

    Match H1-C1 25 MW yB11= 1, Q113= 25

    Match H1-C2 195 MW yB12= 1, Q123= 117, Q124= 78

    Match H2-C1 215 MW yB21= 1, Q213= 215

    Match H2-CW 225 MW yB2W = 1, Q2W4= 225

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    26/54

    Chen CL 26

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    27/54

    Chen CL 27

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    28/54

    Alternative Structure:if without partitioning into subnetworksmatch H1-C1 is denoted by y11, Q112+ Q113 220y11 0

    Match Steam-C1 60 MW

    Match H1-C1 85 MW

    Match H1-C2 195 MW

    Match H2-C1 215 MW

    Match H2-CW 225 MW

    Chen CL 28

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    29/54

    Automatic Derivation of NetworkStructures

    Superstructure of A 1H2C Example

    Chen CL 29

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    30/54

    Alternatives Embedded in PreviousSuperstructure

    Chen CL 30

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    31/54

    Variables for Superstructure with TwoMatches

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    32/54

    Chen CL 32

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    33/54

    Mass and heat balances for mixers at inlet of two units

    F1+ F8 F3= 0

    F1Tin + F8T78 F3T3= 0F2+ F6 F4= 0

    F2Tin + F6T56 F4T4= 0

    Mass balances for splitters at outlet of exchangers

    F3 F6 F5= 0 F4 F7 F8= 0

    Heat balances in exchangers

    Q11 F3(T3 T56) = 0 Q12 F4(T4 T78) = 0

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    34/54

    Chen CL 34

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    35/54

    Automatic Derivation of NetworkStructures: Example

    F Cp (kW/K) Tin (K) Tout (K) h (kW/m2K) Cost ($/kW-yr)

    H1 22. 440 350 2.0 -

    C1 20. 349 430 2.0 -

    C2 7.5 320 368 .67 -

    S1 500 500 1.0 120W1 300 320 1.0 20

    Min recovery app temp = 1 KExchanger Cost = 6, 600 + 670(area)0.83

    Chen CL 35

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    36/54

    Chen CL 36

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    37/54

    Simultaneous Optimization Model forHeat Exchanger Network Synthesis

    One Problem with 2-Hot-2-Cold Streams

    Stream Tin Tout F Cp (kW/K) h (KW/m2K) Cost ($/KW-yr)

    H1 650 370 10.0 1.0 -

    H2 590 370 20.0 1.0 -

    C1 410 650 15.0 1.0 -

    C2 353 500 13.0 1.0 -

    S1 680 680 5.0 80

    W1 300 320 1.0 15

    AssumeTmin= 10K, Exchanger cost = $5500 + 150A (area, m2)

    Chen CL 37

    S S O

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    38/54

    HENS: Simultaneous OptimizationA Typical Stage-wise Superstructure

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    39/54

    Chen CL 39

    HENS Si l O i i i

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    40/54

    HENS: Simultaneous OptimizationParameters

    Tini , Tinj : inlet temperature of hot (cold) streami (j)

    Touti , Toutj : outlet temperature of hot (cold) streami (j)

    Fi, Fj : heat capacity flow rate for hot (cold) stream i (j)

    TinHU

    : inlet temperature of hot utility

    ToutHU : outlet temperature of hot utility

    TinCU : inlet temperature of cold utility

    ToutCU : outlet temperature of cold utility

    : upper bound for heat exchange

    : upper bound for temperature differenceC, B : area cost coefficient and exponent

    CF : fixed charge for exchangers

    Chen CL 40

    HENS Si l O i i i

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    41/54

    HENS: Simultaneous OptimizationVariables

    dtijk : temperature approach (TA) for match (i, j) at stage k

    dtcui : TA for match of hot streami and cold utility

    dthuj : TA for match of cold streamj and hot utility

    qcui

    : heat exchanger between hot streami and cold utility

    qhuj : HE between cold streamj and hot utility

    qijk : HE between hot streami, cold stream j, stage k

    tik : temperature of hot stream i at hot end of stage k

    tjk : temperature of cold streamj at hot end of stage k

    zijk : {0, 1} denoting existence of match (i, j) in stage kzcui : {0, 1} denoting cold utility exchanges heat with stream i

    zhuj : {0, 1} denoting hot utility exchanges heat with stream j

    Chen CL 41

    HENS Si l O i i i

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    42/54

    HENS: Simultaneous OptimizationConstraints

    Overall heat balance for each stream:

    (Tini Touti )Fi = kST jCP

    qijk + qcui i HP

    (Toutj Tinj )Fj =

    kST

    iHP

    qijk+ qhuj j CP

    Heat balance at each stage:

    (tik ti,k+1)Fi =jCP

    qijk k S T , i HP

    (tjk tj,k+1)Fj = iHP

    qijk k S T , j CP

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    43/54

    Chen CL 43

    HENS Si lt O ti i ti

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    44/54

    HENS: Simultaneous OptimizationConstraints

    Hot and cold utility load:

    (ti,Ns+1 Touti )Fi =qcui i HP

    (Toutj tj1)Fj =qhuj j CP

    Logical constraints:

    qijk zijk 0 i H P , j C P , k ST

    qcui zcui 0 i HP

    qhuj zhuj 0 j CP

    zijk,zcui,zhuj {0, 1}

    Chen CL 44

    HENS Si lt O ti i ti

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    45/54

    HENS: Simultaneous OptimizationConstraints

    Calculation of approach temperatures:

    dtijk tik tjk + (1 zijk) i H P , j C P , k STdtij,k+1 ti,k+1 tj,k+1+ (1 zijk) i H P , j C P , k ST

    dtcui ti,Ns+1 ToutCU+ (1 zcui) i HP

    dthuj ToutHU tj1+ (1 zhuj) j CP

    dtijk Tmin i H P , j C P , k ST

    dtcui Tmin i HP

    dthuj Tmin j CP

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    46/54

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    47/54

    Chen CL 47

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    48/54

    =

    x

    (Tini Touti )Fi =

    kST

    jCP

    qijk + qcui

    (Toutj Tinj )Fj =

    kST

    iHP

    qijk + qhuj

    (tik ti,k+1)Fi =

    jCP

    qijk

    (tjk tj,k+1)Fj =

    iHP

    qijk

    Tini =ti,1

    Tinj =tj,1

    tik ti,k+1

    tjk t

    j,k+1Touti ti,Ns+1

    Toutj tj1

    (ti,Ns+1 Touti )Fi =qcui

    (Toutj tj1)Fj =qhuj

    qijk zijk 0

    qcui zcui 0

    qhuj zhuj 0

    dtijk tik tjk + (1 zijk)

    dtij,k+1 ti,k+1 tj,k+1+ (1 zijk)

    dtcui ti,Ns+1 ToutCU+ (1 zcui)

    dthuj ToutHU tj1+ (1 zhuj)

    dtijk, dtcui, dthuj Tmin

    Chen CL 48

    HENS Si lta eo s O ti i atio

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    49/54

    HENS: Simultaneous OptimizationObjective: Min (Utility + Fixed + Area) Cost

    MINLP Problem:

    minx

    iHP

    CCUqcui+jCP

    CHUqhuj

    +

    iHP jCP kSTCFijzijk +

    iHPCFi,CUzcui+

    jCPCFj,HUzhuj

    +iHP

    jCP

    kST

    Cij(Aijk)Bij +

    iHP

    Ci,CU(Ai,CU)Bi,CU

    + jCP

    Cj,HU(Aj,HU)Bj,HU

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    50/54

    Chen CL 50

    HENS: Simultaneous Optimization

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    51/54

    HENS: Simultaneous OptimizationOptimal Network Structure

    155, 000/yr total cost

    (71, 400 for utility cost and 83, 600 for capital cost)

    Chen CL 51

    Simultaneous MINLP Model: Example

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    52/54

    Simultaneous MINLP Model: Example

    F Cp (kW/K) Tin (K) Tout (K) h (kW/m2K) Cost ($/kW-yr)

    H1 22. 440 350 2.0 -

    C1 20. 349 430 2.0 -

    C2 7.5 320 368 .67 -

    S1 500 500 1.0 120

    W1 300 320 1.0 20

    Min recovery app temp = 1 K

    Exchanger Cost = 6, 600 + 670(area)0.83

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    53/54

    Chen CL 53

    Simultaneous MINLP Model: Same

  • 8/11/2019 11 Synthesis of Heat Exchanger Networks.pdf

    54/54

    Simultaneous MINLP Model: SameExample with No Stream Splitting