18009654 Circuits and Electronics

Embed Size (px)

Citation preview

  • 8/14/2019 18009654 Circuits and Electronics

    1/414

    6.002 CIRCUITS ANDELECTRONICS

    Introduction and Lumped Circuit Abstraction

    6.002 Fall 2000 Lecture 1 1

  • 8/14/2019 18009654 Circuits and Electronics

    2/414

    ADMINISTRIVIA Lecturer: Prof. Anant Agarwal Textbook: Agarwal and Lang (A&L Readings are important!

    Handout no. 3 Assignments

    Homework exercisesLabs

    QuizzesFinal exam

    6.002 Fall 2000 Lecture 1 2

  • 8/14/2019 18009654 Circuits and Electronics

    3/414

    Two homework assignments canbe missed (except HW11).

    Collaboration policyHomework

    You may collaborate withothers, but do your ownwrite-up.

    LabYou may work in a team oftwo, but do you own write-up.

    Info handout Reading for today

    Chapter 1 of the book

    6.002 Fall 2000 Lecture 1 3

  • 8/14/2019 18009654 Circuits and Electronics

    4/414

    What is engineering?

    Purposeful use of science

    What is 6.002 about?Gainful employment ofMaxwells equations

    From electrons to digital gatesand op-amps

    6.002 Fall 2000 Lecture 1 4

  • 8/14/2019 18009654 Circuits and Electronics

    5/414

    6.

    002

    Simple amplifier abstraction

    Instruction set abstraction

    Pentium, MIPS

    Software systemsOperating systems, Browsers

    Filters

    Operationalamplifier abstractionabstraction

    -+

    Digital abstraction

    Programming languagesJava, C++, Matlab 6.001

    Combinational logic f

    Lumped circuit abstraction

    R S

    +

    Nature as observed in experiments

    0.40.30.20.1I

    12963V

    Physics laws or abstractions Maxwells Ohms

    V = R I

    abstraction fortables of data

    Clocked digital abstraction

    Analog system

    components:Modulators,oscillators,RF amps,power supplies 6.061

    Mice, toasters, sonar, stereos, doom, space shuttle

    6.1706.455

    6.004

    6.033

    MLCV

    6.002 Fall 2000 Lecture 1 5

  • 8/14/2019 18009654 Circuits and Electronics

    6/414

    Lumped Circuit Abstraction

    ConsiderI

    The Big Jumpfrom physics

    to EECS

    +

    -

    V

    ?Suppose we wish to answer this question:

    What is the current through the bulb?

    6.002 Fall 2000 Lecture 1 6

  • 8/14/2019 18009654 Circuits and Electronics

    7/414

    We could do it the Hard Way

    Apply Maxwells

    Differential form Integral form

    Faradays E= B Edl= Bt t

    Continuity J=

    t

    JdS= qtOthers E= EdS= q

    0 0

    6.002 Fall 2000 Lecture 1 7

  • 8/14/2019 18009654 Circuits and Electronics

    8/414

    Instead, there is an Easy WayFirst, let us build some insight:

    Analogy

    Fa?

    I ask you: What is the acceleration?

    You quickly ask me: What is the mass?

    I tell you: mF

    You respond: a=m

    Done!!!

    6.002 Fall 2000 Lecture 1 8

  • 8/14/2019 18009654 Circuits and Electronics

    9/414

    Instead, there is an Easy WayFirst, let us build some insight:

    Fa?

    Analogy

    In doing so, you ignored the objects shape its temperature

    its color point of force application

    Point-mass discretization

    6.002 Fall 2000 Lecture 1 9

  • 8/14/2019 18009654 Circuits and Electronics

    10/414

    The Easy WayConsider the filament of the light bulb.

    A

    B

    We do not care about how current flows inside the filament its temperature, shape, orientation, etc.Then, we can replace the bulb with a

    discrete resistorfor the purpose of calculating the current.

    6.002 Fall 2000 Lecture 1 10

  • 8/14/2019 18009654 Circuits and Electronics

    11/414

    The Easy Way

    A

    B

    Replace the bulb with a

    discrete resistorfor the purpose of calculating the current.

    +

    VA

    I

    R and I=V

    RB

    In EE, we do thingsthe easy way

    R represents the only property of interest

    Like with point-mass: replace objectsF

    with their mass m to find a=m

    6.002 Fall 2000 Lecture 1 11

  • 8/14/2019 18009654 Circuits and Electronics

    12/414

    The Easy Way

    +

    V

    AIR and I=V

    RB

    In EE, we do thingsthe easy way

    R represents the only property of interest

    R relates element v and iV

    I=R

    called element v-i relationship

    6.002 Fall 2000 Lecture 1 12

  • 8/14/2019 18009654 Circuits and Electronics

    13/414

    R is a lumped element abstraction

    for the bulb.

    6.002 Fall 2000 Lecture 1 13

  • 8/14/2019 18009654 Circuits and Electronics

    14/414

    R is a lumped element abstractionfor the bulb.

    Not so fast, though

    A

    B

    SBS

    I

    +

    Vblack box

    Although we will take the easy wayusing lumped abstractions for the restof this course, we must make sure (atleast the first time) that ourabstraction is reasonable. In this case,ensuring that V I

    are definedfor the element

    6.002 Fall 2000 Lecture 1 14

  • 8/14/2019 18009654 Circuits and Electronics

    15/414

    AV Imust be defined

    B

    ASBS

    I

    +

    Vfor the element

    black box

    6.002 Fall 2000 Lecture 1 15

  • 8/14/2019 18009654 Circuits and Electronics

    16/414

    l

    I must be defined. True when

    I into SA = I out of SBTrue only when q=0 in the filament!

    tJdSSAJdS

    SB

    JdS JdS= qSA SB t

    IA IB

    IA =IB only if 0=

    tq

    So lets assume this

    6.002 Fall 2000 Lecture 1 16

    from

    Maxwe

    l

  • 8/14/2019 18009654 Circuits and Electronics

    17/414

    V Must also be defined.see

    A&L

    So lets assume this too

    VABSo VAB = AB Edl

    defined when 0=

    tB

    outside elements

    6.002 Fall 2000 Lecture 1 17

  • 8/14/2019 18009654 Circuits and Electronics

    18/414

    Lumped Matter Discipline (LMD)

    0=

    tB

    outside

    0=

    tq

    inside elementsbulb, wire, battery

    Or self imposed constraints:

    More inChapter 1of A & L

    Lumped circuit abstraction applies whenelements adhere to the lumped matterdiscipline.

    6.002 Fall 2000 Lecture 1 18

  • 8/14/2019 18009654 Circuits and Electronics

    19/414

    Demo Lumped element exampleswhosecaptured by their VIrelationship.

    only for thesorts ofquestions we

    as EEs wouldlike to ask!

    is completelybehavior

    DemoExploding resistor demo

    cant predict that!Pickle demo

    cant predict light, smell

    6.002 Fall 2000 Lecture 1 19

  • 8/14/2019 18009654 Circuits and Electronics

    20/414

    So, what does this buy us?Replace the differential equationswith simple algebra using lumped

    circuit abstraction (LCA).

    For example a

    +

    1

    2

    3b d

    R4

    VR

    5

    cWhat can we say about voltages in a loopunder the lumped matter discipline?

    6.002 Fall 2000 Lecture 1 20

  • 8/14/2019 18009654 Circuits and Electronics

    21/414

    What can we say about voltages in a loopunder LMD?

    +

    1

    2

    3

    a

    b dR

    4V

    R5

    c

    Edl=tB under DMD0

    Edl+ Edl+ Edl=0ca ab bc+ Vca + Vab + Vbc = 0

    Kirchhoffs Voltage Law (KVL):

    The sum of the voltages in a loop is 0.

    6.002 Fall 2000 Lecture 1 21

  • 8/14/2019 18009654 Circuits and Electronics

    22/414

    What can we say about currents?Consider

    SIca Ida

    baIa

    6.002 Fall 2000 Lecture 1 22

  • 8/14/2019 18009654 Circuits and Electronics

    23/414

    What can we say about currents?ca da

    baI

    aIS

    I

    SJdS=

    tq

    under LMD

    0Ica

    +Ida

    +Iba

    =0Kirchhoffs Current Law (KCL):

    The sum of the currents into a node is 0.

    simply conservation of charge

    6.002 Fall 2000 Lecture 1 23

  • 8/14/2019 18009654 Circuits and Electronics

    24/414

    KVL and KCL SummaryKVL: jj =0

    loop

    KCL:

    j ij =0node

    6.002 Fall 2000 Lecture 1 24

  • 8/14/2019 18009654 Circuits and Electronics

    25/414

    6.002 CIRCUITS ANDELECTRONICS

    Amplifiers --

    Small Signal Model

    6.002 Fall 2000 Lecture 10 1

  • 8/14/2019 18009654 Circuits and Electronics

    26/414

    Review

    MOSFET ampSV

    L

    DSi

    vO

    vI

    Saturation discipline operateMOSFET only in saturation region

    Large signal analysis1. Find vO vs vI under saturation discipline.

    2. ValidvI, v

    O ranges under saturation discipline.

    Reading: Small signal model -- Chapter 86.002 Fall 2000 Lecture 10 2

  • 8/14/2019 18009654 Circuits and Electronics

    27/414

    Large Signal Review

    1 vO vs vI

    vO =VS K(vI 1)2RL2

    valid for vI VTandvO vI VT(same as iDS KvO2 )

    2

    6.002 Fall 2000 Lecture 10 3

  • 8/14/2019 18009654 Circuits and Electronics

    28/414

  • 8/14/2019 18009654 Circuits and Electronics

    29/414

    But

    SV

    Ov

    Ov =Iv

    5V

    1VvI VT

    vIvO

    Demo

    VT1V 2V

    Amplifies alright,but distortsvI

    vOt

    Amp is nonlinear /6.002 Fall 2000 Lecture 10 5

  • 8/14/2019 18009654 Circuits and Electronics

    30/414

    Small Signal Model

    ~ 5V VS

    ~1V

    Hmmm

    ( )L

    TI

    SO R

    VvK

    Vv 2

    2

    =Amp all right, but nonlinear!

    Iv

    Ov

    TV

    V1 V2~

    Insight:

    ( )OI V,VFocus on this line segment

    So what about our linear amplifier ???

    But, observe vI vs vO about somepoint (VI, VO) looks quite linear !

    6.002 Fall 2000 Lecture 10 6

  • 8/14/2019 18009654 Circuits and Electronics

    31/414

    Trickov

    iv

    IV

    OV

    ( )OVV ,Ovlookslinear

    vI

    Operate amp at VI

    , VO

    DC bias (good choice: midpointof input operating range)

    Superimpose small signal on top of VI Response to small signal seems to be

    approximately linear

    6.002 Fall 2000 Lecture 10 7

  • 8/14/2019 18009654 Circuits and Electronics

    32/414

    Trickov

    iv

    IV

    OV

    ( )OVV ,Ovlookslinear

    vI Operate amp at VI, VO

    DC bias (good choice: midpointof input operating range)

    Superimpose small signal on top of VI Response to small signal seems to be

    approximately linear

    Lets look at this in more detail I

    III from a circuit viewpoint

    graphically nextII mathematically week

    6.002 Fall 2000 Lecture 10 8

  • 8/14/2019 18009654 Circuits and Electronics

    33/414

    I GraphicallyWe use a DC bias VI to boost interesting inputsignal above VT, and in fact, well above VT.

    interestinginput signal

    ++

    SV

    L

    vO

    vI

    VIOffset voltage or bias

    6.002 Fall 2000 Lecture 10 9

  • 8/14/2019 18009654 Circuits and Electronics

    34/414

    Graphically

    interesting

    vOvI

    SV

    L

    ++

    input signal

    VI

    SVOv

    OV

    operatingpoint

    OI VV ,

    IV

    TV

    O vv =0

    I VTv

    I

    Good choice for operating point:midpoint of input operating range

    6.002 Fall 2000 Lecture 10 10

  • 8/14/2019 18009654 Circuits and Electronics

    35/414

    Small Signal Modelaka incremental modelaka linearized model

    Notation Input:

    total

    vI = VI + vi

    DC smallvariable bias signal (like vI)

    bias voltage aka operating point voltage

    Output: vO = VO + vo

    Graphically,v vvi vo

    VIVO

    O

    0 t 0 t6.002 Fall 2000 Lecture 10 11

  • 8/14/2019 18009654 Circuits and Electronics

    36/414

    II Mathematically( watch my fingers)

    vO =VS RLK

    (vI VT)2

    VO =VS RLK (VI VT2 2

    substituting vI =VI +vi vi

  • 8/14/2019 18009654 Circuits and Electronics

    37/414

    Mathematically

    vo = RLK( TI )V V vigm related to VI

    vo = gmRL vi

    For a given DC operating point voltage VI, VIVT is constant. So,

    vo = A viconstant w.r.t. vi

    In other words, our circuit behaves like a linear amplifier

    for small signals

    6.002 Fall 2000 Lecture 10 13

  • 8/14/2019 18009654 Circuits and Electronics

    38/414

    Another way

    vO

    =VS

    RLK (vI

    VT

    )22

    vo =

    dv

    d

    I

    VS

    RL2

    K(vI

    VT

    )2

    vi

    Iv =V

    slope at VIvo = RLK(VI VT) vi

    gm =K(VI VT)A = gmRL amp gain

    Also, see Figure 8.9 in the course notes

    for a graphical interpretation of this result

    6.002 Fall 2000 Lecture 10 14

  • 8/14/2019 18009654 Circuits and Electronics

    39/414

    More next lecture

    DemoDSi

    IV

    Ov

    load line

    operating pointinput signal response

    VO

    How to choose the bias point:

    1. Gain component gm VI2. vi gets big distortion.

    So bias carefully3. Input valid operating range.

    Bias at midpoint of input operatingrange for maximum swing.

    6.002 Fall 2000 Lecture 10 15

  • 8/14/2019 18009654 Circuits and Electronics

    40/414

    6.002 Fall 2000 Lecture 111

    6.002 CIRCUITS ANDELECTRONICS

    Small Signal Circuits

  • 8/14/2019 18009654 Circuits and Electronics

    41/414

    6.002 Fall 2000 Lecture 211

    Small signal notation

    vA = VA + va

    total operatingpoint

    smallsignal

    ( ) iVv

    I

    I

    out

    IOUT

    vvfdv

    dv

    vfv

    II

    =

    =

    =

    )(

    SV

    L

    oOO vVv+=

    IV

    +

    +

    iII vVv +=

    iv

    Review:

  • 8/14/2019 18009654 Circuits and Electronics

    42/414

    6.002 Fall 2000 Lecture 311

    I Graphical view

    (using transfer function)

    behaves linear

    for smallperturbations

    Iv

    Ov

    Review:

  • 8/14/2019 18009654 Circuits and Electronics

    43/414

    6.002 Fall 2000 Lecture 411

    II Mathematical view

    ( )L

    TISO R

    VvKVv

    2

    2

    =

    ( )

    i

    Vv

    LTIS

    I

    o v

    RVvK

    V

    dv

    dv

    II

    =

    =

    2

    2

    related to VIconstant for fixed

    DC bias

    ( ) iLTIo vVVKv =

    gm

    Review:

  • 8/14/2019 18009654 Circuits and Electronics

    44/414

    6.002 Fall 2000 Lecture 511

    Demo

    Choosing a bias point:

    DSi

    Ov

    L

    SLTI

    KR

    VKRVv

    211 +++=

    TI Vv =

    2

    ODS v2

    Ki >RON C

    Building a memory element

    CR

    t

    CLev

    = 5

    5

    ln OHLV

    CRT =

    2from

    vC

    tT

    5V

    VOH

    vC

    store = 1dIN dOUT

    C

    *

    vC

    store = 0

    dIN dOUT

    C*

    RL

  • 8/14/2019 18009654 Circuits and Electronics

    93/414

    6.002 Fall 2000 Lecture 1114

    Input resistanceRIN

    B Second attempt buffer

    RIN

    store

    buffer

    dIN dOUT

    C

    *

    5ln OHIN

    VCRT =

    LIN >>

    Better, but still not perfect.

    Demo

    Building a memory element

  • 8/14/2019 18009654 Circuits and Electronics

    94/414

    6.002 Fall 2000 Lecture 1214

    Does this work?

    C Third attempt buffer + refresh

    store

    dIN dOUT

    C

    *

    store

    Building a memory element

    No. External value caninfluence storage node.

  • 8/14/2019 18009654 Circuits and Electronics

    95/414

    6.002 Fall 2000 Lecture 1314

    Works!

    D Fourth attempt buffer + decoupledrefresh

    store

    dIN dOUT

    C

    *

    store

    Building a memory element

  • 8/14/2019 18009654 Circuits and Electronics

    96/414

    6.002 Fall 2000 Lecture 1414

    A Memory Array

    Decoder

    Address

    INd

    OUTd

    S M

    INd

    OUTdS M

    INd

    OUTdS M

    INd

    OUTd

    S M

    A

    B

    C

    D

    00

    10

    01

    11

    IN storeOUT

    a0a1 2

    A

    B

    C

    D

    store4-bit memory

    Address

    IN

    OUT

  • 8/14/2019 18009654 Circuits and Electronics

    97/414

    6.002 Fall 2000 Lecture 1514

    Truth table for decoder

    a0 a1 A B C D

    0 0 1 0 0 0

    0 1 0 1 0 0

    1 0 0 0 1 0

    1 1 0 0 0 1

  • 8/14/2019 18009654 Circuits and Electronics

    98/414

    6.002 Fall 2000 Lecture 1614

    Agarwals top 10 list on memory

    10 I have no recollection, Senator.9 I forgot the homework was due today.8 Adlibbing ZSR

    7 I think, therefore I am.6 I think that was right.5 I forgot the rest

  • 8/14/2019 18009654 Circuits and Electronics

    99/414

    6.002 Fall 2000 Lecture 115

    6.002 CIRCUITS ANDELECTRONICS

    Second-Order Systems

  • 8/14/2019 18009654 Circuits and Electronics

    100/414

    6.002 Fall 2000 Lecture 215

    Second-Order Systems

    CA

    B

    5V

    +

    5V

    CGS

    large

    loop

    2K50

    2K

    Demo

    Our old friend, the inverter, driving another.The parasitic inductance of the wire andthe gate-to-source capacitance of theMOSFET are shown

    [Review complex algebra appendix for next class]

    S

  • 8/14/2019 18009654 Circuits and Electronics

    101/414

  • 8/14/2019 18009654 Circuits and Electronics

    102/414

    6.002 Fall 2000 Lecture 415

    Now, lets try to speed up our inverter byclosing the switch S to lower the effectiveresistance

    t

    vA

    5

    0

    vB

    0 t

    vC

    0 t

    Observed Output

    2k

    2k

  • 8/14/2019 18009654 Circuits and Electronics

    103/414

    6.002 Fall 2000 Lecture 515

    t

    vA

    5

    0

    vB

    0 t

    vC

    0 t

    Observed Output ~50

    50

    Huh!

  • 8/14/2019 18009654 Circuits and Electronics

    104/414

    6.002 Fall 2000 Lecture 615

    v, i state variables

    +

    C

    L +

    )(tv)(tvI

    )(ti

    Node method:

    dt

    dvCti =)(

    dt

    dv

    CdtvvL

    t

    I=

    )(1

    2

    2

    )(1

    dt

    vdCvv

    LI =

    IvvdtvdLC =+2

    2

    time2

    dt

    diLvvI =

    idtvvL

    t

    I =

    )(1

    Recall

    First, lets analyze the LC network

  • 8/14/2019 18009654 Circuits and Electronics

    105/414

  • 8/14/2019 18009654 Circuits and Electronics

    106/414

    6.002 Fall 2000 Lecture 815

    And for initial conditionsv(0) = 0 i(0) = 0 [ZSR]

    Iv

    0V

    0t

    Lets solve

    Ivvdt

    vdLC =+2

    2

    For input

  • 8/14/2019 18009654 Circuits and Electronics

    107/414

    6.002 Fall 2000 Lecture 915

    1 Particular solution

    02

    2

    Vvdt

    vdLC P

    P =+

    0VvP = is a solution.

  • 8/14/2019 18009654 Circuits and Electronics

    108/414

    6.002 Fall 2000 Lecture 1015

    02

    2

    =+ HH vdtvdLC

    Solution to

    Homogeneous solution2

    Recall, vH : solution to homogeneousequation (drive set to zero)

    Four-step method:

    D tj2

    tj

    1Hoo eAeAv

    +=

    General solution,

    RootsC os = LC

    1o =

    Assume solution of the form*A?s,A,Aev stH ==

    so, 02 =+ stst eeLCAs

    *Differential equations are commonlysolved by guessing solutions

    1=jLC

    js1

    =

    B LCs12

    =

    characteristic

    equation

  • 8/14/2019 18009654 Circuits and Electronics

    109/414

  • 8/14/2019 18009654 Circuits and Electronics

    110/414

    6.002 Fall 2000 Lecture 1215

    Remember Euler relation

    (verify using Taylorsexpansion)

    xjxejx sincos +=

    xee jxjx

    cos2

    =+

    tsinCV)t(i oo0 =

    tcosVV)t(v o00 =so, where

    LC

    1o =

    Total solution3

    The output looks sinusoidal

  • 8/14/2019 18009654 Circuits and Electronics

    111/414

    6.002 Fall 2000 Lecture 1315

    )(tv

    02V

    0V

    0

    2

    2

    3 2to

    )(ti

    o0CV

    0

    2

    2

    3 2to

    o0CV

    Plotting the Total Solution

  • 8/14/2019 18009654 Circuits and Electronics

    112/414

    6.002 Fall 2000 Lecture 1415

    Summary of Method

    1

    2

    3

    Write DE for circuit by applyingnode method.

    Find particular solution vP by guessingand trial & error.

    Find homogeneous solution vH

    4 Total solution isvP

    + vH ,solve for remaining constants using

    initial conditions.

    Assume solution of the formAest.

    Obtain characteristic equation.

    Solve characteristic equation

    for roots si .

    Form vH by summing Ai esit

    terms.D

    C

    A

    B

  • 8/14/2019 18009654 Circuits and Electronics

    113/414

    6.002 Fall 2000 Lecture 1515

    What if we have:

    We can obtain the answer directly from

    the homogeneous solution (V0 = 0).

    VvC =)0(

    0)0( =CiCL

    Ci +

    Cv

    Example

  • 8/14/2019 18009654 Circuits and Electronics

    114/414

    6.002 Fall 2000 Lecture 1615

    We can obtain the answer directly fromthe homogeneous solution (V0 = 0).

    tj

    2

    tj

    1Coo eAeA)t(v

    +=

    VvC =)0(

    0)0( =Ci

    21V +=

    o2o1 CACA0 =

    or2

    21

    VAA ==

    ( )tjtjC oo ee2

    Vv

    +=or

    tcosVv oC =

    tsinCVi ooC =

    VvC =)0(0)0( =Ci

    CLC

    i +

    Cv

    Example

  • 8/14/2019 18009654 Circuits and Electronics

    115/414

    6.002 Fall 2000 Lecture 1715

    to2

    CvV

    Ci

    to2

    oCV

    oCV

    Example

  • 8/14/2019 18009654 Circuits and Electronics

    116/414

    6.002 Fall 2000 Lecture 1815

    222

    2

    1

    2

    1

    2

    1CVLiCv CC =+Notice

    Energy

    2

    2

    1: CCvC

    2

    2

    1: CLiL

    to2

    C

    2

    2

    1CV

    to2

    LE

    2

    2

    1CV

    Total energy in the system is a constant,

    but it sloshes back and forth between theCapacitor and the inductor

  • 8/14/2019 18009654 Circuits and Electronics

    117/414

  • 8/14/2019 18009654 Circuits and Electronics

    118/414

    6.002 CIRCUITS ANDELECTRONICS

    Sinusoidal Steady State

    6.002 Fall 2000 Lecture 16 1

  • 8/14/2019 18009654 Circuits and Electronics

    119/414

    Review

    We now understand the why of:5V

    C

    R

    L

    v

    Today, look at response of networksto sinusoidal drive.

    Sinusoids important because signals can berepresented as a sum of sinusoids. Response tosinusoids of various frequencies -- aka frequencyresponse -- tells us a lot about the system

    6.002 Fall 2000 Lecture 16 2

  • 8/14/2019 18009654 Circuits and Electronics

    120/414

    MotivationFor motivation, consider our old friend,the amplifier:

    SV

    vO

    vi

    Cv

    ++ GS

    C

    VBIAS

    Observe vo amplitude as the frequency of theinput vi changes. Notice it decreases withfrequency.

    Also observe vo shift as frequency changes(phase).

    Need to study behavior of networks forsinusoidal drive.

    Demo

    6.002 Fall 2000 Lecture 16 3

  • 8/14/2019 18009654 Circuits and Electronics

    121/414

    Sinusoidal Response of RC NetworkExample:

    +

    iC+

    vI vC

    vI(t) =Vi cost for t0 (Vi real)=0 for t

  • 8/14/2019 18009654 Circuits and Electronics

    122/414

    11 11ectur

    Example:+

    Our Approach

    iC+

    vI vC

    Determine vC(t)Indulge me!

    Effort

    lecture

    sneaky approach

    very

    sneaky

    Usual

    approach

    agony

    easyte

    0 :0: 00210:2l

    shiT

    txeN

    6.002 Fall 2000 Lecture 16 5

  • 8/14/2019 18009654 Circuits and Electronics

    123/414

    Lets use the usual approach1 Set up DE.

    2 Find vp.

    3 Find vH.

    4 vC= vP+ vH, solve for unknownsusing initial conditions

    6.002 Fall 2000 Lecture 16 6

  • 8/14/2019 18009654 Circuits and Electronics

    124/414

    Usual approach

    1 Set up DE

    RCdvC +vC =vIdt =Vi cost

    That was easy!

    6.002 Fall 2000 Lecture 16 7

  • 8/14/2019 18009654 Circuits and Electronics

    125/414

    2 Find vp

    RC

    dvP +dt vP

    =Vi

    cost

    First try: vP =A nopeSecond try: vP =Acost nopeThird try: vP =Acos(

    amplitude

    +t frequency)phase

    RCAsin(t+) +Acos(t+) =Vi costRCAsintcosRCAcostsin+AcostcosAsintsin =Vi cost

    .. gasp !.works, but trig nightmare!

    6.002 Fall 2000 Lecture 16 8

  • 8/14/2019 18009654 Circuits and Electronics

    126/414

    6.002 ll 2000 Lecture 916

    Lets get sneaky!

    Try solution stpPS eVv =st

    i

    st

    p

    st

    peVeV

    dt

    edVRC =+

    st

    i

    st

    p

    st

    p eVeVesRCV =+ip VV)1sRC( =+

    sRC1

    VV

    ip

    +=

    Nicepropertyof

    exponentials

    ISPS

    PS vvdt

    dvRC =+ (S: sneaky :-))

    st

    ieV=

    Find particular solution to another input

    pV complex amplitude

    Thus, stiPS esRC1

    Vv

    +=st

    ieVis particular solution toeasy!

    where we replace s =jly tj

    ieV

    solution fortji e

    RCj

    V +1

    Fa

  • 8/14/2019 18009654 Circuits and Electronics

    127/414

    2 Fourth try to find vP

    using the sneaky approach

    Fact 1: Finding the response toVie

    jt

    was easy.

    Fact 2: vI =Vi cost=real[Viejt]=real[vIS]

    from Euler relation,

    j

    Iv Pvresponse

    ISv PSvresponse

    realpart

    realpart

    ejt =cost+ sint

    an inverse superposition argument,assuming system is real, linear.

    6.002 Fall 2000 Lecture 16 10

  • 8/14/2019 18009654 Circuits and Electronics

    128/414

    2 Fourth try to find vP

    so, complex

    Pv =Re[vPS] =

    Re[Vpe

    jt

    ]

    Vi=Re1+jRCejt

    =ReVi (1jRC) ejt1+2R2C2

    =ReC1

    222

    +

    Vi ejejt,tan=RC

    =Re + 222 C1 Vi ej(t+)

    vP = C1 222+ Vi cos(t+)

    Recall, vP is particular response to Vi cost.

    6.002 Fall 2000 Lecture 16 11

  • 8/14/2019 18009654 Circuits and Electronics

    129/414

    3 Find vHt

    Recall, vH=

    Ae

    RC

    6.002 Fall 2000 Lecture 16 12

  • 8/14/2019 18009654 Circuits and Electronics

    130/414

    4 Find total solution

    vC=

    Pv+

    vHt

    vC = 222 C1+

    Vi cos(t+) +Ae RCwhere =tan1(RC )

    Given vC(0) = 0 for t = 0

    so,

    A = 1 222 C+

    Vi cos()

    Done! Phew!

    6.002 Fall 2000 Lecture 16 13

  • 8/14/2019 18009654 Circuits and Electronics

    131/414

    Sinusoidal Steady StateWe are usually interested only in the

    particular solution for sinusoids,i.e. after transients have died.

    t

    Notice when t , vC vP as e RC 0

    222

    iC cos(

    C1

    V

    += tanwhere =

    A =

    pV

    RC

    t

    Ae)t

    ++)RC(1

    cos(1 222

    CVi+

    0v

    )

    Described as

    SSS: Sinusoidal Steady State

    pV

    6.002 Fall 2000 Lecture 16 14

  • 8/14/2019 18009654 Circuits and Electronics

    132/414

    Sinusoidal Steady StateAll information about SSS is contained

    in Vp , the complex amplitude!

    RecallRCj1

    VV ip

    +=Steps 3 ,were a waste oftime!

    4

    Vp 1=Vi 1+jRCVp

    222

    i CR1V +

    = 1 ejwhere=tan1 RC

    2221

    1

    CRV

    V

    i

    p

    +=

    RCV

    V

    i

    p 1tan:phase =

    magnitude

    6.002 Fall 2000 Lecture 16 15

  • 8/14/2019 18009654 Circuits and Electronics

    133/414

    Sinusoidal Steady StateVisualizing the process of finding theparticular solution v

    P

    sneakin

    Viejt

    drive

    algebraicequation

    +complex

    algebra

    takerealpart

    tj

    peV

    particularsolution

    tVi cos D.E.+

    nightmaretrig.

    drive [p VtV +cos p

    the sneaky path!

    6.002 Fall 2000 Lecture 16 16

  • 8/14/2019 18009654 Circuits and Electronics

    134/414

    Magnitude Plottransfer function

    V

    H(j)=

    V

    p

    i2221

    1

    CRV

    V

    i

    p

    +=

    Vp1

    Vi

    logscale

    log 1

    =

    scale RC

    From demo: explains vo fall offfor high frequencies!

    6.002 Fall 2000 Lecture 16 17

  • 8/14/2019 18009654 Circuits and Electronics

    135/414

    Phase Plot=tan1 RC

    V= p

    Vi

    0

    4

    2

    C

    1=

    log scale

    6.002 Fall 2000 Lecture 16 18

  • 8/14/2019 18009654 Circuits and Electronics

    136/414

    6.002 Fall 2000 Lecture 117

    6.002 CIRCUITS ANDELECTRONICS

    The Impedance Model

  • 8/14/2019 18009654 Circuits and Electronics

    137/414

    6.002 Fall 2000 Lecture 217

    Sinusoidal Steady State (SSS)Reading 13.1, 13.2

    +

    OvtVv iI cos= + C

    Focus on steady state, only careabout vP as vH dies away.

    Focus on sinusoids.

    Reading: Section 13.3 from course notes.

    SSS

    Review

    Sinusoidal Steady State (SSS)Reading 13.1, 13.2

  • 8/14/2019 18009654 Circuits and Electronics

    138/414

    6.002 Fall 2000 Lecture 317

    3

    4Hv

    total

    Review

    Vp contains all the information we need:

    p

    p

    V

    V

    Amplitude of output cosine

    phase

    sneakin

    Viejt

    drive

    complexalgebra

    takerealpart

    The Sneaky Path

    pV

    tVi cos [ ]pp VtV +cos

    setupDE

    usualcircuitmodel

    nightmaretrig.

    1

    vP

    tjp eV

    RCj

    Vi+1

    2

  • 8/14/2019 18009654 Circuits and Electronics

    139/414

    6.002 Fall 2000 Lecture 417

    i

    p

    V

    V

    transfer

    function( )

    jHRCjV

    V

    i

    p =

    +

    =1

    1

    ( )ppO VtVv += cos

    2221

    1

    C+

    break frequencyBode plot

    C

    1=

    1

    C1

    2

    1

    rememberdemo

    RC

    1=

    4

    2

    0i

    p

    V

    V

    1

    RCtan 1

    The Frequency View

    Review

  • 8/14/2019 18009654 Circuits and Electronics

    140/414

    6.002 Fall 2000 Lecture 517

    Is there an even simpler wayto get V

    p

    ?

    RCj

    VV ip

    +=1

    Divide numerator and denominator byjC.

    RCj

    CjVV ip

    +=

    1

    1

    Lets explore further

    Hmmm looks like a voltage dividerrelationship.

    RZ

    ZVV

    C

    Cip

    +=

  • 8/14/2019 18009654 Circuits and Electronics

    141/414

    6.002 Fall 2000 Lecture 617

    The Impedance Model

    Is there an even simpler way to get Vp ?

    Consider:tj

    rR eIi=tj

    rR eVv=

    RR iv =tj

    r

    tj

    r eRIeV =

    rr IV =

    Ri+

    Rv

    Resistor

    tj

    CC eIi=

    tj

    CC eVv=C

    Ci+

    Cv

    Capacitor CC ICj

    1V

    =

    dt

    dvCi CC =

    tj

    C

    tj

    C ejCVeI

    =

    CZ

    L

    Li+

    Lv

    tj

    lL eIi=

    tj

    lL eVv=

    dt

    diLv LL =

    tj

    l

    tj

    l ejLIeV

    =

    Inductorll LjV =

    LZ

  • 8/14/2019 18009654 Circuits and Electronics

    142/414

    6.002 Fall 2000 Lecture 717

    In other words,

    For a drive of the form Vcejt,complex amplitude Vc is related to thecomplex amplitude Ic algebraically,by a generalization of Ohms Law.

    inductor

    LZl =lll ZV =

    l

    +

    lV LZ

    resistorrrr ZV =

    Zr =RZ

    r

    +

    rV

    capacitor

    Cj

    1ZC

    =

    cCc ZV =

    impedance

    c

    +

    cV CZ

    The Impedance Model

  • 8/14/2019 18009654 Circuits and Electronics

    143/414

    6.002 Fall 2000 Lecture 817

    Impedance model:

    All our old friends apply!KVL, KCL, superposition

    Back to RC example

    i

    RC

    Cic V

    ZZ

    ZV

    RCj

    1

    Cj1

    V+

    =+

    =

    ic V

    RCj1

    1V

    += Done!

    +

    CvIv + C

    +

    cVi

    V +

    ZR =

    CjZC

    1=

    c

  • 8/14/2019 18009654 Circuits and Electronics

    144/414

    6.002 Fall 2000 Lecture 917

    Another example, recall series RLC:

    We will study this and other functionsin more detail in the next lecture.

    RCj

    Lj

    VV ir++

    =

    1

    RCL

    Rir

    ZZZ

    ZVV

    ++=

    CRjLC

    CRjVV ir

    ++

    =

    1

    2

    +

    L

    r

    C +

    rViV

    tj

    reV

    ( )rr VtV +cos

    tj

    ieV

    tVi cos

    Remember, we want only the steady-state

    response to sinusoid

  • 8/14/2019 18009654 Circuits and Electronics

    145/414

    6.002 Fall 2000 Lecture 1017

    The Big Picture

    tVi cos [ ]pp VtV +cos

    setupDE

    usualcircuitmodel

    nightmaretrig.

  • 8/14/2019 18009654 Circuits and Electronics

    146/414

    6.002 Fall 2000 Lecture 1117

    The Big Picture

    tVi cos [ ]pp VtV +cos

    setupDE

    usualcircuitmodel

    nightmaretrig.

    Viejt

    drive

    complex

    algebra

    takereal

    part

  • 8/14/2019 18009654 Circuits and Electronics

    147/414

    6.002 Fall 2000 Lecture 1217

    The Big Picture

    No D.E.s, no trig!

    tVi cos [ ]pp VtV +cos

    setupDE

    usualcircuitmodel

    nightmaretrig.

    Viejt

    drive

    complex

    algebra

    takereal

    part

    complexalgebra

    impedance-basedcircuit model

  • 8/14/2019 18009654 Circuits and Electronics

    148/414

    6.002 Fall 2000 Lecture 1317

    Back to

    LCRCj1

    C

    V

    V2

    i

    r

    +

    =

    ( ))

    ( ) RCjLC1RCjLC1

    RCjLC1

    RCj2

    2

    2

    +=

    ( ) ( )222ir

    RCLC1

    RC

    V

    V

    +

    =

    :Low C

    :High L

    :1LC= 1

    Lets study this transfer function

    +

    rI

    C +

    rVi

    R

    LCRCj1

    RCj

    V

    V

    2i

    r

    +=

    Observe

  • 8/14/2019 18009654 Circuits and Electronics

    149/414

    6.002 Fall 2000 Lecture 1417

    Graphically

    ( ) ( )2221 RCLC

    RCVV

    i

    r

    +=

    More next week

    :Low C

    :High L

    :1LC= 1

    i

    r

    V

    V

    LC

    1

    LRC

    1 Band Pass

    Remember this trick to sketch the form oftransfer functions quickly.

  • 8/14/2019 18009654 Circuits and Electronics

    150/414

    6.002 Fall 2000 Lecture 118

    6.002 CIRCUITS ANDELECTRONICS

    Filters

  • 8/14/2019 18009654 Circuits and Electronics

    151/414

    6.002 Fall 2000 Lecture 218

    Review

    +

    CvIv

    + C

    Reading: Section 14.5, 14.6, 15.3 from A & L.

    +

    cVi

    V +

    RZ

    CZ

    i

    RC

    Cc V

    ZZ

    ZV +

    =

    RCj1

    1

    RCj

    1

    Cj

    1

    V

    V

    i

    c

    +

    =

    +

    =

  • 8/14/2019 18009654 Circuits and Electronics

    152/414

    6.002 Fall 2000 Lecture 318

    A Filter

    RCj11V

    ZZZV i

    RC

    Cc

    +=

    +=

    Low Pass Filter

    1

    ( )i

    c

    V

    VH =

    Demowith audio

    +

    cVi

    V +

    RZ

    CZ

  • 8/14/2019 18009654 Circuits and Electronics

    153/414

    6.002 Fall 2000 Lecture 418

    Quick Review of Impedances-Just as

    21

    ab

    abAB RR

    I

    VR +==

    LjRI

    VZ 1

    ab

    abAB +==

    1

    ab+

    abV

    2

    1

    ab+

    abV

    L

  • 8/14/2019 18009654 Circuits and Electronics

    154/414

    6.002 Fall 2000 Lecture 518

    Quick Review of ImpedancesSimilarly

    L2C1B Z||ZZ ++=

    L2C

    2C

    1Z

    RZ

    ZR +

    ++=

    LjCRj1

    R2

    21

    ++

    +=

    1

    L

    2C

  • 8/14/2019 18009654 Circuits and Electronics

    155/414

    6.002 Fall 2000 Lecture 618

    We can build other filters bycombining impedances

    ( )Z

    L

    R

    C

    Z

  • 8/14/2019 18009654 Circuits and Electronics

    156/414

    6.002 Fall 2000 Lecture 718

    We can build other filters bycombining impedances

    HPFHigh Pass Filter

    ( )H

    ( )H

    LPFLow Pass Filter

    ( )H

    HPF

    ( )Z

    L

    R

    C

    Z

    +

    +

    +

  • 8/14/2019 18009654 Circuits and Electronics

    157/414

    6.002 Fall 2000 Lecture 818

    Check out:

    RCj

    1Lj

    R

    V

    V

    i

    r

    ++=

    RCjLC1

    RCj2

    +

    =

    ( ) ( )222ir

    RCLC1

    RC

    V

    V

    +=

    +

    L C

    +

    rViV

    LC

    1

    o=

    At resonance, = o

    andZ

    L+Z

    C= 0

    ,so Vi seesonly R!More later

    Intuitively:

    i

    r

    V

    V1

    LblockshighfreqCblock

    slowfr

    eq

  • 8/14/2019 18009654 Circuits and Electronics

    158/414

    6.002 Fall 2000 Lecture 918

    What about:

    +

    L C

    + lcV

    iV

    Band Stop Filterilc

    VV

    1C open L open

    Check out Vl and Vc in the lab.

  • 8/14/2019 18009654 Circuits and Electronics

    159/414

    6.002 Fall 2000 Lecture 1018

    Another example:

    +

    +

    LiV C oV

    i

    o

    V

    V

    o

    BPF

    CshortLshort

    Application: see AM radio coming up shortly

  • 8/14/2019 18009654 Circuits and Electronics

    160/414

    6.002 Fall 2000 Lecture 1118

    AM Radio Receiver

    crystal radio demo

    Thveninantenna

    model

    + LiV C

    demodulator

    amplifier

    antenna

  • 8/14/2019 18009654 Circuits and Electronics

    161/414

    6.002 Fall 2000 Lecture 1218

    AM Receiver

    Selectivity important relates to a parameter Q for the filter. Next

    + LiV C

    demodulator

    amplifier

    f

    signalstrength

    540 1000 1010 1020 1030 1600 KHz

    10 KHz

    filter WBZNews

    Radio

  • 8/14/2019 18009654 Circuits and Electronics

    162/414

    6.002 Fall 2000 Lecture 1318

    Recall,

    Selectivity:Look at series RLC in more detail

    +

    L C

    +

    rViV

    Cj1LjR

    R

    V

    V

    i

    r

    ++

    =

    i

    r

    V

    V

    o

    2

    1higherQ

    1

    Define quality factor=Qo

    bandwidth

    Qhigh more selective

  • 8/14/2019 18009654 Circuits and Electronics

    163/414

    6.002 Fall 2000 Lecture 1418

    =o

    Q

    LC

    1o =

    Quality Factor Q

    +

    =++

    =

    CR

    1

    R

    Lj1

    1

    Cj

    1LjRi

    VrV

    ?

    at =0

    :

  • 8/14/2019 18009654 Circuits and Electronics

    164/414

    6.002 Fall 2000 Lecture 1518

    Note that abs magnitude is2

    1

    when1j1

    1

    CR

    1

    R

    Lj1

    1

    V

    V

    i

    r

    =

    +

    =

    i.e. when 1CR

    1=

    0C

    12 =

    m

    :

    = oQ

    Quality Factor Q

    Looking at the roots of both equations,

    C

    4R

    2

    1

    2

    R2

    2

    1 ++= LC

    4

    L

    R

    2

    1

    L2

    R2

    2

    2 ++=

    R== 21

  • 8/14/2019 18009654 Circuits and Electronics

    165/414

    6.002 Fall 2000 Lecture 1618

    R

    L

    L

    RQ oo

    ==

    The lower the R (for seriesR),the sharper the peak

    = oQ

    Quality Factor Q

    LC

    1o =

  • 8/14/2019 18009654 Circuits and Electronics

    166/414

    6.002 Fall 2000 Lecture 1718

    Another way of looking at Q :

    cycleperlostenergy

    storedenergy2=Q

    0

    2

    r

    2

    r

    2RI

    2

    1

    IL21

    2

    =

    L

    Q

    o=

    Quality Factor Q

  • 8/14/2019 18009654 Circuits and Electronics

    167/414

    6.002 Fall 2000 Lecture 119

    6.002 CIRCUITS ANDELECTRONICS

    The Operational AmplifierAbstraction

  • 8/14/2019 18009654 Circuits and Electronics

    168/414

    6.002 Fall 2000 Lecture 219

    MOSFET amplifier 3 ports

    power

    portinputport

    outputport+

    Iv

    +

    Ov

    +

    SV

    Amplifier abstraction

    +

    Iv

    +

    SV

    +

    Ov

    Iv

    Ov

    Function of vI

    Review

  • 8/14/2019 18009654 Circuits and Electronics

    169/414

    6.002 Fall 2000 Lecture 319

    Can use as an abstract building block for

    more complex circuits (of course, needto be careful about input and output).

    Today

    Introduce a more powerful amplifier

    abstraction and use it to build morecomplex circuits.

    Reading: Chapter 15 from A & L.

    Iv

    Ov

    Function of vI

    Review

  • 8/14/2019 18009654 Circuits and Electronics

    170/414

    6.002 Fall 2000 Lecture 419

    Operational AmplifierOp Amp

    OUTv

    +

    +

    INv

    More abstract representation:

    input

    port

    SV

    outputport

    powerport

    SV

    +

    +

    +

  • 8/14/2019 18009654 Circuits and Electronics

    171/414

    6.002 Fall 2000 Lecture 519

    Circuit model (ideal):

    i.e. input resistance 0 output resistance

    A virtually

    No saturation

    Ov

    v

    +

    +

    v

    v+

    v

    0=i+

    0=i

  • 8/14/2019 18009654 Circuits and Electronics

    172/414

    6.002 Fall 2000 Lecture 619

    (Note: possible confusion with MOSFET saturation!)

    Using it

    +

    VV

    S12= LR

    Ov

    +12V

    +12V VVS 12=

    Demo

    INv

    V10V10

    Ov

    V12

    V12

    610~

    but unreliable,

    temp. dependent

    saturation

    active region

    INv

  • 8/14/2019 18009654 Circuits and Electronics

    173/414

    6.002 Fall 2000 Lecture 719

    Let us build a circuitCircuit: noninverting amplifier

    Equivalent circuit model

    1

    Ov

    +

    2

    INv

    +v

    v

    + vvA+

    0=i+

    0=i

    opamp

    1

    Ov

    +

    2

    INv

    +

    +v

    v

  • 8/14/2019 18009654 Circuits and Electronics

    174/414

    6.002 Fall 2000 Lecture 819

    Let us analyze the circuit:

    FindvO in terms of

    vIN, etc.

    What happens when A is very large?

    ( )+ = vvAvO

    +=

    21

    2

    RR

    RvvAOIN

    IN

    21

    2

    OAv

    RR

    AR1v =

    ++

    21

    2

    IN

    O

    RR

    AR

    1

    vv

    ++

    =

  • 8/14/2019 18009654 Circuits and Electronics

    175/414

    6.002 Fall 2000 Lecture 919

    Lets see When A is large

    Gain: determined by resistor ratio insensitive to A, temperature, fab variations

    21

    2

    IN

    O

    RR

    AR1

    vv

    ++=

    ( )

    2

    21

    IN

    Rv

    +

    gain

    Demo

    Suppose6

    10=9

    1=

    =2

    9

    R10

    1

    v10v

    6

    IN

    6

    O

    ++

    =

    10vv INO

    10

    1101

    v10

    6

    IN

    6

    +

    =

    21

    2

    IN

    RR

    AR

    v

    +

  • 8/14/2019 18009654 Circuits and Electronics

    176/414

    6.002 Fall 2000 Lecture 1019

    e.g. vIN

    = 5V

    Suppose I perturb the circuit(e.g., force v

    Omomentarily to 12V somehow).

    Stable point is when v+ v- .

    Key: negative feedback portion of

    output fed tove

    input.e.g. Car antilock brakes small corrections.

    Why did this happen?

    Insight:

    +

    INOv2v =

    +INv

    +v

    v

    negativefeedback

    2

    vO

    5V

    5V

    10V

    0i =

    12V

    6V6V

  • 8/14/2019 18009654 Circuits and Electronics

    177/414

  • 8/14/2019 18009654 Circuits and Electronics

    178/414

    6.002 Fall 2000 Lecture 1219

    More op amp insights:

    Observe, under negative feedback,

    0

    vR

    RR

    vvv

    IN

    1

    21

    O

    +

    == +

    + vv

    We also knowi+ 0

    i - 0

    yields an easier analysis method(under negative feedback).

  • 8/14/2019 18009654 Circuits and Electronics

    179/414

    6.002 Fall 2000 Lecture 1319

    Insightful analysis methodunder negative feedback

    +

    1

    Ov

    +

    2

    INv

    INvc

    2

    21

    INO

    Rvv +=g

    INvb

    0=ie

    2

    IN

    R

    vd

    2

    IN

    R

    vf

    0i

    0i

    vv

    +

    +

    INva

  • 8/14/2019 18009654 Circuits and Electronics

    180/414

    6.002 Fall 2000 Lecture 1419

    Question:

    +

    Ov

    +INv

    +v

    v ?

    01=

    =2

    2

    21

    RvvINO

    +=or

    with

    INOvv

    INvc

    INvb

    INva

  • 8/14/2019 18009654 Circuits and Electronics

    181/414

    6.002 Fall 2000 Lecture 1519

    Buffer

    voltage gain = 1input impedance =

    output impedance = 0

    current gain =

    power gain =

    +

    Ov

    +INv

    INOvv

    Why is this circuit useful?

  • 8/14/2019 18009654 Circuits and Electronics

    182/414

    6.002 Fall 2000 Lecture 12

    6.002 CIRCUITS ANDELECTRONICS

    Basic Circuit Analysis Method(KVL and KCL method)

  • 8/14/2019 18009654 Circuits and Electronics

    183/414

    6.002 Fall 2000 Lecture 22

    0=

    t

    B

    0=

    t

    q

    Outside elements

    Inside elements

    Allows us to create the lumped circuitabstraction

    wires resistors sources

    Review

    Lumped Matter Discipline LMD:Constraints we impose on ourselves to simplifyour analysis

  • 8/14/2019 18009654 Circuits and Electronics

    184/414

  • 8/14/2019 18009654 Circuits and Electronics

    185/414

    6.002 Fall 2000 Lecture 42

    KVL:

    loop

    KCL:

    node

    0=j j

    0=j ji

    ReviewReview

    Maxwells equations simplify toalgebraic KVL and KCL under LMD!

  • 8/14/2019 18009654 Circuits and Electronics

    186/414

    6.002 Fall 2000 Lecture 52

    KVL0=++ bcabca vvv

    0=++ badaca iii KCLDEMO

    1

    2

    4

    5

    3

    a

    b

    d

    c

    +

    Review

  • 8/14/2019 18009654 Circuits and Electronics

    187/414

    6.002 Fall 2000 Lecture 62

    Method 1: Basic KVL, KCL method ofCircuit analysis

    Goal: Find all element vs and is

    write element v-i relationships(from lumped circuit abstraction)

    write KCL for all nodeswrite KVL for all loops

    1.

    2.3.

    lots of unknownslots of equationslots of funsolve

  • 8/14/2019 18009654 Circuits and Electronics

    188/414

    6.002 Fall 2000 Lecture 72

    Method 1: Basic KVL, KCL method ofCircuit analysis

    For R,

    For voltage source,

    For current source,

    Element Relationships

    IRV =

    0VV =

    0I=

    3 lumped circuit elements

    0V

    oI

    +

  • 8/14/2019 18009654 Circuits and Electronics

    189/414

    6.002 Fall 2000 Lecture 82

    KVL, KCL Example

    The Demo Circuit

    +

    1

    2

    4

    5

    3

    a

    b d

    c

    00 V=+

    1+

    5

    +

    3+

    2+

    4+

  • 8/14/2019 18009654 Circuits and Electronics

    190/414

    6.002 Fall 2000 Lecture 92

    Associated variables discipline

    i+

    -

    Element e

    Then power consumed

    by element e

    i= is positive

    Current is taken to be positive goinginto the positive voltage terminal

  • 8/14/2019 18009654 Circuits and Electronics

    191/414

    6.002 Fall 2000 Lecture 102

    KVL, KCL Example

    The Demo Circuit

    +

    1

    2

    4

    5

    3

    a

    b d

    c

    00 V=+

    1+

    5

    +

    3+

    1L

    2L

    4L

    3L2

    +

    4+

    2i

    1i

    0i

    5i

    3i

    4i

  • 8/14/2019 18009654 Circuits and Electronics

    192/414

    6.002 Fall 2000 Lecture 112

    Analyze12 unknowns

    5050 ,

    1. Element relationships

    3. KVL for loops

    00 Vv =111 iv =

    222 iv =

    333 iv =444 iv =

    555 iv =

    given

    2. KCL at the nodes

    redundant

    0431 =+ vvv

    0210 =++ vvv

    0253 =+ vvv0540 =++ vvv redundant

    0410 =++ iii0132 =+ iii0435 = iii0520 = iii

    a:b:

    d:

    e:

    6 equations

    3 independentequations

    3 independentequations

    12unknown

    s

    12equa

    tions

    ugh@#!

    ( )iv,

    L1:

    L2:

    L3:

    L4:

  • 8/14/2019 18009654 Circuits and Electronics

    193/414

    6.002 Fall 2000 Lecture 122

    Other Analysis MethodsMethod 2 Apply element combination rules

    B

    C

    D

    +++ 21

    1G 2G NG GGG ++21

    i

    iR

    G1

    =

    + + + 1V 2V 21 VV +

    1 2 21 +

    A1 2 3 N

    Surprisingly, these rules (along with superposition, whichyou will learn about later) can solve the circuit on page 8

  • 8/14/2019 18009654 Circuits and Electronics

    194/414

    6.002 Fall 2000 Lecture 132

    Other Analysis MethodsMethod 2 Apply element combination rules

    V

    32

    32

    RR +

    V

    32

    32

    1 RRRR

    ++=

    +

    V

    ?=

    1

    32

    +

    +

    Example

    1

    R

    VI=

  • 8/14/2019 18009654 Circuits and Electronics

    195/414

    6.002 Fall 2000 Lecture 142

    1.

    2.

    3.

    4.

    5.

    Select reference node ( ground)from which voltages are measured.

    Label voltages of remaining nodeswith respect to ground.These are the primary unknowns.

    Write KCL for all but the ground

    node, substituting device laws andKVL.

    Solve for node voltages.

    Back solve for branch voltages andcurrents (i.e., the secondary unknowns)

    Particular application of KVL, KCL method

    Method 3Node analysis

  • 8/14/2019 18009654 Circuits and Electronics

    196/414

    6.002 Fall 2000 Lecture 152

    Example: Old Faithfulplus current source

    0V

    1

    2

    4

    5

    3

    1I

    0V

    + 1e

    2e

    Step 1Step 2

  • 8/14/2019 18009654 Circuits and Electronics

    197/414

    6.002 Fall 2000 Lecture 162

    Example: Old Faithfulplus current source

    0)()()( 21321101 =++ GeGeeGVeKCL at 1e

    0)()()( 152402312=++IGeGVeGee

    KCL at 2e

    for

    conveniencewrite

    i

    iR

    G1

    =

    0V

    1

    2

    4

    5

    3

    1e

    1

    0V

    +

    2e

    Step 3

  • 8/14/2019 18009654 Circuits and Electronics

    198/414

    6.002 Fall 2000 Lecture 172

    Example: Old Faithfulplus current source

    0)()()( 21321101 =++ GeGeeGVe

    KCL at 1e

    0)()()( 152402312 =++ IGeGVeGeeKCL at 2l

    move constant terms to RHS & collect unknowns

    )()()( 10323211 GVGeGGGe =+++

    140543231 )()()( GVGGGeGe +=+++

    i

    iR

    G 1=

    2 equations, 2 unknowns Solve for es(compare units)

    0V

    1

    2

    4

    5

    3

    1e

    1

    0V

    +

    2e

    Step 4

  • 8/14/2019 18009654 Circuits and Electronics

    199/414

    6.002 Fall 2000 Lecture 182

    In matrix form:

    +=

    ++

    ++

    104

    01

    2

    1

    5433

    3321

    IVG

    VG

    e

    e

    GGGG

    GGGG

    conductivitymatrix

    unknownnode

    voltages

    sources

    ( )( ) 23543321

    104

    01

    3213

    3543

    2

    1

    GGGGGGG

    IVG

    VG

    GGGG

    GGGG

    e

    e

    ++++

    +

    ++

    ++

    =

    Solve

    5G3G4G3G2

    3G5G2G4G2G3G2G5G1G4G1G3G1G

    1I0V4G3G

    0V1G5G4G3G

    1e

    ++++++++

    ++++=

    ( )( ) ( )( )

    5343

    2

    3524232514131

    1043210132

    GGGGGGGGGGGGGGGGG

    IVGGGGVGGe

    ++++++++

    ++++=

    (same denominator)

    Notice: linear in , , no negativesin denominator

    0V 1

  • 8/14/2019 18009654 Circuits and Electronics

    200/414

    6.002 Fall 2000 Lecture 192

    Solve, given

    K2.8

    1

    G

    G

    5

    1

    =

    K9.3

    1

    G

    G

    4

    2

    =

    K5.1

    1G3 =

    01 =I

    ( ) ( ) 23G5G4G3G3G2G1G

    1

    I

    0

    V

    4

    G

    3

    G

    2

    G

    1

    G

    0

    V

    1

    G

    3

    G

    2e +++++

    ++++

    =

    15.1

    1

    9.3

    1

    2.8

    1

    3G2G1G =++=++

    12.81

    9.31

    5.11GGG 543 =++=++

    0

    2

    2 V

    5.1

    11

    9.3

    115.1

    1

    2.8

    1

    e

    +=

    02 6.0 Ve =

    If , thenVV 30 = 02 8.1 Ve =

    Check out the

    DEMO

  • 8/14/2019 18009654 Circuits and Electronics

    201/414

    6.002 Fall 2000 Lecture 120

    6.002 CIRCUITS ANDELECTRONICS

    Operational Amplifier Circuits

  • 8/14/2019 18009654 Circuits and Electronics

    202/414

    6.002 Fall 2000 Lecture 220

    Operational amplifier abstraction

    Building block for analog systems

    We will see these examples:

    Digital-to-analog converters

    FiltersClock generators

    Amplifiers

    Adders

    Integrators & Differentiators

    Reading: Chapter 15.5 & 15.6 of A & L.

    +

    Review

    input resistance

    0 output resistance

    Gain A very large

  • 8/14/2019 18009654 Circuits and Electronics

    203/414

    6.002 Fall 2000 Lecture 320

    Consider this circuit:

    +

    +=

    v

    RRvv

    21

    21

    1

    2

    R

    vvi

    =

    2iRvvOUT =

    2

    1

    2R

    R

    vvv

    =

    1

    22

    1

    21R

    Rv

    R

    Rv

    +=

    1

    22

    1

    21

    21

    21

    Rv

    RRRv

    +

    +=

    ( )211

    2vv

    R=

    subtracts!

    +

    2

    +

    1

    +

    1

    2

    +v

    v

    i

    i

    OUTv

    +

    1v

    2v

  • 8/14/2019 18009654 Circuits and Electronics

    204/414

    6.002 Fall 2000 Lecture 420

    Another way of solving use superposition

    1

    21

    1R

    vvOUT

    += +

    1

    21

    21

    21

    RRR

    v +

    +

    =

    1

    21R

    v=

    2

    1

    2

    2

    v

    R

    vOUT

    =

    +

    21 ||R

    +

    1R

    2R

    2OUTv2v

    +

    +

    1

    2R1OUT

    v

    1v

    2R

    +v

    1R

    21 OUTOUTOUT vvv +=

    ( )211

    2vv

    R=

    01 v 02 v

    Still subtracts!

  • 8/14/2019 18009654 Circuits and Electronics

    205/414

    6.002 Fall 2000 Lecture 520

    Lets build an intergrator

    dtiC

    1v

    t

    O

    =

    Lets start with the following insight:

    vO

    is related to dti

    Iv

    +

    O

    v+

    dt

    i +

    i

    +

    OvC

    But we need to somehow convertvoltage v

    Ito current.

  • 8/14/2019 18009654 Circuits and Electronics

    206/414

    6.002 Fall 2000 Lecture 620

    But, vO

    must be very small compared

    to vR, or else vi

    I

    When is vO

    small compared to vR

    ?

    First try use resistor

    iv

    I

    O

    Ov

    dt

    dvRC >>when

    I

    Ov

    dt

    dvRC

    dtvRC

    1v

    t

    IO

    or

    IO

    Ovv

    dt

    dvRC =+

    Rv

    larger the RC,smaller the vO

    for goodintegratorRC >> 1

    Iv +

    i

    +

    OvC

    Rv+

    Demo

  • 8/14/2019 18009654 Circuits and Electronics

    207/414

    6.002 Fall 2000 Lecture 720

    Theres a better way

    vi

    I=so,

    +

    +I

    v

    +

    +

    vI

    I

    v

    Cv

    +

    +

    Ov

    i

    i

    under negative feedbackV0v

    Notice

    COvv =

    dtR

    v

    C

    1v

    t

    I

    O

    =

    We have our integrator.

    +

  • 8/14/2019 18009654 Circuits and Electronics

    208/414

    6.002 Fall 2000 Lecture 820

    Now, lets build a differentiator

    Iv

    +

    Ov+

    dt

    d

    But we need to somehow convert currentto voltage.

    i is related todt

    dvI

    Lets start with the following insights:

    dt

    dvCi

    I=+I

    v

    i

    C

  • 8/14/2019 18009654 Circuits and Electronics

    209/414

    6.002 Fall 2000 Lecture 920

    Demo

    CIvv =

    dtdvCi I=

    dt

    dvRCv

    I

    O=

    Recall

    +

    i

    i

    currentto

    voltage

    iRvO

    =

    V0

    +

    +I

    v + Ov

    C

    Cv

    i

    Differentiator

    +

    i

    +

    v

    O

  • 8/14/2019 18009654 Circuits and Electronics

    210/414

    6.002 Fall 2000 Lecture 121

    6.002 CIRCUITS ANDELECTRONICS

    Op Amps Positive Feedback

  • 8/14/2019 18009654 Circuits and Electronics

    211/414

    6.002 Fall 2000 Lecture 221

    Consider this circuit negative feedback

    +

    +

    1R

    1R

    vIN

    Nv +

    INOUT v

    Rv

    1

    2=

    2

    Whats the difference?

    Consider what happens when there is a pertubationPositive feedback drives op amp into saturation:

    SOUT Vv

    and this positive feedback

    +

    +

    1Nv +

    2

    INOUT vR

    v1

    2=

    see

    ana

    lysis

    onnext

    pag

    e

    Negative vs Positive Feedback

  • 8/14/2019 18009654 Circuits and Electronics

    212/414

    6.002 Fall 2000 Lecture 321

    +

    +

    1RINv

    2R

    OUTv

    )+ = vvAvOUT

    ++

    = IN1

    21

    INOUT vRRR

    vvA

    IN

    21

    IN1OUT

    21

    1 AvRR

    vARv

    RR

    AR+

    +

    +=

    += Av

    IN

    1

    2IN

    21

    1

    21

    1

    OUT vR

    RAv

    RR

    AR

    RR

    R1

    v =

    +

    +

    =

    +=

    + 211IN

    21

    1OUTRR

    R1AvRR

    AR1v

    +

    1INv

    2 OUTv+v

    v ( )+ vvA+

    Static Analysis of Positive Feedback Ckt

  • 8/14/2019 18009654 Circuits and Electronics

    213/414

    6.002 Fall 2000 Lecture 421

    Representing dynamics of op amp

    +v

    v

    ov*v+

    +

    *v

    )( + vvC+

  • 8/14/2019 18009654 Circuits and Electronics

    214/414

    6.002 Fall 2000 Lecture 521

    Representing dynamics of op amp

    Consider this circuit and lets analyze itsdynamics to build insight.

    +

    1 2

    ov

    3 4

    Lets develop equation representing timebehavior of vo .

    Circuit model

    1

    2

    3 4

    +

    *v

    )(+ vvC+

    +

    +

    ov

    +v

    v

    vo

  • 8/14/2019 18009654 Circuits and Electronics

    215/414

    6.002 Fall 2000 Lecture 621

    vvAvv oo ==

    ** or

    )(A

    CTwhere0

    T

    v

    dt

    dv oo+

    ==+or

    oo vRR

    vv +=

    +=+

    21

    1

    oo vRR

    vv

    =+

    = 43

    3

    0)( =+

    + oo v

    Cdt

    dv

    1time

    0)(1

    =

    +++ o

    o vRCRCdt

    dvor

    neglect

    _**

    vvvdt

    dv

    RC=+ +

    ov)(

    +

    =

    Dynamics of op amp

    _vvv

    dt

    dvC oo =+ +

    0)0(vo =

  • 8/14/2019 18009654 Circuits and Electronics

    216/414

    6.002 Fall 2000 Lecture 721

    Consider a small disturbance to vo

    (noise).

    Now, lets build some useful circuits with

    positive feedback.

    +> if

    stableeKv

    positiveisT

    T

    t

    o

    =

    >+

    if

    unstableeKv

    negativeisT

    T

    t

    o ==

    +if

    neutralKv

    largeveryisT

    o =

    ov

    t

    neutral

    stable

    K

    disturbance

    unstable

  • 8/14/2019 18009654 Circuits and Electronics

    217/414

    6.002 Fall 2000 Lecture 821

    One use for instability: Build on thebasic op amp as a comparator

    +

    +vov

    SV+

    SV

    v

    + vv

    ov

    SV+

    SV

    0

    t0v

    +v

    ov

  • 8/14/2019 18009654 Circuits and Electronics

    218/414

    6.002 Fall 2000 Lecture 921

    Now, use positive feedback

    +

    2

    ov

    1

    iv

    21

    1

    RR

    vv o

    +

    =+

    5.7v =+

    5.7v =

    15vo =

    15vo =

    15e.g. 21

    ==

    SV

    5.7v

    5.7)vv( i

    >

    >=

    5.7=

    +

    5.7I.e., if we wait long enough

    Independenof R!

  • 8/14/2019 18009654 Circuits and Electronics

    232/414

    6.002 Fall 2000 Lecture 922

    T2 : S2 closed, S1 open

    +

    Cv

    2C

    So, initially,

    2

    SCV2

    1=energy stored in capacitor

    Assume T2 >>R2C

    So, capacitor discharges ~fully in T2

    So, energy dissipated inR2 during T2

    2

    S2 CV2

    1E =

    E1,E2 independent ofR2 !

    Initially, vC= VS (recall T1 >>R1C)

  • 8/14/2019 18009654 Circuits and Electronics

    233/414

    6.002 Fall 2000 Lecture 1022

    Putting the two together:

    Energy dissipated in each cycle

    2

    S

    2

    S CV2

    1CV

    2

    1+=

    21 EEE +=

    Cgdischargin&chargingindissipatedenergyCVE

    2

    S=

    Assumes C charges and discharges fully.

    frequency

    T

    f1

    =

    TP=

    T

    CVS

    2

    =

    fCVS2=

    Average power

  • 8/14/2019 18009654 Circuits and Electronics

    234/414

    6.002 Fall 2000 Lecture 1122

    Back to our inverter

    Ov

    Nv C

    SV

    L

    ON

    t

    2

    T

    T

    2

    T

    INv

    fT 1=

    What is for the following input?P

  • 8/14/2019 18009654 Circuits and Electronics

    235/414

    6.002 Fall 2000 Lecture 1222

    Equivalent Circuit

    SV +

    L

    C

    ON

    t

    2

    T

    T

    2

    T

    INv

    fT

    1

    =

    What is for the following input?P

  • 8/14/2019 18009654 Circuits and Electronics

    236/414

    6.002 Fall 2000 Lecture 1322

    We can show (see section 12.2 of A & L)

    ( ) ( )2ONL

    2L2

    S

    ONL

    2S

    RR

    RfCV

    RR2

    VP

    ++

    +=

    fCVR2

    VP

    2

    S

    L

    2S +=

    when RL >>RON

    What is for gate?P

    reme

    mber

    remem

    ber

    STATICP DYNAMICP

    related to switchingcapacitor

    independent of f.MOSFET ON half

    the time.

  • 8/14/2019 18009654 Circuits and Electronics

    237/414

    6.002 Fall 2000 Lecture 1422

    fCVRVP S

    L

    S 2

    2

    2 +=

    when RL >>RON

    In standby mode,half the gates in achip can be

    assumed to be on.So pergate is still .

    Relates to standbypower.

    STATIC

    L

    2

    S

    R2

    V

    What is for gate?P

    In standby mode,

    f 0 ,so dynamic poweris 0

  • 8/14/2019 18009654 Circuits and Electronics

    238/414

    6.002 Fall 2000 Lecture 1522

    Some numbers

    a chip with 106 gates clocking

    at 100 MHZ

    V5V

    10100f

    k10R

    Ff1C

    S

    6

    L

    =

    =

    ==

    +

    = 6154

    6 101002510102

    2510P

    [ ]microwatts5.2milliwatts25.1106 +=

    problem!1.25KW! 2.5W

    not bad

    mW150W5.2

    V1V5

    Vreduce

    f

    V

    S

    2

    S

    nextlecture

    must get rid of this

  • 8/14/2019 18009654 Circuits and Electronics

    239/414

    6.002 Fall 2000 Lecture 123

    6.002 CIRCUITS ANDELECTRONICS

    Energy, CMOS

  • 8/14/2019 18009654 Circuits and Electronics

    240/414

    6.002 Fall 2000 Lecture 223

    Reading: Section 11.5 of A & L.

    SV +

    1

    C 2

    1S 2S

    fTTT

    121 =+=

    fCVP S2

    =

    T1: closed

    T2: open

    open

    closed

    ONL

    S

    RR

    VP

    +=

    2

    Ov

    SV

    ON

    L

    Iv

    Review

  • 8/14/2019 18009654 Circuits and Electronics

    241/414

    6.002 Fall 2000 Lecture 323

    Inverter Ov

    Iv C

    SV

    L

    ON

    fCVR

    VP S

    L

    S 22

    2+=

    related to switchingcapacitor.

    independent of f.MOSFET ON half

    the time.

    STATIC DYNAMIC

    constanttime

    "RC"2

    T

    ONL

    >>

    >>Square wave inputf

    T 1=

    Demo

    Review

    In standby mode, halfthe gates in a chip can

    be assumed to be on.So per gate isstill .

    STATIC

    L

    2

    S

    R2

    V

    In standby mode,f 0 ,so dynamic power is 0

  • 8/14/2019 18009654 Circuits and Electronics

    242/414

    6.002 Fall 2000 Lecture 423

    fCV

    R

    VP S

    L

    S 22

    2

    +=

    Chip with 106 gates clocking at 100 MHz

    V5V,10100f,K10RF,f1C S6

    L ====

    problem!

    1.25KWatts 2.5Watts

    not bad+

    independent off also standby power

    (assume MOSFETsON if f 0)

    must get rid of this!

    f VS2

    reduce VS5V1V

    2.5V150mW

    [ ]watts5.2milliwatts25.1106 +=

    +

    = 62153

    26 10100510

    10102

    510P

    gates

    Review

  • 8/14/2019 18009654 Circuits and Electronics

    243/414

    6.002 Fall 2000 Lecture 523

    How to get rid of static power

    Intuition:

    Ov

    SV

    ON

    L

    Iv high low

    i

    idea!

    Ov

    SV

    Iv high low

    SV

    L

    Ov

    Iv low

    offMOSFET

    high

  • 8/14/2019 18009654 Circuits and Electronics

    244/414

    6.002 Fall 2000 Lecture 623

    New Device PFET

    N-channel MOSFET (NFET)

    D

    S

    Gon when vGS VTNoff when vGS < VTN

    e.g. VTN= 1V

    P-channel MOSFET (PFET)

    on when vGS VTPoff when vGS > VTPe.g. VTP= -1V

    S

    D

    G

    ON when

    less than 4V

    5V

  • 8/14/2019 18009654 Circuits and Electronics

    245/414

    6.002 Fall 2000 Lecture 723

    Consider this circuit:

    S

    DG

    D

    SG

    OvIv+

    SV

    PU = pull up

    PD = pull down

    works like an inverter!

    IN OUT

  • 8/14/2019 18009654 Circuits and Electronics

    246/414

  • 8/14/2019 18009654 Circuits and Electronics

    247/414

    6.002 Fall 2000 Lecture 923

    O

    vIv

    SV

    Ct

    T

    Iv

    Tf

    1=

    From fCVP S2

    =

    Key: no path from VS to GND!no static power!

    Lets compute DYNAMIC

    SV +

    pON

    CnON

    closed forvI low

    closed forvI high

  • 8/14/2019 18009654 Circuits and Electronics

    248/414

    6.002 Fall 2000 Lecture 1023

    For our previous example

    1,Hz100f,V5VF,f1C S ===

    keep

    allelse

    same

    fCVP S2

    =

    6215 10100510 =

    gateperwatts5.2=

    chipgate10forwatts5.2 6=P

    P

    PIII?~240watts1.2 GHz8x106

    PIV?~1875watts3 GHz25x106

    PII?~30

    watts600

    MHz2x106

    PII?~15

    watts300

    MHz2x106

    Pentium?~2.5

    watts100

    MHz106

    fGates

    gasp!

  • 8/14/2019 18009654 Circuits and Electronics

    249/414

    6.002 Fall 2000 Lecture 1123

    and use big heatsink

    How to reduce power

    A VS 5V 3V 1.8V 1.5V~PIV 170 watts better, but high

    next time:power supply

    B Turn off clock when not in use.

    C Change VS depending on need.

  • 8/14/2019 18009654 Circuits and Electronics

    250/414

    6.002 Fall 2000 Lecture 1223

    CMOS Logic

    NAND:

    ZA B

    0 0 1

    0 1 1

    1 0 1

    1 1 0

    SDG

    V0 on

    V5

    SDG

    V5 off

    V5

    SV

    Z

  • 8/14/2019 18009654 Circuits and Electronics

    251/414

    6.002 Fall 2000 Lecture 1323

    BABAF +==e.g.

    In general, if we want to implementF

    short whenA = 0 or B = 0,open otherwise

    short whenA B is true,else open

    shortwhenFis true,else open

    SV

    Z

    shortwhenFis true,else open

    remember

    DeMorgans

    law

  • 8/14/2019 18009654 Circuits and Electronics

    252/414

    6.002 Fall 2000 Lecture 124

    6.002 CIRCUITS ANDELECTRONICS

    Power Conversion Circuits

    and Diodes

  • 8/14/2019 18009654 Circuits and Electronics

    253/414

    6.002 Fall 2000 Lecture 224

    Power Conversion Circuits (PCC)

    Power efficiency of converter important,so use lots of devices:

    MOSFET switches, clock circuits,inductors, capacitors, op amps, diodes

    Reading: Chapter 16 and 4.4 of A & L.

    PCC110V60Hz

    +

    5V DC

    solar cells,battery PCC

    +

    5V DC

    3VDC

    DC-to-DC UP converter

    R

  • 8/14/2019 18009654 Circuits and Electronics

    254/414

    6.002 Fall 2000 Lecture 324

    First, lets look at the diode

    Can use this exponential model withanalysis methods learned earlier

    analytical graphical incremental

    (Our fake expodweeb was modeled after this device!)

    Dv

    Di

    Dv

    Di

    SI mV V

    Dv+

    Di

    = 1eIi T

    D

    V

    v

    SD

    A10I 12S=

    V025.0VT =

    qTkVT =

    Boltzmanns constant

    temperature in Kelvinscharge of an electron

  • 8/14/2019 18009654 Circuits and Electronics

    255/414

    6.002 Fall 2000 Lecture 424

    Another analysis method:piecewiselinear analysis

    PL diode models:

    Dv

    Di

    0

    Ideal diode model

    iD = 0

    openoroff

    vD < 0

    vD = 0

    shortoron

    iD 0

  • 8/14/2019 18009654 Circuits and Electronics

    256/414

    6.002 Fall 2000 Lecture 524

    Dv

    Di

    V6.0

    0vD =

    0iD =

    Practical diode modelideal with offset

    V6.0

    +

    Another analysis method:piecewiselinear analysis

    Open segment

    Short segment

  • 8/14/2019 18009654 Circuits and Electronics

    257/414

    6.002 Fall 2000 Lecture 624

    Another analysis method:piecewiselinear analysis

    Replace nonlinear characteristic with

    linear segments. Perform linear analysis within each

    segment.

    Piecewiselinear analysis method

  • 8/14/2019 18009654 Circuits and Electronics

    258/414

    6.002 Fall 2000 Lecture 724

    (We will build up towards an AC-to-DC converter)

    Ov

    +

    +I

    v

    V6.0

    +

    Example

    Consider

    vI is a sine wave

  • 8/14/2019 18009654 Circuits and Electronics

    259/414

  • 8/14/2019 18009654 Circuits and Electronics

    260/414

    6.002 Fall 2000 Lecture 924

    Example

    t

    6.0

    Iv

    Ov

  • 8/14/2019 18009654 Circuits and Electronics

    261/414

    6.002 Fall 2000 Lecture 1024

    Now consider a half-wave rectifier

    Iv R Ov

    +

    +

    V6.0

    +

    C

  • 8/14/2019 18009654 Circuits and Electronics

    262/414

  • 8/14/2019 18009654 Circuits and Electronics

    263/414

    6.002 Fall 2000 Lecture 1224

    DC-to-DC UP Converter

    The circuit has 3 states:

    I. S is on, diode is offi increases linearly

    II. S turns off, diode turns on

    C charges up, vO increasesIII. S is off, diode turns off

    C holds vO (discharges into load)

    t

    Sv

    Sclosed

    Sopen

    T

    pT

    Ov

    +

    +DC

    IV CSv

    load

    i

    switchS

    Donotuse

    resistive

    elements!

  • 8/14/2019 18009654 Circuits and Electronics

    264/414

    6.002 Fall 2000 Lecture 1324

    More detailed analysis

    I. Assume i(0) = 0, vO(0) > 0

    Son at t= 0, diode off

    +I

    V C

    i

    LOv

    t

    i

    L

    TVTi I=)(

    T

    dt

    diLVI =

    i is a rampL

    VI=slope

    2)T(Li

    2

    1:TtatstoredenergyE ==

    L

    TVE I

    2

    22

    =

  • 8/14/2019 18009654 Circuits and Electronics

    265/414

    6.002 Fall 2000 Lecture 1424

    II. Sturns off at t= Tdiode turns on (ignore diode voltage drop)

    +I

    V C

    LOv

    Si

    Diode turns off at T when i tries to go negative.

    t

    i

    T0

    L

    TVI

    LCO

    1=

    T PT

    State III starts here

  • 8/14/2019 18009654 Circuits and Electronics

    266/414

    6.002 Fall 2000 Lecture 1524

    II. Sturns off at t= T, diode turns on

    Diode turns off at T when I tries to go negative.

    LCO

    1=

    ignorediodedrop

    )(TvO

    Ov

    T tT0

    Capacitor voltage

    PT

    Ov

    t

    i

    T

    0

    L

    TVI

    T PT

    LCO

    1=

    III.

    Lets look at the voltage profile

  • 8/14/2019 18009654 Circuits and Electronics

    267/414

    6.002 Fall 2000 Lecture 1624

    II. Sturns off at t= T, diode turns on

    Diode turns off at T when I tries to go negative.

    LCO

    1=

    ignorediodedrop

    )(TvO

    Ov

    T tT0

    Capacitor voltage

    PT

    Ov

    t

    i

    T

    0

    L

    TVI

    T PT

    LCO

    1=

    III.

    Lets look at the voltage profile

  • 8/14/2019 18009654 Circuits and Electronics

    268/414

    6.002 Fall 2000 Lecture 1724

    III. Sis off, diode turns off

    C holds vO after Ti is zero

    +I

    V CS Ov

    +

    Eg, no load

    Ov

    T

    t0

    Capacitor voltage

    PT

  • 8/14/2019 18009654 Circuits and Electronics

    269/414

    6.002 Fall 2000 Lecture 1824

    III. Sis off, diode turns off

    C holds vO after Ti is zero

    until S turns ON at TP, and cycle repeatsI II III I II III

    Thus, vO increases each cycle, if there is no load.

    t

    Ov

    )(nvO

    PT2 PT3

    +I

    V CS Ov

    +

    Eg, no load

    PT

  • 8/14/2019 18009654 Circuits and Electronics

    270/414

    6.002 Fall 2000 Lecture 1924

    What is vO after n cycles vO(n) ?

    Use energy argument (KVL tedious!)

    Each cycle deposits E in capacitor.

    2)Tt(iL2

    1E ==

    2

    I

    L

    TVL

    2

    1

    =L

    TV

    2

    1E

    22

    I=

    After n cycles, energy on capacitor

    L2

    TnVEn

    22

    I=

    This energy must equal 2O )n(Cv21

    orLC

    TnV)n(v22

    IO =

    LC1

    O =

    nTV)n(v OIO =

    so,L2

    TnV)n(Cv

    2

    1 22

    I2

    O =

  • 8/14/2019 18009654 Circuits and Electronics

    271/414

    6.002 Fall 2000 Lecture 2024

    How to maintain vO

    at a given value?

    recallL

    TVE I

    2

    22

    =

    Another example of negative feedback:

    (( )

    Tvv

    Tvv

    refO

    refO

    thenif

    thenif

    Ov

    +

    +I

    V load

    control

    change TT

    pT

    pwm

    + refv

    compare

    Ov

  • 8/14/2019 18009654 Circuits and Electronics

    272/414

    6.002 Fall 2000 Lecture 125

    6.002 CIRCUITS ANDELECTRONICS

    Violating the Abstraction Barrier

  • 8/14/2019 18009654 Circuits and Electronics

    273/414

    6.002 Fall 2000 Lecture 225

    Case 1: The Double Take

    Problem

    iV

    OV

    0 1

    t

    OV

    0

    1 OV

    0

    1

    observedexpected

    in forbidden region!

    huh?

  • 8/14/2019 18009654 Circuits and Electronics

    274/414

    6.002 Fall 2000 Lecture 325

    (a) DC case

    iV

    OV

    1V

    very high

    impedancelike opencircuit

    OKDCV5Vi = DCV5VO = DCV5V1 =

  • 8/14/2019 18009654 Circuits and Electronics

    275/414

  • 8/14/2019 18009654 Circuits and Electronics

    276/414

    6.002 Fall 2000 Lecture 525

    iV

    . . . .

    instantaneous R dividerfinite propagation speedof signals

    characteristicimpedance

    T2 T

    5

    2.5

    0

    V5

    0

    V5

    0

    V5

  • 8/14/2019 18009654 Circuits and Electronics

    277/414

  • 8/14/2019 18009654 Circuits and Electronics

    278/414

    6.002 Fall 2000 Lecture 725

    Case 2: The Double DipProblem strange spikes on supply

    driving a 50 resistor!

    V

    0 1

    01

    OK

    Why?

    input

    driving a 50 resistor!

    V

    0

  • 8/14/2019 18009654 Circuits and Electronics

    279/414

    6.002 Fall 2000 Lecture 825

    V

    dt

    Ldi

    Drop across inductor

    Inverter current

    v inductor

    solution 1. short wires2. low inductance wires3. avoid big current swings

    VS

    VS

  • 8/14/2019 18009654 Circuits and Electronics

    280/414

    6.002 Fall 2000 Lecture 925

    Case 3: The Double Team, or,Slower may be faster!Problem

    a given chipworked,but was slow.

    Lets try speeding it up by using stronger

    drivers

    actual

    ideal

    ideal

    C

    Disaster!

    L

    actual

  • 8/14/2019 18009654 Circuits and Electronics

    281/414

    6.002 Fall 2000 Lecture 1025

    Why?Consider

    crosstalk!

    1

    0

    DEMO

    2

    C

    dt

    dV

    DEMO

    ok

    dtdVC

  • 8/14/2019 18009654 Circuits and Electronics

    282/414

    6.002 Fall 2000 Lecture 1125

    How does this relate to chip?

    Load output! put cap on outputs of chip jitter edges slew edges

    dt

    dVsmall

    DEMOSolution

  • 8/14/2019 18009654 Circuits and Electronics

    283/414

    6.002 Fall 2000 Lecture 1225

    Case 4: The Double JumpCareful abstraction violation for thebetter

    Recall

    oV

    iV

    oV

    iV

    expect

    but, observe

    oV

    iV

  • 8/14/2019 18009654 Circuits and Electronics

    284/414

    6.002 Fall 2000 Lecture 1325

    Case 4: The Double JumpCareful abstraction violation for thebetter

    iV

    V5

    5V

    0V

    3V5V +

    3V So, pullup hasstronger drive

    as output rises

  • 8/14/2019 18009654 Circuits and Electronics

    285/414

    6.002 Fall 2000 Lecture 13

    6.002 CIRCUITS ANDELECTRONICS

    Superposition, Thvenin and Norton

  • 8/14/2019 18009654 Circuits and Electronics

    286/414

    6.002 Fall 2000 Lecture 23

    0=loop

    iV

    Review

    Circuit Analysis Methods

    Circuit composition rules

    Node method the workhorse of 6.002KCL at nodes using Vs referencedfrom ground(KVL implicit in )ji ee G

    KVL: KCL:

    0=node

    i

    VI

  • 8/14/2019 18009654 Circuits and Electronics

    287/414

    6.002 Fall 2000 Lecture 33

    Consider

    Linearity

    Write node equations

    VI

    1

    2+

    021

    =+

    IR

    e

    R

    Ve

    Notice:linear in Ve ,,

    VI,eVNo

    terms

    e

  • 8/14/2019 18009654 Circuits and Electronics

    288/414

    6.002 Fall 2000 Lecture 43

    Consider

    Linearity

    Write node equations --

    Rearrange --

    VI

    1

    2+

    021

    =+

    IR

    e

    R

    Ve

    IR

    VeRR +=

    +121

    11

    e S=

    conductance

    matrix

    node

    voltages

    linear sum

    of sources

    linear in IVe ,,

  • 8/14/2019 18009654 Circuits and Electronics

    289/414

    6.002 Fall 2000 Lecture 53

    Linearity

    or IRRVRRe21

    21

    21

    2

    +++=

    +++++= 22112211 bbVaVae

    Write node equations --

    Rearrange --

    021

    =+

    IR

    e

    R

    Ve

    IRVe

    RR+=

    +

    121

    11

    e S=

    conductancematrix nodevoltages linear sumof sources

    linear in IVe ,,

    Linear!

  • 8/14/2019 18009654 Circuits and Electronics

    290/414

    6.002 Fall 2000 Lecture 63

    LinearityHomogeneitySuperposition

  • 8/14/2019 18009654 Circuits and Electronics

    291/414

    6.002 Fall 2000 Lecture 73

    LinearityHomogeneitySuperposition

    Homogeneity

    1x2

    x y...

    1x2x y...

  • 8/14/2019 18009654 Circuits and Electronics

    292/414

    6.002 Fall 2000 Lecture 83

    LinearityHomogeneitySuperposition

    Superposition

    ax1ax2 ay... ...

    bx1bx2 by

    ba xx 11 +

    ba xx 22 + ba yy +

    ...

  • 8/14/2019 18009654 Circuits and Electronics

    293/414

    6.002 Fall 2000 Lecture 93

    LinearityHomogeneitySuperposition

    Specific superposition example:

    1V0 1y 02V 2y

    01

    +V

    20 V+ 21y +

  • 8/14/2019 18009654 Circuits and Electronics

    294/414

  • 8/14/2019 18009654 Circuits and Electronics

    295/414

    6.002 Fall 2000 Lecture 113

    i

    +0=V

    +

    -

    v

    i

    short

    +

    -

    v

    i

    0=I

    +

    -

    v

    i

    open

    +

    -

    v

  • 8/14/2019 18009654 Circuits and Electronics

    296/414

    6.002 Fall 2000 Lecture 123

    Back to the exampleUse superposition method

    V

    1

    2+

    e

  • 8/14/2019 18009654 Circuits and Electronics

    297/414

    6.002 Fall 2000 Lecture 133

    Back to the exampleUse superposition method

    V

    acting alone

    V0=I2

    +

    e

    1

    I acting alone

    0=V

    1

    2

    e

    VRR

    eV21

    2

    +=

    IRR

    eI21

    21

    +=

    IRR

    VRR

    eee IV21

    21

    21

    2

    ++

    +=+=

    sum superposition

    Voil !

  • 8/14/2019 18009654 Circuits and Electronics

    298/414

    6.002 Fall 2000 Lecture 143

    saltwater

    output showssuperposition

    Demo

    constant

    +

    sinusoid

    +

    ?

  • 8/14/2019 18009654 Circuits and Electronics

    299/414

    6.002 Fall 2000 Lecture 153

    ConsiderYet another method

    resistors

    nounits

    By setting

    0

    ,0

    =

    =

    i

    nn

    0

    ,0

    =

    =

    i

    Vmm

    All

    0

    ,0==

    mm

    nn

    V

    +

    mVn

    Arbitrar

    y networkN

    By superpositioniIVv n

    nnm

    mm ++=

    +

    -v

    i

    i

    resistanceunits

    independent of externalexcitation and behaves like avoltage THv

    alsoindependentof externalexcitement &behaves likea resistor

  • 8/14/2019 18009654 Circuits and Electronics

    300/414

    6.002 Fall 2000 Lecture 163

    Orivv THTH +=

    As far as the external world is concerned(for the purpose of I-V relation),

    Arbitrary network N is indistinguishable

    from:

    i+

    TH

    THv

    +

    -

    vThveninequivalentnetwork

    TH

    THv open circuit voltageat terminal pair (a.k.a. port)

    resistance of network seenfrom port( s, s set to 0)

    mV n

    N

  • 8/14/2019 18009654 Circuits and Electronics

    301/414

    6.002 Fall 2000 Lecture 173

    Method 4:

    The Thvenin Method

    Replace network N with its Thvenin

    equivalent, then solve external network E.

    E

    Thvenin equivalent

    +

    TH

    THv

    +

    -

    v

    i

    E

    +

    +

    i

    +

    -v

    N

  • 8/14/2019 18009654 Circuits and Electronics

    302/414

    6.002 Fall 2000 Lecture 183

    Example:1

    V+

    1i

    1

    V

    +

    1i

    TH

    TH

    RRVVi

    +=

    1

    1

    2

    TH

    THV +

  • 8/14/2019 18009654 Circuits and Electronics

    303/414

    6.002 Fall 2000 Lecture 193

    Example:

    :TH

    :THV

    2IRVTH =

    2TH =

    +

    -THV 2

    +

    -TH 2

  • 8/14/2019 18009654 Circuits and Electronics

    304/414

    6.002 Fall 2000 Lecture 203

    Graphically, ivv THTH +=

    i

    Open circuit( )0i

    THvv = OCV

    Short circuit( )0v TH

    TH

    R

    vi

    =

    SCI

    v

    THR

    1

    THv

    SCI

    OCV

  • 8/14/2019 18009654 Circuits and Electronics

    305/414

    6.002 Fall 2000 Lecture 213

    Method 5:

    The Norton Method

    in recitation,see text

    +

    +

    i

    +

    -v

    Nortonequivalent

    TH

    THN

    R

    VI =

    NTH =N

  • 8/14/2019 18009654 Circuits and Electronics

    306/414

    6.002 Fall 2000 Lecture 223

    Summary

    101100

    Discretize matterLMD LCA

    Physics EE

    R, I, V Linear networks

    Analysis methods (linear)KVL, KCL, I VCombination rulesNode methodSuperpositionThveninNorton

    NextNonlinear analysis

    Discretize voltage

  • 8/14/2019 18009654 Circuits and Electronics

    307/414

  • 8/14/2019 18009654 Circuits and Electronics

    308/414

    6.002 Fall 2000 Lecture 24

    Review

    Discretize matter by agreeing toobserve the lumped matter discipline

    Analysis tool kit: KVL/KCL, node method,superposition, Thvenin, Norton

    (remember superposition, Thvenin,Norton apply only for linear circuits)

    Lumped Circuit Abstraction

  • 8/14/2019 18009654 Circuits and Electronics

    309/414

    6.002 Fall 2000 Lecture 34

    Discretize value Digital abstraction

    Interestingly, we will see shortly that thetools learned in the previous threelectures are sufficient to analyze simpledigital circuits

    Reading: Chapter 5 of Agarwal & Lang

    Today

  • 8/14/2019 18009654 Circuits and Electronics

    310/414

    6.002 Fall 2000 Lecture 44

    Analog signal processing

    But first, why digital?In the past

    By superposition,

    The above is an adder circuit.

    2

    21

    11

    21

    20

    VRR

    VRR

    V+

    +

    +

    =

    If ,21 RR =

    2

    21

    0

    VVV

    +=

    1V

    1

    2+

    2V +

    0V

    and

    might represent the

    outputs of two

    sensors, for example.

    1V 2V

  • 8/14/2019 18009654 Circuits and Electronics

    311/414

    6.002 Fall 2000 Lecture 54

    Noise Problem

    noise hampers our ability to distinguishbetween small differences in value e.g. between 3.1V and 3.2V.

    Receiver:

    huh?

    add noise onthis wire

    t

  • 8/14/2019 18009654 Circuits and Electronics

    312/414

    6.002 Fall 2000 Lecture 64

    Value Discretizati