1.SDH Basics.ppt

Embed Size (px)

Citation preview

  • 8/22/2019 1.SDH Basics.ppt

    1/66

    1

    SDH BASICS

    What is SDH?

    Characteristics of SDH

    ITU-Ts Recommendations

    Bit Rates

    Path and Section

    Review Questions

    SDH TRANSMISSION SYSTEM

  • 8/22/2019 1.SDH Basics.ppt

    2/66

    2

    What is SDH?

    A New Digital Hierarchy

    155.52 Mb/s, 622.08 Mb/s, 2488.32 Mb/s, 9953.28 Mb/s,39813.120Mb/s

    Existing PDH and future ATM signals are carried overthe SDH system.

    Very basic functions are same as PDH.

    Multiplex low bit rate digital signals to higher bit rate

    and transmit large information efficiently.

  • 8/22/2019 1.SDH Basics.ppt

    3/66

    3

    What are the differences ?

    Synchronous Network

    Basically, all network elements work on a single clock

    source.

    Abundant Overhead Bits

    To carry large information for Network Management.

    Unified Interface and Multiplexing Specifications

    Common to all countries.

    Standardized optical interfaces.

  • 8/22/2019 1.SDH Basics.ppt

    4/66

    4

    What are the benefits? (1)

    - Synchronous Network -

    Simple multiplexing process

    Easy access to tributary signals in a multiplexed highbit rate signal.

    ADD/DROP distribution

    RING survivability

    CROSS CONNECT capacity management

    band width management

    protection route diversity

    140M 140M

    34M 34M

    8M 8M

    2M

    DDF

    ADD/DROP MUX

    PDHSTM-1 STM-1

    MINI X-CONN

    2M

    SDH

    Simple Access to Tributaries

  • 8/22/2019 1.SDH Basics.ppt

    5/66

    5

    What are the benefits? (2)

    - Overhead Bits

    Realization of highly advanced NetworkManagement System for:

    Fault management

    Configuration management

    Performance management

    Security management

    Accounting management

  • 8/22/2019 1.SDH Basics.ppt

    6/66

    6

    What are benefits SDH? (3)

    - Unified Interface

    Multi-vendorEnvironment

    International Connection

  • 8/22/2019 1.SDH Basics.ppt

    7/667

    What are SDH?

    - in conclusion

    SDH is the infrastructure for the telecommunication

    network of the 21st century, providing board band and

    intelligent services.

  • 8/22/2019 1.SDH Basics.ppt

    8/668

    ITU-Ts Recommendations on SDH

    G.707 Network Node Interface for the SDH

    G.773 Protocol Suits for Q-interfaceG.774 SDH Management Information Model for the Network Element

    View

    G.781 Synchronization layer functions

    G.782 Types and General Characteristics of SDH Multiplexing

    EquipmentG.783 Characteristics of SDH Multiplexing Equipment Functional

    Blocks

    G.784 SDH Management

    G.803 Architecture of Transport Networks Based on the SDH

    G.813 Timing characteristics of SDH equipment slave clocks(SEC)

    G.842 Interworking of SDH network protection architectures

    G.957 Optical Interfaces for Equipments and Systems Relating toSDH

    G.958 Digital Line Systems Based on SDH for Use on Optical FiberCables

  • 8/22/2019 1.SDH Basics.ppt

    9/669

    SDH Bit Rates

    SDH

    G.707

    STM: Synchronous Transport Module

    CEPT North America Japan2.048 Mb/s 1.544 Mb/s 1.544 Mb/s8.448 Mb/s 6.312 Mb/s 6.312 Mb/s

    34.368 Mb/s 44.376 Mb/s 32.064 Mb/s139.264 Mb/s 97.728 Mb/s

    G.702

    PDH

    STM-256 39,813.120 Mb/s

    STM-0 51.840 Mb/s

    STM-64 9,953.280 Mb/s

    STM-16 2,488.320 Mb/s

    STM-4 622.080 Mb/s

    STM-1 155.520 Mb/s

  • 8/22/2019 1.SDH Basics.ppt

    10/6610

    Path and Section

    MUX LT LT MUX

    Regenerator

    Section

    Multiplex Section

    Path

    Regenerator Regenerator

    Section Section

    REG REG

    VC Processing STM-N Processing

  • 8/22/2019 1.SDH Basics.ppt

    11/6611

    Review QuestionsFill up the following sentences with correct words:A) When the SDH and PDH are compared, the ( 1 ) is an asynchronous system andthe ( 2 ) is a synchronous system. The ( 3 ) conforms to the worldwide unique

    standard. On the other hand, there are three different ( 4 ) standards, for Europe

    and others, North America, and Japan.

    B) The peculiarities of the SDH are that the entire network basically operates with one (

    1 ), it conforms to the ( 2 ) recommendation, and advanced ( 3 ) is easily

    enabled by using abundant ( 4 ).C) The bit rate of STM-1 is ( 1 ) Mb/s, bit rate of STM-4 is ( 2 ) Mb/s, and bit rate

    of STM-16 is ( 3 ) Mb/s. They are ( 4 ) multiple of STM- ( 5 ).

    D) The regenerator section is a section between ( 1 ) ( 2 ) or a section between a

    ( 3 ) and its neighbor ( 4 ).

    E) The multiplex section is a section between nodes where ( 1 ) is generated and (

    2 ) .F) The path is a connection between assembling and disassembling points of ( 1 ).

  • 8/22/2019 1.SDH Basics.ppt

    12/6612

  • 8/22/2019 1.SDH Basics.ppt

    13/6613

    MULTIPLEXING STRUCTURE,

    FRAME STRUCTURE AND

    POINTER

    Multiplexing Structure

    Frame Structure

    Pointer

    Review Questions

    SDH TRANSMISSION SYSTEM

  • 8/22/2019 1.SDH Basics.ppt

    14/6614

    SDH Multiplexing Structure (1)

    X1 AUG-64

    Poi nt er pr ocessi ng

    Multiplexing

    Aligning

    Mapping

    6312 kb/s

    2048 kb/s

    1544 kb/sC-11

    C-12

    C-2

    34368 kb/s44736 kb/s

    139264 kb/s

    C-3

    VC-3TU-3

    TU-2

    x 3

    VC-2

    VC-12TU-12

    VC-11

    x 4

    TU-11

    x 1

    C-4

    TUG-2

    x 7x 7

    TUG-3x 1

    x 3AU-4 VC-4

    VC-3AU-3

    x 3

    x 1

    AUG-1

    C-4-4c

    VC-4-256cAU-4-256c

    C-4-16c

    C-4-64c

    C-4-256c

    AUG-4

    X1

    AUG-256STM-256

    STM-64

    STM-16X1

    STM-4X1

    STM-1X1

    STM-0X1

    VC-4-16cAUG-16

    x 4

    x 4

    x 4

    x 4

    x 1

    x 1

    x 1

    x 1

    VC-4-64cAU-4-64c

    AU-4-16c

    VC-4-4cAU-4-4c

  • 8/22/2019 1.SDH Basics.ppt

    15/6615

    SDH Multiplexing Structure (2)

    X1 AUG-64

    Poi nter pr ocessi ng

    Multiplexing

    Aligning

    Mapping

    6312 kb/s

    2048 kb/s

    1544 kb/sC-11

    C-12

    C-2

    34368 kb/s44736 kb/s

    139264 kb/s

    C-3

    VC-3TU-3

    TU-2

    x 3

    VC-2

    VC-12TU-12

    VC-11

    x 4

    TU-11

    x 1

    C-4

    TUG-2

    x 7x 7

    TUG-3x 1

    x 3AU-4 VC-4

    VC-3AU-3

    x 3

    x 1

    AUG-1

    C-4-4c

    VC-4-256cAU-4-256c

    C-4-16c

    C-4-64c

    C-4-256c

    AUG-4

    X1

    AUG-256STM-256

    STM-64

    STM-16X1

    STM-4X1

    STM-1X1

    STM-0X1

    VC-4-16cAUG-16

    x 4

    x 4

    x 4

    x 4

    x 1

    x 1

    x 1

    x 1

    VC-4-64cAU-4-64c

    AU-4-16c

    VC-4-4cAU-4-4c

  • 8/22/2019 1.SDH Basics.ppt

    16/66

    16

    Multiplexing Process of SDHExample: 2 Mb/s to STM-4

    TUG-3HO POH TUG-3TUG-3 123

    C-12LO POH

    S

    AU-4 PTR

    pointer offset valueTU-1 PTR

    C-12

    VC-12

    TU-12

    TUG-3

    VC-4

    AUG-1

    2.048Mb/s

    TU-1 PTR

    TUG-2

    TUG-2

    PDH

    SOH

    AU-4 PTR

    11VC-12

    VC-12

    1

    VC-4 AU-4

    AUG-4

    AUG-4

    STM-4

    pointer offset value

    2.048Mb/s

    AUG-1AUG-1AUG-1AUG-1

    TU-1 PTR 2TU-1 PTR 3 12VC-1213VC-121

    TUG-2 7

    1234

    VC-4

  • 8/22/2019 1.SDH Basics.ppt

    17/66

    17

    STM-1 Frame Structure

    5

    3

    R-SOH: Regenerator Section OverheadM-SOH: Multiplex Section Overhead

    1 2 3 5 6 7 84

    ( 1) ( 2) ( 9)

    270 bytes

    125 s

    8 bits = 1 byte

    270 columns

    9

    rows

    125 s

    ( 1)

    ( 2)

    ( 9)

    9 261

    Payload Capacity

    R-SOH

    1 AU PTR

    M-SOH

  • 8/22/2019 1.SDH Basics.ppt

    18/66

    18

    Byte Interleaved Multiplex and Frame Structure STM-N

    STM-1 (AU-4) STM-N

    N CBA N

    NNNSTM-1

    STM-1

    AU-4AAA

    STM-1BBB

    CCC

    STM-N

    byte interleaved multiplexing

    R SOH

    M SOH

    N

    N

    9 x N 261 x N

    9 rows

    125 s

    STM-1

    AU-4

    AU-4

    AU-4

    CBA

    AU PTRs

    ABC NABC N

  • 8/22/2019 1.SDH Basics.ppt

    19/66

    19

    Pointer Function

    R SOH

    STM-4

    Example:

    2 Mb/s to STM-4 via AU-4

    AU PTR

    M SOH

    VC-4(3)

    VC-4(2)

    VC-4(1)

    VC-4 (4)

    VC-12 (63)

    63

    2

    1

    2 M signal

    (

    )

    VC4

    P

    O

    H

    TU12 PTR

    TU-3 PTR area

    POHVC-12

    POHVC-12

    POHVC-12

  • 8/22/2019 1.SDH Basics.ppt

    20/66

    20

    AU-4 Pointer and Pointer Offset Number

    N N N N S S D DD DDI I II I

    10 bits

    H1 H2

    H1 * * H2 * * H3H3H3

    782 # #

    521 # #

    86 # #

    435 # #

    696 # #

    87 # #

    522 # #

    # same number for 3 consecutive bytes

    0 0 0

    VC-4

    Pointer Configuration

    1 1 1

  • 8/22/2019 1.SDH Basics.ppt

    21/66

    21

    TU-12 Pointer and Pointer Offset Numbering

    105

    0

    35

    70

    139

    34

    69

    104VC-12

    TU-12

    N N N N S S D DD DDI I II I

    10 bits

    V1 V2

    V 1

    V 2

    V 3

    V 4

    35 bytes

    125 s

    36 bytes

    500 s

    V 1

    V 2

    V 3

    V 4

    Pointer Structure

    J2

    Z6

    K4

    V 5

    V5

    500 s

    125 s

    20 *

    *In this case, pointer offset value is set20(0000010100)

  • 8/22/2019 1.SDH Basics.ppt

    22/66

    22

    Pointer Renewal

    ( )

    B

    ( )

    A

    B

    A

    STM-1

    STM-N

    delay

    input signal

    frame aligned signal

    multiplexed signal

    A B

    STM-1

    STM-1

    STM-1

    delay

  • 8/22/2019 1.SDH Basics.ppt

    23/66

    23

    AU-4 Justification (1)

    N N N N S S I I II ID DD DD

    H1 H2

    pointer value

    1

    4

    9

    Negative justification opportunity(3 bytes)

    Positive justification opportunity(3 byte)

    Negative justification control

    invert five D-bits accept majority vote

    Positive justification controlinvert five I-bits accept majority vote

    I : Increment bitD : Decrement bit

    N : New data flag bit

    0 0 0

    AU 4 J tifi ti (2)

  • 8/22/2019 1.SDH Basics.ppt

    24/66

    24

    AU-4 Justification (2)

    - Positive Justification -

    n+1n+1n n nn-1

    H1 H2 H3 H3 H311Y Y

    H1 H2 H3 H3 H311Y Y

    start of VC-4

    pointer value (n)

    pointer value (I bits inverted)

    positive justification start of VC-4 (new)

    pointer value (n+1)

    H1 H2 H3 H3 H311Y Y

    H1 H2 H3 H3 H311Y Y

    n+1n+1n n nn-1

    n+1n+1n n nn-1

    n+1n+1n n nn-1

    Frame 1

    Frame 2

    Frame 3

    Frame 4

    125 s

    250 s

    375 s

    500 s

    AU 4 J tifi ti (3)

  • 8/22/2019 1.SDH Basics.ppt

    25/66

    25

    AU-4 Justification (3)

    - Negative Justification -

    n-2 n-1

    n+1n+1

    H1 H2 H3 H3 H311Y Y

    H1 H2 H3 H3 H311Y Y

    start of VC-4

    pointer value (n)

    pointer value (D bits inverted)

    negative justification start of VC-4 (new)

    pointer value (n-1)

    H1 H2 11Y Y

    H1 H2 H3 H3 H311Y Y

    n+1n+1n n nn-1

    n+1n+1n n n

    n+1n+1n n nn-1

    Frame 1

    Frame 2

    Frame 3

    Frame 4

    125 s

    250 s

    375 s

    500 s

    n-1

    n-2 n-1 n-1n-1

    n-1n-1n-2

    n n nn-1n-1n-1n-2

  • 8/22/2019 1.SDH Basics.ppt

    26/66

    26

    Review Questions

    Fill up the spaces enclosed in parentheses in the following sentences with correct words:1. The cycle of the frame structure of STM-1 is ( a ) and composed of ( b ) bytes. (

    c ) vertical matrixes and ( d ) horizontal matrixes represent the frame structure.

    2. An STM-4 signal has four times the rate of an STM-1 signal. The STM-4 signal has rate of (a )Mbit/s (=( b ) x ( c )Mbit/s). There are 36 columns for section overhead plus (

    d ) pointer. There are ( e ) columns or byte for an STM-4 signal.

    3. Multiplexing process route via AU-( a ) is ( b ) standard and used in most countries.

    One AUG is equivalent one ( c ). A three of ( d ) signals is formed an AUG.

    4. VC-3 or VC-4 POH starts immediately after ( a ) (if the pointer offset value is 0); but for

    VC12 POH, V5 is placed right after the ( b ) byte not after the ( c ).

    5.. The five I bits in the (H1, H2) pointer word are inverted if the system request a ( a )

    frequency justification while the five D bits used for ( b ) frequency justification. In either

    case, the majority vote rule is applicable to both the I and the D bits. Under a normal operation

    condition, the pointer value can be increased or decreased by ( c ). If the pointer value is

    728, and a positive frequency justification is requested, the new pointer value will become ( d

    ) for the next three frames. If the pointer value is 0, and a negative frequency justification is

    requested, the new pointer value will become ( e ) for the next three frames.6. The NDF of SDH pointer has a code of ( a ) for a normal operation; on the other hand, for re-

    starting (rebooting ) a new pointer while ignoring the existing one, NDF should be set to ( b

    ).

  • 8/22/2019 1.SDH Basics.ppt

    27/66

    27

  • 8/22/2019 1.SDH Basics.ppt

    28/66

    28

  • 8/22/2019 1.SDH Basics.ppt

    29/66

    29

    OVERHEAD AND MAPPING

    Overhead

    Mapping

    Review Questions

    SDH TRANSMISSION SYSTEM

  • 8/22/2019 1.SDH Basics.ppt

    30/66

    30

    STM-1 Frame Structure and SOH

    RSOH

    MSOH

    A U P TR

    STM-1 PAYLOAD

    261 bytes9 bytes

    Sec tion O verhead

    9

    rows

    AU Pointer(s)

    RSOH

    MSOH

    }

    }: bytes reserved for national use

    A1 A1 A1 A2 A2 A2 J0

    B1 E1 F1

    D1 D2 D3

    B2 B2 B2 K1 K2

    D4 D5 D6

    D7 D8 D9

    D10S1 Z1 Z1 Z2 Z2 M1 E2

    D11 D12

  • 8/22/2019 1.SDH Basics.ppt

    31/66

    31

    Function of SOH (1)

    Framing (A1, A2)

    Regenerator section trace (J0) regenerator section connection check

    Data communication channel (D1-3) regenerator section DCC, 192 kb/s

    (D4-12) multiplex section DCC, 576 kb/s

    Order wire (E1) accessible at regenerators

    (E2) accessible at multiplexers

    User channel (F1) 64 kb/s clear channel

    Error monitoring (B1) regenerator section BIP-8

    (B2) multiplexer section BIP-24N

    APS signaling (K1,2) automatic protection switching(K2) also used as MS-AIS and MS-RDI

    Synchronization status (S1) indication of quality level

    Section status reporting (M1) REI (count of BIP-24N)

    RDI ; Remote Defect Indication

    (formerly FERF, Far End Receive Failure)REI ; Remote Error Indication

    (formerly FEBE, Far End Block Error)

    MS ; Multiplex Section

    DCC ; Data Communication Channel

    A1 A1 A1 A2 A2 A2 J0

    B1 E1 F1

    D1 D2 D3

    B2 B2 B2 K1 K2

    D4 D5 D6

    D7 D8 D9

    D10

    S1 Z1 Z1 Z2 Z2 M1 E2

    D11 D12

    AU Pointer(s)

    RSOH

    MSOH

    }}

    : bytes reserved for national use

  • 8/22/2019 1.SDH Basics.ppt

    32/66

    32

    Function of SOH (2)

    Framing (A1, A2)

    Regenerator section trace (J0) regenerator section connection check

    Data communication channel (D1-3) regenerator section DCC, 192 kb/s

    (D4-12) multiplex section DCC, 576 kb/s

    Order wire (E1) accessible at regenerators

    (E2) accessible at multiplexers

    User channel (F1) 64 kb/s clear channel

    Error monitoring (B1) regenerator section BIP-8

    (B2) multiplexer section BIP-24N

    APS signaling (K1,2) automatic protection switching(K2) also used as MS-RDI

    Synchronization status (S1) indication of quality level

    Section status reporting (M1) REI (count of BIP-24N)

    RDI ; Remote Defect Indication

    (formerly FERF, Far End Receive Failure)REI ; Remote Error Indication

    (formerly FEBE, Far End Block Error)

    MS ; Multiplex Section

    DCC ; Data Communication Channel

    A1 A1 A1 A2 A2 A2 J0

    B1 E1 F1

    D1 D2 D3

    B2 B2 B2 K1 K2

    D4 D5 D6

    D7 D8 D9

    D10

    S1 Z1 Z1 Z2 Z2 M1 E2

    D11 D12

    AU Pointer(s)

    RSOH

    MSOH

    ; bytes reserved for national use

    }

    }

  • 8/22/2019 1.SDH Basics.ppt

    33/66

    33

    Section and Path Trace Method

    RSTMSTHPTLPT RST LPTHPTMST

    RST

    J0: Section trace

    VC-4 POH (J1: Path trace)

    VC-3 POH(J1: Path trace)

    VC-12(J2: Path trace)

    Node A

    RST: Regenerator Section Termination MST: Multiplex Section TerminationHPT: High Order Path Termination LPT: Lower Order Path Termination

    Node -A Node -BPath Trace : Used

    Transmit path trace : 123-565656

    Path Trace expected value

    : ABCDEGF

    Received value : ABCDEFG

    Path Trace : Used

    Transmit path trace : ABCDEFG

    Path Trace expected value

    : 123-565656

    Received value : 123-565656

    Node B

  • 8/22/2019 1.SDH Basics.ppt

    34/66

    34

    Section Trace(J0)

    RST

    RST

    Node A Node B

    RST

    RST

    RST

    RST

    Node C

    RST: Regenerator Section Termination

    Terminated Section ofSection Trace

    Terminated Section of

    Section Trace

    a

    c

    a

    c

    b

    d

    b

    d

  • 8/22/2019 1.SDH Basics.ppt

    35/66

    35

    Principle of BIP 8

    1

    n

    K i =even - - - - - K=0

    odd - - - - - K=1

    B1 byte

    # nBlock

    # n+1Block

    1121 * * * K1 * * * 81 12 22 * * * K2 * * * 82

    1i 2i * * * Ki * * * 8i

    1n 2n * * * Kn * * * 8n

    1 2* * * * *K * * * *8

    BIP C i A

  • 8/22/2019 1.SDH Basics.ppt

    36/66

    36

    BIP Computing Area

    AU PTR

    B1

    B2 B2 B2

    countedafter scrambling

    countedbefore scram bling

    BIP 8 for Regenerator Section BIP N x 24 for Multiplex Section

    B1 renewed at every regenerator

    B2 renewed only at multiplexer

    RSOH RSOH

    MSOH

    A U P TR

    MSOH

    # n

    # n+1

  • 8/22/2019 1.SDH Basics.ppt

    37/66

    37

    Higher-Order POH Functions (VC-3, VC-4)

    Path error monitor (B3) BIP-8

    Pa th sta tu s re po rt (G1 ) R EI (Re mote E rror In dic ation )count of error (BIP-8 results)RDI (Remote Defect Indication)

    receiving path AIS, signal failurepath trace mismatch

    Path trace (J1) verification of VC connectionuser p rogrammable, 15 characters

    Signal label (C2) indication of VC compositionunequipped, equipped-non-specific,TUG structure, locked TU, ATM,async. 34M or 45M, async. 140M,MAN (DQDB), FDDI

    Path user channels (F2, F3) 64 kb/s clear channelsAPS sign aling (K3) automatic protection switching at the

    higher order path levelPo siti on ind ica to r ( H4 ) mult ifra me p os itio n for th e V C- 1, VC -2Network operator byte (N1) for tandem connection maintenance

    REI; formerly FEBE (Far End Block Error), RDI; formerly FERF (Far End Receive Failure)

    J1

    B3

    C2

    G1

    F2

    H4

    F3

    K3

    N1

    VC-3 / V C-4payload

    VC-3 / VC-4

  • 8/22/2019 1.SDH Basics.ppt

    38/66

    38

    TU-12 multiframe indication byteVC-3/VC-4POH Portion

    VC-3/VC-4 Payload

    (V4)

    In H4(X Y), X Y represent bits 7 and 8 of H4

    H4(00)9 rows

    PTR(V1)

    PTR(V2)

    PTR(V3)

    (V4)

    VC-3/VC-4 PayloadH4(01)

    VC-3/VC-4 PayloadH4(10)

    VC-3/VC-4 Payload

    H4(11)

    VC-3/VC-4 PayloadH4(00)

    H4 bits1 2 3 4 5 6 7 8 Frame No TimeX X 1 1 X X 0 1 0 0X X 1 1 X X 1 0 1

    X X 1 1 X X 1 0 2X X 1 1 X X 1 1 3 500s TU-n multiframe

    X: Bit reserved for future international standardization. Its contentshall be set to 1" in the interim.

  • 8/22/2019 1.SDH Basics.ppt

    39/66

    39

    Path Trace (J1)

    LPT

    Node A Node B

    Cross

    connection

    L

    PT

    Node C

    LPT: Lower Order Path Termination[It will change to HPT(High Order Path Termination) when VC-4 J1 is used]

    Terminated Section of J1 (J2) Path Trace

    a

    c

    b

    d

    T d C ti

  • 8/22/2019 1.SDH Basics.ppt

    40/66

    40

    Tandem Connection

    B3 monitor B3 monitor

    Compare

    Error in TC

    Error detection (for all VCs in a bundle)

    Data link (for the first VC in the bundle)

    Error count

    N1 byte in VC

    VC

    * The Tandem Connection is applicable to a single VC or bundled VCs.

    B Network (Operator Administrative area)A Network C Network

    RS RS RSMS MSMS

    Path

    RS: Regenerator Section

    MS: Multiplex Section

    VC

    Tandem Connection

    F ti f POH (VC 1 VC 2)

  • 8/22/2019 1.SDH Basics.ppt

    41/66

    41

    Functions of POH (VC-1x, VC-2)

    K4

    N2

    J2

    V5

    500s

    125s

    REI RFI RDI1 2 4 5 6 7 83

    Signal LabelBIP-2

    V5 byte

    Path error monitor (V5) BIP-2Path status report (V5) REI (Remote Error Indicat ion)

    count of e rror (BIP-2 results)RFI (Remote Failure Indication)RDI (Remote Defect Indication)

    receiving path AIS, signal failure

    Signal label (V5) indication of VC compositionunequipped, equipped-non-specific,asynchronous, bit synchronous,byte synchronous, equipped-unused

    Path access point identifier (J2) verification of VC connectionuser programmable, 15 characters

    Network operator byte (N2) for tandem connection maintenanceAPS signaling (K4) automatic protection switching at the

    lower order path level

    REI ; former FEBE (Far End Block Error)RDI ; former FERF (Far End Receive Failure)RFI ; formerly this bit was assigned to Path Trace

    VC

    -1x/

    VC

    -2

    T bl f SAPI & API

  • 8/22/2019 1.SDH Basics.ppt

    42/66

    42

    Table for SAPI & API

    Total 94 characters plus space

    0 x x x x x x x(o)

    0 x x x x x x x(k)

    1 C 1C2C3C4C5C6C7

    0 x x x x x x x(T)

    J1

    J1

    J1

    J1

    0 x x x x x x x(2)

    0 x x x x x x x(1)

    0 x x x x x x x(#)

    J1

    J1

    J1

    1 6

    m u

    l t i - f r

    a m e

    125s

    2ms

    example : VC-4 or VC-3 case

    CRC of previous 16 multiframe for J1

    maximum 15 characters (ex. Tokyo-Osaka #21)

    (Space) 3 F Y l

    ! 4 G Z m

    5 H [ n

    # 6 I \ o

    $ 7 J ] p

    & 8 K ^ q

    % 9 L _ (Under Bar) r (Apostrophe) : (Colon) M ! s

    ( ; (Semicolon) N a t

    ) < O b u

    * = P c v

    + > Q d w

    , (Comma) ? R e x

    - (Hyphen) @ S f y

    . (Period) A T g z

    / B U h {

    0 C V i |

    1 D W j }

    2 E X k ~

    E d t E d M i t Si l

  • 8/22/2019 1.SDH Basics.ppt

    43/66

    43

    End-to-End Maintenance Signal

    AIS AIS

    Low Order Path Section

    High Order Path Section

    Multiplex Section

    RegeneratorSection

    RegeneratorSection

    LOVC HOVC LT REG LT HOVC LOVC

    AIS AISAIS AIS

    LOPLOPLOSLOF

    LOSLOF

    RDI (FERF)

    RDI (FERF)

    RDI (FERF)

    REI (FEBE)

    REI (FEBE)

    REI (FEBE)

    BIP-8BIP-8

    BIP-24N

    BIP-2

    BIP-8

    MUX

    Terminal Equipment generation detection

    M i 2M Si l i t VC 12

  • 8/22/2019 1.SDH Basics.ppt

    44/66

    44

    Mapping 2M Signal into VC-12

    R

    32 bytes

    32 bytes

    32 bytes

    V5

    RJ2

    RN2

    RK4

    R

    1 0 O O O O R R

    1 0 O O O O R R

    1 0 R R R R R R

    32 bytes

    V5R

    RJ2

    RN2

    RK4

    R

    31 bytes + 7 bits

    32 bytes

    C1C2O O O O R R

    C1 C2 O O O O R R

    C1 C2 R R R R R S1

    S2 I I I I I I I

    32 bytes

    32 bytes

    * The latest recommendation deletedbit synchronous mapping.

    Async hronous Byte Synchronous

    140bytes

    500 s

    35 bytes125 s

    Bit Synchronous

    I ; informationO ; overheadC ; justification controlS ; justification opportunityR ; fixed stuff

    R

    TS1 to 15

    TS16TS17 to 31

    R

    V5

    J2

    RN2

    RK4

    R

    R

    TS1 to 15

    TS16

    TS17 to 31

    R

    TS1 to 15

    TS 0

    TS16

    TS17 to 31

    R

    TS1 to 15

    TS16

    TS17 to 31

    TS0

    TS 0

    TS0

    TS0

    M i 34M Si l i t VC 3

  • 8/22/2019 1.SDH Basics.ppt

    45/66

    45

    Mapping 34M Signal into VC-3

    1

    C = R R R R R R C1 C2 A B = R R R R R R R S1 S2 I I I I I I= R R R R R R R R

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    C

    C

    C

    C

    C

    A B 8I

    J1

    B3

    C2

    G1F2

    H4

    Z3

    K3

    Z5

    T1

    T2

    T3

    125s

    3 rows

    3 rows

    3 rows

    84 bytes

    VC-3 POH

    R : F ixed stu ffing b it

    C 1, C 2 : Justificatio n control bit

    S 1, S 2 : Justification opportunity bit

    I : Informatio n bit

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    3x8 I

    M i 140M Si l i t VC 4

  • 8/22/2019 1.SDH Basics.ppt

    46/66

    46

    Mapping 140M Signal into VC-4

    Y Y Y Z

    Y Y Y Y96 I 96 I 96 I 96 I 96 I

    I ; in fo rm a tio n

    O ; o ve rh ea d

    C ; justification controlS ; justification opportunity

    R ; f ixe d st uf f

    96 I 96 I 96 I 96 I 96 I

    96 I 96 I 96 I 96 I 96 I

    96 I 96 I 96 I 96 I 96 I

    W X Y Y Y

    Y Y Y

    POH

    1 12 bytes1

    W = I I I I I I I I

    X = C R R R R R OO

    Y = R R R R R R R R

    Z = I I I I I I S R

    X X

    X

    X

    J1

    B3C2

    G1

    H4

    F3

    K3

    N1

    F2

    SOH

    PTR

    SOH

    1 byte 13 bytes

    POH 20 blocks of 3 bytes

    VC-4

    STM-1

    M i ATM C ll I t VC 4

  • 8/22/2019 1.SDH Basics.ppt

    47/66

    47

    Mapping ATM Cell Into VC-4

    J1

    B3

    C2

    G1

    F2

    H4F3

    K3

    N1

    VC-4 POH

    VC-4

    ATM ce llheader

    53 bytes

    VC 12 (2 Mb/s) to VC 4 (STM 1)

  • 8/22/2019 1.SDH Basics.ppt

    48/66

    48

    VC-12 (2 Mb/s) to VC-4 (STM-1)

    36

    36

    36

    36

    9

    1 2 3

    PTR

    PTR

    4

    1 2 3 1 2 3 1 2

    9

    12 = 4 x 3

    1 2 7 1 2 7 1 2 7 1 2 77

    (12)(4) ~ (11)(3)(2)(1)S

    S

    86 = 12 x 7 + 2

    9P

    O

    H

    S S

    1 2 3 1 2 3 1 2 3 1 2 31

    261 = 86 x 3 + 3

    AU PTR

    AU PTR

    SO H

    SO H

    PTR

    PTR

    3

    x 3

    x 7

    x 3V3

    V2

    V1

    R

    125 s

    9

    9

    9

    270 = 261 + 9

    VC 12

    (NPI)

    NPI

    125 s

    125 s

    125 s

    125 s

    125 s500 s

    STM-1

    AU-4

    VC-4

    TUG-3

    TUG-2

    TU-12

    125 s

    M i f VC 12 i t VC 4

  • 8/22/2019 1.SDH Basics.ppt

    49/66

    49

    Mapping of VC-12 into VC-4

    VC 3 (34 Mb/s) to VC 4 (STM 1)

  • 8/22/2019 1.SDH Basics.ppt

    50/66

    50

    VC-3 (34 Mb/s) to VC-4 (STM-1)

    Scrambler

  • 8/22/2019 1.SDH Basics.ppt

    51/66

    51

    Scrambler

    scrambled

    1111111000000100 - - - -

    1111111000000100 - - - -

    not scrambled

    Payl oadSOH

    123.....

    9

    Payload

    D QC S

    D QC S

    D QC S

    D QC S

    D QC S

    D QC S

    D QC S

    clock

    set = frame pulse

    +

    +

    data

    scrambleddata

    +

    1 1 1 1 1 1 10 1 1 1 1 1 10 0 1 1 1 1 10 0 0 1 1 1 10 0 0 0 1 1 10 0 0 0 0 1 10 0 0 0 0 0 11 0 0 0 0 0 00 1 0 0 0 0 00 0 1 0 0 0 00 0 0 1 0 0 00 0 0 0 1 0 00 0 0 0 0 1 01 0 0 0 0 0 11 1 0 0 0 0 00 1 1 0 0 0 0

    . .

    . .

    . .

    modulo 2 addition

    A + B = C

    1 + 1 = 0

    1 + 0 = 1

    0 + 1 = 1

    0 + 0 = 0

    scrambler output

    2M PDH Signal Extraction from STM-1

  • 8/22/2019 1.SDH Basics.ppt

    52/66

    52

    2M PDH Signal Extraction from STM 1

    V1

    V2

    V3

    V4

    V5

    36

    36

    36

    36

    144TS

    V1

    V2

    V3

    V4

    V5

    9Row

    3435

    V5

    J2

    N2

    K4

    9

    Rows

    9 bytes 261 bytes

    H1 H2 H3

    AU PTRJ1

    C-12

    2.048Mbit/sInformation

    VC-124 Multi-frames

    35

    35

    35

    140TS

    STM-1 Frame

    TU-124 Multi-frames

    (4x9 Frame)

    TU-12frame in a row

    9Row

    9Row

    * * * ** *

    H1 H2 H3* * * ** * J1

    J1

    J1

    H1 H2 H3* * * ** *

    H1 H2 H3* * * ** *

    9Rows

    9Rows

    9Rows

    PTR

    N

    P

    I

    1

    3

    4

    1

    2

    3

    4

    VC-4

    261=86x3+3

    9Row

    (NPI)P

    OH

    S S

    1 2 3 1 2 3 1 2 3 1 2 3

    86=12x7+2

    1 2 7 1 2 7 1 2 7 1 7 1 2 7S

    4

    12=4x3

    S (12)(4) ~ (11)(3)(2)(1)

    1 2 3 1 2 3 1 2 3 1 2 3

    PTR

    PTR

    2

    TU-12(4x9 frame)

    VC-12

    4 bytes

    TU-12

    TUG-2

    TUG-3

    PTR

    Contiguous & Virtual Concatenation

  • 8/22/2019 1.SDH Basics.ppt

    53/66

    53

    Contiguous & Virtual Concatenation

    STM-16

    STM-1

    STM-1

    STM-1

    NE-A

    STM-4

    STM-4c VC-4-4c

    NE-CNE-B NE-D

    Contiguous

    Concatenation

    Virtual

    Concatenation

    STM-16

    Contiguous

    Concatenation

    AU-4 #1

    AU-4 #2

    AU-4 #3

    AU-4 #4

    AU-4-4c

    AU-4#1

    AU-4#2

    AU-4#3

    AU-4#4

    AU-4#1

    AU-4#2

    AU-4#3

    AU-4#4

    AU-4-4c

    Virtual Concatenation

  • 8/22/2019 1.SDH Basics.ppt

    54/66

    54

    Virtual Concatenation

    For the transport of payloads that do not fit

    efficiently into the standard set of virtual containers

    (VC-3/4/12)

    VC concatenation can be used. VC concatenation is

    defined for:VC-3/4- to provide transport for payloads requiringgreater capacity than one Container-3/4;

    VC-12- to provide transport for payloads that require

    capacity greater than one Container-12.

    Contiguous Concatenation of X VC-4s

  • 8/22/2019 1.SDH Basics.ppt

    55/66

    55

    Contiguous Concatenation of X VC 4s

    (VC-4-Xc, X=4, 16, 64, 256)

    AU-4-4c PTRs

    MSOH

    RSOH

    9X 261X

    5

    3

    1

    261X1J1B3

    C2

    F3K3

    N1

    G1

    F2

    H4

    Fixed

    StuffC-4-Xc

    X-1VC-4 POH

    STM-N

    AU-4-4 PTRs

    MSOH

    RSOH

    9N 261N

    5

    3

    1

    1261N

    VC-4 POH

    STM-N

    VC-4-Xc

    Concatenated VC-4-XcVC-4-N

    J1B3

    C2

    F3K3

    N1

    G1

    F2

    H4

    J1B3

    C2

    F3K3

    N1

    G1

    F2

    H4

    VC-4 POH

    N

    C-4-N

    VC-4-N

    AU-4 Pointer and Concatenation Indication

  • 8/22/2019 1.SDH Basics.ppt

    56/66

    56

    N N N N S S I D I D I D I D I D

    H1 Y 1* 1* H2 H3 H3 H3

    1 0 0 1 U U 1 1 1 1 1 1 1 1 1 1

    a) Nine AU-4 pointer bytes

    b) Normal AU-4 pointer

    c) Concatenation indication

    H1 H2

    (H1, H2) = AU-4 pointer, H3= pointer action byte , Y=(100UU11)U=Unspecified, 1*=(11111111)

    N = New data flag bit, S= size bit, I= increment bit, D= decrementbit, U=Unspecified

    Virtual concatenation of X VC-3/4s

  • 8/22/2019 1.SDH Basics.ppt

    57/66

    57

    (VC-3/4-Xv, X=1.256)

    J1

    B3

    C2

    G1

    F2

    H4

    F3

    K3

    N1

    1

    9

    851

    VC-3#X125s

    1

    9

    851

    VC-3#1125s

    J1B3

    C2

    G1F2

    H4F3

    K3N1

    X1 X x 841

    9

    C-3-#X

    125s

    VC-3-Xc

    J1

    B3

    C2

    G1

    F2

    H4

    F3

    K3

    N1

    1

    9

    2611

    VC-4#X125s

    1

    9

    2611

    VC-4#1125s

    J1B3

    C2

    G1F2

    H4F3

    K3N1

    X1 X x 2601

    9

    C-4-#X

    125s

    VC-4-Xc

    a) VC-3-Xv Structure b) VC-4-Xv Structure

    Virtual Concatenation Multiframe Structure

  • 8/22/2019 1.SDH Basics.ppt

    58/66

    58

    Virtual Concatenation Multiframe Structure

    a) Mulltiframe indicator MFI1 Configuration(from Frame 0 to 15)

    b) Mulltiframe indicator MFI2( from Frame 0 to 255)

    Bit No in H4 1

    MFI X

    2 3 4 5 6 7 8

    No used

    Bit No in H4 1

    MFI2(LSB)

    2 3 4 5 6 7 8

    MFI2(MSB)

    Frame 0 0 0 0 0 0 0 0 1Frame 1 0 0 0 0 0 0 1 0Frame 2 0 0 0 0 0 0 1 1

    Frame 126 0 1 1 1 1 1 1 0Frame 127 0 1 1 1 1 1 1 1Frame 128 1 0 0 0 0 0 0 0Frame 129 1 0 0 0 0 0 0 0Frame 130 1 0 0 0 0 0 0 0

    Frame 254 1 1 1 1 1 1 1 0Frame 255 1 1 1 1 1 1 1 1

    SequencceindiccatorSQ LSB(bit 5-8)

    SequencceindiccatorSQ MSB(bit 1-4)

    Frame 0 0 0 0 0Frame 1 0 0 0 1Frame 2 0 0 1 0

    Frame 14 1 1 1 0Frame 15 1 1 1 1

    VC 3/VC 4 Xv multiframe and sequence indicator

  • 8/22/2019 1.SDH Basics.ppt

    59/66

    59

    VC-3/VC-4-Xv multiframe and sequence indicator

    C-4/3-Xc C-4/3-Xc

    POH

    POH

    POH

    POH

    POH

    MFI1:0MF12_MSB:0

    MFI1:1MF12_LSB:0

    MFI1:15

    MFI1:0MF12_MSB:0

    MFI1:1MF12_LSB:1

    POH

    POH

    POH

    POH

    PO

    H

    MFI1:1MF12_LSB:0

    MFI1:15

    MFI1:0MF12_MSB:0

    MFI1:1MF12_LSB:1

    MFI1:0MF12_MSB:0

    SQ:0

    SQ:X-1

    Mu

    ltif

    rame

    (MF)

    1 X

    VC-12-Xv Structure

  • 8/22/2019 1.SDH Basics.ppt

    60/66

    60

    VC-12-Xv Structure

    1

    2

    3

    4

    V5

    J2N2

    K4

    V5

    J2

    N2

    K4

    1

    23

    4

    1 35

    1 35

    VC-12#1

    VC-12#X

    500s

    500s

    1

    2

    3

    4

    1 X X34

    500s

    C-12#Xc

    VC-12#Xv

    Capacity of virtually concatenated VC 12 Xv

  • 8/22/2019 1.SDH Basics.ppt

    61/66

    61

    Capacity of virtually concatenated VC-12-Xv

    If carried in X Capacity In steps of

    VC-12-Xv VC-3 1 to 21 2176 kbit/s to 45 696 kbit/s 2176 kbit/s

    VC-12-Xv VC-4 1 to 63 2176 kbit/s to 137 088 kbit/s 2176 kbit/s

    VC-12-Xv Unspecified 1 to 64 2176 kbit/s to 139 264 kbit/s 2176 kbit/s

    VC12 Extended Signal label byte coding

  • 8/22/2019 1.SDH Basics.ppt

    62/66

    62

    -in K4 bit 1-

    MSB LSB MFAS: Multiframe Alignment Signal0: ZeroR: Reserved bit

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

    MFAS0 R R R R R R R R R R R R

    Extended Signal Label0 1 1 1 1 1 1 1 1 1 0

    MSBb12 b13 b14 b15

    LSBb16 b17 b18 b19

    Hexcode

    0 0 0 0

    0 0 0 0

    0 0 0 0

    0 1 1 1

    0 0

    07

    0 0 0 0 1 0 0 0 0 8

    0 0 0 0 1 0 0 1 0 9

    0 0 0 0 1 0 1 0 0 A

    0 0 0 0 1 0 1 1 0 B

    0 0 0 0 1 1 0 0 0 C

    Interpretation

    Reserved

    Mapping under development

    ATM mapping

    Mapping of HDLC/PPP framed signal

    Mapping of HDLC/LAPS framed signals

    Virtually concatenated test signal, O.181specific mapping

    Flexible Topology Data Link mapping0 0 0 0 1 1 0 1 0 D

    1 1 1 1 1 1 1 1 F F Reserved

    K4 bit 2 multiframe:K4 (b2)

  • 8/22/2019 1.SDH Basics.ppt

    63/66

    63

    K4 bit 2 multiframe:K4 (b2)

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

    Frame countR R R R R R R R R R R R R R R R R R R R R

    Sequence indicator

    R: Reserved bit

  • 8/22/2019 1.SDH Basics.ppt

    64/66

    64

  • 8/22/2019 1.SDH Basics.ppt

    65/66

    65

    Review Questions

  • 8/22/2019 1.SDH Basics.ppt

    66/66

    Q

    Fill up the spaces enclosed in parentheses in the following sentences with correct words.1. B1 is to monitor a ( a ) error and B2 is for monitor a ( b ) error. For STM-4, the

    monitoring method of B1 is ( c ) and the monitoring method of B2 is ( d ).

    2. K1 and K2 are called ( a ) signaling and used to exchange of transfer controlinformation among nodes in an ( b ) Ring and a ( c )protection ( d )

    system.

    3. M1 is used to report a result of error detection by ( a ) , by number of ( b )

    violation.

    4. G1 is used to report the receiving status of ( a ) back to the ( b ) side.

    5. H4 is used to display a ( a ) number in a multiframe required to process the TU

    pointer.

    6. ( a ) 2,048 kb/s signal is required in frequency justification between ( b ) and SDHis necessary. ( c ) synchronous 2,048 kb/s signal is always ( d ) bit is used and (

    e ) bit is not used. To indicate this status ( f ) and ( g ) are always set to 1 and 0

    automatically. ( h ) synchronous 2,048 kb/s signal location of 64 kb/s channels of 2Min VC-12 is allocated

    7. SDH pointers require 10 bits (5 Is and 5 Ds) of pointer value because of the maximum

    possible pointer offset value of AU-4 pointer is ( a )