35
3D display system based on integral imaging 2012. 12. 7. Sung-Wook Min Kyung Hee University

2012. 12. 7. Sung-Wook Min Kyung Hee University. Introduction Integral imaging Integral floating Issues

Embed Size (px)

Citation preview

  • Slide 1
  • 2012. 12. 7. Sung-Wook Min Kyung Hee University
  • Slide 2
  • Introduction Integral imaging Integral floating Issues
  • Slide 3
  • (~B.C 15,000) (~B.C 15,000) (The cornation of Napoleon, 1804) (The cornation of Napoleon, 1804) (1839) (1839) TV (1937) TV (1937) 3 HDTV (2000) HDTV (2000)
  • Slide 4
  • 183 0 1850 Stereoscope: Wheatstone (1838) Lenticular stereoscope (prism): Brewster (1844) Autostereoscopic: Maxwell (1868) Stereoscopic movie camera: Edison & Dickson (1891) Anaglyph: Du Hauron (1891) 3D movie: Laarrivee du train (1903) Integral photography: Lippmann (1908) Lenticular: Hess (1915) Parallax barrier: Kanolt (1915) 1900 Hologram: Gabor (1948) Integram: de Montebello (1970) Electro- holography: Benton (1989) 1950 2000 Samsung: 30 inch full HD 3D AMOLED TV (2010) LG: 84 inch ultra HD 3D home theatre (2010)
  • Slide 5
  • Slide 6
  • Back to the future (1985) Big Bang Theory (2012)
  • Slide 7
  • Slide 8
  • Slide 9
  • Psychological cuesPhysiological cues Perspective Binocular Disparity OverlapMotion Parallax Shadow Accommodatio n GradationConvergence
  • Slide 10
  • ClassificationDepth cuesKey component Stereoscopy (requires glasses) Binocular disparity Polarizing glasses LC shutter glasses Wavelength selective glasses Autostereoscopy (does not require glasses) Two-view or Multi-view display Binocular disparity, Convergence, Motion parallax (Horizontal only, limited range, discrete) Parallax barrier Lenticular lens HOE (Holographic Optical Element) Directional BLU Super multi-view Binocular disparity, Convergence, Motion parallax (H only, continuous), Accommodation Lenticular lens High density directional display Multiple projection Laser scanning Integral imaging Binocular disparity, Convergence, Motion parallax (H&V, continuous), Accommodation Lens array (2D) Volumetric display Binocular disparity, Convergence, Motion parallax, Accommodation Stacked screens Spinning screen/mirror Crossed-beam (Two-photon absorption) Holographic display Binocular disparity, Convergence, Motion parallax, Accommodation Electro-holography (Coherent optics)
  • Slide 11
  • G. Lippmann, "La photographie integrale," Comptes-Rendus 146, 446- 451, Academie des Sciences (1908)
  • Slide 12
  • AB AA BB a b Real mode (pseudoscopic) Real mode (orthoscopic) Virtual mode (orthoscopic) Pseudoscopic problem
  • Slide 13
  • Lens array Display device Central depth plane Integration plane Integrated image Lens array Display panel Integration plane Central depth plane
  • Slide 14
  • Lens array Display panel Integration plane 1 Integrated image Focused plane Integrated image Integration plane 2
  • Slide 15
  • Image resolution Viewing angle Image depth Characteristic Equation R X = 10 mm -1
  • Slide 16
  • S.-W. Min, B. Javidi, and B. Lee, Enhanced three-dimensional integral imaging system by use of double display devices, Appl. Opt. 42, 41864195 (2003)
  • Slide 17
  • Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, Wide-viewing-angle integral three- dimensional imaging system by curving a screen and a lens array, Appl. Opt. 44, 546552 (2005).
  • Slide 18
  • Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, Appl. Opt. 46, 3766-3773, (2007) G. Park, J.-H. Jung, K. Hong, Y. Kim, Y.-H. Kim, S.-W. Min, and B. Lee, Opt. Express 17, 17895-17908, (2009) LCR
  • Slide 19
  • Reflected light : Integral imaging by the concave (or convex) mirror array Transmitted light : See-through imaging of the real object Concept of see-through integral imaging
  • Slide 20
  • (a) Pick-up (b) Display Jun Arai, et al. Integral Three-Dimensional Television Using a 33- Megapixel Imaging System. Journal of Display Technology
  • Slide 21
  • Reconstructed imageIntegral 3D TV video
  • Slide 22
  • Wider viewing angle (a) Decentered elemental lenses (b)
  • Slide 23
  • (a) (b)
  • Slide 24
  • (a) Concept(b) setup(c) Elemental images Sung-In Hong, Hee-Seung Kim, Kyeong-Min Jeong, and Jae-Hyeung Park, Three-dimensional blood vessel imaging using integral imaging, Biomedical Optics and 3D Imaging OSA 2012
  • Slide 25
  • (a) 2D image(b) Refocused images(c) Reconstructed views
  • Slide 26
  • (a) Absorption curve of oxi- and deoxi-hemoglobins (b) Schematics of 3D imaging system of oxygen saturation ratio
  • Slide 27
  • Integral Image Viewpoint Images Anchor Points Energy Minimization Depthmap Extraction Chain of Correspon dences Dimitrios Zarpalas, Eleni Fotiadou, Iordanis Biperis, and Petros Daras, Anchoring Graph Cuts Towards Accurate Depth Estimation in Integral Images, JOURNAL OF DISPLAY TECHNOLOGY, 2012
  • Slide 28
  • Integral imaging system (InIm system) 3D image by floating device Image floating system (Fresnel lens) 3D image by InIm system Image floating by floating device 1.Reducing seam noise 2.Enhancing image quality 3.Enhancing 3D effect
  • Slide 29
  • Viewing parameters
  • Slide 30
  • J Kim, S.-W. Min, and B. Lee, Viewing region maximization of an integral floating display through location adjustment of viewing window, Opt. Express 15, 13023-13034 (2007).
  • Slide 31
  • Floating 3D image Floating plane Floating lens Viewing window 3D integrated image Integral imaging system ab w f Display device K H U KHU Central depth plane ab w f K H U KHU b=300mm b=350mm b=400mm Diffuser at K Diffuser at H Diffuser at U
  • Slide 32
  • J. Hong, S.-W. Min, and B. Lee, Integral floating display systems for augmented reality, Appl. Opt. 18, 4201-4209 (2012).
  • Slide 33
  • H.-J. Choi, Y. M. Kim, J. Jung, K.-M. Jung and S.-W. Min, Tiling integral floating display system with optimized viewing window, Appl. Opt. 51, 5453- 5457 (2012).
  • Slide 34
  • Viewing angle Resolution Expressible depth range
  • Slide 35
  • Mail to : [email protected] Thank you for attention!