250 to 5000 Watts PWM DC_AC 220V Power Inverter _ Nonstop-Free Electronic Circuits Project Diagram and Schematics

Embed Size (px)

Citation preview

  • 7/24/2019 250 to 5000 Watts PWM DC_AC 220V Power Inverter _ Nonstop-Free Electronic Circuits Project Diagram and Sche

    1/11

    Build a 250 to 5000 watts PWM DC/AC 220V Power Inverter

    http://4.bp.blogspot.com/-JaKgP_a1zYI/UfEdUgeBBYI/AAAAAAAAD_U/39ehIyGmFnw/s1600/250+to+5000+watts+PWM+DC-AC+220V+Power+Inverter2.jpghttp://3.bp.blogspot.com/-SfMxQuLkdJM/UfEdUEPU17I/AAAAAAAAD_Q/E3dzSKL0LRs/s1600/250+to+5000+watts+PWM+DC-AC+220V+Power+Inverter.jpg
  • 7/24/2019 250 to 5000 Watts PWM DC_AC 220V Power Inverter _ Nonstop-Free Electronic Circuits Project Diagram and Sche

    2/11

    http://2.bp.blogspot.com/-6LNsubNbmf4/UfEdVkk9d8I/AAAAAAAAD_s/YqUxqwjMtqU/s1600/250+to+5000+watts+PWM+DC-AC+220V+Power+Inverter4.jpghttp://3.bp.blogspot.com/-wtes3EYPxiM/UfEdU-U5uuI/AAAAAAAAD_Y/A-we7I6RZFY/s1600/250+to+5000+watts+PWM+DC-AC+220V+Power+Inverter3.jpg
  • 7/24/2019 250 to 5000 Watts PWM DC_AC 220V Power Inverter _ Nonstop-Free Electronic Circuits Project Diagram and Sche

    3/11

    http://3.bp.blogspot.com/-f1yNhJdaU0I/UfEdWku4P8I/AAAAAAAAEAA/lfsYG8yjhrw/s1600/250+to+5000+watts+PWM+DC-AC+220V+Power+Inverter6.jpghttp://1.bp.blogspot.com/-q8q4r9ir5Bs/UfEdWDk0_HI/AAAAAAAAD_0/qHlLYkV8wrw/s1600/250+to+5000+watts+PWM+DC-AC+220V+Power+Inverter5.jpg
  • 7/24/2019 250 to 5000 Watts PWM DC_AC 220V Power Inverter _ Nonstop-Free Electronic Circuits Project Diagram and Sche

    4/11

    http://1.bp.blogspot.com/-OgqjYNLSXpQ/UfEdXYOqHLI/AAAAAAAAEAQ/dhLnwtXkGjY/s1600/250+to+5000+watts+PWM+DC-AC+220V+Power+Inverter9.jpghttp://3.bp.blogspot.com/-rIf73T-UNu4/UfEdWwaXgfI/AAAAAAAAEAI/z9YtYMd5Qbw/s1600/250+to+5000+watts+PWM+DC-AC+220V+Power+Inverter8.jpghttp://1.bp.blogspot.com/-2wUOWVw7uNs/UfEdWjyadUI/AAAAAAAAD_4/FPV9lTjnqUQ/s1600/250+to+5000+watts+PWM+DC-AC+220V+Power+Inverter7.jpg
  • 7/24/2019 250 to 5000 Watts PWM DC_AC 220V Power Inverter _ Nonstop-Free Electronic Circuits Project Diagram and Sche

    5/11

    http://1.bp.blogspot.com/-ISZgW9sWWTk/UfEdSiOxpGI/AAAAAAAAD-4/DtVn55la9Zw/s1600/250+to+5000+watts+PWM+DC-AC+220V+Power+Inverter+10.jpghttp://1.bp.blogspot.com/-d5XPPBxlgDU/UfEdSGoqc8I/AAAAAAAAD-s/pH1_JOU5Rbo/s1600/250+to+5000+watts+PWM+DC-AC+220V+Power+Inverter+1.jpg
  • 7/24/2019 250 to 5000 Watts PWM DC_AC 220V Power Inverter _ Nonstop-Free Electronic Circuits Project Diagram and Sche

    6/11

    http://2.bp.blogspot.com/-JMWQmXXs_hM/UfEdTdwFl_I/AAAAAAAAD_E/6uJFYI-RWNI/s1600/250+to+5000+watts+PWM+DC-AC+220V+Power+Inverter+12.jpghttp://3.bp.blogspot.com/-FOiMMfhVimg/UfEdSuVr2xI/AAAAAAAAD-w/BgKbmaz3LuQ/s1600/250+to+5000+watts+PWM+DC-AC+220V+Power+Inverter+11.jpg
  • 7/24/2019 250 to 5000 Watts PWM DC_AC 220V Power Inverter _ Nonstop-Free Electronic Circuits Project Diagram and Sche

    7/11

    This is my schematic design of a Pulse Width Modulator DC/AC inverter using the chip SG3524

    .I have built this design and using it as a backup to power up all my house when outages occur.

    If you like my work and intend to build the circuit don't forget to give me the 5 satrs :D and

    subscribe to me by clicking on the "follow" button so I know how many people benefit from the

    design, Thanks

    Notes:

    >The schematic circuit design is for a 250 watt output, while the pics are of my 1500 watts

    inverter that i built, to increase the power of the circuit you have to add more of the Q7 and Q8

    transistors in parallel, each pair you add will increase your power by 250 watts, ex: to get 750

    watts of power from the inverter you need to add in parallel 2 of Q7 and 2 of Q8 to the origina

    design.

    >If you increase the power transistors you have to enlarge the T2 transformer to match the new

    needs, the circuit's transformer is rated 25 amps to handle 250 watts of 220v, for every 1

    additional amp you need on the 220v side you have to increase 10 amps on the 12v side, o

    course there are limits to the thickness of the winding so if you need more than 750 watts

    recommend that you use a 24VDC supply instead of 12 volts:

    http://3.bp.blogspot.com/-izqi1fr1knA/UfEdUm2J2OI/AAAAAAAAD_c/prZdNhO9iRA/s1600/250+to+5000+watts+PWM+DC-AC+220V+Power+Inverter+13.jpg
  • 7/24/2019 250 to 5000 Watts PWM DC_AC 220V Power Inverter _ Nonstop-Free Electronic Circuits Project Diagram and Sche

    8/11

    DC voltage and Transformer "T2" winding recommendation:

    Power Supply Winding

    750w 12VDC P:24V "12-0-12" / S:220V

    1500w 24VDC P:48V "24-0-24" / S:220V

    2250w 36VDC P:72V "36-0-36" / S:220V

    3000w 48VDC P:96V "48-0-48" / S:220V

    3750w 60VDC P:120V "60-0-60" / S:220V

    4500w 72VDC P:144V "72-0-72" / S:220V

    5250w 84VDC P:168V "84-0-84" / S:220V

    *The transformer should be "center tapped" at the primary side.

    **You can make the secondary 110v if needed.

    ***The transformer in the pic is a custom made (48V center tapped / 220v ) 2000 watts, weights

    like 10 kilos.

    >R1 is to set the PWM duty cycle to 220v. Connect voltmeter to the output of your inverter and

    vary VR1 till the voltage reads 220V.

    >R2 is to set the frequency to 50 or 60 Hz (R2 range is between 40Hz to 75Hz), so guys that do

    not have a frequency meter are advised to blindly put this variable resistor mid-way which

    should drop you in the range of 50~60 Hz.

    If you want you can substitue the variable resistor with a fixed resistor using the following

    formula: F = 1.3 / (RxC)

    in our case to get a 50Hz output we remove both the 100K and the variable 100K both from pin

    6 and we put instead a 260K fixed resistor and we leave the 0.1uF (the 104 cap) as it is, this

    change should give out a fixed 50Hz as per the formula :

    1.3 / (260,000 ohm x 0.0000001 farad) = 50Hz

    But in reality it will not exactly give 50Hz because the 260K resistor has a specific error value

    margin so does the capacitor, that's why i recommend a variable resistor so that accurate

    calibration can be achieved.

    >Use either tantalum or polyester film "as in pic" for the 104 caps, ceramic disc caps change

    value once hot and this in turn changes the frequency of the inverter so they are no

  • 7/24/2019 250 to 5000 Watts PWM DC_AC 220V Power Inverter _ Nonstop-Free Electronic Circuits Project Diagram and Sche

    9/11

    recommended.

    >Pin 10 of the SG3524 can be used to auto shut down the inverter, once a positive voltage

    is given instead of negative to pin10, the SG3524 will stop oscillating. This is useful for persons

    wanting to add some cosmetic makeup to their inverters like overload cutoff, low battery cutoff

    or overheating cutoff.

    >Wiring connections on the power stage side should be thick enough to handle the huge amps

    drain from the batteries. I marked them with dark black on the schema also I included a pic so

    you see how thick those wires must be.

    >The design does not include a battery charger since each person will be building a custom

    version of the inverter with specific power needs. If you are ordering a custom made

    transformer you can ask them to take out for you an additional output wire on the primary side

    to give 14v (between point 0 and this new wire) and use it to charge a 12v battery, of course

    this needs a seperate circuit to control charging auto cut-off. But anyway this is not advisable

    because it will shorten the life of the transformer itself since using it as a charger will toast the

    enamel coating layer of the copper wires over time. Anyway .. YES can be done to reduce cost.

    >A cooling fan will be needed to reduce heat off the heat sinks and transformer, i recommend

    getting a 220v fan and connecting it to the output T2 transformer, when you power up the circui

    the fan will start this will always give you a simple way to know that 220v is present and

    everything is OK.. You can use a computer's old power supply fan if you like.

    Note that the fan must suck air out from the inverter case and NOT blow inside, so install it the

    correct way or it will be useless.

    Also note how I fixed both the heat sinks and where the fan is, in a way that the fan sucks ho

    air from like a channel between the 2 heatsinks.

    >2 circuit breakers are recommended instead of fuses, one on the DC side and one on the AC

    side, depending on your design

    Ex: for a 24vDC ( 1500 watts design ) put a 60Amp breaker on the DC side and a 6Amp on the

    AC side.

  • 7/24/2019 250 to 5000 Watts PWM DC_AC 220V Power Inverter _ Nonstop-Free Electronic Circuits Project Diagram and Sche

    10/11

    For every 1amp of 220vAC you will be draining like 8 to 10 Amps from the 12v battery, make

    your calculations !

    > The 2 Heat sinks should be big enough to cool the transistors, they are separate and should

    NOT touch each other. "see the pics"

    >Important: If you're building a big design that uses more than 24VDC as power source, make

    sure not to supply the driver circuit with more than 24v maximum. (EX: If you have 4 batteries

    4x12 = 48v , connect the v+ supply of the driver circuit to the second battery's (+) terminal with

    a thin 1 mm wire which is more than enough. this supplies the driver circuit with +24v while

    supplies the power transformer with +48v)

    > "Optional" : Deep Cycle batteries are your best choice, consider them for best results .. read

    more

    > Be cautious when building this circuit it involves high voltage which is lethal, any part you

    touch when the circuit is ON could give you a nasty painful jolt, specially the heat-sinks, neve

    touch them when the circuit is on to see if the transistors are hot !! I ate it several times :)

    > The optional "Low voltage warning" is already embedded in the PCB layout, you can

    disregard it and not install it's components if you do not needed. It does not affect the

    functionality of the main circuit.

    > The Motorola 2N6277 is a heavy duty power transistor, it is used in many US tanks for it's

    reliability but unfortunately it is a very hard to find part, instead you can substitute each 2N6277

    with 2 x 2N3773 or any equivalent.

    > I've included an optional "Battery level indicator" circuit diagram that has 4 LEDs, you can see

    it installed on the front panel of my inverter pic, it is functioning great and shows precisely how

    much juice the batteries still have. I have included a small relay that is powered by the last LED

    to auto shutoff the inverter once last LED is off.

    http://en.wikipedia.org/wiki/Deep_cycle_battery
  • 7/24/2019 250 to 5000 Watts PWM DC_AC 220V Power Inverter _ Nonstop-Free Electronic Circuits Project Diagram and Sche

    11/11

    >Also included an optional "Overload circuit", it is very easy to build and can be calibrated

    to the desired overload current threshold cutoff point through the potentiometer VR1.

    R1 is rated 5watts for inverters upto 1000 watts. For bigger versions of the inverter

    like 1000 to 3000 watts inverters, replace R1 (1 ohm, 5watts) with (1 ohm, 17watts) which

    should handle loads upto 10 VA.

    Make sure you install a proper relay to handle big current drains.

    If you like my work you can show your regards by hitting Facebook like button, following us on

    Google+ or Twitter, stumbling our posts on stumble upon . Stay tuned for more tech updates.