23
26 Giugno 2012 La flessibilità dei cicli combinati S. Besseghini 1

26 Giugno 2012 La flessibilitàdei cicli combinati _Besseghini.pdf · Criticitàdei Cicli Combinati • Prezzo del GN elevato, crescita delle rinnovabili, FV copre in parte le punte,

Embed Size (px)

Citation preview

26 Giugno 2012

La flessibilità dei cicli combinatiS. Besseghini

1

Peculiarità del Parco di Generazione italiano

• Storicamente (anni ‘70) si è puntato sull’olio combustibile, scarsa presenza del carbone, poi limitato da opposizioni locali

• Rinuncia al nucleare (1987) � parte la costruzione di cicli combinati a gas naturale

• Nell’epoca della liberalizzazione, si punta tutto su CCGT (semplicitàautorizzativa, costruzione abbastanza rapida, bassi costi di investimento)

• Dal 2005 in poi, anche in relazione al «20-20-20», incentivazione rinnovabili elettriche, rapida crescita di Eolico e Fotovoltaico

• Oggi circa il 50% della potenza termoelettrica installata è CCGT e circa il 50% della produzione totale è da GN

• Eolico + FV hanno superato 20 GW• La domanda elettrica negli ultimi anni ristagna

2

Criticità dei Cicli Combinati

• Prezzo del GN elevato, crescita delle rinnovabili, FV copre in parte le punte, la domanda ristagna, c’è overcapacity � basso utilizzo dei CCGT in pura generazione elettrica (circa 2000 ore/anno)

• La domanda di base è soddisfatta in altri modi: carbone, acqua fluente, grande cogenerazione industriale, importazioni a basso costo

• I cicli combinati faticano a coprire i costi fissi su MGP, anche se si assumesse un perfetta flessibilità operativa, che non esiste (tempi di avviamento e variazione di carico, minimo tecnico)

• La difficoltà a coprire i costi in qualche misura ricade sugli utenti finali

• Opportunità di remunerazione da MSD• Remuneratività del Ciclo Combinato sempre più legata alla

flessibilità operativa

3

Criticità del Sistema Elettrico italiano

• Le Fonti Rinnovabili Non Programmabili (FRNP), principalmente FVed Eolico, sono prevedibili ad es. il giorno prima, ma con incertezze � necessità di più riserva � costi per gli utenti

• FRNP di piccola-media taglia non partecipano ai servizi alla rete e non pagano oneri di sbilanciamento � i servizi sono coperti da altri e i costi ricadono sugli utenti finali (qualcosa si sta iniziando a fare: All. 70 di TERNA e DCO 35/12 AEEG)

• In situazioni di basso carico e alta produzione da FRNP, scarseggia la potenza termoelettrica e in servizio, poche macchine rotanti, costi elevati dei servizi di riserva

• I pompaggi, pur presenti con capacità importante (circa 7 GW) sono utilizzati sempre meno per le ore di punta (circa 400/500 ore/anno)

• «Rampa serale»: possibile sovrapposizione fra il calo della produzione FV (tramonto) e la salita serale dei consumi �sollecitazioni al parco termoelettrico (soprattutto CCGT) e picco di prezzo dell’energia

4

Criticità del Sistema Elettrico italiano (segue)

Andamento dei prezzi MGP in due giorni di giugno 2012: a) Venerdì, b) Domenica. Tramonto del sole alle 20.45 circa

5

Criticità del Sistema Elettrico: quali risposte ?

• Rendere più accurate le previsioni di produzione da FRNP: la ricerca sta lavorando

• Sfruttare più efficacemente la capacità previsionale: vedi AEEG DCO 35/12

• Potenziare i sistemi di accumulo (pompaggio, CAES, batterie): è un tema di pianificazione e di autorizzazioni (le prime due tecnologie); di costi di investimento e vita utile (batterie): la ricerca stalavorando

• Sfruttare maggiormente la flessibilità del parco termoelettrico (in primis i CCGT): è indispensabile !

• Costa relativamente poco• E’ attuabile in tempi medio-brevi• Velocizzare e rendere più frequenti avviamenti e variazioni di

carico• Ridurre il minimo tecnico• Allargare la banda di regolazione primaria

6

I Cicli Combinati e l’esercizio flessibile

Il Ciclo Combinato è l’integrazione di due cicli assai diversi, anche dinamicamente

Ciclo a gas (Joule-Brayton)

•Tendenzialmente molto flessibile (avviamento in 15-30 minuti) ma…•Parti calde sempre più critiche:

• TIT tipica 1400 °C, ma già si sperimentano i 1600 °C• Tecnologie sofisticate (single crystal, bond coat, rivestimenti

ceramici, film cooling)• Ispezioni e manutenzioni

frequenti, complesse, specialistiche (costo annuo ≈10% dell’investimento)

7

I Cicli Combinati e l’esercizio flessibile (segue)

Ciclo a gas (Joule-Brayton) (segue)

•Il danno dell’esercizio ciclico (avviamenti e variazioni di carico) può essere importante e non è perfettamente quantificabile. RSE ha fatto test e sviluppato modelli di calcolo, ma serve ulteriore ricerca

Tempo di distacco di barriere termiche, per diverse periodicità del ciclaggio termico (tc) e temperature operative. Modello di calcolo validato con dati sperimentali

8

I Cicli Combinati e l’esercizio flessibile (segue)

Ciclo a gas (Joule-Brayton) (segue)

È importante anche il “minimo tecnico“ :valore minimo di carico generato al quale la macchina può permanere indefinitamente con stabilità e nel rispetto dei limiti ambientali

Con basso minimo tecnico si ha la possibilità di restare di operare anche nelle ore di basso prezzo di mercato•utilizzando poco combustibile � limitando le perdite economiche•evitando di moltiplicare i cicli di avviamento/fermata.

Tradizionalmente, i limiti sulle emissioni di NOx e CO fissavano fra il 60 – 70 % e il 100 % il campo di lavoro sfruttabile, ma lo sviluppo di sistemi di combustione sempre più avanzati ha consentito di scendere al 40 e anche al 30%.

Si può considerare un problema in gran parte risolto, da implementare sul campo

9

I Cicli Combinati e l’esercizio flessibile (segue)

Ciclo a vapore (Rankine)

È più «lento» di quello a gas: avviamento in 1-2 ore, dipende dalle condizioni iniziali

Temperature molto più basse (≤ 600°C), tecnologia meno sofisticata, meno frequenti e più semplici manutenzioni ma…

Corpi di grande spessore (rotore turbina, corpi cilindrici)

Danno a fatica, cricche � rischi di avarie «catastrofiche»

È lo «stadio lento» del ciclo combinato

10

I Cicli Combinati e l’esercizio flessibile (segue)

I mancati avviamenti

È un rischio (economico) importante legato agli avviamenti frequenti

Incidenza da pochi % fino al 10%

Spesso dipende da questioni di dettaglio, difficili da rimuovere

Porta a mancata produzione e oneri di sbilanciamento, che facilmente vanificano il risparmio di una fermata notturna

Va fatta analisi caso per caso

11

I Cicli Combinati: cosa favorisce l’esercizio flessibile ?

a.Configurazioni «2 + 1»: se m.t. TG = 30 %, m.t. impianto 15 %, ciclo a vapore sempre in servizio, rischio mancato avviamento azzerato, rischio sbilanciamento ridotto

b.Camino di bypass: possibile avviare subito TG, a rendimento di impianto temporaneamente ridotto

c.Post – combustione: margine di aumento/modulazione rapida, a rendimento ridotto

d.Air Fogging o meglio Wet Compression: simile a post-combustione, senza penalità di rendimento, qualche rischio di erosione del compressore

Sono soluzioni per impianti nuovi, retrofit difficile o impossibile, a parte d.

12

La flessibilità dei Cicli Combinati: la proposta di RSE

Presupposto: c’è overcapacity, il parco italiano è piuttosto recente ����difficile pensare a nuovi impianti ���� va ottimizzato e gestito bene l’esistente, con limitati investimenti e in tempi brevi (2-3 anni)

Nasce così un progetto di ricerca, in parte già svolto, con obiettivo:

Migliorare la rispondenza dei cicli combinati alle esigenze del sistema elettrico•ottenere la massima flessibilità dell’esercizio•salvaguardare affidabilità, disponibilità, economicità di gestione

Benefici attesi:

•Ottenimento di continuità, sicurezza, qualità del servizio a minor costo per l’utente•Remunerazione dei cicli combinati anche tramite efficienti servizi di sistema, non solo energia ���� minore necessità di ricarico sull’energia ���� minor costo per l’utente

13

La flessibilità dei Cicli Combinati: la proposta di RSE (segue)

Approccio adottato: gli ingredienti

Prove e modellazione dei materiali critici � leggi di danno (fatica termomeccanica, ossidazione ciclica)

Modellazione FEM dei componenti � costruzione di casi tipici manovra –consumo di vita

Formulazione di modelli semplificati manovra-consumo di vita, adatti a simulazioni a livello di impianto

Sviluppo e validazione di un simulatore ingegneristico del ciclocombinato (processo + automazione)

Studio e ottimizzazione delle manovre critiche

Sviluppo di un’automazione completa della manovra

14

La flessibilità dei Cicli Combinati: la proposta di RSE (segue)

Approccio adottato: schema concettuale

15

Modello agli elementi finiti TV

(FEM)

SIMULATORE RTdell’impianto

(Processo-Controllo)

Caratterizzazione dei materiali

Operatore

Campo termico, degli sforzi e consumo di vita

Misure delle variabili di processo

Turbine Stress Evaluator

(TSE)

IMPIANTO Metodi/Strumenti di diagnostica

Modello agli elementi finiti TV

(FEM)

SIMULATORE RTdell’impianto

(Processo-Controllo)

Caratterizzazione dei materiali

Operatore

Campo termico, degli sforzi e consumo di vita

Misure delle variabili di processo

Turbine Stress Evaluator

(TSE)

IMPIANTO Metodi/Strumenti di diagnostica

La flessibilità dei Cicli Combinati: la proposta di RSE (segue)

Alcuni risultati: tecniche diagnostiche sui materiali dei TG

16

La flessibilità dei Cicli Combinati: la proposta di RSE (segue)

Alcuni risultati: modello FEM del rotore di turbina a vapore

17

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40

Tempo [h]

Tem

pera

tura

[°C

]

Tc2 EXP Tc2 ABA

Tc4 EXP Tc4 ABA

Tc5 EXP Tc5 ABA

Tc6 EXP Tc6 ABA

Tc9 EXP Tc9 ABA

Tc11 EXP Tc11 ABA

Hp di scambio termico:- Coeff. H(Pvap)- T imposta su tutto il profilo del rotore ad eccezione degli stadi di AP e MP

Presa di giri

ω=3000 rmp Presa di carico

Carico costante

(320 MW)

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40

Tempo [h]

Tem

pera

tura

[°C

]

Tc2 EXP Tc2 ABA

Tc4 EXP Tc4 ABA

Tc5 EXP Tc5 ABA

Tc6 EXP Tc6 ABA

Tc9 EXP Tc9 ABA

Tc11 EXP Tc11 ABA

Hp di scambio termico:- Coeff. H(Pvap)- T imposta su tutto il profilo del rotore ad eccezione degli stadi di AP e MP

Presa di giri

ω=3000 rmp Presa di carico

Carico costante

(320 MW)

La flessibilità dei Cicli Combinati: la proposta di RSE (segue)

Alcuni risultati: simulatore di processo

18

La flessibilità dei Cicli Combinati: la proposta di RSE (segue)

Alcuni risultati: ottimizzazione dell’avviamento

19

200 220 240 260 280 300 320 340 360 380

10-4

10-3

10-2

Temperatura media [°C]

Consumo di vita del rotore durante l'avviamento (1/N)

Avviamento "RAPIDO"

116 sec280 sec

567 sec872 sec

1342 sec1761 sec

2276 sec

2929 sec

604 sec

341 sec

168 sec970 sec

1395 sec 1879 sec

2582 sec

3422 sec1000 sec500 sec 1500 sec

2000 sec

2500 sec

3000 sec4000 sec

5000 sec

Avviamento "STANDARD"

Avviamento "RIPETIBILE"

0,7 10-3

1,2 10-3

N=1400

N=800

200 220 240 260 280 300 320 340 360 380

10-4

10-3

10-2

Temperatura media [°C]

Consumo di vita del rotore durante l'avviamento (1/N)

Avviamento "RAPIDO"

116 sec280 sec

567 sec872 sec

1342 sec1761 sec

2276 sec

2929 sec

604 sec

341 sec

168 sec970 sec

1395 sec 1879 sec

2582 sec

3422 sec1000 sec500 sec 1500 sec

2000 sec

2500 sec

3000 sec4000 sec

5000 sec

Avviamento "STANDARD"

Avviamento "RIPETIBILE"

200 220 240 260 280 300 320 340 360 380

10-4

10-3

10-2

Temperatura media [°C]

Consumo di vita del rotore durante l'avviamento (1/N)

Avviamento "RAPIDO"

116 sec280 sec

567 sec872 sec

1342 sec1761 sec

2276 sec

2929 sec

604 sec

341 sec

168 sec970 sec

1395 sec 1879 sec

2582 sec

3422 sec1000 sec500 sec 1500 sec

2000 sec

2500 sec

3000 sec4000 sec

5000 sec

Avviamento "STANDARD"

Avviamento "RIPETIBILE"

0,7 10-3

1,2 10-3

N=1400

N=800

Considerazioni finali

Il ciclo combinato è un impianto discretamente flessibile

Quanto flessibile ? Dipende da:

•scelte progettuali (configurazione di ciclo, camino di bypass, post-combustione ecc.)•Modalità di esercizio•Tecniche di misura, monitoraggio, ispezione

Un ciclo combinato flessibile può giocare un ruolo sempre piùimportante nei servizi al sistema

con benefici:

•Per l’operatore (copertura costi fissi)•Per il sistema e quindi per gli utenti (load following, bilanciamento, riserva a costi più bassi delle altre opzioni

20

Considerazioni finali (segue)

RSE ha competenze multidisciplinari e cultura industriale:•Studi sulla sicurezza della rete•Mercato elettrico e aspetti regolatori•Prove su materiali (invecchiamento ciclico accelerato)•Calcolo termomeccanico•Simulazione d’impianto•Automazione

ed è interessata a collaborazioni dimostrative su impianti in esercizio (giàfatta su CC da 800 MWe) con operatori e costruttori di macchine/impianti.

L’approccio proposto prevede:

•Raccolta dati d’impianto, automazione, registrazione di manovre•Personalizzazione del simulatore •Analisi degli interventi fattibili: manovre ottimizzate, aggiunta di sistemi d’impianto (air fogging, post-combustione), sistemi automazione e monitoraggio•Valutazioni costi-benefici•Attuazione degli interventi (a cura dell’operatore, con supporto tecnico RSE)

21

Grazie

[email protected]

La flessibilità dei cicli combinati e il «Capacity Payment»

La delibera AEEG ARG/elt 98/11 •Prevede il pagamento di un corrispettivo per la disponibilità di capacitàproduttiva (cosiddetto «Capacity Payment»)•Stabilisce che per gli impianti che percepiranno il Capacity Paymentvenga fissato un «cap» al prezzo che potranno percepire su MGP e MSD (esclusa riserva secondaria)

Alcuni operatori, in fase di consultazione, hanno espresso il timore che tale meccanismo non favorisca investimenti in impianti di punta

Il timore non è ritenuto fondato nelle premesse della Delibera, poiché:•gli impianti di punta sono avvantaggiati su quelli di base in MSD•la riserva secondaria è esclusa dal cap

Tuttavia, visto che la criticità del sistema è per i prossimi anni non la capacità produttiva, ma la flessibilità, potrebbe essere opportuna una rivisitazione del meccanismo di formazione del prezzo della capacitàproduttiva, in modo da favorire gli impianti più flessibili

23