34
300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

  • Upload
    roxy

  • View
    33

  • Download
    0

Embed Size (px)

DESCRIPTION

300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010. 300 North La Salle Chicago, Illinois Owner: Hines Structural Engr : Magnusson Klemencic Assc . Architect : Pickard Chilton Architects, Inc. Construction Dates: June 2006-Feb. 2009 Height : 775 ft - PowerPoint PPT Presentation

Citation preview

Page 1: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

300 North La Salle

Liam McNamaraBAE / MAESenior ThesisApril 13th, 2010

Page 2: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

•300 North La Salle• Existing Structure• Goals• Lateral Redesign

• 1st Iteration• 2nd & 3rd Iterations• Final Design

• Architectural Impact• Acoustic Impact• Questions?

300 North La SalleChicago, Illinois

Owner: Hines Structural Engr: Magnusson Klemencic Assc.Architect: Pickard Chilton Architects, Inc.Construction Dates: June 2006-Feb. 2009Height : 775 ft# of Stories: 57Occupancy: Office / RetailSize: 1.3 Million Square Feet

25,000 ft 2 per floorCost: $230 Million - $177 / ft 2

Page 3: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

• 300 North La Salle•Existing Structure• Goals• Lateral Redesign

• 1st Iteration• 2nd & 3rd Iterations• Final Design

• Architectural Impact• Acoustic Impact• Questions?

Existing Structure

Page 4: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

• 300 North La Salle•Existing Structure• Goals• Lateral Redesign

• 1st Iteration• 2nd & 3rd Iterations• Final Design

• Architectural Impact• Acoustic Impact• Questions?

Foundation:• 3-sub grade parking levels• 18” cast-in-place walls• 12” cast-in-place slab• Drilled Concrete Piers• Driven steel H-Piles

Foundation

Page 5: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

• 300 North La Salle•Existing Structure• Goals• Lateral Redesign

• 1st Iteration• 2nd & 3rd Iterations• Final Design

• Architectural Impact• Acoustic Impact• Questions?

Gravity System:• Typical 28’-6” x 43’-6” bays supported by W18x35 beams and W18x50 girders

• Typical 3” slab on 3” composite steel deck

• Concrete Bearing Wall Core• Steel W-shape Columns

Gravity System

Page 6: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

• 300 North La Salle•Existing Structure• Goals• Lateral Redesign

• 1st Iteration• 2nd & 3rd Iterations• Final Design

• Architectural Impact• Acoustic Impact• Questions?

Lateral System:• Concrete Core – f’c 6-10 ksi• Typical Bays 28’-6” x 42’-9”• 4 bays : Lower Level 4- Level 42• 2 bays : Level 43 - 58• 6 Outrigger Trusses - Level 41-43• 2 Belt Trusses – Level 41-43

Lateral System

Page 7: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

• 300 North La Salle• Existing Structure•Goals• Lateral Redesign

• 1st Iteration• 2nd & 3rd Iterations• Final Design

• Architectural Impact• Acoustic Impact• Questions?

Goals

Page 8: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

• 300 North La Salle• Existing Structure•Goals• Lateral Redesign

• 1st Iteration• 2nd & 3rd Iterations• Final Design

• Architectural Impact• Acoustic Impact• Questions?

Goals Reduce foot print of core Redesign structural core Eliminate belt trusses

Increase rentable floor space Comply with original

architecture

Page 9: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

Things to Consider: Minimize inherent torsion Control wind drift Control wind acceleration Strength and Constructability

Walls Beams

Lateral Redesign

• 300 North La Salle• Existing Structure• Goals•Lateral Redesign

• 1st Iteration• 2nd & 3rd Iterations• Final Design

• Architectural Impact• Acoustic Impact• Questions?

Page 10: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

1st Iteration

• 300 North La Salle• Existing Structure• Goals•Lateral Redesign•1st Iteration• 2nd & 3rd Iterations• Final Design

• Architectural Impact• Acoustic Impact• Questions?

Page 11: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

Key Points:• 3 I shapes• 4 – 10’ openings• Walls 4,5,6 : 30” thick• Walls B & C : 27”, 21”, 18” thick

decreasing at Lvl 9 & 43• Reposition Outriggers

• 300 North La Salle• Existing Structure• Goals•Lateral Redesign•1st Iteration• 2nd & 3rd Iterations• Final Design

• Architectural Impact• Acoustic Impact• Questions?

Page 12: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

• 300 North La Salle• Existing Structure• Goals•Lateral Redesign•1st Iteration• 2nd & 3rd Iterations• Final Design

• Architectural Impact• Acoustic Impact• Questions?

Results:• Periods of Vibration

• Ty = 7.8 sec 10% increase• Tx = 8.32 sec 47% increase• Tz = 8.51 sec 53% increase

Page 13: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

1st Iteration

• 300 North La Salle• Existing Structure• Goals•Lateral Redesign•1st Iteration• 2nd & 3rd Iterations• Final Design

• Architectural Impact• Acoustic Impact• Questions?

Things to Consider: Minimize inherent torsion Control wind drift Control wind acceleration Strength and Constructability

Walls Beams

Page 14: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

2nd & 3rd Iterations

• 300 North La Salle• Existing Structure• Goals•Lateral Redesign

• 1st Iteration

•2nd & 3rd Iterations• Final Design

• Architectural Impact• Acoustic Impact• Questions?

Page 15: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

• 300 North La Salle• Existing Structure• Goals•Lateral Redesign

• 1st Iteration

•2nd & 3rd Iterations• Final Design

• Architectural Impact• Acoustic Impact• Questions?

Key Points:• New Truss Configuration

•No Belt trusses• 4 Additional Outriggers spanning East - West

• Increased Flange Length at Walls 4 & 6

• Increased wall thicknesses• 2 – 7’ openings• 2 – 10’ openings

Page 16: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

• 300 North La Salle• Existing Structure• Goals•Lateral Redesign

• 1st Iteration

•2nd & 3rd Iterations• Final Design

• Architectural Impact• Acoustic Impact• Questions?

Results:• Peak Acceleration

• 29 milli-g’s• Periods of Vibration

• 12.8% increase• Target 10%Ty (sec) Tx (sec) Tz (sec) SRSS (sec)

Original Model Flexible 7.85 5.96 5.7 11.392nd Iteration Flexible 8.1 7.4 6.32 12.66% Increase 3.18 24.16 10.88 11.20Original Model Rigid 7.06 5.78 5.47 10.642nd Iteration Rigid 7.75 7.11 6.13 12.17% Increase 9.79 22.96 12.01 14.41Average % Increase 6.49 23.56 11.44 12.81

AX (milli-g) AY (milli-g) AZ (milli-g) AR -RMS (milli-g) AR -Peak (milli-g)

Original Model Flexible 3.12 3.90 4.36 6.63 24.872nd Iteration Flexible 3.08 5.68 4.53 7.89 29.60% Increase -1.32 45.70 3.84 19.01 19.01Original Model Rigid 2.89 3.81 4.23 6.38 23.932nd Iteration Rigid 3.09 5.12 4.61 7.55 28.31% Increase 7.14 34.33 9.04 18.32 18.32Average Increase 2.91 40.01 6.44 18.67 18.67

Page 17: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

2nd & 3rd Iterations

• 300 North La Salle• Existing Structure• Goals•Lateral Redesign

• 1st Iteration

•2nd & 3rd Iterations• Final Design

• Architectural Impact• Acoustic Impact• Questions?

Things to Consider: Minimize inherent torsion Control wind drift Control wind acceleration Strength and Constructability

Walls Beams

Page 18: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

Final Design

• 300 North La Salle• Existing Structure• Goals•Lateral Redesign

• 1st Iteration• 2nd & 3rd Iterations

•Final Design• Architectural Impact• Acoustic Impact• Questions?

Page 19: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

• 300 North La Salle• Existing Structure• Goals•Lateral Redesign

• 1st Iteration• 2nd & 3rd Iterations

•Final Design• Architectural Impact• Acoustic Impact• Questions?

Key Points:• Increased flange thicknesses• 2 – 7’ openings• 2 – 10’ openings• 1st Iteration Truss Configuration

• 6 Outriggers• 2 Belts

Page 20: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

• 300 North La Salle• Existing Structure• Goals•Lateral Redesign

• 1st Iteration• 2nd & 3rd Iterations

•Final Design• Architectural Impact• Acoustic Impact• Questions?

Results:• Peak Acceleration

• 28 milli-g’s• Periods of Vibration

• 10% increase• Target 10%

Ty (sec) Tx (sec) Tz (sec) SRSS (sec)Original Model Flexible 7.85 5.96 5.70 11.394th Iteration Flexible 7.71 7.61 5.99 12.38% Increase -1.78 27.68 5.09 8.72Original Model Rigid 7.06 5.78 5.47 10.644th Iteration Rigid 7.38 7.12 5.95 11.86% Increase 4.55 23.13 8.72 11.43Average Increase 1.38 25.41 6.90 10.07

AX (milli-g) AY (milli-g) AZ (milli-g) AR -RMS (milli-g) AR -Peak (milli-g)

4th Iteration- Semi Rigid 2.99 5.22 4.51 7.51 28

Page 21: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

• 300 North La Salle• Existing Structure• Goals•Lateral Redesign

• 1st Iteration• 2nd & 3rd Iterations

•Final Design• Architectural Impact• Acoustic Impact• Questions?

Drift Analysis:• Wind Loads

•H / 400 Limit• Max drift @ Roof’ = 21.5”• Max allowable = 23.58”

• Seismic Loads• 0.020hsx • Well under limit

Story Height (in) Ux (in) H/400 (in) % Allowable Uy (in) H/400 (in) % AllowableL60 9702 13.13 24.26 46% 22.26 24.26 8%L59 9552 12.91 23.88 46% 21.78 23.88 9%L58(Roof) 9432 12.75 23.58 46% 21.43 23.58 9%L57 9264 12.51 23.16 46% 20.95 23.16 10%L56 9090 12.27 22.73 46% 20.45 22.73 10%L55 8916 12.02 22.29 46% 19.95 22.29 11%L54 8742 11.76 21.86 46% 19.44 21.86 11%L53 8586 11.53 21.47 46% 19.00 21.47 12%L52 8430 11.30 21.08 46% 18.55 21.08 12%L51 8274 11.06 20.69 47% 18.10 20.69 13%L50 8118 10.82 20.30 47% 17.65 20.30 13%L49 7962 10.58 19.91 47% 17.21 19.91 14%L48 7806 10.34 19.52 47% 16.76 19.52 14%L47 7650 10.09 19.13 47% 16.32 19.13 15%L46 7494 9.85 18.74 47% 15.88 18.74 15%L45 7338 9.61 18.35 48% 15.45 18.35 16%L44 7182 9.38 17.96 48% 15.02 17.96 16%L43 7026 9.15 17.57 48% 14.59 17.57 17%L42 6870 9.11 17.18 47% 14.18 17.18 17%L40 6558 8.70 16.40 47% 13.36 16.40 19%L39 6388 8.30 15.97 48% 12.92 15.97 19%L38 6232 8.08 15.58 48% 12.49 15.58 20%L37 6076 7.84 15.19 48% 12.06 15.19 21%L36 5920 7.61 14.80 49% 11.63 14.80 21%L35 5764 7.36 14.41 49% 11.19 14.41 22%L34 5608 7.12 14.02 49% 10.76 14.02 23%L33 5452 6.87 13.63 50% 10.32 13.63 24%L32 5296 6.62 13.24 50% 9.88 13.24 25%L31 5140 6.37 12.85 50% 9.44 12.85 27%L30 4984 6.12 12.46 51% 9.00 12.46 28%L29 4828 5.86 12.07 51% 8.57 12.07 29%L28 4672 5.61 11.68 52% 8.13 11.68 30%L27 4516 5.35 11.29 53% 7.70 11.29 32%L26 4360 5.09 10.90 53% 7.27 10.90 33%L25 4204 4.83 10.51 54% 6.85 10.51 35%L24 4048 4.56 10.12 55% 6.43 10.12 36%L23 3892 4.30 9.73 56% 6.02 9.73 38%L22 3736 4.04 9.34 57% 5.62 9.34 40%L21 3580 3.77 8.95 58% 5.22 8.95 42%L20 3424 3.51 8.56 59% 4.83 8.56 44%L19 3268 3.26 8.17 60% 4.45 8.17 46%L18 3112 3.00 7.78 61% 4.07 7.78 48%L17 2956 2.75 7.39 63% 3.71 7.39 50%L16 2800 2.50 7.00 64% 3.36 7.00 52%L15 2644 2.26 6.61 66% 3.03 6.61 54%L14 2488 2.02 6.22 67% 2.70 6.22 57%L13 2332 1.79 5.83 69% 2.39 5.83 59%L12 2176 1.57 5.44 71% 2.10 5.44 61%L11 2020 1.36 5.05 73% 1.82 5.05 64%L10 1864 1.17 4.66 75% 1.56 4.66 66%L9 1708 0.98 4.27 77% 1.32 4.27 69%L7 1552 0.82 3.88 79% 1.10 3.88 72%L6 1336 0.63 3.34 81% 0.82 3.34 75%L5 1084 0.43 2.71 84% 0.55 2.71 80%L4 928 0.32 2.32 86% 0.40 2.32 83%L2 748 0.22 1.87 88% 0.26 1.87 86%L1 536 0.11 1.34 92% 0.13 1.34 90%LL1 312 0.03 0.78 96% 0.04 0.78 95%

Wind E-W Wind N-SWind Drift vs. Recommended Drift for Serviceability

Story Story Height (in) delta max Actual Drift (in) Allowable 0.02hsx (in) delta max Actual Drift (in)

Allowable 0.02hsx (in)

L60 150 13.04 0.2073 3.00 14.25 0.2749 3L59 120 12.84 0.1683 2.40 13.97 0.2194 2.4L58 (Roof) 168 12.67 0.2356 3.36 13.75 0.3076 3.36L57 174 12.43 0.2493 3.48 13.45 0.3188 3.48L56 174 12.18 0.2545 3.48 13.13 0.3189 3.48

East-West Drift

Seismic Drift Analysis

North-South Drift

Page 22: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

• 300 North La Salle• Existing Structure• Goals•Lateral Redesign

• 1st Iteration• 2nd & 3rd Iterations

•Final Design• Architectural Impact• Acoustic Impact• Questions?

Reinforcement Design:•Shear Reinforcement• Wind loads calculated from ASCE 7-05

• Designed using ACI 318-08 Chapter 11

• Reinforcement ratio : 0.25%

Pier Vertical Shear Reinforcement Horizontal Shear ReinforcementAs req'd ρ = .0025 As: # 5 @ 12"o.c.

As req'd ρ = .0025 As: # 5 @ 8"o.c.

14.77 24.18 7.49 11.7816.62 24.18 8.42 11.7815.45 24.18 14.99 16.7514.77 24.18 7.49 11.7814.77 24.18 7.49 11.7813.74 24.18 13.32 16.7514.77 24.18 7.49 11.7816.62 24.18 8.42 11.7815.45 24.18 14.99 16.75

PIER 4

PIER 5

PIER 6

Shear Reinforcement (in2)

Pier Vertical Shear Reinforcement Horizontal Shear ReinforcementAs req'd ρ = .0025 As: # 7 @ 12"o.c.

As req'd ρ = .0025 As: # 7 @ 12"o.c.

7.29 9.6 7.49 14.419.5525 22.8 8.42 14.4

21.33 22.8 14.99 21.618.8325 27.6 7.49 14.423.0175 27.6 7.49 14.4

25.11 27.6 13.32 21.68.87625 12 7.49 14.4

19.8 22.8 8.42 14.421.6 22.8 14.99 21.6

Shear Reinforcement (in2)

PIER B4 & C4

PIER B5 & C5

PIER B6 & C6

Typical Shear Reinforcement

Page 23: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

• 300 North La Salle• Existing Structure• Goals•Lateral Redesign

• 1st Iteration• 2nd & 3rd Iterations

•Final Design• Architectural Impact• Acoustic Impact• Questions?

Reinforcement Design:•Flexural Reinforcement

•Design moments from ETABS output

•As = (MW/jd-PD) / (∅fy)•Checked with PCAColumn•Max rho = 2%•Additional flexural reinforcement req’d

Lower Level 1 – Level 11

Story Load +PWind (kips) +MWind (kip-in) 0.9 PDead (kips) φTn (kips) As (in2)

+NS 0 1169788 10002 -2633 no add.+EW 173 32003 10002 -4746 no add.+NS 0 11209324 26271 9551 177+EW 25188.05 1008627 26271 4779 88

Initial Area of Steel Requirements : Pier 4

L36

LL1

Lower Level 1 of Pier 6

Page 24: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

• 300 North La Salle• Existing Structure• Goals•Lateral Redesign

• 1st Iteration• 2nd & 3rd Iterations

•Final Design• Architectural Impact• Acoustic Impact• Questions?

Reinforcement Design:•Boundary Elements•Control buckling of longitudinal reinforcement

•14” max horizontal spacing•8” max vertical spacing•U-stirrups per horizontal shear reinforcement

Lower Level 1 of Pier 6

Flange at Openings

Web and Flange Intersection

Page 25: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

• 300 North La Salle• Existing Structure• Goals•Lateral Redesign

• 1st Iteration• 2nd & 3rd Iterations

•Final Design• Architectural Impact• Acoustic Impact• Questions?

Reinforcement Design:•Coupling Beam:

•20% shear reduction from grouping

•Designed to yield in flexure

Group A – Level 43 - Level 55 Group B – Level 9 - Level 39

Typical Beam Elevation

Page 26: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

Final Design

• 300 North La Salle• Existing Structure• Goals•Lateral Redesign

• 1st Iteration• 2nd & 3rd Iterations

•Final Design• Architectural Impact• Acoustic Impact• Questions?

Things to Consider: Minimize inherent torsion Control wind drift Control wind acceleration Strength and Constructability

Walls Beams

Page 27: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

Architectural Impact

• 300 North La Salle• Existing Structure• Goals• Lateral Redesign

• 1st Iteration• 2nd & 3rd Iterations• Final Design

•Architectural Impact• Acoustic Impact• Questions?

Page 28: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

• 300 North La Salle• Existing Structure• Goals• Lateral Redesign

• 1st Iteration• 2nd & 3rd Iterations• Final Design

•Architectural Impact• Acoustic Impact• Questions?

Key Changes:• Core length reduced from 120’

to 80’• Re-allocation of elevator bays• 900 sq.ft open floor space gained Level 29 – Level 40

• Shaft walls replaced with 2-hr fire-rated US Gypsum wall assemblies

Page 29: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

• 300 North La Salle• Existing Structure• Goals• Lateral Redesign

• 1st Iteration• 2nd & 3rd Iterations• Final Design

• Architectural Impact•Acoustic Impact• Questions?

Acoustic Impact

Page 30: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

• 300 North La Salle• Existing Structure• Goals• Lateral Redesign

• 1st Iteration• 2nd & 3rd Iterations• Final Design

• Architectural Impact•Acoustic Impact• Questions?

Key Points:• Meet Noise Criteria rating – NC-35

• Check Mechanical Equipment Room

• Check Reception and Lobby• Wall Assembly UL Des U415, System C

• STC 5163 Hz 125 Hz 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz 8000 Hz

Mechanical Equipment Room 87 51 41 33 29 27 25 23Reception and Lobby 60 31 28 26 20 13 5 -5

Sound Pressure Level (dB) for STC 51Example Source

Page 31: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

• 300 North La Salle• Existing Structure• Goals• Lateral Redesign

• 1st Iteration• 2nd & 3rd Iterations• Final Design

• Architectural Impact•Acoustic Impact• Questions?

Evaluation / Conclusion:Goals: Reduce foot print of core Redesign structural core Eliminate belt trusses Increase rentable floor space Comply with original architecture

Things to Consider: Minimize inherent torsion Control wind drift Control wind acceleration Strength and Constructability

Walls Beams

Page 32: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

Thank YouThe AE Faculty

My Advisor : Dr. Andres LepageScott Timcoe – HinesDave Eckmann – MKA

My Friends and Family

Page 33: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

• 300 North La Salle• Existing Structure• Goals• Lateral Redesign

• 1st Iteration• 2nd & 3rd Iterations

• Final Design• Architectural Impact• Acoustic Impact•Questions?

Questions?

Page 34: 300 North La Salle Liam McNamara BAE / MAE Senior Thesis April 13 th , 2010

Bibliography:• Griffis, Lawrence G. "Serviceability Limit States

Under Wind Load." Engineering Journal - AISC First Quarter (1993): 1-16. Print.

• Egan, M. David. Architectural Acoustics. Ft. Lauderdale, FL: J. Ross Pub., 2007. Print.

• Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary: an ACI

Standard. Farmington Hills, MI.: American Concrete Institute, 2008. Print.

• Steel Construction Manual 13th edition. Chicago, Illinois: American Institute of Steel Construction, 2005. Print.