36
3.3 J-PARC ににににににににににににに にににににににににににににに ににににににににににににに II (Jan. 16, 2008) ににににににににににににににににににに にににに QuickTim GIF êLí£É ǙDZÇÃÉsÉNÉ` Plan 0) にににににににににに -µSR 1) µSR ににににににに 2) µSR にににににににに 3) にににににに 4) J-PARC にににに

3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

  • Upload
    bisa

  • View
    75

  • Download
    0

Embed Size (px)

DESCRIPTION

高エネルギー加速器セミナー II (Jan. 16, 2008). 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー. Plan 0) ミュオンスピン回転法 - µ SR 1) µ SR による磁性研究 2) µ SR による超伝導研究 3) その他の応用 4) J-PARC での展開. 物質構造科学研究所ミュオン科学研究施設 門野良典. 0) ミュオンスピン回転法 =μSR. μSR=muon Spin Rotation, Relaxation. - PowerPoint PPT Presentation

Citation preview

Page 1: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

3.3 J-PARC におけるサイエンスのねらいーミュオン科学のめざすものー

高エネルギー加速器セミナー II (Jan. 16, 2008)

物質構造科学研究所ミュオン科学研究施設門野良典

QuickTime˛ Ç∆GIF êLí£ÉvÉçÉOÉâÉÄǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Plan0) ミュオンスピン回転法 -µSR1) µSR による磁性研究2) µSR による超伝導研究3) その他の応用4) J-PARC での展開

Page 2: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

0) ミュオンスピン回転法=μSR

a) 生成標的からほぼ100%スピンのそろったミュオンを取り出し、二次ビームラインで輸送して試料中に注入する。

b) 注入されたミュオンは原子と原子の間に止まり、そこでの局所磁場を感じて歳差運動する。

c) ミュオンは崩壊する瞬間に向いていたスピンの方向に陽電子を放出するので、それを検出器で捉える。→ スピンの回転に伴い検出器の信号が時間的に脈動する。

μSR=muon Spin Rotation, Relaxation...

Page 3: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

磁場中のスピン(=磁気モーメント)の運動

磁場

トルクスピン

歳差運動

重力

トルク こま

歳差運動

磁場中のスピンはこまと同じように首振り運動(歳差運動)を行なう。この時歳差運動の周波数は磁場に比例

(古典論的理解)

QuickTime˛ Ç∆GIF êLí£ÉvÉçÉOÉâÉÄǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Page 4: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

μSR 発展の歴史T.D. Lee & C.N.Yang:弱い相互作用におけるパリティ非保存の可能性の指摘 (1956)

The Nobel Prize in Physics 1957"for their penetrating investigation of the so-called parity laws which has led to important discoveries regarding the elementary particles"

「弱い相互作用」=原子核、 π 中間子、 μ 粒子等のベータ崩壊

Page 5: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

μSR 発展の歴史π±→μ±+νµ 、 μ±→e±+νe+νµ 崩壊でのパリティ非保存の実験検証 (1957)

π+

e+ tt=0 0.75µs 2.0µs

この間に来た e+ のみを数える↑

横軸=磁場 B

μ+

磁場をかけて μ+ スピンと検出器の相対角度を変えながら測定(数は積分)

e+ の数∝ cosθ; θ = μBt [B 〜 15G で θ 〜 100°]

~100°

-50G 0 +50G

1

3

Page 6: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

μSR 発展の歴史

1958: μSR による最初の物性研究  …小型 cyclotron での実験(黎明期)1974: TRIUMF 、 PSI (当時 SIN )稼働  …大型 cyclotron 「中間子工場」の登場197?: 「表面ミュオン」の発見1979: ゼロ磁場 μSR 法の確立1980: 日本国内初のミュオン BL稼働( KEK、当時東大)  …大型 synchrotron による世界初のパルス状ミュオン   ビーム/日本における μSR 研究の開始1986: RAL(英国)ミュオン BL稼働  …高温超伝導体の発見/ μSRへの認知度上昇1994: 理研 RALミュオン BL稼働2001: J-PARC (東海)建設開始

Page 7: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

tt=t1

T

μSR の原理

ミュオンを試料に注入し (t=t1) 、そこから放出される高エネルギー崩壊 ( 陽 ) 電子を検出する (t=t2) 。ただし崩壊時刻は予言不可能( β崩壊)なので一定の時間ゲートを開けて崩壊を待つ。

μ+

e+

µカウンター

F- 時計FB stop

t=t2

時間ゲート

B- 時計

start

stop

ヒストグラム

Page 8: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

μSR 実験装置 直流状ビームではミュオンを一つ一つ同定し、その崩壊陽電子を観測→少数の検出器で OK⇄時間ゲート中に2つめのミュオンが来た場合 には陽電子の親ミュオンが不明→事象を破棄

LAMPF@TRIUMF

試料

ミュオン

前方検出器群

後方検出器群

前方検出器と後方検出器の非対称度( Asymmetry )∝ミュオンの偏極度

ミュオンビーム

µ+カウンター

vetoカウンター試料

クライオスタット

縦磁場コイル

Page 9: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

μSR 実験装置 パスル状ビームではパルス毎に多数の崩壊陽電子を同時に観測→検出器を分割ミュオンの注入時刻 (t=0) は加速器のタイミングで決めるARGUS@RIKEN-RAL

試料

ミュオン

前方検出器群 後方検出器群

…直流ビームでは大強度化に対応困難→パルス化の流れ[ 大強度ビーム施設ではパルス状ビームが標準 (RAL,J-PARC)]ただし…

試料

Page 10: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

パルス状ミュオンにおける時間分解能の制限パルス状ミュオンにおける時間分解能の制限

t=t1 がパルス幅 の不定性を持つ:  →μSR 測定の時間分解能に上限を与える [ 例えば ~50 ns (KEK)] …Nyquist frequency =1/2 =10 MHz ⇔ 〜 0.074 T (>80 ns @RAL, J-PARC)

足し合わせると…

Page 11: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

-40 -20 0 20 40 Time difference (ns)

FWHM~3ns

… 陽電子検出器の時間分解能 プラスチックシンチレータ(蛍光発光〜 1ns/発光の立ち上がり< 0.1ns )

Nyquist frequency =1/2 =166 MHz

e+

ライトガイド(lucite)

光電子増倍管

光速度< 30cm/ns… ライトガイド中の光路差による光電面への到達時刻のばらつき

~1m

時間分解能を決めるもう一つの要因

Page 12: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

陽電子検出器 ~ 32チャンネル

例: KEK-MSL の検出器系

Strage (off-line)

データ収集システム( DAQ)

… オンラインデータロギング

波高弁別器

SCSI-BUS(~10MB/s)

毎秒 103~104個の崩壊陽電子を測定→高速な時間デジタル変換器( Time-to-Digital Converter, TDC)

Data Acquisition System (DAQ)On-Line Monitor…

加速器からのビームタイミング信号

TDC On-boardPC

μSR 実験装置

Page 13: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

KEKMSLのシステム: 32x2x2=128 histograms…paw++(CERNLib) ベースの                        オンラインモニター

Page 14: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

現代物性物理学のテーマ=電子相関 凝集体中で電子が1原子の範囲を超えて広がる

原子間の相互作用

金属 孤立「原子」

分子 =内部自由度の大きい「原子」

多彩な性質

構造

電子相関なし 電子相関なし

超格子・ナノ構造

一様系

電子状態

物理 化学

物理と化学の境界領域

Page 15: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

µSR で見えるもの 局所電子状態 (q=0): 電子スピンが作る局所内部磁場 (μB) 、およびその揺らぎ (c) を観測

 観測量=スペクトル密度 P() [ とその揺らぎに     よる変調 ]

放射光・中性子等の回折プローブで見えるもの電荷・スピン分布:散乱体の全体積に体する平均観測量=構造因子 S(q,)

相補的

Page 16: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

1)μSR による磁性研究

μ+

磁気秩序がない状態 磁気秩序(強磁性)状態

内部磁場はサイトに依存、ミュオン偏極も時間とともに減少

内部磁場はサイト毎に一定、ミュオンスピンは同じ周期で回転

脈動する信号:・周波数・緩和率・振幅

ミュオンは再隣接原子からの磁場を直接感じる

最隣接の磁気モーメントからの双極子磁場にのみ敏感

核スピンしかない場合 緩和の速さから磁気モーメントの大きさを推定可能

ただし、磁気構造の違いには必ずしも敏感でない

Page 17: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

参考 ) 中性子回折の場合磁気秩序がない状態 磁気秩序(強磁性)状態

中性子は原子核からの回折のみ 磁気散乱による回折強度の増大回折強度から体積平均した磁気モーメントの大きさを推定可能

θ

10° 20° 30°

110210

211

θ

2dsin=Bragg 条条

10° 20° 30°

110

210211

θ

=1.07Å

中性子回折強度は長距離秩序の度合いに比例

磁気構造によって回折パターンが変化:構造解析に最適

すべての原子からの散乱強度の和を見る

Page 18: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

条条条条条条条 ホールドープ系電子ドープ系

ところで ...キャリアを入れない銅酸化物が反強磁性体であることを最初に示したのはミュオンによる実験(1987年〜 1988年)

Cu O

... ミュオンは比較的少量の試料で磁気秩序の有無を調べる事が可能→新物質の磁性評価に威力を発揮

←ゼロ磁場で La2CuO4

にミュオンを注入したときに得られる信号(ZF-µSR スペクトル )磁気秩序に伴う脈動パターンが見える

乱れた磁気相の存在

キャリア濃度

Page 19: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

0.00 0.05 0.10 0.15 0.20

1

10

100

TN

TD

Tc

Tf

SG-like

SCAF

Ca2-x

NaxCuO

2Cl

2

Temperature [K]

Na concentration x

5 10 15 20 25 30-1.6

-1.2

-0.8

-0.4

0.0

x = 0.15

x = 0.20

x = 0.12

x = 0.10

Na-CCOCμ0H = mT

χ [0

-2/ ]emu g

T [K]

↑STM/STS by Kohsaka et al.

↑µSR by Ohishi et al.

条条条条条高温超伝導体 Ca2-xNaxCuO2Cl2 (Na-CCOC) の磁気相図の解明ー京大化研との協同研究ー

↑ ミュオン( µSR )は磁気相図(ドーピングに伴う磁性の変化の地図)を調べる最も便利な手法: →

(右図): Ca2-xNaxCuO2Cl2 の過小ドープ領域 (0.06<x<0.1) で磁気的に乱れた状態にあることを初めて示した。 [←走査トンネル分光法 (STM, STS) により実空間での不均一な電子状態が伴う事も判明 ]

…ナノスケールでの電子状態の不均一=局在しかかった電子が示す共通の特徴:µSR は磁気相互作用を通じて観測

Na-CCCOC は平坦な CuO2面を持つ→従来不可能だった過小ドープ領域でトンネル分光、光電子分光が可能になったが磁性は未解明。

Page 20: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

(Aoki et al., PRL,2003)

Tc=1.8K

条条条条条 μSR の特徴を活かした典型例 ):

磁性を持った超伝導状態

日刊工業新聞 2003/8/13希土類元素を含む新しい充填スクッテルダイト型超伝導体PrOs4Sb12

μSR で超伝導状態に付随した微小磁場を発見

... 磁気モーメントを持った新しい型のクーパー対を示す証拠

Page 21: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

↑ 超伝導体の表面に磁性の微粒子を撒いて電子顕微鏡で見た磁束格子

Normal Coreρv≈ξB

ξ

コヒーレンス長 ξ… クーパー対の間隔磁場侵入長 λ… 磁束の周りを流れる超伝導電流(クーパー対)の密度を反映

超伝導における2つの重要な長さスケール

2)μSR による超伝導研究 超伝導状態のより深い理解をめざして

第二種超伝導体の磁束格子状態:

格子の歪 (phonon)

Page 22: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

周波数分布(フーリエ変換)

磁束状態の磁場分布

... ミュオンは磁場分布をランダムサンプリング

磁束状態にミュオンを注入すると ...常伝導

超伝導 ( 磁束格子 )

磁束コアの情報が高周波側に集まる→ 磁束格子の形を他の方法 (SANS 等 ) で決めて元の磁場分布を再構成、

  λ、 ξを同時に決める事が可能

Page 23: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

例: μSR と SANS の実験結果から再構成されたYNi2B2C (Tc=15 K) における磁束格子状態の磁場の空間分布

…四角格子を組む原因であるフェルミ面の異方性(非局所効果)を考慮する必要がある

SANS→

Page 24: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

←↑ 条条条条条条条条条条条の値が超伝導ギャップの異方性を反映する。

… クーパー対形成の機構を解明する上での重要な情報

4πns

m*c2

=21/λ2a)b)c)Excitation (T)1/λ2∝1−(T/Tc)βExperimentλa)b)c)Excitation (H)λ/λ(0)=1+η(H/Hc2)λ(0)σ ∝

λから分かる事:運動量空間での超伝導ギャップの構造

↓λの温度/磁場に対する依存性を測ると…

磁束周りの超伝導電流によるドップラーシフト

vs.vFJ(r)∝vs

Page 25: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

μSR で測定された磁場侵入長 の磁場依存性を見ると、磁場に対して比較的大きな傾きをもって増大していく。→ギャップに構造がない単純な BCS 超伝導機構では説明できない結果。

最近の例:最近の例: -- パイロクロア化合物パイロクロア化合物 KOsKOs22OO66 の超伝導の超伝導

比較的高い Tc (~9 K) を持ったパイロクロア化合物 (Yonezawa et al., 2004):

物理的背景…パイロクロア格子上で反強磁性相関を示す局在モーメントはフラストレーションにより秩序化しない(=スピン液体状態)→金属的なスピン液体状態の上では新たな機構で超伝導が発現する可能性がある。

∝1-H/Hc2

(Koda et al., 2005)

Page 26: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

Tc (K) Pairing Symmetry model T (K) Hc2 (T) Ref.

YNi2B2C 15.4 aniso. s (s+g?) 0.95(1) m-L 3.0 7.0 [1]

MgB2 39 double gap 1.3(3) G 10.0 12.5 [2]

NbSe2 7.0 anisotropic s 1.85(7) m-L 2.3 2.9 [3]

YBa2Cu3O6.95 93.2 d 5-6.6 m-L 31.0 95 [4]

KOs2O6 9.6 double gap? 2.58(9) G/m-L 2.0 ≈ 30 [9]

Nb3Si 18.3 anisotropic s?(h<0.1) 1.24(2) m-L 2.0 ≈ 22 [10]

Sr1-xLaxCuO2 ~40 d? ~2 m-L 2.0 ? [12]

CeRu2 6.0 isotropic s (h<0.5) ≈ 0 m-L 2.0 5.0 [5]

Y(Pt,Ni)2B2C 12.1 isotropic s ≈ 0 m-L 2.5 4.0 [6]

Cd2Re2O7 1-2 isotropic s ≈ 0 G 0.2 0.37 [7]

V3Si 17 isotropic s ≈ 0 GL 3.8 ≈ 17 [8]

YB6 7.1 isotropic s ≈ 0 GL 2.0 0.31 [11]

=(0)[1+h]↓µSR で決められた、の磁場に対する傾きの強さを表す無次元のパラメーター の値。超伝導ギャップに節(ノード)がある場合は有限の値を取る。

[1] K. Ohishi et al. PRB 65 (2002) 140505.[2] K. Ohishi et al. JPSJ 72 (2003) 29.[3] J.E. Sonier et al. PRL 79 (1997) 1742.[4] J.E. Sonier et al. RMP 72 (2000) 769.[5] R. Kadono et al. PRB 63 (2001) 224520.[6] K. Ohishi et al. Physica B 326 (2003) 364.

[7] R. Kadono et al. JPSJ 71 (2002) 709.[8] J.E. Sonier et al. PRL 93 (2004) 017002.[9] A. Koda et al. JPSJ 74 (2005) 1678.[10] R. Kadono et al. PRB 74 (2006) 024513.[11] R. Kadono, S. Kuroiwa et al., to be published. [12] K. H. Sato, R. Kadono, et al., to be published.

Page 27: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

Normal Coreρv≈ξB

一つの磁束の周りをより微視的に見ると ...

磁場分布

電流分布

位相分布

↑ このような単純な描像で理解できない現象が近年数多く見つかっている。

磁場

磁束コア半径

例:磁束コア半径が磁場の増大とともに縮む

従来の描像 ...磁束は正常状態の単純な筒

ξ(磁束コア半径 )から分かる事…物理の新たな展開

Page 28: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

3)μSR:その他の応用例水素原子は半導体における key player…バルクな電気活性を大きく左右する

Muonium Centers in Si/Ge

MuT

MuBC

µ+

Si, Ge

( : forming T-sites)

←希薄な濃度の水素(孤立水素中心)を研究するのは極めて困難

半導体中の孤立ミュオニウム中心の電子状態は水素をシミュレート!

最近の例: GaN 中の孤立ミュオニウムの電子状態の解明

Shimomura, Kadono et al. PRL 92 (2004) 135505

←小さな活性化エネルギーは浅いドナー順位を形成→GaN は水素添加により n 型伝導を示す?

Page 29: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

最近の成果)水素吸蔵物質中の µ+ の状態はプロトン(水素)をシミュレート!

O

CNaAlH4 中の µ+

[AlH4-µ+AlH4

-] という水素結合による複合体が出来ている事をµSR で初めて明らかにした。(Phys. Rev. Lett. に出版予定)

AlH4

Na

↑NaAlH4中の µ+の振る舞いが Tiドーピングによって変わる様子を捉えた。

Page 30: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

e.g. µ− in Si =r ε0 h2

π m2 Z ( =)n

28Si4

µ−

e− rµ=.8×0−4 Åre=3.78 ×0−2 Å

. = 4cf nuclear radius of Si×0−5 Å

・負ミュオンを用いた µSR

寿命 ∝ Z4 :原子核の µ 捕獲による e.g. ≈0.77µs in Si [cf. µ+: 2.19709(5) µs] スピン偏極度 : Pµ<16 % [cf. µ+: Pµ≈100 %] →小さな崩壊非対称度 A0 < 5%

… 原子番号 Z1 を持つ結晶格子点位置のプローブ

従来より少なくとも 102 〜 103 倍高強度の µ 条条条

C

Si

Trans. Metals

↑電子への崩壊確率が Z とともに急激に小さくなる ⇔ …試料に注入するミュオンをいちいち数えなければならない直流ビームによる実験は極めて非効率(ほとんど無駄な測定時間を費やす)→ J-PARC で初めて実用になる?

補 )μSR J-PARC における負ミュオン利用

Page 31: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

新物質評価手段としての μSR の特徴ー unique “niche”

原子レベルでの局所磁気プローブ: 中性子回折に比べて  1) 長距離秩序の有無に関わらず磁性を評価可能   ... 小さな磁気モーメント S /大きな単位体積 v0 に適用可能  中性子回折強度∝ V・ S2/v02

 ⇔ ミュオン回転周波数∝ S 回転振幅∝磁性相の体積  2) 少量の粉末試料で磁性を評価可能  3) 磁気秩序変数に線形に応答 核磁気共鳴 (NMR) に比べて  1) 核スピンの有無に関わらず全ての物質で適用可能  2) 純粋に磁気相互作用のみ(スピン =1/2 )で解釈の  任性が少ない  3) 磁気秩序変数に線形に応答 中性子/ NMR両者に比べて これらが見れない時間スケールの現象を μSR で見る事が可能

Page 32: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

通常のマクロ測定では観測不能な反強磁性など多数

ミクロな超高感度磁気プローブとしてのミュオン

J-PARC ミュオンは原子一つ一つの磁性を捉える

銅酸化物超伝導体

時間積分信号

時間微分信号

10210010-210-410-610-810-1010-12 c(sec)

中性子メスバウアー

ミュオン (µSR)

核磁気共鳴 (NMR)

交流帯磁率←各種プローブが捉える磁気揺らぎの時間スケール

見えない

見える

Page 33: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

世界のミュオン実験施設

KEKMSL=KEK ミュオン科学研究施設 ...国内唯一のミュオン源       →3桁アップの強度を持つ J-PARC ミュオン施設へ

J-PARC-µ

Page 34: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

物質生命科学実験棟 (MLF)

中性子科学実験施設(JSNS)

ミュオン科学実験施設 (MUSE)

J-PARC MUSE FacilityMUSE=“Muon Science Establishment”

← 2~6 beam lines may be available upon the completion of Phase II

← 2~6 beam lines may be available upon the completion of Phase II

Page 35: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

現在の建設状況 陽子ビーム

2008年度中のファーストビームをめざして建設中

ミュオン生成標的

Page 36: 3.3 J-PARC におけるサイエンスのねらい ー ミュオン科学のめざすものー

J-PARC ミュオンにおける μSR

1) KEK-MSL停止後、アジア地域唯一のミュオン源として引き続き μSR による新物質評価の拠点を形成する。(第1期+α)

2) ビームの大強度化によりこれまで実施が困難であった条件下(微小試料、複合極限条件等)での物性研究を可能する。 (第1期+α)

3) 隣接する中性子回折との相補的利用により、さらに高度な物性評価が可能になる。

4) ビームチャンネル数の増加により多数の利用者を受け入れ可能になる。 (第2期)