2
MOTION NEWTON’S LAWS (TAKEN FROM CENTRE OF MASS) 1. Inertia An object at rest will remain at rest An object in motion will remain in uniform motion Unless acted upon by a net unbalanced force 2. F = ma Acceleration is directly proportional (and in line with) the net force acting on an object Acceleration is indirectly proportional to mass 3. When object A exerts a force on object B, object B exerts an equal and opposite force on object A NET FORCE Calculated from addition of vectors: 1. 1D: Addition of magnitude 2. 2D: Vectors headtotail or resolution into two perpendicular components UNIFORM CIRCULAR MOTION f = 1 T , v = 2π T or v = 2πrf Velocity is tangential to the motion path Magnitude of acceleration: a = v 2 r or a = 4π 2 r T 2 or a = 4π 2 rf 2 Centripetal acceleration: Acceleration is always toward the centre of the circle Velocity and acceleration are NOT constant (always changing) Velocity is perpendicular to acceleration Net Force MUST be toward the centre of the circle (centripetal force) to sustain circular motion Banked Track 3 forces: 1. Normal force 2. Weight force 3. Friction force F cent = Σ F net = N + W F cent = mv 2 r = mg tanθ = v 2 r = g tanθ Resolve Normal and Friction forces into vertical and horizontal components Sum of vertical components = 0 Sum of horizontal components = ma Maximum speed: when friction reaches maximum Design speed: when friction = 0, v = gr tanθ , where θ is the banking angle Vertical Circular Motion Object mass m, tension in string, T: Highest: T + mg = mv 2 r Lowest: T mg = mv 2 r PROJECTILE MOTION 2D motion under a constant force (gravity, or weight) Horizontal component of velocity vector remains constant Vertical component of velocity vector is affected by gravity, constant acceleration of g downwards. For horizontal component: a = 0 , v = u = Vcosθ , s = ut V = speed at angle θ to horiz. For vertical component: Use rules for rectilinear motion: v = u + at s = 1 2 (u + v ) s = ut + 1 2 at 2 s = vt 1 2 at 2 v 2 = u 2 + 2as u = Vsinθ , a = g MOMENTUM & ENERGY Impulse Impulse = change in momentum: I = Δp , FΔt = mv mu Conservation of momentum: Total momentum before = total momentum after m 1 u 1 + m 2 u 2 = m 1 v 1 + m 2 v 2 When one object gains momentum, the other loses momentum by the same amount. (The total remains constant) Δp 2 = −Δp 1 , I 2 = I 1 Work Work is done by one system on another system during which the former exerts a force on the latter. (energy transfer) Change in Kinetic Energy Results from work done by net force on an object. Fs = 1 2 mv 2 1 2 mu 2 When an object moves in a gravitational field kinetic energy changes to gravitational energy, and vice versa. Total energy remains constant E k1 + U g1 = E k2 + U g2 Gravitational Potential Energy @ the Earth’s surface: U g = mgh ΔU g = mgΔh ΔU g is given by the area under a force distance, or fielddistance graph Spring Energy Hooke’s Law: when an object interacts with a Hookean spring, kinetic energy is changed to elastic potential energy and vice versa. Total energy remains constant. F = kx E k1 + U e1 = E k2 + U e2 U e = 1 2 kx 2 Area under forceextension graph is change in elastic potential energy ΔU e = 1 2 k( x 2 ) 2 1 2 k( x 1 ) 2 k = YA l Elastic collision Elastic collision: Total kinetic energy before and after collision is equal. (Energy is conserved) During collision some kinetic energy is converted to elastic potential energy, and then back again Inelastic collision: Energy after collision is less than energy before. (Energy is lost) During collision, some kinetic energy is converted to heat and sound. Gravitational fields Universal gravitational field: g = GM r 2 Gravitational force between and two objects: F = GM 1 M 2 r 2 Satellite Motion: a = g v 2 r = GM r 2 or 4 π 2 r T 2 = GM r 2 v 2 r = GM or r 3 T 2 = GM 4π 2 ELECTRONICS GENERAL EQUATIONS Power: P = IV P = V 2 R P = I 2 R V = IR E = VIt = Pt Q = It RESISTANCE The ability of a conductor to resist the flow of electric current. Ohm’s Law Ohm’s law states that for ohmic conductors, the resistance stays constant, when voltage and current vary. V = IR , R = V I Resistance in Parallel 1 R P = 1 R 1 + 1 R 2 + 1 R 3 + ... or R P = 1 1 R 1 + 1 R 2 + 1 R 3 + ... R P = V AB I Resistance in Series R S = R 1 + R 2 + R 3 + ... R S = V AB I Nonohmic conductors Diodes: Device used to control current and voltage Conducts when forward biased Current drops to virtually 0 in reversebias Thermistors: Resistance varies with temperature Transducers: Change other forms of energy (heat, light, etc.) into electricity and vice versa. Photonic Transducers: Change light into electricity and vice versa. Light Dependant Resistors (LDRs): Resistance changes with the intensity of light it is exposed to Photodiodes: Conductivity changes with illuminating light intensity when in reversebias (photoconductive mode) As light intensity increases, current (photocurrent) increases. Forward biased mode is called photovoltaic mode. Light Emitting Diodes (LEDs): Emits light when forward biased. Light intensity increases with increasing forward current. POWER P total = ΣP = P 1 + P 2 + P 3 + ... P total = V AB I P total = V AB 2 R total P total = I 2 R total CURRENT POTENTIAL DIFFERENCE/VOLTAGE The change in electrical potential energy between two points. Voltage Dividers A series connection of two or more resistors forms a voltage divider. The supply voltage V 1 V 2 = R 1 R 2 V out = R out R 1 + R 2 × V in Voltage Amplification Voltage gain: gain = ΔV out ΔV in i.e.: gain is gradient of voltage inout graph. Negative value for inverting, positive for noninverting. If input signal exceeds maximum, clipping occurs. Clipping PHOTONICS Frequency Modulation Modulation: Changing the intensity of the carrier light wave to replicate the amplitude variation of the signal wave Allows signals that are more robust and able to travel longer distances. Demodulation: Separation of a signal wave from the carrier wave. STRUCTURES AND MATERIALS FORCES Tension and Compression When a When a structure/material is pulled at both ends/stretched, it is under tension. When a structure/material is pushed at both ends/squashed, it is under compression. Compression and tension forces are taken overall, i.e.: a material of nonuniform crosssectional area experiences uniform compression and tension. Compression and tension can coexist in a structure. Shear Where two opposing parallel forces in the same plane are applied to opposite sides of a structure/material, or, when two opposing rotational forces in the same plane are applied to a structure/material, it is experiencing a shear force. EFFECTS OF FORCES/ENERGY Stress, Strain and Young’s Modulus Stress is experienced by any material subjected to a force. Because stress is inversely proportional to crosssectional area, thinner materials experience more stress (and more likely to fail) σ = F A σ 1 A , σ F 2.5 5 7.5 10 12.5 15 -2.5 2.5 carrier wave output wave signal wave -3 -2 -1 0 1 2 3 -3 -2 -1 1 2 3 General Diagrams Voltage Dividers Signal Modulation Voltage Amplification inout graph General Diagrams Projectile Motion General Diagrams

36166687 VCE Physics Unit 3 Exam 1 Cheat Sheet Final Copy

Embed Size (px)

Citation preview

Page 1: 36166687 VCE Physics Unit 3 Exam 1 Cheat Sheet Final Copy

MOTION  

NEWTON’S  LAWS  (TAKEN  FROM  CENTRE  OF  MASS)  

1. Inertia  ⇒ An  object  at  rest  will  remain  at  rest  

⇒ An  object  in  motion  will  remain  in  uniform  motion  

⇒ Unless  acted  upon  by  a  net  unbalanced  force  

2.

F = ma  ⇒ Acceleration  is  directly  proportional  (and  in  line  with)  the  net  force  acting  on  an  object  

⇒ Acceleration  is  indirectly  proportional  to  mass  

3. When  object  A  exerts  a  force  on  object  B,  object  B  exerts  an  equal  and  opposite  force  on  object  A  

NET  FORCE  Calculated  from  addition  of  vectors:  

1. 1D:  Addition  of  magnitude  2. 2D:  Vectors  head-­‐to-­‐tail  or  resolution  

into  two  perpendicular  components  

UNIFORM  CIRCULAR  MOTION  

 

f =1T,  

v =2πT  or  

v = 2πrf  

⇒ Velocity  is  tangential  to  the  motion  path  ⇒ Magnitude  of  acceleration:  

a =v 2

r  or  

a =4π 2rT 2

 or  

a = 4π 2rf 2  

⇒ Centripetal  acceleration:  Acceleration  is  always  toward  the  centre  of  the  circle  

⇒ Velocity  and  acceleration  are  NOT  constant  (always  changing)  

⇒ Velocity  is  perpendicular  to  acceleration  ⇒ Net  Force  MUST  be  toward  the  centre  of  

the  circle  (centripetal  force)  to  sustain  circular  motion  

Banked  Track  ⇒ 3  forces:  

1. Normal  force  2. Weight  force  3. Friction  force  

Fcent = Σ F net =

N +

W

Fcent =mv 2

r= mg tanθ

=v 2

r= g tanθ

 

⇒ Resolve  Normal  and  Friction  forces  into  vertical  and  horizontal  components  

⇒ Sum  of  vertical  components  =  0  ⇒ Sum  of  horizontal  components  =  ma  ⇒ Maximum  speed:  when  friction  reaches  

maximum  ⇒ Design  speed:  when  friction  =  0,  

v = gr tanθ ,  where  θ  is  the  banking  angle  

Vertical  Circular  Motion  ⇒ Object  mass  m,  tension  in  string,  T:    

⇒ Highest:  

T +mg =mv 2

r  

⇒ Lowest:  

T −mg =mv 2

r  

PROJECTILE  MOTION  

 

 ⇒ 2D  motion  under  a  constant  force  

(gravity,  or  weight)  ⇒ Horizontal  component  of  velocity  vector  

remains  constant  ⇒ Vertical  component  of  velocity  vector  is  

affected  by  gravity,  constant  acceleration  of  g  downwards.  

⇒ For  horizontal  component:  ⇒

a = 0 ,  

v = u =Vcosθ ,  

s = ut  ⇒ V  =  speed  at  angle  θ  to  horiz.  

⇒ For  vertical  component:  ⇒ Use  rules  for  rectilinear  motion:  

v = u + ats = 1

2 (u + v)s = ut + 1

2 at2

s = vt − 12 at

2

v 2 = u2 + 2as  

u =Vsinθ ,  

a = −g  

MOMENTUM  &  ENERGY  

Impulse  ⇒ Impulse  =  change  in  momentum:  

I = Δp ,  

FΔt = mv −mu  ⇒ Conservation  of  momentum:  

⇒ Total  momentum  before  =  total  momentum  after  

m1u1 +m2u2 = m1v1 +m2v2  ⇒ When  one  object  gains  momentum,  the  

other  loses  momentum  by  the  same  amount.  (The  total  remains  constant)  ⇒

Δp2 = −Δp1 ,  

I2 = −I1  

Work  ⇒ Work  is  done  by  one  system  on  another  

system  during  which  the  former  exerts  a  force  on  the  latter.  (energy  transfer)  

W = Fs = ΔE

 

Change  in  Kinetic  Energy  ⇒ Results  from  work  done  by  net  force  on  

an  object.  ⇒

Fs = 12 mv

2 − 12 mu

2  ⇒ When  an  object  moves  in  a  gravitational  

field  kinetic  energy  changes  to  gravitational  energy,  and  vice  versa.  ⇒ Total  energy  remains  constant  

Ek1 +Ug1 = Ek2 +Ug2  

Gravitational  Potential  Energy  ⇒ @  the  Earth’s  surface:  

Ug = mgh  ⇒

ΔUg = mgΔh  ⇒

ΔUg  is  given  by  the  area  under  a  force-­‐distance,  or  field-­‐distance  graph  

Spring  Energy  ⇒ Hooke’s  Law:  when  an  object  interacts  

with  a  Hookean  spring,  kinetic  energy  is  changed  to  elastic  potential  energy  and  vice  versa.  Total  energy  remains  constant.  ⇒

F = kx  ⇒

Ek1 +Ue1 = Ek2 +Ue2  ⇒

Ue = 12 kx

2  ⇒ Area  under  force-­‐extension  graph  is  

change  in  elastic  potential  energy  ⇒

ΔUe = 12 k(x2)

2 − 12 k(x1)

2  

k =YAl  

Elastic  collision  ⇒ Elastic  collision:  

⇒ Total  kinetic  energy  before  and  after  collision  is  equal.  (Energy  is  conserved)  ⇒ During  collision  some  kinetic  

energy  is  converted  to  elastic  potential  energy,  and  then  back  again  

⇒ Inelastic  collision:  ⇒ Energy  after  collision  is  less  than  

energy  before.  (Energy  is  lost)  ⇒ During  collision,  some  kinetic  

energy  is  converted  to  heat  and  sound.  

Gravitational  fields  ⇒ Universal  gravitational  field:  

g =GMr 2

 

⇒ Gravitational  force  between  and  two  objects:  

F =GM1M2

r 2  

⇒ Satellite  Motion:  ⇒

a = g  

v2

r=GMr 2

 or  

4π 2rT 2 =

GMr 2

 

⇒ ∴

v2r =GM  or  

r 3

T 2 =GM4π 2  

ELECTRONICS  

 

 

GENERAL  EQUATIONS  ⇒ Power:  

P = IV  

P =V 2

R  

P = I2R  ⇒

V = IR  

E =VIt= Pt

 

Q = It  

RESISTANCE  ⇒ The  ability  of  a  conductor  to  resist  the  

flow  of  electric  current.  

Ohm’s  Law  ⇒ Ohm’s  law  states  that  for  ohmic  

conductors,  the  resistance  stays  constant,  when  voltage  and  current  vary.  

V = IR ,  

R =VI  

Resistance  in  Parallel  

1RP

=1R1

+1R2

+1R3

+ ...  or  

RP =1

1R1

+1R2

+1R3

+ ...  

RP =VABI  

Resistance  in  Series  ⇒

RS = R1 + R2 + R3 + ...  

RS =VABI

 

Non-­‐ohmic  conductors  ⇒ Diodes:  

⇒ Device  used  to  control  current  and  voltage  

⇒ Conducts  when  forward  biased  ⇒ Current  drops  to  virtually  0  in  

reverse-­‐bias  ⇒ Thermistors:  

⇒ Resistance  varies  with  temperature  ⇒ Transducers:  

⇒ Change  other  forms  of  energy  (heat,  light,  etc.)  into  electricity  and  vice  versa.  

⇒ Photonic  Transducers:  ⇒ Change  light  into  electricity  

and  vice  versa.  ⇒ Light  Dependant  Resistors  

(LDRs):  ⇒ Resistance  changes  with  the  

intensity  of  light  it  is  exposed  to  

⇒ Photodiodes:  ⇒ Conductivity  changes  with  

illuminating  light  intensity  when  in  reverse-­‐bias  (photoconductive  mode)  ⇒ As  light  intensity  

increases,  current  (photocurrent)  increases.  

⇒ Forward  biased  mode  is  called  photovoltaic  mode.  

⇒ Light  Emitting  Diodes  (LEDs):    ⇒ Emits  light  when  forward  

biased.  Light  intensity  

increases  with  increasing  forward  current.  

POWER  

Ptotal = ΣP= P1 + P2 + P3 + ...

 

Ptotal =VABI  

Ptotal =VAB

2

Rtotal

 

Ptotal = I2Rtotal  

CURRENT  ⇒  

POTENTIAL  DIFFERENCE/VOLTAGE  ⇒ The  change  in  electrical  potential  

energy  between  two  points.  

Voltage  Dividers  

 

 ⇒ A  series  connection  of  two  or  more  

resistors  forms  a  voltage  divider.  The  supply  voltage  

V1V2

=R1R2

 

Vout =Rout

R1 + R2×Vin  

Voltage  Amplification  ⇒ Voltage  gain:  

gain =ΔVoutΔVin

 

⇒ i.e.:  gain  is  gradient  of  voltage  in-­‐out  graph.  

⇒ Negative  value  for  inverting,  positive  for  non-­‐inverting.  

⇒ If  input  signal  exceeds  maximum,  clipping  occurs.  

 Clipping  

PHOTONICS  

Frequency  Modulation  

 

   ⇒ Modulation:  

⇒ Changing  the  intensity  of  the  carrier  light  wave  to  replicate  the  amplitude  variation  of  the  signal  wave  

⇒ Allows  signals  that  are  more  robust  and  able  to  travel  longer  distances.  

⇒ Demodulation:  ⇒ Separation  of  a  signal  wave  from  the  

carrier  wave.  

STRUCTURES  AND  MATERIALS  

 

FORCES  

Tension  and  Compression  ⇒ When  a  When  a  structure/material  is  

pulled  at  both  ends/stretched,  it  is  under  tension.  

⇒ When  a  structure/material  is  pushed  at  both  ends/squashed,  it  is  under  compression.  

⇒ Compression  and  tension  forces  are  taken  overall,  i.e.:  a  material  of  non-­‐uniform  cross-­‐sectional  area  experiences  uniform  compression  and  tension.  

⇒ Compression  and  tension  can  coexist  in  a  structure.  

Shear  ⇒ Where  two  opposing  parallel  forces  in  

the  same  plane  are  applied  to  opposite  sides  of  a  structure/material,  or,  when  two  opposing  rotational  forces  in  the  same  plane  are  applied  to  a  structure/material,  it  is  experiencing  a  shear  force.  

EFFECTS  OF  FORCES/ENERGY  

Stress,  Strain  and  Young’s  Modulus  ⇒ Stress  is  experienced  by  any  material  

subjected  to  a  force.  Because  stress  is  inversely  proportional  to  cross-­‐sectional  area,  thinner  materials  experience  more  stress  (and  ∴  more  likely  to  fail)  

σ =FA  

σ ∝1A,  

σ ∝ F  

0 2.5 5 7.5 10 12.5 15

-2.5

2.5

carrier  wave  

output  wave  

signal  wave  

-3 -2 -1 0 1 2 3

-3

-2

-1

1

2

3

General  Diagrams  

Voltage  Dividers  

Signal  Modulation  

Voltage  Amplification  in-­out  graph  

General  Diagrams  

Projectile  Motion  

General  Diagrams  

Page 2: 36166687 VCE Physics Unit 3 Exam 1 Cheat Sheet Final Copy

⇒ Strain  is  the  relative  (fractional/percentage)  change  in  length  of  a  material  under  stress.  

ε =Δll  

⇒ Young’s  Modulus  is  unique  to  the  material.  ⇒ It  is  the  linear  relationship  between  

stress  and  strain  in  a  material.  ⇒ It  is  a  measure  of  “stiffness”  of  a  

material  ⇒ In  diagrams,  A  is  stiffer  than  B  

⇒ It  is  given  by  the  gradient  of  a  stress-­‐strain  graph.  

Y =σε  

Elasticity  ⇒ An  elastic  material  has  the  same  stress  

strain  graph  (Y  value)  when  stress  is  applied  or  removed  

⇒ When  stress  is  removed,  the  material  returns  to  its  original  shape.  This  is  elastic  behaviour  

⇒ The  elastic  region  of  the  stress-­‐strain  graph  is  linear,  and  is  followed  by  the  plastic  region.  

⇒ When  the  elastic  limit  is  reached,  however,  the  material  begins  to  exhibit  plastic  behaviour,  and  is  permanently  deformed  (plastic  deformation)  

⇒ If  stress  is  applied  beyond  the  elastic  limit,  the  material  will  eventually  reach  its  breaking  point,  where  it  will  fail  (break)  

Strength  ⇒ The  maximum  stress  (compressive  or  

tensile)  a  material  can  withstand  before  failing  is  its  compressive/tensile  strength  

⇒ Strain  energy  is  the  amount  of  potential  energy  stored  in  material  under  stress.  It  is  given  by  the  area  under  the  force-­‐extension  graph.  Also  given  by  multiplying  the  area  under  the  stress-­‐strain  graph  by  the  volume  of  the  material  ⇒

Eσ (J) =Vol (m3) × Aσ -ε  

MATERIAL  PROPERTIES  

Brittle/Ductile  ⇒ If  a  material  fails  in  the  elastic  region,  or  

just  past  the  elastic  limit,  it  is  called  brittle  (e.g.:  glass,  ceramics)  

⇒ If  a  material  fails  after  exhibiting  (significant)  plastic  behaviour,  it  is  ductile  (e.g.:  aluminium,  steel)  

Toughness  ⇒ Tough  material  is  ductile  and  absorbs  

large  amounts  of  strain  energy  before  failing  (e.g.:  polyethylene)  

⇒ Total  area  under  stress-­‐strain  graph  gives  a  good  indication  of  toughness.  

Composite  Materials  ⇒ Composite  materials  are  made  from  two  

or  more  component  materials  that  can  be  mechanically  separated  (i.e.:  are  not  blended—like  alloys)  ⇒ e.g.:  clay  added  straw  

⇒ Concrete  is  weakest  under  tension,  but  strong  under  compression  (because  of  small  cracks)  ⇒ It  can  be  strengthened  by  adding  

steel  (which  is  weakest  under  

compression  and  stronger  under  tension)  rods  or  mesh  during  pouring.  

⇒ This  concrete  is  called  reinforced  concrete  

⇒ Pre-­stressed  concrete  is  where  (textured—for  grip)  steel  rods  are  under  tension  while  the  concrete  is  poured  around  them.  ⇒ When  the  concrete  is  set,  the  

rods  are  released  ⇒ ∴  the  concrete  is  under  

compression  (it  strongest  state)  and  the  steel  is  under  tension  (its  strongest  state)  

⇒ The  same  outcome  is  achieved  in  post-­stressed  concrete  where  smooth  steel  rods  are  inserted  after  pouring,  and  anchored  at  the  ends.  

Safety  and  Use  ⇒ For  safety,  structures  should  be  built  to  

withstand  a  load  many  times  greater  than  its  maximum  design  capacity.  

⇒ The  number  of  times  greater  load  than  design  is  called  the  factor  of  safety  

⇒ Generally,  the  factor  of  safety  is  between  3  and  10  

FoSbrittle =tensile/compressive strength

average stress  

FoSductile =elastic limit

average stress  

Some  Materials  

Material   Density  (gcm-­‐3)  

Y  (GPa)  

Elastic  limit  (MPa)  

Tensile  strength  (MPa)  

Cast  iron   8   -­‐   200   200  

Steel   8   200   450   600  

Aluminium  alloy   3   80   240   300  

Concrete   4   18   4   4  

Glass   4   70   100   100  

Wood  (pine)   0.5   15   35   40  

Polyethylene   1   2   25   35  

 ⇒ Cast  iron:  

⇒ For  building  iron  arch  bridges  or  similar.  

⇒ Steel:  ⇒ For  structures  such  as  buildings  that  

should  not  change  shape  under  stress  (wind  stress,  weight  stress)  

⇒ Aluminium  alloy:  ⇒ For  window  and  door  frames  

⇒ Concrete:  ⇒ For  slabs  and  panels  in  buildings  

⇒ Glass:  ⇒ For  windows,  doors  and  enclosures  

⇒ Wood:  ⇒ For  house  frames  

TORQUE  

 

⇒ Has  a  turning/rotational  effect  on  a  structure.  

⇒ Product  of  force  (F)  on  a  structure  and  perpendicular  distance  (r)  from  any  given  point.  

Application  of  Torque  1. Take  the  clockwise  forces  about  a  point  

and  multiply  them  by  the  distance  from  said  point.  

2. Do  the  same  for  counter-­‐clockwise  forces  

3. Add  the  clockwise  and  counter-­‐clockwise  forces  together  for  

Στ  

EQUILIBRIUM  

Translational  Equilibrium  ⇒ Where  the  forces  acting  on  a  structure  

add  up  to  0  ⇒ Body  can  be  in  motion,  or  rotating,  but  

net  force  is  zero  (Newton’s  1st  Law)  ⇒

ΣF = 0 ,  

Fnet = 0  

Rotational  Equilibrium  ⇒ Where  the  torques  around  every  point  

add  up  to  0  ⇒ Body  can  be  in  motion  or  accelerating,  

but  not  under  torques  ⇒

Στ = 0  ⇒

Στ clockwise = Στ anti-clockwise  

Static  Equilibrium  ⇒ Where  body  is  under  BOTH  

translational  AND  rotational  equilibrium  

⇒ Where  both  the  sum  of  the  forces  AND  the  sum  of  the  torques  on  a  body  BOTH  equal  0  

⇒ Body  can  be  in  motion  but  cannot  be  accelerating  and  cannot  be  rotating  

ΣF = 0Στ = 0

 

   

Weight  and  Apparent  Weight  ⇒ Weight,  Fg  or  W,  is  the  gravitational  force  

that  acts  on  an  object  and  is  measured  in  newtons.  The  weight  of  an  object  changes  as  the  gravitational  field  strength  changes.  

⇒ True  weightlessness  occurs  when  the  gravitational  field  strength  is  negligible.  This  is  possible  in  deep  space  far  away  from  the  gravitational  attraction  of  stars  and  planets.  

⇒ The  apparent  weight  of  a  person  is  equal  in  magnitude  to  the  normal  force,  FN  or  N,  that  the  supporting  surface  exerts  on  them.  

⇒ The  apparent  weight  of  an  object  changes  if  it  moves  with  some  vertical  acceleration.  

⇒ A  person  will  be  in  a  state  of  apparent  weightlessness  when  in  free-­‐fall  and  moving  with  an  acceleration  equal  to  the  gravitational  field  strength  at  their  location.  The  person  will  experience  zero  normal  force  at  this  time.  

Photodiodes   WHEN  IN  THE  EXAM  

TIME:  

Reading  Time:  1. Read  through  Short  Answer  2. Categorise:  

-­‐ Can  do/easy  -­‐ Should  be  able  to  do  -­‐ Don’t  know  how  to  do  

3. Should  do  ALL  of  first  4. Should  do  MOST  of  second  5. Should  do  SOME  of  third    

Writing  Time:  1. Start  with  a  

diagram/graph/circuit/sketch  2. Make  explanations  as  a  series  of  dot  

points  3. Quote  key  formulae  wherever  

possible  4. Give  numerical  values  of  quantities  

wherever  possible  (define  pronumerals)  

REMEMBER:  LEAVE  NO  MULTIPLE  CHOICE  UNANSWERED  Try  to  leave  no  question  unanswered.    

–1 0

–5

+5

–10

–15

–20

–25

–30

–2–3–4–5–6–7–8–9–10

powerarea

No light(dark current nA)

= 1 W m–2

= 2 W m–2

= 3 W m–2

= 4 W m–2

= 5 W m–2

= intensity =

Increasing light intensity

PhotocurrentIph ( A)

Diode voltageVd (V)

Photovoltaicmode

Photoconductive mode(reverse-biased region)

Torque  Diagrams