18
40m Modeling and Experiment 1 Modeling the 40m QND Workshop, Hannover Dec 15, 2005 Robert Ward Seiji Kawamura, Osamu Miyakawa, Hiro Yamamoto, Matthew Evans, Monica Varvella

40m Modeling and Experiment 1 Modeling the 40m QND Workshop, Hannover Dec 15, 2005 Robert Ward Seiji Kawamura, Osamu Miyakawa, Hiro Yamamoto, Matthew Evans,

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 40m Modeling and Experiment 1 Modeling the 40m QND Workshop, Hannover Dec 15, 2005 Robert Ward Seiji Kawamura, Osamu Miyakawa, Hiro Yamamoto, Matthew Evans,

40m Modeling and Experiment 1

Modeling the 40m

QND Workshop, HannoverDec 15, 2005

Robert Ward

Seiji Kawamura, Osamu Miyakawa, Hiro Yamamoto, Matthew Evans, Monica Varvella

Page 2: 40m Modeling and Experiment 1 Modeling the 40m QND Workshop, Hannover Dec 15, 2005 Robert Ward Seiji Kawamura, Osamu Miyakawa, Hiro Yamamoto, Matthew Evans,

40m Modeling and Experiment 2

Modeling tools used at the 40m

Twiddle» Frequency domain, analytical, no radiation pressure

Finesse » Frequency domain, no radiation pressure

E2E » Time domain, now with classical radiation pressure

TCST (Thomas Corbitt Simulation Tool)» Two-photon formalism, frequency-domain

Optickle» Frequency domain, Matlab, two-photon formalism

Page 3: 40m Modeling and Experiment 1 Modeling the 40m QND Workshop, Hannover Dec 15, 2005 Robert Ward Seiji Kawamura, Osamu Miyakawa, Hiro Yamamoto, Matthew Evans,

40m Modeling and Experiment 3

Finesse

0 50 100 150 200 250 300 3500

50

100

150

200

250

300

350

Demodulation Phase of f1

Dem

odul

atio

n Pha

se o

f f2

Double Demodulation at SP- 0.4

- 0.4

-0.4

- 0.4

- 0.4

- 0.3

- 0.3

- 0.3

- 0.3

- 0.3

-0.3

- 0.3

- 0.2

- 0.2

- 0.2

- 0.2

- 0.2

- 0.2

- 0.2

- 0.1

- 0.1

- 0.1

- 0.1

- 0.1

-0.1

- 0.1

-0.1

0

0

0

0

0

0

0

0

0

0

0

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.3

0.3 0.3

0.3

0.3

0.3

0.4

0.4

0.4

0.4

- 0.04

- 0.04

- 0.04

- 0.04

- 0.03

-0.0

3

- 0.03

- 0.03

-0.03

- 0.03

- 0.02

- 0.02

- 0.0

2

- 0.02

- 0.02

- 0.02

- 0.02

-0.02

-0.0

1

- 0.01

-0.01

- 0.01

-0.01

-0.01

- 0.01

-0.0

1

- 0.01

0

0

0

0

0

0

0

0

0

0

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.03

0.03

0.03

0.03

0.030.03

0.04

0.04

0.04

0.04

- 0.1

- 0.1

- 0.1

- 0.1

-0.05

- 0.05

- 0.05

- 0.05

- 0.05

- 0.05

- 0.05

0

0 0

0

0

0

0

0

0

0

0

0

0

0.05

0.05

0.05

0.05

0.050.05

0.05

0.1

0.1

0.1

0.1

dc=0l+l-ls

Dem

odu

latio

n P

hase

of

f2

Lockingpoint

Finesse used extensively at the 40m lab 2004-2005

Seiji Kawamura modeled the DRMI very thoroughly using Finesse

Very useful for investigating quirks of double & differential demodulation

Page 4: 40m Modeling and Experiment 1 Modeling the 40m QND Workshop, Hannover Dec 15, 2005 Robert Ward Seiji Kawamura, Osamu Miyakawa, Hiro Yamamoto, Matthew Evans,

40m Modeling and Experiment 4

Differential Demodulation:offset vs gain

Page 5: 40m Modeling and Experiment 1 Modeling the 40m QND Workshop, Hannover Dec 15, 2005 Robert Ward Seiji Kawamura, Osamu Miyakawa, Hiro Yamamoto, Matthew Evans,

40m Modeling and Experiment 5

Finesse

100

101

102

103

104

105

-100

-80

-60

-40

-20

0

20

40

dB m

ag

CARM response

100

101

102

103

104

-150

-100

-50

0

50

100

150P

hase

f (Hz)

•Also used to investigate the coupled cavity response in our offset CARM state, and design compensation.

•Unfortunately has no radiation pressure effects

Page 6: 40m Modeling and Experiment 1 Modeling the 40m QND Workshop, Hannover Dec 15, 2005 Robert Ward Seiji Kawamura, Osamu Miyakawa, Hiro Yamamoto, Matthew Evans,

40m Modeling and Experiment 6

Straight from the ilog

Location of peak RSE response (in CARM) as a function of offset, modeled in Finesse, and then measured.

Page 7: 40m Modeling and Experiment 1 Modeling the 40m QND Workshop, Hannover Dec 15, 2005 Robert Ward Seiji Kawamura, Osamu Miyakawa, Hiro Yamamoto, Matthew Evans,

40m Modeling and Experiment 7

Dynamic compensation filterfor CARM servo

Optical gain of CARMOpen loop TF of CARM• Optical gain (normalized by transmitted power) shows moving peaks due to reducing CARM offset.

• We have a dynamic compensative filter having an nearly the same shape as optical gain except for upside down. Designed using FINESSE.

• Open loop transfer function has no phase delay in all CARM offset.

Page 8: 40m Modeling and Experiment 1 Modeling the 40m QND Workshop, Hannover Dec 15, 2005 Robert Ward Seiji Kawamura, Osamu Miyakawa, Hiro Yamamoto, Matthew Evans,

40m Modeling and Experiment 8

Error signal sweeps at 10-9 m/s for the 40m IFO obtained in

E2E framework and compared with TWIDDLE predictions

Example:DARM @ AP 166 MHz

TWIDDLE and E2E comparison

e2e SIMULATION:4Om/AdvLIGO package

TWIDDLE

E2E

Page 9: 40m Modeling and Experiment 1 Modeling the 40m QND Workshop, Hannover Dec 15, 2005 Robert Ward Seiji Kawamura, Osamu Miyakawa, Hiro Yamamoto, Matthew Evans,

40m Modeling and Experiment 9

e2e SIMULATION: 4Om/AdvLIGO package

Comparison between real data (black) and e2e simulated data (red) of the transmitted light for both the arms (full IFO): the mirror velocities used in

E2E simulation are the values obtained fitting the real data

Real data have been used to estimate relative mirror velocity for

both the arms:

Vxarm= (0.35 ± 0.13) μm/s

Vyarm= (0.26 ± 0.13) μm/s

E2E

E2E

real data

real data

Tr X

Tr Y

Page 10: 40m Modeling and Experiment 1 Modeling the 40m QND Workshop, Hannover Dec 15, 2005 Robert Ward Seiji Kawamura, Osamu Miyakawa, Hiro Yamamoto, Matthew Evans,

40m Modeling and Experiment 10

e2e SIMULATION: 4Om/AdvLIGO package

Comparison between real data , e2e simulated data and the

theoretical prediction V(t) of the SP error signal @ 166 MHz

The τ and the velocity v is the value obtained fitting real data

τ = 0.7 msv = 0.26 μm/s

V(t) ~ exp(t/τ) sin( a t2)

with a = (k v) / (2 T)

Page 11: 40m Modeling and Experiment 1 Modeling the 40m QND Workshop, Hannover Dec 15, 2005 Robert Ward Seiji Kawamura, Osamu Miyakawa, Hiro Yamamoto, Matthew Evans,

40m Modeling and Experiment 11

E2E: 40m Lock Acquisition

Simulation indicates that controlled reduction of CARM offset should work.

E2E simulation by Matthew Evans in June 2005

Page 12: 40m Modeling and Experiment 1 Modeling the 40m QND Workshop, Hannover Dec 15, 2005 Robert Ward Seiji Kawamura, Osamu Miyakawa, Hiro Yamamoto, Matthew Evans,

40m Modeling and Experiment 12

Optical spring in E2E

• Calculated by time domain simulation

• No length control• Lock lasts ~0.7sec, so

statistics at low frequency is not good.

• Simple length control required

• Calculation time ~5min using DRMI summation cavity

Hiro Yamomoto

Page 13: 40m Modeling and Experiment 1 Modeling the 40m QND Workshop, Hannover Dec 15, 2005 Robert Ward Seiji Kawamura, Osamu Miyakawa, Hiro Yamamoto, Matthew Evans,

40m Modeling and Experiment 13

E2E DARM TF to I and Q

•5W Input•Arms controlled with POX, POY (no DARM)•no MICH control

Hiro Yamomoto

Page 14: 40m Modeling and Experiment 1 Modeling the 40m QND Workshop, Hannover Dec 15, 2005 Robert Ward Seiji Kawamura, Osamu Miyakawa, Hiro Yamamoto, Matthew Evans,

40m Modeling and Experiment 14

E2E Optical Noise

Page 15: 40m Modeling and Experiment 1 Modeling the 40m QND Workshop, Hannover Dec 15, 2005 Robert Ward Seiji Kawamura, Osamu Miyakawa, Hiro Yamamoto, Matthew Evans,

40m Modeling and Experiment 15

Optical noise of 40m in E2E

• Simple length control (UGF~100Hz)

• Err2/(Err1/DARM) DARM: DARM excitation on mirrorsErr1: error signal with DARM

excitationErr2: error signal with optical noise

• How much further does E2E need to go? 2-photon?

• input vacuum?• Quantum control?• Or just classical physics +

shot noise + radiation pressure noise ?

Err2/(Err1/DARM)

Page 16: 40m Modeling and Experiment 1 Modeling the 40m QND Workshop, Hannover Dec 15, 2005 Robert Ward Seiji Kawamura, Osamu Miyakawa, Hiro Yamamoto, Matthew Evans,

40m Modeling and Experiment 16

TCST

102

103

80

90

100

110

120

130

140CARM optical springs at different CARM offsets

f (Hz)

CA

RM

opt

ical

res

pons

e (d

B)

Arm power = 6

Arm power = 8Arm power = 10•Solid lines are from TCST

•Stars are 40m data•Max Arm Power is ~80•Also saw CARM anti-springs, but don’t have that data

Page 17: 40m Modeling and Experiment 1 Modeling the 40m QND Workshop, Hannover Dec 15, 2005 Robert Ward Seiji Kawamura, Osamu Miyakawa, Hiro Yamamoto, Matthew Evans,

40m Modeling and Experiment 17

Optickle

101

102

103

104

-20

-10

0

10

20

30

40

50

60

70

80

f (Hz)

dB (

a.u.

)

DARM Response

40m DataOptickle

101

102

103

104

10

20

30

40

50

60

70

80

f (Hz)

dB (

a.u.

)

DARM Response

40m DataOptickle

Page 18: 40m Modeling and Experiment 1 Modeling the 40m QND Workshop, Hannover Dec 15, 2005 Robert Ward Seiji Kawamura, Osamu Miyakawa, Hiro Yamamoto, Matthew Evans,

40m Modeling and Experiment 18

CARM optical springs, with no offsets (TCST)