98
Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco A funny thing happened on the way to Steppenwolf Theatre. . . from lattice paths to polytopes and Hopf algebras T. Kyle Petersen DePaul University Department of Mathematical Sciences MathFest Madison, WI August 2012

A funny thing happened on the way to Steppenwolf Theatre · A funny thing happened on the way to Steppenwolf Theatre - from lattice paths to polytopes and Hopf algebras

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    A funny thing happened on the way toSteppenwolf Theatre. . .

    from lattice paths to polytopes and Hopf algebras

    T. Kyle Petersen

    DePaul UniversityDepartment of Mathematical Sciences

    MathFestMadison, WIAugust 2012

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Combinatorics, geometry, and an algebra of paths

    1 Combinatorics: Walking to Steppenwolf

    2 Geometry: Tamari poset/associahedron

    3 Algebra: Loday-Ronco

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    The problem

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    The problem

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Counting “Clybourn paths”

    Let Cn denote the number of paths of length 2n

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Counting “Clybourn paths”

    Let Cn denote the number of paths of length 2n

    C0 = 1 :

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Counting “Clybourn paths”

    Let Cn denote the number of paths of length 2n

    C0 = 1 :

    C1 = 1 :

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Counting “Clybourn paths”

    Let Cn denote the number of paths of length 2n

    C0 = 1 :

    C1 = 1 :

    C2 = 2 :

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Counting “Clybourn paths”

    Let Cn denote the number of paths of length 2n

    C0 = 1 :

    C1 = 1 :

    C2 = 2 :

    C3 = 5 :

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Counting “Clybourn paths”

    C4 = 14 :

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Counting “Clybourn paths”

    C5?

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Counting “Clybourn paths”

    C5?

    Point of second-to-last return

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Counting “Clybourn paths”

    C5?

    Point of second-to-last return

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Counting “Clybourn paths”

    C5 =

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Counting “Clybourn paths”

    C5 =

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Counting “Clybourn paths”

    C5 =

    C0 · C4

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Counting “Clybourn paths”

    C5 =

    C0 · C4

    +

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Counting “Clybourn paths”

    C5 =

    C0 · C4

    +

    C1 · C3

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Counting “Clybourn paths”

    C5 =

    C0 · C4

    +

    C1 · C3

    +

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Counting “Clybourn paths”

    C5 =

    C0 · C4

    +

    C1 · C3

    +

    C2 · C2

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Counting “Clybourn paths”

    C5 =

    C0 · C4

    +

    C1 · C3

    +

    C2 · C2

    +

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Counting “Clybourn paths”

    C5 =

    C0 · C4

    +

    C1 · C3

    +

    C2 · C2

    +

    C3 · C1

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Counting “Clybourn paths”

    C5 =

    C0 · C4

    +

    C1 · C3

    +

    C2 · C2

    +

    C3 · C1

    +

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Counting “Clybourn paths”

    C5 =

    C0 · C4

    +

    C1 · C3

    +

    C2 · C2

    +

    C3 · C1

    +

    C4 · C0

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Counting “Clybourn paths”

    C5 =

    C0 · C4

    +

    C1 · C3

    +

    C2 · C2

    +

    C3 · C1

    +

    C4 · C0

    = 1 · 14 + 1 · 5 + 2 · 2 + 5 · 1 + 14 · 1 = 42

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Catalan numbers

    C0 = 1, Cn+1 =n∑

    i=0

    CiCn−i

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Catalan numbers

    C0 = 1, Cn+1 =n∑

    i=0

    CiCn−i

    1, 1, 2, 5, 14, 42, 132, 429, 1430, . . .

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Catalan numbers

    C0 = 1, Cn+1 =n∑

    i=0

    CiCn−i

    1, 1, 2, 5, 14, 42, 132, 429, 1430, . . . ,Cn =1

    n + 1

    (

    2n

    n

    )

    , . . .

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Catalan numbers

    C0 = 1, Cn+1 =n∑

    i=0

    CiCn−i

    1, 1, 2, 5, 14, 42, 132, 429, 1430, . . . ,Cn =1

    n + 1

    (

    2n

    n

    )

    , . . .

    Also counts:

    balanced parenthesizations (()(()))

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Catalan numbers

    C0 = 1, Cn+1 =n∑

    i=0

    CiCn−i

    1, 1, 2, 5, 14, 42, 132, 429, 1430, . . . ,Cn =1

    n + 1

    (

    2n

    n

    )

    , . . .

    Also counts:

    balanced parenthesizations (()(()))

    planar binary trees

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Catalan numbers

    C0 = 1, Cn+1 =n∑

    i=0

    CiCn−i

    1, 1, 2, 5, 14, 42, 132, 429, 1430, . . . ,Cn =1

    n + 1

    (

    2n

    n

    )

    , . . .

    Also counts:

    balanced parenthesizations (()(()))

    planar binary trees

    noncrossing partitions:• •

    ••

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Catalan numbers

    C0 = 1, Cn+1 =n∑

    i=0

    CiCn−i

    1, 1, 2, 5, 14, 42, 132, 429, 1430, . . . ,Cn =1

    n + 1

    (

    2n

    n

    )

    , . . .

    Also counts:

    balanced parenthesizations (()(()))

    planar binary trees

    noncrossing partitions:• •

    ••

    and about 200 other sets of things. . .

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Combinatorics, geometry, and an algebra of paths

    1 Combinatorics: Walking to Steppenwolf

    2 Geometry: Tamari poset/associahedron

    3 Algebra: Loday-Ronco

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    A local transformation

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    A local transformation

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    A local transformation

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    A local transformation

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    A local transformation

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    A local transformation

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    A local transformation

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    A local transformation

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    A local transformation

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    A local transformation

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    A local transformation

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    A local transformation

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    A local transformation

    n = 0

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    A local transformation

    n = 0 n = 1

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    A local transformation

    n = 0 n = 1 n = 2

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    A local transformation

    n = 0 n = 1 n = 2 n = 3

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Tamari poset (Associahedron)

    n = 4

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Combinatorics, geometry, and an algebra of paths

    1 Combinatorics: Walking to Steppenwolf

    2 Geometry: Tamari poset/associahedron

    3 Algebra: Loday-Ronco

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Jean-Louis Loday: “the integers as molecules”

    0 1 2 3 4

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    A meditation

    We can do arithmetic at the molecular level. Can we do it at theatomic level?

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    The wedge operation

    p ∨ q:

    ∨ =

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    The wedge operation

    p ∨ q:

    ∨ =

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    The wedge operation

    p ∨ q:

    ∨ =

    (Recall the role the wedge played in the Catalan identity)

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Decomposing paths

    p = pℓ ∨ pr (unique decomposition)

    = ∨

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Decomposing paths

    p = pℓ ∨ pr (unique decomposition)

    = ∨

    = ∨ = ( ∨ ) ∨

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Decomposing paths

    p = pℓ ∨ pr (unique decomposition)

    = ∨

    = ∨ = ( ∨ ) ∨

    = ∨ = ∨ ( ∨ )

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Defining addition

    Goal: define addition for paths,

    p + q,

    in a way that generalizes addition for integers

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Defining addition

    Goal: define addition for paths,

    p + q,

    in a way that generalizes addition for integers

    p + 0 = 0+ p = p

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Defining addition

    Goal: define addition for paths,

    p + q,

    in a way that generalizes addition for integers

    p + 0 = 0+ p = p

    for p, q 6= 0, p + q = (p ⊣ q) ∪ (p ⊢ q)

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Defining addition

    Goal: define addition for paths,

    p + q,

    in a way that generalizes addition for integers

    p + 0 = 0+ p = p

    for p, q 6= 0, p + q = (p ⊣ q) ∪ (p ⊢ q)

    now recursively,

    p ⊣ q = pℓ ∨ (pr + q) and p ⊢ q = (p + qℓ) ∨ qr

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Why 1+ 1 = 2

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Why 1+ 1 = 2

    1

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Why 1+ 1 = 2

    1 1

    +

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Why 1+ 1 = 2

    1 1

    +

    2

    =

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Why 1+ 1 = 2

    Split the plus sign: + = ⊣ ∪ ⊢

    + =(

    ⊣)

    (

    ⊢)

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Why 1+ 1 = 2

    Split the plus sign: + = ⊣ ∪ ⊢

    + =(

    ⊣)

    (

    ⊢)

    =(

    ∨(

    +))

    ((

    +)

    ∨)

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Why 1+ 1 = 2

    Split the plus sign: + = ⊣ ∪ ⊢

    + =(

    ⊣)

    (

    ⊢)

    =(

    ∨(

    +))

    ((

    +)

    ∨)

    =(

    ∨)

    (

    ∨)

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Why 1+ 1 = 2

    Split the plus sign: + = ⊣ ∪ ⊢

    + =(

    ⊣)

    (

    ⊢)

    =(

    ∨(

    +))

    ((

    +)

    ∨)

    =(

    ∨)

    (

    ∨)

    =⋃

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Why 1+ 2 = 3

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Why 1+ 2 = 3

    Want:

    1

    +

    2

    =

    3

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Why 1+ 2 = 3

    + =

    (

    +

    )

    (

    +

    )

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Why 1+ 2 = 3

    + =

    (

    +

    )

    (

    +

    )

    =

    (

    )

    (

    )

    (

    )

    (

    )

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Why 1+ 2 = 3

    ⊣ = ∨

    (

    +

    )

    =

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Why 1+ 2 = 3

    ⊣ = ∨

    (

    +

    )

    =

    ⊢ =(

    +)

    ∨ =

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Why 1+ 2 = 3

    ⊣ = ∨

    (

    +

    )

    =

    ⊢ =(

    +)

    ∨ =

    ⊣ = ∨

    (

    +

    )

    =

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Why 1+ 2 = 3

    ⊣ = ∨

    (

    +

    )

    =

    ⊢ =(

    +)

    ∨ =

    ⊣ = ∨

    (

    +

    )

    =

    ⊢ =(

    +)

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Why 1+ 2 = 3

    ⊣ = ∨

    (

    +

    )

    =

    ⊢ =(

    +)

    ∨ =

    ⊣ = ∨

    (

    +

    )

    =

    ⊢ = ∨

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Why 1+ 2 = 3

    ⊣ = ∨

    (

    +

    )

    =

    ⊢ =(

    +)

    ∨ =

    ⊣ = ∨

    (

    +

    )

    =

    ⊢ = ∨ =⋃

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Surprise!

    Theorem

    If a+ b = c (as nonnegative integers), then

    a+ b = c

    (as Tamari lattices)

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    A better way to add

    Can we add two paths more simply?

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Adding paths and the Tamari poset

    +

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Adding paths and the Tamari poset

    +

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Adding paths and the Tamari poset

    +

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Adding paths and the Tamari poset

    +

    \

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Adding paths and the Tamari poset

    +

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Adding paths and the Tamari poset

    +

    /

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Adding paths and the Tamari poset

    +

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Adding paths and the Tamari poset

    Theorem (Loday-Ronco)

    For any paths p and q,

    p + q =⋃

    p/q≤r≤p\q

    r

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Adding paths and the Tamari poset

    Theorem (Loday-Ronco)

    For any paths p and q,

    p + q =⋃

    p/q≤r≤p\q

    r

    There is also a multiplication that refines ordinary integermultiplication. . .

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Adding paths and the Tamari poset

    Theorem (Loday-Ronco)

    For any paths p and q,

    p + q =⋃

    p/q≤r≤p\q

    r

    There is also a multiplication that refines ordinary integermultiplication. . . the Loday-Ronco algebra is the “free dendriformalgebra on one generator” and a “combinatorial Hopf algebra”

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Food for thought

    We can now do arithmetic:

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Food for thought

    We can now do arithmetic:

    at the molecular level (whole numbers)

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Food for thought

    We can now do arithmetic:

    at the molecular level (whole numbers)

    at the atomic level (paths)

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    Food for thought

    We can now do arithmetic:

    at the molecular level (whole numbers)

    at the atomic level (paths)

    What about the subatomic level?

  • Combinatorics: Walking to Steppenwolf Geometry: Tamari poset/associahedron Algebra: Loday-Ronco

    References

    M. Aguiar and F. Sottile, Structure of the Loday-Ronco Hopfalgebra of trees. J. Algebra 295 (2006), 473–511.

    J.-L. Loday, Dichotomy of the addition of natural numbers. inAssociahedra, Tamari Lattices and Related Structures,Progress in Math. 299, Birkhauser (2012). (alsoarXiv:1108.6238)

    J.-L. Loday, Arithmetree. J. Algebra 258 (2002), 275–309.

    J.-L. Loday and M. Ronco, Hopf algebra of the planar binarytrees. Adv. Math. 139 (1998), 293–309

    Combinatorics: Walking to SteppenwolfGeometry: Tamari poset/associahedronAlgebra: Loday-Ronco