A stochastic model for earthquake slip distribution of ... ?· A stochastic model for earthquake slip…

  • Published on
    14-Sep-2018

  • View
    212

  • Download
    0

Embed Size (px)

Transcript

<ul><li><p>Full Terms &amp; Conditions of access and use can be found athttp://www.tandfonline.com/action/journalInformation?journalCode=tgnh20</p><p>Download by: [203.128.244.130] Date: 15 March 2016, At: 00:40</p><p>Geomatics, Natural Hazards and Risk</p><p>ISSN: 1947-5705 (Print) 1947-5713 (Online) Journal homepage: http://www.tandfonline.com/loi/tgnh20</p><p>A stochastic model for earthquake slip distributionof large events</p><p>S.T.G. Raghukanth &amp; S. Sangeetha</p><p>To cite this article: S.T.G. Raghukanth &amp; S. Sangeetha (2016) A stochastic model for earthquakeslip distribution of large events, Geomatics, Natural Hazards and Risk, 7:2, 493-521, DOI:10.1080/19475705.2014.941418</p><p>To link to this article: http://dx.doi.org/10.1080/19475705.2014.941418</p><p> 2014 Taylor &amp; Francis</p><p>Published online: 01 Aug 2014.</p><p>Submit your article to this journal </p><p>Article views: 113</p><p>View related articles </p><p>View Crossmark data</p><p>http://www.tandfonline.com/action/journalInformation?journalCode=tgnh20http://www.tandfonline.com/loi/tgnh20http://www.tandfonline.com/action/showCitFormats?doi=10.1080/19475705.2014.941418http://dx.doi.org/10.1080/19475705.2014.941418http://www.tandfonline.com/action/authorSubmission?journalCode=tgnh20&amp;page=instructionshttp://www.tandfonline.com/action/authorSubmission?journalCode=tgnh20&amp;page=instructionshttp://www.tandfonline.com/doi/mlt/10.1080/19475705.2014.941418http://www.tandfonline.com/doi/mlt/10.1080/19475705.2014.941418http://crossmark.crossref.org/dialog/?doi=10.1080/19475705.2014.941418&amp;domain=pdf&amp;date_stamp=2014-08-01http://crossmark.crossref.org/dialog/?doi=10.1080/19475705.2014.941418&amp;domain=pdf&amp;date_stamp=2014-08-01</p></li><li><p>A stochastic model for earthquake slip distribution of large events</p><p>S.T.G. RAGHUKANTH* and S. SANGEETHA</p><p>Department of Civil Engineering, Indian Institute of Technology, Madras 600036, India</p><p>(Received 13 January 2014; accepted 1 July 2014)</p><p>This paper presents a stochastic model to simulate spatial distribution of slip on</p><p>the rupture plane for large earthquakes (Mw&gt; 7). A total of 45 slip models</p><p>coming from the past 33 large events are examined to develop the model.</p><p>The model has been developed in two stages. In the first stage, effective rupture</p><p>dimensions are derived from the data. Empirical relations to predict the rupture</p><p>dimensions, mean and standard deviation of the slip, the size of asperities and</p><p>their location from the hypocentre from the seismic moment are developed. In the</p><p>second stage, the slip is modelled as a homogeneous random field. Important</p><p>properties of the slip field such as correlation length have been estimated for the</p><p>slip models. The developed model can be used to simulate ground motion for</p><p>large events.</p><p>1. Introduction</p><p>Large-magnitude earthquakes (Mw&gt; 7) occur frequently in active regions like Hima-</p><p>laya and northeast India. Even in the Indian shield, Gujarat region also experiences</p><p>such large events. Due to their intensity and the geographical extent of the damage,large earthquakes pose the highest risk to the society. The 2001 Kutch earthquake</p><p>(Mw D 7.7) caused severe fatalities and affected the economy of the Gujarat region.Recently, Raghukanth (2011) developed the earthquake catalogue for India and</p><p>ranked the 48 urban agglomerations in India based on seismicity. The maximum pos-</p><p>sible magnitude in a control region of radius 300 km around the 24 urban agglomera-</p><p>tions lies in between Mw D 7.1 and Mw D 8.7. This necessitates the estimation of theseismic input (design ground motion) in an accurate fashion for such large events to</p><p>reduce the damages to structures. Cases where the recorded strong motion data arenot available, the source mechanism models where in the earthquake slip distribution</p><p>and medium properties can be modelled analytically are preferred to simulate ground</p><p>motion for such large events. These models require the earthquake forces to be speci-</p><p>fied in terms of spatial distribution of slip on the rupture plane. Hartzell et al. (1999)</p><p>and Raghukanth and Iyengar (2009) have demonstrated that surface level ground</p><p>motions can be computed for an Earth medium for a given slip distribution on the</p><p>rupture plane. These models provide reliable ground motion predictions if the fault</p><p>and its slip distribution are known. Specifying the slip distribution on the ruptureplane for future events is the most challenging problem in mechanistic models. To</p><p>address this issue, there have been efforts to obtain spatial distribution of slip on the</p><p>rupture plane by inverting ground motion records of the past earthquakes (Hartzell</p><p>&amp; Heaton 1983; Hartzell &amp; Liu 1995; Ji et al. 2002; Raghukanth &amp; Iyengar 2008).</p><p>*Corresponding author. Email: raghukanth@iitm.ac.in</p><p> 2014 Taylor &amp; Francis</p><p>Geomatics, Natural Hazards and Risk, 2016</p><p>Vol. 7, No. 2, 493521, http://dx.doi.org/10.1080/19475705.2014.941418</p><p>Dow</p><p>nloa</p><p>ded </p><p>by [</p><p>203.</p><p>128.</p><p>244.</p><p>130]</p><p> at 0</p><p>0:40</p><p> 15 </p><p>Mar</p><p>ch 2</p><p>016 </p><p>mailto:raghukanth@iitm.ac.inhttp://dx.doi.org/10.1080/19475705.2014.941418</p></li><li><p>Several such finite slip models are available in various journals and research reports.The obtained slip distribution of past events exhibit higher complexity which can be</p><p>modelled by stochastic approaches only. These techniques require very few parame-</p><p>ters to characterize the slip field. Much effort has been made by the previous investi-</p><p>gators in this direction (Somerville et al. 1999; Mai &amp; Beroza 2002; Lavallee et al.2006; Raghukanth &amp; Iyengar 2009; Raghukanth 2010). Without going into the</p><p>details regarding time-dependent stresses on the fault plane, few parameters have</p><p>been identified from the slip distribution of past events. The slip distribution is mod-</p><p>elled as a random field with a specified power spectral density (PSD). A total of 15slip distributions with the magnitude of the events ranging from 5.66 to 7.22 have</p><p>been analysed by Somerville et al. (1999). The total number of large events included</p><p>in the database is two. Mai and Berozas (2002) slip database includes 11 large</p><p>events. This puts a serious limitation on the random field model developed by the</p><p>previous investigators for simulating slip distribution for large events. Due to advan-</p><p>ces in instrumentation, several large events have been recorded by the broadband</p><p>instruments operating around the world. These data have been processed and slip</p><p>models for 45 large events are available in the literature. Since large events are of con-cern to engineers, it would be interesting to examine these slip distributions. In this</p><p>paper, stochastic characterization of slip distribution is explicitly developed for large</p><p>events. Important properties of the random field are estimated from the PSD of slip</p><p>distribution. Empirical equations for estimating the slip field from magnitude are</p><p>developed in this paper.</p><p>2. Slip database of large events</p><p>Inversion for earthquake sources is fundamental to understand the mechanics of</p><p>earthquakes. The extracted slip models can be used to understand the damages in the</p><p>epicentral region. Much effort has been made by seismologists in developing meth-</p><p>ods to extract slip distribution on the rupture plane from ground motion records.</p><p>After the occurrence of a large event, the Incorporated Research Institutions for Seis-</p><p>mology data management centre reports the broadband velocity data recorded by</p><p>the Global Seismic Network (GSN). The preliminary earthquake slip distribution isdetermined from this data by several research groups. In case of local strong motion</p><p>data, global positioning system and ground deformation measurements become</p><p>available, these records are combined with the GSN data to obtain the spatial distri-</p><p>bution of slip on the rupture plane. Several such slip maps for large events are avail-</p><p>able in the published literature. In this study, the source models of large events,</p><p>reported by Chen Ji (http://www.geol.ucsb.edu6 faculty6 ji6 ) and tectonics observa-tory, California Institute of Technology (http://www.tectonics.caltech.edu6 ), areused to develop the model. The methodology for obtaining the rupture models isbased on Ji et al. (2002), and is uniform for all the events. The compiled database</p><p>from these two website consists of 45 rupture models coming from 33 earthquakes in</p><p>the magnitude range of Mw 79.15 from various seismic zones in the world. Theseslip maps have been derived by the inversion of low-pass filtered ground motion</p><p>data. The location of the epicentre, average slip, total seismic moment, faulting</p><p>mechanism and dimensions of the fault plane of the 45 slip models are reported in</p><p>tables 1 and 2. The slip database consists of 36 thrust events, 2 normal faulting mech-</p><p>anism and 7 strike-slip earthquakes. The epicentres of these large events along with</p><p>494 S.T.G. Raghukanth and S. Sangeetha</p><p>Dow</p><p>nloa</p><p>ded </p><p>by [</p><p>203.</p><p>128.</p><p>244.</p><p>130]</p><p> at 0</p><p>0:40</p><p> 15 </p><p>Mar</p><p>ch 2</p><p>016 </p><p>http://www.geol.ucsb.edu&amp;sol;faculty&amp;sol;ji&amp;sol;http://www.geol.ucsb.edu&amp;sol;faculty&amp;sol;ji&amp;sol;http://www.geol.ucsb.edu&amp;sol;faculty&amp;sol;ji&amp;sol;http://www.tectonics.caltech.edu</p></li><li><p>Table1.</p><p>Slipmodelsusedin</p><p>thisstudy.</p><p>S.</p><p>no.</p><p>Location</p><p>Date</p><p>(m6d</p><p>6yy)</p><p>Latitude()</p><p>Longitude()</p><p>Mech</p><p>(RV6N</p><p>6SS)</p><p>Mw</p><p>M0</p><p>(Nm)</p><p>Ref.</p><p>1KurilIslands</p><p>10604694</p><p>43.77</p><p>147.32</p><p>RV</p><p>8.36</p><p>3.89EC0</p><p>21</p><p>1</p><p>2Chile</p><p>07630695</p><p>23.34</p><p>70.29</p><p>RV</p><p>8.14</p><p>1.82EC0</p><p>21</p><p>1</p><p>3KurilIslands</p><p>12603695</p><p>44.66</p><p>149.30</p><p>RV</p><p>7.81</p><p>5.82EC0</p><p>20</p><p>1</p><p>4New</p><p>BritianRegion</p><p>11617600</p><p>05.50</p><p>151.78</p><p>RV</p><p>7.5</p><p>2.00EC0</p><p>20</p><p>1</p><p>5Bhuj,India</p><p>01626601</p><p>23.42</p><p>70.23</p><p>RV</p><p>7.6</p><p>2.82EC0</p><p>20</p><p>2</p><p>6Peru</p><p>06623601</p><p>16.26</p><p>73.64</p><p>RV</p><p>8.4</p><p>4.47EC0</p><p>21</p><p>1</p><p>7NorthSumatra</p><p>03628605</p><p>02.09</p><p>97.11</p><p>RV</p><p>8.68</p><p>1.17EC0</p><p>22</p><p>1</p><p>803628605</p><p>02.09</p><p>97.11</p><p>RV</p><p>8.5</p><p>6.31EC0</p><p>21</p><p>2</p><p>9NorthernCalifornia</p><p>06615605</p><p>41.29</p><p>125.95</p><p>SS</p><p>7.2</p><p>7.10EC0</p><p>19</p><p>2</p><p>10</p><p>India</p><p>07624605</p><p>07.92</p><p>92.19</p><p>SS</p><p>7.25</p><p>8.40EC0</p><p>19</p><p>1</p><p>11</p><p>Honshu,Japan</p><p>08616605</p><p>38.28</p><p>142.04</p><p>RV</p><p>7.19</p><p>6.80EC0</p><p>19</p><p>1</p><p>12</p><p>Kashmir,Pakistan</p><p>10608605</p><p>34.54</p><p>73.59</p><p>RV</p><p>7.6</p><p>2.82EC0</p><p>20</p><p>2</p><p>13</p><p>10608605</p><p>34.54</p><p>73.59</p><p>RV</p><p>7.64</p><p>3.24EC0</p><p>20</p><p>1</p><p>14</p><p>SouthernJava,Indonesia</p><p>07617606</p><p>09.28</p><p>107.42</p><p>RV</p><p>7.9</p><p>7.94EC0</p><p>20</p><p>2</p><p>15</p><p>KurilIslands</p><p>11615606</p><p>46.59</p><p>153.27</p><p>RV</p><p>8.3</p><p>3.16EC0</p><p>21</p><p>2</p><p>16</p><p>KurilIslands</p><p>01613607</p><p>46.24</p><p>154.52</p><p>N8.1</p><p>1.59EC0</p><p>21</p><p>1</p><p>17</p><p>01613607</p><p>46.24</p><p>154.52</p><p>N8.1</p><p>1.59EC0</p><p>21</p><p>2</p><p>18</p><p>SolomonIslands</p><p>04601607</p><p>08.47</p><p>157.04</p><p>RV</p><p>8.1</p><p>1.59EC0</p><p>21</p><p>1</p><p>19</p><p>Pisco,Peru</p><p>08615607</p><p>13.39</p><p>76.60</p><p>RV</p><p>81.12EC0</p><p>21</p><p>2</p><p>20</p><p>PagaiIsland,Indonesia</p><p>09612607</p><p>02.62</p><p>100.84</p><p>RV</p><p>7.9</p><p>7.94EC0</p><p>20</p><p>2</p><p>21</p><p>Benkulu,Indonesia</p><p>09612607</p><p>04.44</p><p>101.37</p><p>RV</p><p>8.5</p><p>4.47EC0</p><p>21</p><p>2</p><p>22</p><p>09612607</p><p>04.52</p><p>101.38</p><p>RV</p><p>8.5</p><p>4.47EC0</p><p>21</p><p>1</p><p>23</p><p>Kepulauan</p><p>09612607</p><p>02.62</p><p>100.84</p><p>RV</p><p>7.94</p><p>9.12EC0</p><p>20</p><p>1</p><p>24</p><p>Antofagasta,Chile</p><p>11614607</p><p>22.25</p><p>69.89</p><p>RV</p><p>7.81</p><p>5.82EC0</p><p>20</p><p>1</p><p>( continued</p><p>)</p><p>Geomatics, Natural Hazards and Risk 495</p><p>Dow</p><p>nloa</p><p>ded </p><p>by [</p><p>203.</p><p>128.</p><p>244.</p><p>130]</p><p> at 0</p><p>0:40</p><p> 15 </p><p>Mar</p><p>ch 2</p><p>016 </p></li><li><p>Table1.</p><p>(Continued</p><p>)</p><p>S.</p><p>no.</p><p>Location</p><p>Date</p><p>(m6d</p><p>6yy)</p><p>Latitude()</p><p>Longitude()</p><p>Mech</p><p>(RV6N</p><p>6SS)</p><p>Mw</p><p>M0</p><p>(Nm)</p><p>Ref.</p><p>25</p><p>11614607</p><p>22.25</p><p>69.89</p><p>RV</p><p>7.78</p><p>3.98EC0</p><p>20</p><p>2</p><p>26</p><p>Sim</p><p>eulue,Indonesia</p><p>02620608</p><p>02.77</p><p>95.96</p><p>RV</p><p>7.4</p><p>1.41EC0</p><p>20</p><p>2</p><p>27</p><p>Tibet,China</p><p>03620608</p><p>35.49</p><p>81.47</p><p>N7.14</p><p>5.80EC0</p><p>19</p><p>1</p><p>28</p><p>EastSichuan,China</p><p>05612608</p><p>31.00</p><p>103.32</p><p>SS</p><p>7.9</p><p>7.94EC0</p><p>20</p><p>2</p><p>29</p><p>05612608</p><p>31.00</p><p>103.32</p><p>RV</p><p>7.97</p><p>1.01EC0</p><p>21</p><p>1</p><p>30</p><p>Sulawesi,Indonesia</p><p>11616608</p><p>01.27</p><p>122.1</p><p>RV</p><p>7.3</p><p>1.00EC0</p><p>20</p><p>2</p><p>31</p><p>Padang,Indonesia</p><p>09630609</p><p>00.72</p><p>99.87</p><p>SS</p><p>7.6</p><p>2.82EC0</p><p>20</p><p>2</p><p>32</p><p>09630609</p><p>00.72</p><p>99.87</p><p>RV</p><p>7.6</p><p>2.82EC0</p><p>20</p><p>2</p><p>33</p><p>Vanuatu</p><p>Islands</p><p>10607609</p><p>13.05</p><p>166.18</p><p>RV</p><p>7.6</p><p>2.82EC0</p><p>20</p><p>2</p><p>34</p><p>Haiti</p><p>01612610</p><p>18.44</p><p>72.57</p><p>SS</p><p>73.50EC0</p><p>19</p><p>2</p><p>35</p><p>Maule,Chile</p><p>02627610</p><p>36.12</p><p>72.90</p><p>RV</p><p>8.9</p><p>2.51EC0</p><p>22</p><p>1</p><p>36</p><p>02627610</p><p>35.84</p><p>72.72</p><p>RV</p><p>8.8</p><p>1.78EC0</p><p>22</p><p>2</p><p>37</p><p>ElMayor-Cucapah,Mexico</p><p>04604610</p><p>32.30</p><p>115.28</p><p>SS</p><p>7.2</p><p>7.10EC0</p><p>19</p><p>2</p><p>38</p><p>Kepulauan,Indonesia</p><p>10625610</p><p>3.480</p><p>100.12</p><p>RV</p><p>7.82</p><p>6.03EC0</p><p>20</p><p>1</p><p>39</p><p>Honshu,Japan</p><p>03609611</p><p>38.44</p><p>142.84</p><p>RV</p><p>7.4</p><p>1.41EC0</p><p>20</p><p>1</p><p>40</p><p>Honshu,Japan</p><p>03611611</p><p>38.32</p><p>142.34</p><p>RV</p><p>9.1</p><p>5.01EC0</p><p>22</p><p>1</p><p>41</p><p>03611611</p><p>38.32</p><p>142.34</p><p>RV</p><p>9.1</p><p>5.01EC0</p><p>22</p><p>1</p><p>42</p><p>03611611</p><p>38.10</p><p>142.86</p><p>RV</p><p>9.1</p><p>5.01EC0</p><p>22</p><p>1</p><p>43</p><p>03611611</p><p>38.10</p><p>142.86</p><p>RV</p><p>9.1</p><p>5.01EC0</p><p>22</p><p>1</p><p>44</p><p>03611611</p><p>38.10</p><p>142.80</p><p>RV</p><p>93.55EC0</p><p>22</p><p>2</p><p>45</p><p>Turkey</p><p>10623611</p><p>38.72</p><p>43.51</p><p>RV</p><p>7.13</p><p>5.60EC0</p><p>19</p><p>1</p><p>Note:1:www.geol.ucsb.edu;2:www.tectonics.caltech.edu;Faultingmechanism:RV</p><p>reverse,SS</p><p>strikeslip,N</p><p>norm</p><p>al.</p><p>496 S.T.G. Raghukanth and S. Sangeetha</p><p>Dow</p><p>nloa</p><p>ded </p><p>by [</p><p>203.</p><p>128.</p><p>244.</p><p>130]</p><p> at 0</p><p>0:40</p><p> 15 </p><p>Mar</p><p>ch 2</p><p>016 </p><p>http://www.geol.ucsb.eduhttp://www.tectonics.caltech.edu</p></li><li><p>Table2.</p><p>Sourcedim</p><p>ensionsandorientationofthefaultplane.</p><p>Length,</p><p>LWidth,</p><p>WMeanslip,</p><p>Subfaultsize,</p><p>dx</p><p>SubfaultSize,</p><p>dz</p><p>S.no.</p><p>(Km)</p><p>(Km)</p><p>(cm)</p><p>(Km)</p><p>(Km)</p><p>Strike()</p><p>Dip</p><p>()</p><p>Rake()</p><p>Area</p><p>(1.0EC0</p><p>5sq.km)</p><p>1255</p><p>121</p><p>234.87</p><p>15</p><p>11</p><p>54</p><p>76</p><p>123.4</p><p>0.309</p><p>2240</p><p>156</p><p>96.32</p><p>15</p><p>13</p><p>418</p><p>90.9</p><p>0.374</p><p>3168</p><p>112</p><p>67.57</p><p>14</p><p>14</p><p>226</p><p>18</p><p>100.3</p><p>0.188</p><p>4168</p><p>100</p><p>27.68</p><p>12</p><p>10</p><p>240</p><p>32</p><p>63.5</p><p>0.168</p><p>565</p><p>41.6</p><p>357.89</p><p>55.2</p><p>82</p><p>51</p><p>75.7</p><p>0.027</p><p>6300</p><p>190.4</p><p>173.49</p><p>15</p><p>13.6</p><p>308.5</p><p>15</p><p>54.2</p><p>0.571</p><p>7380</p><p>260</p><p>255.67</p><p>20</p><p>20</p><p>326</p><p>8117.2</p><p>0.988</p><p>8416</p><p>320</p><p>119.38</p><p>16</p><p>16</p><p>325</p><p>10</p><p>90.1</p><p>1.331</p><p>9102</p><p>35</p><p>67.19</p><p>65</p><p>221</p><p>88</p><p>362.3</p><p>0.036</p><p>10</p><p>98</p><p>42</p><p>67.35</p><p>77</p><p>118</p><p>80</p><p>198.7</p><p>0.041</p><p>11</p><p>112</p><p>72</p><p>14.71</p><p>88</p><p>24</p><p>70</p><p>90.2</p><p>0.081</p><p>12</p><p>76</p><p>35</p><p>294.34</p><p>43.5</p><p>3206343</p><p>29</p><p>102.9</p><p>0.021</p><p>13</p><p>126</p><p>54</p><p>175.09</p><p>99</p><p>331</p><p>29</p><p>124.9</p><p>0.068</p><p>14</p><p>240</p><p>162.5</p><p>152.82</p><p>12</p><p>12.5</p><p>289</p><p>10</p><p>83.5</p><p>0.390</p><p>15</p><p>315</p><p>132</p><p>173.59</p><p>15</p><p>12</p><p>220</p><p>15</p><p>99.4</p><p>0.416</p><p>16</p><p>200</p><p>35</p><p>702.21</p><p>85</p><p>42</p><p>57.89</p><p>246.2</p><p>0.070</p><p>17</p><p>224</p><p>40</p><p>356.32</p><p>85</p><p>42</p><p>58</p><p>97.9</p><p>0.090</p><p>18</p><p>300</p><p>80</p><p>147.38</p><p>15</p><p>10</p><p>305</p><p>25</p><p>85.4</p><p>0.240</p><p>19</p><p>192</p><p>210</p><p>58.14</p><p>12</p><p>10</p><p>318</p><p>06620630</p><p>59.4</p><p>0.403</p><p>20</p><p>240</p><p>190</p><p>36.93</p><p>12</p><p>10</p><p>323</p><p>15</p><p>96.8</p><p>0.456</p><p>21</p><p>400</p><p>368</p><p>55.99</p><p>16</p><p>16</p><p>324</p><p>15</p><p>94.4</p><p>1.472</p><p>22</p><p>560</p><p>159.5</p><p>90.23</p><p>20</p><p>14.5</p><p>323</p><p>12</p><p>110.1</p><p>0.893</p><p>23</p><p>312.5</p><p>130</p><p>39.37</p><p>12.5</p><p>10</p><p>319</p><p>19</p><p>98.1</p><p>0.406</p><p>(continued</p><p>)</p><p>Geomatics, Natural Hazards and Risk 497</p><p>Dow</p><p>nloa</p><p>ded </p><p>by [</p><p>203.</p><p>128.</p><p>244.</p><p>130]</p><p> at 0</p><p>0:40</p><p> 15 </p><p>Mar</p><p>ch 2</p><p>016 </p></li><li><p>Table2.</p><p>(Continued</p><p>)</p><p>Length,</p><p>LWidth,</p><p>WMeanslip,</p><p>Subfaultsize,</p><p>dx</p><p>SubfaultSize,</p><p>dz</p><p>S.no.</p><p>(Km)</p><p>(Km)</p><p>(cm)</p><p>(Km)</p><p>(Km)</p><p>Strike()</p><p>Dip</p><p>()</p><p>Rake()</p><p>Area</p><p>(1.0EC0</p><p>5sq.km)</p><p>24</p><p>375</p><p>200</p><p>21.89</p><p>15</p><p>8355.08</p><p>16.56</p><p>95.7</p><p>0.750</p><p>25</p><p>162</p><p>126</p><p>87.95</p><p>99</p><p>520</p><p>85.6</p><p>0.204</p><p>26</p><p>152</p><p>112</p><p>15.27</p><p>88</p><p>302</p><p>790.5</p><p>0.170</p><p>27</p><p>140</p><p>45</p><p>33.21</p><p>10</p><p>9206</p><p>48</p><p>287.3</p><p>0.063</p><p>28</p><p>260</p><p>28</p><p>376.12</p><p>10</p><p>4229</p><p>33</p><p>136.8</p><p>0.073</p><p>29</p><p>315</p><p>40</p><p>278.51</p><p>15</p><p>5229</p><p>33</p><p>120.1</p><p>0.126</p><p>30</p><p>120</p><p>56</p><p>45.27</p><p>84</p><p>93</p><p>22</p><p>88.1</p><p>0.067</p><p>31</p><p>54</p><p>45</p><p>158.25</p><p>65</p><p>193</p><p>58</p><p>44.2</p><p>0.024</p><p>32</p><p>48</p><p>45</p><p>177.76</p><p>65</p><p>72</p><p>51</p><p>122.2</p><p>0.022</p><p>33</p><p>91</p><p>60</p><p>87.34</p><p>75</p><p>346</p><p>40</p><p>59.7</p><p>0.055</p><p>34</p><p>45</p><p>22.5</p><p>144.93</p><p>32.5</p><p>83625766</p><p>90</p><p>70655645</p><p>34.9</p><p>0.010</p><p>35</p><p>260</p><p>18

Recommended

View more >