Text of AAT Injector Nozzle Test Chamber P15681 Calibration Fluid Exhaust System P156810
Slide 1
AAT Injector Nozzle Test Chamber P15681 Calibration Fluid
Exhaust System P156810
Slide 2
Team Roles P156811 Team MembersMajorTeam Role Zach
HustonISEProject Manager / Manufacturing Hayden CummingsMEChamber
Design / POC Robert MoshierMEChamber Design Andrew
HeuserMEMeasurement System / Fluid System Timothy
NicholsMEMeasurement System / Controls Adam FarnungMEFluid System /
Manufacturing
Slide 3
Agenda P156812
Slide 4
Background - AAT Advanced Atomization Technologies (AAT) Joint
venture between General Electric Aviation and Parker Aerospace
Specializes in manufacturing and testing fuel nozzles for gas
turbine engines P156813
Slide 5
Background - Project Fuel Injection Nozzle Testing System
Qualifying fuel injection nozzles Specialized calibration equipment
Expensive, odorous calibration fluid Problems with system Offensive
odor permeates entire building Loss of expensive calibration fluid
P156814
Slide 6
Problem Definition All commercial aircraft nozzles must undergo
a flow test to assure that requirements are met for spray angle.
This test uses Stoddart Solvent (MIL-PRF-7024F Type II) Petroleum
derived, clear, transparent liquid. The fluid is very expensive and
has an offensive odor The current exhaust system is ineffective at
both containing containing the odor and recovering the atomized
fluid for reuse. P156815
Slide 7
Customer Requirements P156816
Slide 8
Engineering Requirements P156817
Slide 9
Requirements Flow Down P156818
Slide 10
Chamber Design Components: -Nozzle Fixture (Integration of both
tests in one location, constrain and attach nozzle) -Airlock (Test
location, isolation, purge) -Gloves (Correct Material, ergonomics,
attachment) -Containment Chamber (Collection and containment of
liquid calibration fluid) P156819
Slide 11
Full Chamber P1568110
Slide 12
Ergonomic Analysis 46 62 To accommodate all operators and be
safe to operate from the top and in the gloves the chamber requires
16 of travel P1568111
Slide 13
Lift Table P1568112
Slide 14
Nozzle fixture Overview: -Combines flow and angle testing in
one location -Incorporates both nozzle block- offs for flow testing
and measurement system for angle testing Roles in Engineering
Requirements: - S4: Elapsed Time: does not add significant cycle
time P1568113
Slide 15
Upper Door Overview: -Provides access to the nozzle fixture
inside of the airlock -O-Ring sealed, solenoid locked (to be
integrated into controls system) Roles in Engineering Requirements:
-S1: Air Quality: Contains Calibration Fluid -S2: Air Particle
Removal: Provides Seal for Vacuum -S8: Calibration Fluid Leak:
Contains Calibration Fluid -S9: Door Sealed During Operation -S11:
Accessibility: Easy Access for operator to Test Block P1568114
Slide 16
Chamber Animation P1568115
Slide 17
Gloves Overview: -Blast Chamber Style gloves -Allow operator
access without exposure to fluid Roles in Engineering Requirements:
-S1: Air Quality: Fluid does not leave chamber during operator
interaction -S8: Calibration Fluid Leak: Calibration Fluid does not
escape during operator interaction -S11: Accessibility: Easy Access
for operator to Dual Block-off P1568116
Slide 18
Glove Testing The use of the chamber gloves is integral to the
design of the system. Use of gloves must be comfortable and easy to
use. Seal of the gloves must be maintained for system to operate
properly. Gloves were tested with different sizes of people,
ranging from 4ft 11in to 6ft 2in. The placement of the gloves was
comfortable for everyone to use. The dexterity of people with
smaller hands was less than ideal. Different sized gloves will need
to be available for different operators. P1568117
Slide 19
Mid Chamber Valves Overview: -Ball valve interface between top
and bottom chamber -Allows for separation of Air Lock from
collected calibration fluid and smaller evacuation chamber Roles in
Engineering Requirements: -S1: Air Quality: Liquid Cal fluid is
isolated to completely closed portion of chamber -S3: Liquid Drain
Rate: Easy Access for operator to Dual Block-off P1568118
Slide 20
Measurement Individual motorized control of probes Precision
probe control to 0.5 thousandths of an inch* Cameras provide easy
view LEDs increase visibility *For details on the measurement
analysis reference Systems Level Design Documents on EDGE
P1568119
Slide 21
Measurement Cameras provide excellent visibility of spray and
probes Visibility with camera of drops through mist confirmed by
testing* Visibility with camera through LED glare confirmed by
testing* *For details on the measurement tests reference Systems
Level Design Documents on EDGE P1568120
Slide 22
Measurement Cameras capture ideal vantage point for angle test
Live video displayed above probe controls Logitech C310 HD Webcam
-720p HD Video -Easy interface with Windows -5 MP Photos
P1568121
Slide 23
Eyedropper Test LED Interference Test at 110 o LED Interference
Test at 180 o Mist Interference Test P1568122
Slide 24
Drop Test Results SME Rachel Silvastrini P1568123
Slide 25
Mist Interference Test Materials: -12 Volt Car Battery -Jumper
Cables -GE90 Nozzle -Water -Camera -Laptop -Dropper Results: Mist
interference with the camera visibility is minimal to the point of
unnoticeable. P1568124
Slide 26
Fluids Subsystem Mist evacuation is needed to maintain
visibility during test. The amount of air pulled from the system
must be adjustable. Evacuating mist cannot influence the testing
procedure. A two speed system combines low speed for visibility
during test with high speed for fast mist evacuation at the end of
the test. P1568125
Slide 27
Subsystem Flow By keeping the entire system sealed, no
calibration fluid is allowed to escape. All aspects of the system
are sealed including chamber doors, chamber drain, drain tank, mist
collector system and mist collector drain. The test chamber will be
automatically purged before allowing the chamber doors to be
opened, eliminating the chance for an operator to come in contact
with the atomized while also not allowing the atomized fluid to
escape. Fluid that is pulled through the mist collector is returned
to the drain tank. System is automated to reduce operator error.
P1568126
Slide 28
Fluids Subsystem - Heart The heart of the subsystem is the AER
Control System CM300. This unit is able to pull 300 cfm from the
test chamber to quickly purge the system, while being throttled
back during testing in order to not effect test results. Custom
built unit will feature aluminum rotating drum to eliminate spark
risk. Unit will be fitted with an activated carbon after filter to
reduce any remaining odor. Filter can be replaced with ordinary
activated carbon which is inexpensive and easily procured. Fluid
removed via the collector will be returned to the drain tank.
P1568127
Slide 29
Pump Integration The CM300 mist collector pulls 300cfm and
features a spark free aluminum rotating drum Equipped with an
automated ball valve Corrosion resistant PVC and stainless steel
fittings at all connections A relief valve to the chamber is
regulated by the control system. P1568128
Slide 30
Spray Angle Testing Engineering requirement S10 states that the
test system cannot influence the test results. Test designed to
mitigate risk of the system influencing test results (spray angle).
Miniature test chamber built with ability to alter test chamber
pressure as well as spray fluid through GE90 nozzle. Test chamber
was tested at atmospheric and negative pressures. Result of test at
atmospheric pressure can be seen at the left and demonstrates the
control. P1568129
Slide 31
Spray Angle Testing Result of test at 0.5 atmosphere can be
seen at the left and demonstrates the spray angle while under
vacuum. Results show that testing under a mild vacuum greatly
alters test results. Testing needs to be done at near atmospheric
pressure levels in order to not influence test results.
P1568130
Slide 32
Odor Testing An activated carbon filter will serve as the last
line of defense to keep any odors from escaping the test chamber.
The experimental chamber was setup with cal fluid and a small fan
to mimic odor escaping. The escaping air was then tested for odor
and recorded. A carbon/charcoal filter was then fitted to the air
exit. The fan was run and the escaping air was again tested for
odor. Cal fluid odor was greatly reduced with the addition of the
filter. P1568131
Slide 33
Controls Doors lock during testing Two solenoids lock outside
chamber door Automated ball valves between upper and lower chambers
Prevents odor-filled air from leaving chamber P1568132
Slide 34
Logic flow P1568133
Slide 35
Wiring diagram P1568134
Slide 36
Controls Precision variable-speed probe control Precision of
0.0005 Minimum speed of 0.001 in/sec Maximum speed of 0.5 in/sec
*For details on the measurement analysis reference Systems Level
Design Documents on EDGE P1568135
Slide 37
Cycle Time Cycle time analysis Cycle time reduced by 2.5
minutes from current New cycle time of ~9.3 minutes Major time
savings: No nozzle movements due to one test location, fewer X
opening door, improved view and control for angle test Time
additions: putting on and removing gloves, raising and lowering
table P1568136
Slide 38
Project Schedule P1568137
Slide 39
Risk Assessment P1568138
Slide 40
Remaining Risks RiskImportancePlan for MitigationCompletion
Date Air / Fluid Leaks(27)(9)Test plan available on Edge under
Subsystem Test plans Test for Air Leaks in Chamber MSD II Week 3
(2/10/15 2/12/15) Nozzle Detaches27 Run test with different
fittings to see which forms the best connection and is the easiest
to install 2/10/15 Subsystem integration fail27Continue weekly
updatesOngoing P1568139
Slide 41
MSD II Risk Assessment P1568140
Slide 42
Bill of Materials Subsystem: Chamber$1,909.06
Measurement$347.68 Fluid Control$5,747.85
Controls/Integration$370.26 Total $8,374.85 P1568141
Personal Learnings Put hard due dates on items and stick to
them. If you need help, ask for it rather than letting the problem
fester. Doing some work every day is easier than doing a lot of
work over 1 or 2 days. Performing small, inexpensive tests can go a
long way into providing a proof of concept. P1568143
Slide 45
Peer Reviews Peer reviews were held every 3 weeks in an open
forum format. Each team member commented on every other team member
in a constructive way. Feedback given helped each team member
improve as the project progressed. A final review with our guide
will take place on 12/11/14 P1568144
Slide 46
Appendix P1568145
Slide 47
Ergonomic Analysis System must accommodate operator heights
from 62 76 Shoulder width range: 16.1 17.7 Center to center glove
separation 14 Range of distance from shoulder to ground: 50.7 62.17
Chamber will require 1 foot of adjustable vertical travel *For
details on the anthropometric analysis reference System Level
Design Documents on EDGE P1568146