Upload
others
View
1
Download
0
Embed Size (px)
Abstract Volume8th Swiss Geoscience MeetingFribourg, 19th – 20th November 2010
Department ofGeosciences
8. Quaternary Research
174Sy
mp
osi
um
8:
Qu
ater
nar
y R
esea
rch
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
8. Quaternary Research
Naki Akçar
Swiss Society for Quaternary Research (CH-Quat)
8.1 AkçarN.,DelineP., Ivy-OchsS.,ChristlM.,KubikP.W.,SchlüchterC.: Surfaceexposuredatingof1717ADrockavalanchedepositsintheupperFerretValley(Italy)withcosmogenic10Be
8.2 AlpouS.,GodefroidF.&KindlerP.:OriginofBahamianlaminarcrusts:newgeochronologicalandpetrographicdata
8.3 ChairiR.: Organic andmineral sedimentarydeposits in the evaporators’ environmentsof the Sahel ofTunisia(Mahdia):theBaghdadiswampandtheconjugatedsebkhaofGotaiaandEliane
8.4 ColombaroliD.,HenneP.,KaltenriederP.,GobetE.,TinnerW.:Howdidfire,humanimpactandclimatechangeaffectHolocenetreelinedynamicsintheAlps?AcaseofstudyfromGouilleRion(Valais,Switzerland)
8.5 DehnertA.,KemnaH.A.,AnselmettiF.S.,Drescher-SchneiderR.,GrafH.R.,LowickS.,PreusserF.,ZügerA.,FurrerH.:ErosionandfillingofaglaciallyoverdeepenedtroughinthenorthernAlpineForelandasrecordedindeepdrillcoreNW09fromNiederweningen,Switzerland
8.6 DeplazesG.,HaugG.H.,LückgeA.,PetersonL.C.:High-resolutionsedimentcolourandgeochemicalanalysisofDansgaard-Oeschgerevents(CariacoBasin,NorthernArabianSea)
8.7 GirardclosS.,Rachoud-SchneiderA.-M.,BrutschN.:RhoneglacierdeglaciationinwesternLakeGeneva:newsismo-andbiochronostratigraphyresults
8.8 GöktürkO.M.,FleitmannD.,BadertscherS.,ChengH.,EdwardsL.,FankhauserA.,TüysüzO.,KramersJ.:ClimateinthesouthernBlackSeacoastduringtheHolocene:ImplicationsfromtheSofularCaverecord
8.9 HaghipourN.,KoberF.,BurgJ-P.,ZeilingerG.,Ivy-OchsS.,KubikP.,FaridiM.:IncisionanddeformationrecordedbyQuaternaryf luvialterracesinMakranaccretionarywedge,SE-Iran
8.10 HaudenschildE.,AkçarN.,YavuzV., Ivy-OchsS.,AlfimovV.,KubikP.W., SchlüchterC.: TheKestanbolGranite(Western Turkey) and its importance as a building stone: Application of cosmogenic 10Be to an archaeologicalproblem
8.11 HeiriO.,BirksJ.,BrooksS.,KirilovaE.,MagyariE.,MilletL.,MortensenM.F.,SamartinS.,TinnerW.,TothM.,VeskiS. & Lotter A.F.: European climate change at the end of the last glaciation: chironomid–based temperaturereconstructiononacontinentalscale
8.12 HippeK.,Ivy-OchsS.,KoberF.,WielerR.,SchlüchterC.:ReconstructingthedeglaciationhistoryoftheGotthardPassarea,CentralSwissAlps,usingcosmogenic10Beandin-situ14C
8.13 KindJ.,HirtA.,vanRadenU.:DomagneticpropertiesreflectclimatehistoryinSwisslakes?
8.14 KremerK.,GirardclosS.:Giantsub-lacustrinemassmovementinLakeGenevasedimentrecord
8.15 LaigreL.,ReynardE.,Arnaud-FassettaG.,BaronL.,LambielC.: ContributionofgeoelectricalmeasurementsandshallowdrillingsfordetectionofHolocenepalaeochannelsintheSaillonregion(Valais)
8.16 Larocque-ToblerI.,QuinlanR.,MüllerStewartM.,GrosjeanM.:Chironomidsasindicatorsofthepast1000yearsofmeanJulyairtemperatures:theSivaplanaandSeebergseerecords
8.17 LombardoU.,Canal-BeebyE.,FehrS.,VeitH.: Pre-Columbianhumanadaptationtoseasonal inundationsintheLlanosdeMoxos,BolivianAmazonia.
175
Sym
po
siu
m 8
: Q
uat
ern
ary
Res
earc
h
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
8.18 MalatestaL.,CastelltortS.,PicottiV.,MantelliniS.,HajdasI.,SimpsonG.,WillettS.:HoloceneClimaticVariabilityInCentralAsia;AGeo-ArchaeologicalCaseStudyInSamarkand,Uzbekistan
8.19 OttA.,Ivy-OchsS.,BauderA.,AkçarN.,SchlüchterC.:HoloceneglacieroscillationsatDamma
8.20 PlotzkiA.,VeitH.:HolocenelandscapeevolutionoftheLlanosdeMoxos,NEBolovia
8.21 PreusserF.,GrafH.R.,KellerO.,KrayssE.,SchlüchterC.:QuaternaryglaciationhistoryofnorthernSwitzerland
8.22 ReberR.,TikhomirovD.A.,AkçarN.,YavuzV.,SchlüchterC.:QuaternaryglacialchronologyinAnatolia
8.23 SamartinS.,HeiriO.,TinnerW.: LateGlacialandearlyHoloceneclimaticchanges in theSouthernSwissAlps,reconstructedusingsubfossilchironomidassemblages.
8.24 SchlüchterC.,BurkhalterR.:SwitzerlandattheLastGlacialMaximum(LGM) Anewmap(2009)byswisstopo1:500000
8.25 Schmitt J., Seth B., Fischer H.: How to derive weathering rates from ice core measurements of atmospherictetrafluoromethane?
8.26 SteinemannS.,HamannY.,GilliA.:Detectionofvolcanicashlayersbyhigh-resolutionXRFcorescanning
8.27 StummD.,FischerU.H.,SchnellmannM.,HaeberliW.:AreviewontunnelvalleysinnorthernEurope
8.28 Tikhomirov D., Alfimov V., Akçar N., Ivy-Ochs S., Schlüchter C.: Calibration of 36Cl Production Rate on 39K inSaturatedAntarcticaSamples
8.29 vanRadenU.,GilliA.,KindJ.:HowdoestheelementalcompositionofSwisslakesedimentsreflectpastclimateconditions?
8.30 ZechJ.,ZechR.,KubikP.W.,VeitH.:PastglaciationintheCentralAndesrecordalterationinthetropicalcirculationandtheSouthernWesterlies
176Sy
mp
osi
um
8:
Qu
ater
nar
y R
esea
rch
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
8.1
Surface exposure dating of 1717 AD rock avalanche deposits in the upper Ferret Valley (Italy) with cosmogenic 10Be
AkçarNaki1,DelinePhilip2,Ivy-OchsSusan3,ChristlMarcus3,KubikPeterW.3&SchlüchterChristian1
1 Institut für Geologie, Baltzerstrasse 1+3, CH-3012 Bern ([email protected])2 EDYTEM Lab, Université de Savoie, CNRS, 73376 Le Bourget-du-Lac, France3 Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zürich
OneofthelargestrockavalanchesoftheAlpsoccurredonSeptember12th1717ADinMontBlancMassif.IntheupperFerretValley(Italy),arockvolumelargerthan10millionm3andahugevolumeoficefromtheTrioletglacierweremo-bilizedandmovedmorethan7.5kmdownvalleyandreachedthelowerpartofthevalley(DelineandKirkbride,2009).Thismasscomposedoficeandsedimentdestroyedtwosmallsettlementswith7casualtiesandlossoftheircattle.
Accumulationsofgraniticbouldersandirregularridgesoveradistanceof2kmintheupperFerretterminatedownvalleywitha5m-higharcuatefront(DelineandKirkbride,2009).Thisextensivedepositwasfirstattributedtoglacialdeposits(Deline,2009).Intheirdetailedstudy,PorterandOrombelli(1980)interpretedthisdepositastherockavalancheof1717AD.Aeschlimann(1983)debatedthisinterpretationandclaimedthatthemainpartofthisdepositisaLateglacialmoraine(Deline,2009).Recently,DelineandKirkbride(2009)concludedthatthisdepositisacomplexofglacial,anearlierrockavalancheand1717ADrockavalanchedeposits.Cancosmogenic10Betellusmoreonthisdilemma?
Withtheaimofansweringthisquestion,9graniticboulderswithintheuppervalleydepositand3fromthebouldersoutsideweresampledforsurfaceexposuredatingwith10BeandpreparedforAMSanalysis.10Beexposureagesvarybet-ween300and500yearswithinthelimitsoferror.Theseexposureagesindicatethattheextensivegraniticboulderdepo-sitionwithirregularridgesbelongstothe1717ADrockavalanche.ThisrelationconfirmsthemainpartofthePorterandOrombelli(1980)interpretations.
Figure1.DepositsofupperFerretValley.Yellowline:extentofgraniticboulderaccumulations.Purpleribbon:limitoftherecentmo-
rainiccomplexofGlacierdeTriolet(Deline,2009).
177
Sym
po
siu
m 8
: Q
uat
ern
ary
Res
earc
h
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
REFERENCESAeschlimann,H., 1983: ZurGletschergeschichtedes italienischenMontBlancGebietes:ValVeni -Val Ferret - Ruitor.
Ph.D.thesis,UniversitätZürich,Switzerland.Deline,P.2009:Interactionsbetweenrockavalanchesandglaciers intheMontBlancmassifduringthelateHolocene.
QuaternaryScienceReviews,28,1070-1083.Deline,P.&Kirkbride,M.P.,2009:Rockavalanchesonaglacierandmorainiccomplex inHautValFerret (MontBlanc
Massif,Italy).Geomorphology,103,80–92.Porter,S.C.&Orombelli,G.,1980:CatastrophicrockfallofSeptember12,1717ontheItalianf lankoftheMontBlanc
massif.ZeitschriftfürGeomorphologie,24,200–218.
8.2
Origin of Bahamian laminar crusts: new geochronological and petrogra-phic data
AlpouSylvia1,GodefroidFabienne1&KindlerPascal1
1 Section of Earth and Environmental Sciences, rue des Maraîchers 13, CH-1205 Genève ([email protected])
Petrographic examinationand radiometricdatingof surficial laminar crusts collected fromvariousBahamian islandsshowthat,contrarytopreviousthinking,thesecrustsmostlyresultfrombiologicallycontrolledprecipitationattherock/atmosphereinterfaceduringthepast10ka.
LaminarcrustsarewidelyexposedontheBahamasislandsandhavebeeninterpretedasresultingmainlyfromphysico-chemicalprecipitationduringpedogenesis.Further, theyhavebeen identifiedas the lowerhorizonofaWisconsinianpaleosol,whenoccurringinassociationwithclay-richconglomeratesbetweenPleistoceneandHolocenecarbonateunits.Toverifythesehypotheses,wehaveexaminedmicroscopicallyandcarbondatedseveralcrustscollectedfromMayaguanaandSanSalvador.
Allstudiedprofilesconsistofonesingle,orangetobrown,cm-thickcrust,showingasmoothuppersurfacethatrisesandfallswiththepresenttopography.InallcasesitrestsoninduratedPleistocenelimestone.AtGreenCay(nearSanSalvador)andBetsyBay(Mayaguana),thecrustdirectlyoccursattherock/atmosphereinterface,whereasatNWPoint(Mayaguana)andSingerBarPoint(SanSalvador)itiscappedbyaHolocenecalcarenite,withinterveningpocketsofclay-richbrecciaatthelatterlocality.Thecrustlaminationscorrespondtomm-thinalternatingzonesof:
(a)dense,orange,homogeneousorclottedmicritecontainingsparsecalciticspherulites(b)darkerporousmicritecontainingroundedfeatureswithacellulartexture,andalsopeloidsthathavepreservedtheir
primaryaragoniticmineralogy.
TheboundarywiththeslightlyalteredunderlyingPleistocenelimestoneissharp,evenatthin-sectionscale.Rawradio-carbonagesobtainedfromthesecrustsrangefrom9,210to3,270yearsBP.
Ourpetrographicdatashowthatbiological factors, suchascyanobacterial, fungal,andpioneer-plantactivityplayedagreaterrolethanphysico-chemicalprocessesintheformationofthesecrusts.TheiryoungagesuggestthatthisbiologicalactivitycouldberelatedtotheHolocenetransgression,andthattheoverlyingpocketsofclay-richbrecciamustbeinter-pretedasareworkedsoilsedimentofHoloceneage,ratherthanaWisconsinianpaleosol.
178Sy
mp
osi
um
8:
Qu
ater
nar
y R
esea
rch
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
8.3
Organic and mineral sedimentary deposits in the evaporators’ environ-ments of the Sahel of Tunisia (Mahdia): the Baghdadi swamp and the conjugated sebkha of Gotaia and Eliane.
RajaCHAIRI
Laboratoire de Géoressources. Centre de technologie des eaux (CERTE), Technopole Borj cedria BP 273. 8020 SOLIMAN. TUNISIE ([email protected])
Themineralandorganicsedimentarystudiesarerealizedonsedimentarycolumnsof1mofdepthinevaporatorssystemsinthesahelofTunisia(Mahdia).ThesesystemsaretheresultofTyrrheniantectonicaccidents.
TheanalysisoftheorganicmatterbypyrolysisRock-Eval6reveledthepresenceofaheterogeneousorganicmatterstockdominatedbytheligneousfraction.Theoriginatedorganicfractionislimitedinbacteriaactivity.Thehypersalineenvi-ronmentsorevaporatoressystemsareknownforthelowbiologicalvariety.Itisidentifiedwellbythepresenceofsomebiomarkers:alkylbenzenes(C18,C19andC20),hopanes(norlupaneansoleane,)andsteranes(stigmastane,cholestane).
siltyfractionistheessentialmineralfractioninthesystemoftheSahelfromTunisia.Thequartzrepresentsthemainpartofthemineralprocession(90%).Threeclaymineralsarepresents:kaolinite,illiteandsmectite.Onlythesmectiteispartiallysynthesizedintheseenvironments.Theabundanceofthekaoliniteinperipheralsedimentssupportsthesignifi-cantterrigenecontributions.Theidentifiedevaporatesarehalite,gypsumandcalicite.Inthecenter,thehailteconstitutesthesurfacesediments.
Sizedistributionsareinfluencedbytheprevioushistoryofthesedimentandclimatecondition.Clayparticlesaretrans-portedanddepositinthecenterofthesysteminlowenergyconditions.Sandlocatedattheperipheryisdepositbyhighenergy.Thepresenceofbimodalshapeindicatestheperiodofmuddinginthisevaporatorsystemwhichischaracterizedbysquatdynamicenvironment.Howeverthelevelsofsandinthecenterspecifytheinterruptionbythecycleofimportantactivity.
REFERENCESChairiR.,DerenneS.,AbdeljaouedS.&LargeauC.2010):Sedimentcoresrepresentativeofcontrastingenvironments in
saltf latsoftheMokninecontinentalsabkha(EasternTunisia):Sedimentology,bulkfeaturesoforganicmatter,alkanesourcesandalteration.
Chairi, R., 2005 : Etude du remplissage sédimentaire d’un systèmehypersalin de la Tunisie orientale au cours duquaternairerécent:lasabkhadeMoknine.Quaternaire16,107–117.
DisnardJ.R.,JacobJ.&LavrieuxM2008:Marqueursorganiquesetimpactdesactivitéshumainessurlasédimentationlacustre récente du Lac d’Aydat (Puy-de-Dôme). Comptes-rendus du 7èmeCongrès International de Limnologie-Océanographie,Rouan,France.
179
Sym
po
siu
m 8
: Q
uat
ern
ary
Res
earc
h
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
8.4
How did fire, human impact and climate change affect Holocene treeline dynamics in the Alps?A case of study from Gouille Rion (Valais, Switzerland)
ColombaroliDaniele1,HennePaul1,KaltenriederPetra1,GobetErika1&TinnerWilly1
1 Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern, CH-3013 Bern, Switzerland. Corresponding author: [email protected].
IntheAlpineregion,thetreelineecotoneishighlysensitivetoclimaticandland-usechanges.Risingtemperaturesinduceupslope migration of individual species, allowing treeline expansion into unforested landscapes (Harsch et al. 2009).Additionally,ongoingagriculturalabandonmentfavoursafforestationinformerhigh-elevationpastures(Rutherfordet al.2008).Incontrast,forestfiresaffectthetreelineecotone,byreducingfuelloadsandpromotingdominanceoffire-pronespecies.Sofar,fewlong-termpaleoecologicalstudieswithhightemporal-resolutioninvestigatedhowfirevariabilityaffec-tedtreelinedynamicsespeciallyintheAlpineregion,wherepeoplehavealteredfireregimesatleastsincetheNeolithic(Gobetet al.2003).
Inthispaper,weuseahigh-resolutionrecordofmacroscopiccharcoalandplantmacrofossilrecordsfromalakeintheSwissAlps(GouilléRion,2343ma.s.l.)to:1)investigatechangesofbiomassburningoverthelast12,000years;2)toderiveresponsesoftree-linevegetationtofireoccurrence;3)todisentangletheroleofhumanvs.climaticfactorsfortheobservedvariabilityinfirefrequency.Forourpurposes,weusedsedimentcharcoaltoreconstructthefrequencyoffireepisodesaroundthelake(e.g.Gavinet al.2007).Secondly,weusedregressionanalysesbetweencontiguousseriesofplantmacro-fossils,macroscopiccharcoalandanavailable reconstructionofpast summer temperature (Heiri et al. 2003), toderivespeciesresponsetofirevariabilityandtosummertemperature.Finally,weusedadynamiclandscapevegetationmodel(LandClim),toexplorepotentialforcingmechanismsoffire-regimechange,specificallytodisentangletheroleofclimatevs.humansonfireoccurrence.
OurresultsshowthatfirewasanaturaldisturbanceagentatthetreelineecotonebutsincetheBronzeAge(c.4000cal.yearsBP)humandisturbanceoverrodetheeffectofclimateincontrollingfirevariability.Also,anthropogenicfireandclimateaffecteddifferentlythecompositionofplantspeciesatthetreeline.Forinstance,whenmeanJulytemperatureswerelowerthanmodernmeanJulyvalues,Juniperus nanaandLarix deciduawereatanadvantageoverP. cembra.Within-creasinganthropogenicfire,openlandswith J. nanareplacedL. deciduaandP. cembraforeststands.Pinus cembrainsteadcouldexpandduringperiodswithtemperatureabovethemodernmeanJulytemperatureiffiredisturbancewasnottoosevere.
Figure1.A)LocationoftheinvestigatedsiteintheValais.B)OccurrenceofPinuscembranearthesiteatthetreeline(photofrom
Tinner1996).C)Reconstructedlocalfirehistoryoverthelast12,000years(modifiedfromColombaroliet al.inpress).
180Sy
mp
osi
um
8:
Qu
ater
nar
y R
esea
rch
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
OurstudymightberelevantforfuturedevelopmentofAlpineecosystemsunderglobalchangescenarios,suchasthere-sponseofthetreelineecotonetowarmingtemperatureandincreasinganthropogenicfire(Tinner&Kaltenrieder2005).Althoughclimatechangewillaltervegetationcomposition,futuredynamicsofmountainforestswillbeco-determinedbyanthropogenicfire.Forinstance,highfirevariabilitymaydelayorimpedeupslopeestablishmentofforestsinresponsetoclimaticwarmingasexpectedforthiscentury,withseriousimplicationsforforestdiversity.
REFERENCES:Colombaroli,D.,Henne, P.D.,Gobet, E., Kaltenreider, P.&Tinner,W.: Species responses to fire, climate, andhuman
impact at tree-line in theAlps as evidencedbypaleo-environmental records anddynamic simulation approaches.JournalofEcology(inpress).
Gavin,D.G.,Hallett,D.J.,Hu,F.S.,Lertzman,K.P.,Prichard,S.J.,Brown,K.J.,Lynch,J.A.,Bartlein,P.&Peterson,D.L.2007:Forest fire and climate change inwesternNorthAmerica: insights from sediment charcoal records. Frontiers inEcologyandtheEnvironment,5:499-506.
Gobet,E.,Tinner,W.,Hochuli,P.A.,vanLeeuwen,J.F.N.&Ammann,B.2003:MiddletoLateHolocenevegetationhistoryoftheUpperEngadine(SwissAlps):theroleofmanandfire.VegetationHistoryandArchaeobotany,12,143-163.
Harsch,M.A.,Hulme,P.E.,McGlone,M.S.2009:Aretreelinesadvancing?Aglobalmeta-analysisof treelineresponsetoclimatewarming.EcologyLetters,12,10,1040-1049.
Heiri, O., Lotter, A.F., Hausmann, S. & Kienast, F. 2003: A chironomid-basedHolocene summer air temperaturereconstructionfromtheSwissAlps.TheHolocene,13,477-484.
Rutherford,G.N., Bebi, P., Edwards, P.J.&Zimmermann,N.E. 2008:Assessing land-use statistics tomodel land coverchangeinamountainouslandscapeintheEuropeanAlps.EcologicalModelling,212,460-471.
Tinner2006:TreelinestudiesIn:EliasS.A.(ed.)EncyclopediaofQuaternaryScienceElsevier,Amsterdam2374-2383.Tinner,W.&Kaltenrieder, P. 2005: Rapid responses of high-mountain vegetation to earlyHolocene environmental
changesintheSwissAlps.JournalofEcology,93,936-947.
181
Sym
po
siu
m 8
: Q
uat
ern
ary
Res
earc
h
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
8.5
Erosion and filling of a glacially overdeepened trough in the northern Alpine Foreland as recorded in deep drill core NW09 from Niederweningen, Switzerland
AndreasDehnert1,HansAxelKemna1,FlavioS.Anselmetti2,RuthDrescher-Schneider3,HansRudolfGraf4,SallyLowick5,FrankPreusser5,AndreasZüger6&HeinzFurrer1
1 Palaeontological Institute and Museum, Karl Schmid-Strasse 4, CH-8006 Zurich ([email protected])2 Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf3 Schillingsdorferstrasse 27, A-8010 Kainbach bei Graz4 Matousek, Baumann & Niggli AG, Mäderstrasse 8, CH-5401 Baden5 Institute of Geological Sciences, Baltzerstrasse 1+3, CH-3012 Bern6 Oeschger Centre for Climate Change Research, Zähringerstrasse 25 CH-3012 Bern
AsthemajorweatherdivideinEurope,theAlpsrepresentoneofthemostinterestingareasforunderstandingpastclima-techangeanditsimpactoncontinentalenvironments.However,ourknowledgeoftheQuaternaryenvironmentalhistoryoftheregionisstillratherlimited,especiallyforthetimeprecedingthelastglaciationoftheAlps.
GeologicalandgeophysicalstudiesintheWehntal,20kmnorthwestofZurich,in2007and2008haverevealedtheexis-tenceofaglaciallyoverdeepenedtroughcutintoMiocenemolassebedrock,whichistodayfilledwith~90to180mofQuaternarysediments.
InMarch2009,a93.6mlongsedimentcoreNW09/1hasbeendrilleddowntobedrockeastofafamousmammoth-siteinNiederweningen.Thisdrill core representsoneof thevery fewrecords in thenorthernAlpineForeland thatprovidescrucialinsightsintotimingoferosionandinfillinghistoryofpre-Eemianglaciallyoverdeepenedstructuresandalsohelpstounderstandtheclimateandenvironmentalhistoryofmultipleglacial-interglacialcycles.
Onthebasisofmulti-proxydataandextendedluminescencechronology,therecoveredsedimentsuccessionisinterpretedfrombottomtotopas:4.1mofin-situmolassebedrock,overlainby3.4mofdiamictictill.Theglacialsedimentwasde-positedbyalobeofthecombinedWalenseebranchofRhineGlacierandtheLinthGlacierduringMarineIsotopeStage(MIS)8. It issuggestedthatthisextensive iceadvance,whichoncecoveredtheentireWehntalvalley,causedthefinalerosionofthebedrock.Thetillmergesseamlesslyintoa29.5mthicksequenceoflaminated,carbonate-rich,fine-grainedsiliciclasticsedimentsthatareinterpretedasproglaciallakesediments,whichaccumulatedalsoduringMIS 8.Thisunitwaslikelydepositedinaproximalsettingtoacalvingglacier-frontconfirmedbythepresenceofnumerousdropstones.
ThedammingofthisWehntalpalaeolakewasmostlikelycausedbyaterminalmorainelocated~3 kmtothenorthwestofthedrillsite.Theoverlying37.9moffine-grainedlakesedimentsarecomparabletotheformerunit,butabsenceofdropstonesindicatesamoredistalproglaciallakefaciesandthus,aretreatofthefeedingglacierlobe.
Loworganiccarboncontentspointtoalmostnobiologicalactivitywithinthelakeandsuggestcoldenvironmentalcondi-tions.FeldsparluminescencedatingshowedthattheformationofthisunitoccurredoverthewholeMIS7.Thisunitisunconformablyoverlainby9.5moffine-grainedmaterial.ThehiatuscoversalmostthecompleteMIS 6,whichisbelievedtorepresentamajorglaciationofthenorthernAlpineForeland.
Although,astrikingdropincarbonatecontent(from~45to20wt%)andshearstrength,aswellasanincreaseingrain-size(fromclayeysilttofinesand)canbenoticed,noobviouserosionalfeaturescanbeseeninthesedimentfabric.ThechangeincarbonatecontentisinterpretedasadecouplingoftheWehntalcatchmentfromtheRhein/LinthGlaciersys-temsthatoriginateinacarbonate-richhinterland.
ThetopoftheunitdocumentsagradualinfillingofthepalaeolakeandonsetofbiologicalproductivityduetoclimatewarmingduringearlyMIS 5.Thisisalsodocumentedbyoccurrenceofpost-sedimentarypyriteandsideriteconcretions.
The prominent environmental change culminates in the abrupt accumulation of peat (1.8m) during late interglacialMIS 5e(Eemian).Afterwards,theWehntalwasreoccupiedbyayoungerpalaeolakef loodingthepeat.Theresulting4.9 mofbluish-graysiltysedimentshavecarbonatecontentsof~25 wt%andrelativehighorganiccarboncontents(~1 wt%).LuminescencedatesputthissedimentunitintoearlyMIS 3.
ThesourceofsedimentisinterpretedasderivedfromthemolassicZurichHighlandsandtheJurassiclimestoneoftheLägernmountainchain,whichborderstheWehntalvalleytothesouth.TheactualcauseofriseinwaterlevelsubsequenttodepositionoftheEemianpeat,however,hasnotyetbeenidentified.
Thereafter,theyoungerpalaeolakewasfilled,resultingintheaccumulationof0.7moffossil-richMiddleWürmianpeat,thesocalled‘Mammothpeat’,whichwasfinallycoveredwith2.0mofpost-Würmian-to-recentalluvialsiltsandsands.
182Sy
mp
osi
um
8:
Qu
ater
nar
y R
esea
rch
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
8.6
High-resolution sediment colour and geochemical analysis of Dansgaard-Oeschger events (Cariaco Basin, Northern Arabian Sea)
G.Deplazes1,G.H.Haug1,A.Lückge2,LarryC.Peterson3
1 Geological Institute, ETH Zürich, Sonneggstr. 5, CH-8092 Zürich, Switzerland ([email protected])2 Federal Institute for Geosciences and Natural Resources, Stilleweg 2, D-30655 Hannover, Germany3 Rosenstiel School of Marine & Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, FL 33149, USA
TheanoxicCariacoBasinonthenorthernshelfofVenezuelapreservesdetailedrecordsofpasttropicalclimatevariability.ThesedimentformationinthisbasiniscontrolledbythemigrationoftheAtlanticIntertropicalConvergenceZone(ITCZ)andthecorrespondingrainbeltandtradewinds.IntheoxygenminimumzoneoffPakistaninthenorthernArabianSeasedimentarchivesoflow-latitudemonsoonalclimatearepreserved.
Inthisstudysedimentsfromthetwosettingsthatcoverthelast80’000to110’000yearsarecomparedwithGreenlandicecorerecords.Sedimentcolouranalysisresultedinreflectancerecordswithdowntoannualresolution.ThereflectancerecordsoftheCariacoBasinandthenorthernArabianSeafaithfullymimictheGreenlandicecoreδ18Orecord.Anagemodelwassetupbycorrelationoftheserecordstotheδ18OrecordofNGRIP.Themajorelementchemistryofthesedi-mentswasanalysedwithX-rayf luorescencescanning.
Colourvariationsinthesemarinesedimentsreflectchangesinredoxstateandrelativecontributionsofterrigenousandbiogeniccomponents.Changesinanoxiaandproductivitycanbefurtherexploredusingelementproxiesasmolybdenum,manganeseandbromine.Variabilityintheterrigenousinputcanbetracedbyelementalproxiesastitanium.
ThenewhighresolutionproxyrecordsindicateanunbrokenassociationbetweenwarmclimateconditionsoverGreenland,anortherlypositionoftheAtlanticIntertropicalConvergenceZone,andastrongIndiansummermonsoonsincethelastglacial.ThetightcouplingisexplainedbyadominantroleoftheNorthAtlanticthatiscommunicatedlargelythroughtheatmosphere.NewinsightsofdynamicalmechanismsarisefromcomparisonofindividualDansgaard-OeschgereventsthatsuggestsathresholdresponseofthetropicstoNorthAtlanticcooling.
8.7
Rhone glacier deglaciation in western Lake Geneva : new sismo- and bio-chronostratigraphy results
GirardclosStéphanie1Rachoud-SchneiderAnne-Marie2&BrutschNicolas1
1 Dept Geology and Palaeontology, University of Geneva, Rue des Maraîchers 13, CH-1205 Geneva ([email protected])2 Route de St-Cergue 116b, CH-1260 Nyon
Seismicreflectionandgeotechnicaldrillingwereperformedinspring2009inthewesternpartofLakeGenevawithinapublicprojecttobuildalargebridgeoverthelake.Scientificanalyseofthisseismicandsedimentrecordrevealsnewin-sightsinthehistoryoftheRhoneglacierdeglaciationandLakeGenevaformation.
Seismicdata,acquiredwitha1in3airgunandapingersource,imagesthebedrocklakebasinaswellaseightsismostrati-graphicunitsofglacial,glacio-lacustrineandlacustrinefacies.Intheeasternpartofstudiedarea,gasreducesseismicdataqualitybutnevertheless,thelateralasymmetryofthebasingeometryandofthesedimentinfillappears.Inthewesternpart,thebedrock(i.e.Molasse)formsa3°rampbendingtowardeastwhichistoppedbyonlymaximum30mofsediment.Inthecentreandeasternpartofthelakebasin,thebedrockliesdeeperandiscoveredby70to110mofglacialtolacus-trineunits.
Thedeepestunit(U1),whichwasdetectedonseismiclinesbutnotdrilled,isinterpretedasglacialsedimentsleftduringanolderglacialcycle(Fiore2007).ItistoppedbythethickU6bandU7units,interpretedasmelt-outtilloftheRhoneglacier.Four35to75m-deepdrillingsconfirmthisinterpretationandshowthatunitU6bwascertainlycompactedbya
183
Sym
po
siu
m 8
: Q
uat
ern
ary
Res
earc
h
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
re-advanceoftheRhoneglacier.Thisdatarevealsanewglacialstage,olderthanstagesofCoppetandNyon,withaglacialfrontnear‘LeReposoir’.TheasymmetryofunitU7alsoshowsthattheglaciermeltedfirstinthecentralandeasternpartofthelakebasinwhileitwasstilllyingontheMolasse‘ramp’intheWest.
Thenextsequence,representedbyunitsU8-U12,isinterpretedasglacio-lacustrinedeposits.Theyhavevariablesedimen-taryfaciesrangingfrommassivesilttolaminatedclayedsiltwithraresandlayers.Gravelsofalpineoriginand‘galetsmous’inthesiltymatrix,interpretedasdropstones’,pointtotherecurrentpresenceoficebergsinthelake.
TheseismicinfillendswithlacustrineunitsU13-U14.Theseunitsconsistoflacustrinemarlswithshellsandorganicde-bris.InunitU14,athicknessasymmetrybetweeneastandwestsideofthelake,aswellasonlapinggeometrytowardwest,pointtosedimenterosionandtransportbycurrentsdownto35-m-depth.
ThisresultagreeswithpreviousworkondeepcurrentsactioninwesternLakeGeneva(Girardclosetal.2003).OngoingpalynologicalanalysesandC14datingwillgiveanagetoglaciolacustrineandlacustrineunits.Preliminarypalynologicalresultsrevealthatnon-reworkedpollenissurprisinglypresentinglaciermelt-outtill(U7).
This project is partly financed by the Fondation Ernest Boninchi, the Fondation Ernest et Lucie Schmidheiny and the Swiss Civilian Service. Thanks to De Cerenville Geotechnique and the State of Geneva for access to drillings and geotechnical data.
REFERENCESFioreJ.2007:QuaternarysubglacialprocessesinSwitzerland:GeomorphologyofthePlateauandseismicstratigraphyof
WesternLakeGeneva.TerreetEnvironnement69.UniversityofGeneva,169pp.Girardclos,S.,Baster,I.,Wildi,W.&PuginA.2003:Bottom-currentandwind-patternchangesasindicatedbyLate-Glacial
andHolocenesedimentsfromwesternLakeGeneva(Switzerland).EclogaegeologicaeHelvetiae96Suppl.1,39-48.
8.8
Climate in the southern Black Sea coast during the Holocene: Implications from the Sofular Cave record
GöktürkOzanMert11,2,FleitmannDominik1,2,BadertscherSeraina1,2,ChengHai3,EdwardsLawrence3,FankhauserAdelheid1,TüysüzOkan4,KramersJan1
1: University of Bern, Institute of Geological Sciences, CH-3012 Bern, Switzerland (1 [email protected])2: Oeschger Center for Climate Change Research, CH-3012 Bern, Switzerland3: University of Minnesota, Department of Geology and Geophysics, MN-55455 Minneapolis, USA4: Istanbul Technical University, Eurasia Institute of Earth Sciences, TR-34469 Istanbul, Turkey
WepresenttheupdatedHolocenesectionoftheSofularcavestalagmitestableisotoperecordfromthesouthernBlackSeacoast(northernTurkey).δ13Ctimeseriesofthisrecordandthegrowthratesprovetobemoreusefulthanδ13Cindeciphe-ringHoloceneclimatevariations,astheyapparentlyreflectthehydrologicalconditionsabovethecave.
Althoughthegrowthratesimplythatprecipitationamountwasapparentlyhigherinthisregionintheearlytomid-Ho-loceneandtherainfallpatternscouldwellhavebeendifferentthanthepresent,thereisnodistinctdifferenceintheef-fectivemoisturelevel;afindingwhichcontrastswiththeevidencefromvariousEasternMediterraneansites.Moreover,somewell-definedclimaticanomaliessuchasthe4.2and8.2kyreventsarenotclearlyexpressedintheSofularcavere-cord;atleasttheylookunexceptionalconsideringsimilar‘anomalous’periods.
WeconcludethatthepeculiaritiesinourresultsreflecttheinfluenceoftheBlackSeaandtheAnatoliantopographyinmodifying the climate of this region, which should be important for the more subtle climatic changes during theHolocene.Nevertheless,theSofularcaverecorddoesprovidehintsandposenewquestionsabouttheconnectionbetweenregionalandlargescaleclimates,highlightingtheneedforamoreextensivenetworkofhighqualitypaleoclimaterecordstobetterunderstandtheHoloceneclimate.
184Sy
mp
osi
um
8:
Qu
ater
nar
y R
esea
rch
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
8.9
Incision and deformation recorded by Quaternary fluvial terraces in Makran accretionary wedge, SE-Iran
HaghipourNegar1,2,KoberFlorian1,BurgJean-Pierre1,ZeilingerGerold3,Ivy-OchsSusan4,KubikPeter5,FaridiMohammad2
1 Geological Institute, ETH Zurich, Sonneggstrasse 5, CH-8092 Zurich ([email protected]) 2 Geological Survey of Iran, Meraj Avenue, Azadi Square, P.O. Box 13185-1494, Tehran, Iran 3 Institute für Geowissenschaften, Universität Potsdam, D-14476 Golm, Deutschland4 Institute of Ion Beam Physics, Particle Physics, ETH Zürich, CH-8093 Zürich, Switzerland and Department of Geography, University of Zürich, CH-8057 Zürich, Switzerland5 PSI/ c/o Ion Beam Physics, Particle Physics, ETH Zürich, CH-8093 Zürich, Switzerland
Thewell-preservedsequencesofmarineandf luvialterracesfoundalongcoastalandinnerMakranarethegeomorphicexpressionofsurfaceuplift.TheMakranaccretionarywedgeisanexcellentexamplewherethepoorlydescribedquater-nary sequencesanddriving forces for theirgenesis canbe studied forabetterunderstandingof thecontributionandfeedbackofsurfaceprocessestothegrowthofthewedge.Wefocusedonf luvialterracestoextractpossibletectonicandclimaticdrivingforces.Forthispurpose,weaimtocorrelateriverterracesbetweencatchmentsandbetweendifferentsegmentsofthesamerivertodocumentthedistributionofdeformation-upliftonthewedgeinrecenttimes.Weinvesti-gatedfourmaincatchmentsintheIranianMakranwheretheriverspreserveseveralterraces.Fourterracelevelscanbetracedfromfieldsurveyanddetailedmappinginallthecatchments.Outofthesefourlevels,twoareregionallypreemi-nent.Deformedterracesarelocalizedandassociatedwithactivefaultsandfolds.DuetothelackoforganicmaterialandsandydepositsininnerMakran,ourdatingmethodwasrestrictedtoTerrestrialCosmogenicNuclides.Thepreliminaryagesfortheabandonmentoftwopreeminentterracesarearound90ka(T1)and21ka(T2).Thef luvialincisionratesbasedonthe10Beexposuresagesofthesetwolevelsare0.5mm/yrinthelatePleistoceneand1mm/yrinlatestPleistocene,whichsuggestsenhancementofsurfaceupliftrateinthelatestPleistoceneandQuaternary.Thesepreliminaryresultsdifferfrompreviousworkonmarineterraces,whichdocumented0to0.2mm/yrupliftrateinPleistocenetimes.Toavoidanyfalseinterpretation,especiallyonregionalscale,moreterracedatingisinprogress.
8.10
The Kestanbol Granite (Western Turkey) and its importance as a building stone: Application of cosmogenic 10Be to an archaeological problem
HaudenschildEsther1,AkçarNaki1,YavuzVural2,Ivy-OchsSusan3,4,AlfimovVasily3,KubikPeterW.3,&SchlüchterChristian1
1 Institut für Geologie, Baltzerstrasse 1+3, CH-3012 Bern ([email protected])2 Istanbul Technical University, Faculty of Mines, TR-80626 Maslak, Istanbul3 Institute of Particle Physics, ETH Hönggerberg, CH-8093 Zurich4 Department of Geography, University of Zurich, CH-8057 Zurich
KestanbolGranite,outcroppingintheEzinevillageofÇanakkale(Fig.1),havebeenoperatedfortheproductionandexportofbuildingstonessinceancienttimes.ItisknownthattheRomansweretradingtheKestanbolGranite(MarmorTroadense)allovertheMediterraneanregion(Lazzarini,1987).Today,leftoversofbuildingstonescanstillbefoundinrelictquarries.Thetypesofbuildingstonesvaryfrompavementstonesto11meterslongcolumns(Fig.2).Thereisalackofinscriptionsandofabsolutedatingof thesequarries (Ponti,1995), so that thearchaeologists canroughlyestimate the timeof thequarryingoftheKestanbolGranitefrom500BCto500AD(Feuser,2009).Suchvaguelimitationgivesneitheranypossibi-lityforunderstandingthedevelopmentintimeoftheexploitationareaofthequarriesnoraboutthehistoricalandpoli-ticalcontextofthequarrying(Ponti,1995).
Keepingtheseinmind,theaimofourstudyistodeterminethedistributionandoperationperiodsofantiquequarriesneartheEzinevillageofÇanakkale.Inordertoachievethis,thedetailedarchaeo-geologicalmapoftheextentofancient
185
Sym
po
siu
m 8
: Q
uat
ern
ary
Res
earc
h
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
humanimpacthasbeenproducedandsurfaceexposuredatingwithin-situproducedcosmogenic10Beapplied.Forexpo-suredating,27samplesfromthequarries,buildingstonesandnatural(withoutanyhumanimpact)bedrockwerecollec-ted.Accordingtoourfirstresultsfromthebedrocksamples,thelandscapeinthestudyareaisolderthan120ka.Thesamplesfrombuildingstonesandquarriesarestillinprogress.Duringourmapping,fundamentsofseveralbuildingofunknownpurposes(notyetdescribedintheliterature)weredetermined.Furthermore,oreandslagpiecesinthestudyareawerefound.
OurresultsgivebothinsightstotheimportanceofthequarriesinthesocialstructureinancientcitiesintheregionsuchasNeandreiaandAlexandriaTroasandthechronologicaldevelopmentofthearealquarryexploitation.Inbrief,there-sultsofourstudycancontributeinshort-termtothedeclarationofthesequarriesasageoarchaeologicalheritagesite,andinlong-termtotheirrehabilitationasanopen-airmuseum.
Figure1.MapoftheapproximatearealdistributionofthequarriesintheKestanbolGranite(Ponti,1995).
Figure2.Ancientromanquarry“YediTaşlar”nearKoçali.
REFERENCESFeuser,S.,2009:DerHafenvonAlexandriaTroas.AsiaMinorStudien63,16-17.Lazzarini,L.,1987:IgranitideiMonumentiItalianieIloroproblemidideterioramentoin:Bureca,A.,Tabasso,M.L.&
PalandriG.:MaterialiLapideiII,Bollettinod’ArteSuppl.41,157-172.Ponti,G.,1995:MarmorTroadense–GraniteQuarriesintheTroad.Apreliminarysurvey.StudiaTroica5,1995,291-320.
186Sy
mp
osi
um
8:
Qu
ater
nar
y R
esea
rch
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
8.11
European climate change at the end of the last glaciation: chironomid–based temperature reconstruction on a continental scale
HeiriOliver1,2,BirksJohn3,BrooksSteve4,KirilovaEmilyia2,MagyariEnikö5,MilletLaurent6,MortensenMortenFischer7,SamartinStéphanie1,TinnerWilly1,TothMonika8,VeskiSiim9&LotterAndréF.1
1 Institute of Plant Sciences and Oeschger Centre of Climate Change Research, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland ([email protected]) 2 Palaeoecology, Utrecht University, Budapestlaan 4, CD 3584 Utrecht, Netherlands3 Department of Biology, University of Bergen, Allegaten 41, N-5007 Bergen, Norway4 Natural History Museum, Cromwell Road, London SW7 5BD, UK5 Hungarian Natural History Museum, P.O. Box 222, H-1476 Budapest, Hungary6 Laboratoire de Chrono-Ecologie, 16 route de Gray, 25 030 Besançon, France7 The National Museum of Denmark, Aarhus, Denmark7 Balaton Limnological Research Institute, Klebelsberg Kuno 3, HU-8237 Tihany, Hungary8 Institute of Geology at Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
InEuropethewarmingtrendattheendofthelasticeagewascharacterizedbyanumberofabrupttemperaturesshifts,includingtherapidtransitionstowarmerclimateatthebeginningoftheLateglacialInterstadialandtheHolocene,andthecoolingat thestartof theYoungerDryascoldperiod.TheamplitudeandspatialpatternofLateglacial changes intemperaturecanprovideinformationabouttheforcingfactorscausingtheseclimateshiftsandaboutprocessesaffectingtheEuropeanclimatesystemduringatransitiontoawarmerclimatestate.However,spatiallyresolveddatasetsdescribingtemperaturechangeacrosstheEuropeancontinentduringtheLateglacialperiodatcentennialorhighertimeresolutionandbasedonthesamestandardizedapproacharepresentlynotavailable.Weaimtodevelopsuchastandardizeddatasetbasedonrecordsofpastsummertemperaturereconstructedfromfossilchironomidassemblagespreservedinlakesedi-ments.Acombinationofregionalcalibrationdatasetsprovidedthebasisforachironomid-basedinferencemodelforJulyairtemperaturewhichcoverstherangeofexpectedtemperaturesandchironomidassemblagestatesexpectedforEuropeduringtheLateglacialperiod.Thismodel,whichisbasedonmodernchironomidassemblagesfrom274lakesinNorwayandSwitzerlandandassociatedobservedvaluesofmeanJulyairtemperature,wasthenusedtoproducefirstchironomid-based temperature records from Estonia, Denmark, the Netherlands, southeastern France, southern Switzerland, andsouthernRomania.Thepreliminary results indicatedistinctvariations in theamplitudeof reconstructed temperaturechangesacrossEuropewithstrongershiftsininferredJulyairtemperaturesrecordedinnorthernpartsthanatlocalitiesmoretothesouthofthecontinent.FutureworkwillexpandthisdatasettoincludeadditionalsitesontheBritishIsles,theIberianPeninsula,Italy,BulgariaandScandinaviainordertoconfirmtheobservedspatialpatternofLateglacialtem-peraturechanges.
8.12
Reconstructing the deglaciation history of the Gotthard Pass area, Central Swiss Alps, using cosmogenic 10Be and in-situ 14C
HippeKristina1,Ivy-OchsSusan2,KoberFlorian3,WielerRainer1&SchlüchterChristian4
1 Institute of Geochemistry and Petrology, ETH Zürich, CH-8092 Zürich ([email protected])2 Institute for Particle Physics, ETH Zürich, CH-8093 Zürich3 Institute of Geology, ETH Zürich, CH-8092 Zürich4 Institute of Geological Sciences, University of Bern, CH-3012 Bern
DuringtheLastGlacialMaximum(LGM)upto500moficecoveredtheGotthardPassarea(2106ma.s.l.)atpeakconditions(Florineth&Schlüchter1998).ThisiceoriginatedfromtheRhoneicedome,oneofthetwobigicedomesthatexistedintheCentralSwissAlpsduringtheLGM.IcefromtheRhoneglacierf lowedovertheFurkaPassdowntowardstheUrserenarea,wheremassive iceaccumulatedandf lowedfurthersouthusingtheGotthardPassasacentralpathwayformasstransport.Icef lowovertheGotthardPassceasedwiththecollapseoftheLGMicedomesandthedecreaseoficeelevationintheUrserenarea.
187
Sym
po
siu
m 8
: Q
uat
ern
ary
Res
earc
h
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
TodeterminethetimingoficeretreatwehavesampledglaciallypolishedbedrockalonganaltitudetransectatthewesternGotthardPassarea.Surfaceexposuredatingbycosmogenic10Beyieldpreliminaryagesof~9.5-12.8ky(correctedforsnowanderosion).Theoldestagewasobtainedfromthelowestelevationrightinthepassarea,whilehighersamplingpointsgiveyoungerexposureages.ThissupportstheconceptthatthepassarearecordstheiceextentoftheLGMwhereasslight-lyhigherelevationswereaffectedbylocalice,probablyduringtheLateglacial.
Ourdataareinagreementwith10BeexposureagesfromthenearbyGrimselPass,givingaminimumageof~14.0kyforthefinalbreakdownoficedomesintheCentralAlps(Kellyetal.2006).Withintheerrors,ouragesalsoagreewithradio-carbondatafromtheGotthardregionindicatingafinalretreatofsmalllocalglaciersatthebeginningoftheHolocene(Renner1982).
ComparedtoradiocarbonagesfromtheRhonevalley(Welten1982)andSimplonPass(Müller1984),whichshowcomple-telyice-freemainvalleys,theGotthardagesareslightlyyounger.Thus,todetectpossibleperiodsofpost-LGMlocalicecoverage,especiallyinareasapparentlyonlyaffectedbyLGMice,cosmogenicin-situ14Ciscurrentlyanalyzed.Theshort-lived14C(t1/25730y)decaysduringperiodsofburialandcanprovideinformationoncomplexexposurehistoriesandthedurationofburialepisodes.Resultswillbepresentedatthemeeting.
REFERENCESFlorineth,D.&Schlüchter,C.1998:ReconstructingtheLastGlacialMaximum(LGM)icesurfacegeometryandf lowlines
intheCentralSwissAlps.Eclogaegeol.Helv.91,391-407.Kelly,M.A.,Ivy-Ochs,S.,Kubik,P.W.,vonBlanckenburg,F.&Schlüchter,C.2006:Chronologyofdeglaciationbasedon
10BedatesofglacialerosionalfeaturesintheGrimselPassregion,centralSwissAlps.Boreas35,634-643.Müller,H.-N. 1984: SpätglazialeGletscherschwankungen indenWestlichenSchweizerAlpenund imNordisländischen
Tröllaskagi-Gebirge.205pp.BuchdruckereiKüng,Näfels.Renner,F.,1982:BeiträgezurGletschergeschichtedesGotthardgebietesunddendroklimatologischeAnalysenanfossilen
Hölzern.PhysischeGeographie8,1–180.Welten,M., 1982: Vegetationsgeschichtliche Untersuchungen in denwestlichen Schweizer Alpen: Bern-Wallis.
DenkschriftenderSchweizerischenNaturforschendenGesellschaft95,1–105.
8.13
Do magnetic properties reflect climate history in Swiss lakes?
JessicaKind1,AnnHirt1,UlrikevanRaden2
1 Institute of Geophysics ETH, CH 8096 Zurich, Switzerland ([email protected])2 Institute of Climate Geology ETH, CH 8096 Zurich, Switzerland
ThequestionofthisstudyiswhethermagneticparametersoflacustrinesedimentsfromSwisslakescanbeusedashigh-resolutionproxyforenvironmentalchange.Weexaminevariationsinthemagneticmineralogyfromtwolakes,SoppenseeandBaldeggersee,coveringthelatePleistoceneandHolocenetoinvestigatehowthesedimentsareaffectedbychangesinvegetation,erosional input, sedimentation, redoxchanges,andgeochemistry.Magneticmineralogy isdeterminedbyacombinationoflow-temperaturemeasurements,coercivitydistributionsandextraction.Themultiproxyclimaterecordsare currentlybeingestablished.Magneticproperties areused to indicate the typeand concentrationof ferromagneticmineralsinthelake.Weutilizeacombinationof:1)concentrationdependentparameters(magneticsusceptibilityχ,an-hystereticremanentmagnetizationIRM),2)compositionindicativeparameters(saturationisothermalremanentmagneti-zationIRM/SIRM),and3)grainsizedependentparameters(ARM/IRM,hysteresisparameters).
Significantchangesareseeninthesedimentology,geochemistryandmagneticmineralogyintheSoppenseethatarere-latedtotheWuermdeglaciation,Bøling/Allerød(B/A),YoungerDryas(YD),andtotheHolocenewiththeclimaticoptimum(Lotter,2001,Lotteretal.,1997a,Lotteretal.,1997).TheWuermdeglaciationischaracterizedbyhigherdetritalinputwithamixtureofpseudo-singledomain/multidomain(PSD/MD)magnetiteandlowconcentrationofsuperparamagnetic/singledomain(SP/SD)hematite.ClimatictransitionfromthecolderWuermperiodtothewarmerB/Aischaracterizedbyanin-creaseof lowcoercivemagnetite/maghemite,asaconsequenceofdecreasingdetrital input.ThebeginningYDreflectsmoreoxidizingconditionsatthesediment-waterinterface,andisinterpretedtobetriggerfortheappearanceofmagne-totacticbacteria(MTB),resultinginSDmagnetiteofuniformgrainsize,asshowninFigure1.
188Sy
mp
osi
um
8:
Qu
ater
nar
y R
esea
rch
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
TheformationofsideritevarvesisinitiatedinthecolderandanoxicYDwithasubsequenttransitiontocalciticvarvesbetween10to6calkyrPB(Lotteretal.,1997,Hajdasetal.,1993).RisingtemperatureduringtheclimateoptimuminLakeSoppenaround6calkyrBPincreasedprimaryproduction,leadingtoincreasedorganiccontent.Varvesdisappeararound5.5calkyrBPasaconsequenceofgeochemicalchangesatthesediment-waterinterface.Thehigherprimaryproductionatthesurfaceleadstoanuptakeofoxygenatthebottomofthelakeduetodecompositionoforganicmatter.HencethisstageismarkedbyrapidincreaseofferromagneticmineralsasdisplayedinFigure1a)andb).Inconclusion,wecanap-provetheinitialquestion.Thegoodagreementbetweenthechangesinmagneticpropertiesandtheclimaticevolutiondemonstratethatthemagneticpropertiesareausefulandfasttooltoprovideadditionalinformationforhighresolutionclimatestudies.
Figure1:MagneticpropertiesfromLakeSoppena)low-fieldmagneticsusceptibility,ARMintensity(120mTAFwithabiasfieldof100
μT),b)S-ratio(IRMwithabackfieldof300mTnormalizedbyIRMat1200mT),c)ARM/IRM,e)Cacontent,andsumparameterreflec-
tingdetritalinput(Al,K,Ti;Rb;Zr)measuredwithXRFcorescanning.
REFERENCES:HajdasI.,BonaniG.,ZolitschkaB.(2000).Radiocarbondatingofvarvechronologies:SoppenseeandHolzmaarlakesafter
tenyears.Radiocarbon42,349-353.LotterA. (2001). The paleolimnology of Soppensee (Central Switzerland), as evidence by diatoms, pollen, and fossil-
pigmentanalyses.JournalofPaleolimnology25,65-79.LotterA.,MerktJ.,andSturmM.(1997a).Differentialsedimentationversuscoringartefacts:acomparisonoftwowidely
usedpistoncoreingmethods.JournalofPaleolimnology18,75-85.LotterA.,SturmM.,TeranesJ.,andWehrliB.(1997).Varveformationsince1885andhighresolutionvarveanalysesin
hypertrophicBaldeggersee(Switzerland).AquaticScience59,304-325.
189
Sym
po
siu
m 8
: Q
uat
ern
ary
Res
earc
h
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
8.14
Giant sub-lacustrine mass movement in Lake Geneva sediment record
KremerKatrina&GirardclosStéphanie
Department of Geology and Palaeontology, University of Geneva, Switzerland ([email protected])
LakeGenevawithanareaof582km2andamaximaldepthof310m,wasformedduringthePleistocenebyglacialerosionandisthefirstlargesinkforsedimenttransportedbytheRhoneriver.
AspartofaSwissNationalFundprojectonclasticsedimentinlacustrinerecords(nr.200021-121666/1),morethan100kmofhigh-resolutionseismicreflexionprofileswereacquiredwitha3.5kHzpingersourceinthedeepestpartoflakeGeneva.
Preliminaryresultsshowthattheupper5mofthissequenceconsistofalternatingseismicfacies,interpretedasturbiditicandhemipelagiclayers.Thesefaciesoccuragainfroma10-mdepthdownwards.Betweenthesetwosequencesa5-m-thickunitwithchaotic/transparentfacies,interpretedasamassmovementdeposit,coversanareaof50km2.Thisunit,withanestimatedminimumvolumeof0.3km3,representsthelargestsub-lacustrinemass-movementdepositinSwitzerland.Thethicknessmapofthisunitshowsanincreasetowardseast,thusattributingitsorigintotheRhonedeltaarea.Possibletriggerofthismassmovementisearthquake,rockfall,slopeslideoracombinationofthesecauses.
Ongoing10-m-deepsedimentcoringwillcharacterizethedepositaswellastheageofthemassmovementinordertolinkittoknownhistoricalandprehistoricalevents.
8.15
Contribution of geoelectrical measurements and shallow drillings for detection of Holocene palaeochannels in the Saillon region (Valais)
LaigreLaetitia1,ReynardEmmanuel1,Arnaud-FassettaGilles2,BaronLudovic3&LambielChristophe1
1 Institut de Géographie, Université de Lausanne, Dorigny – Anthropole, CH-1015 Lausanne ([email protected])2 Université de Paris Est-Créteil-Val-de-Marne – UMR 8591 CNRS – Laboratoire de Géographie Physique, Meudon.3 Institut de Géophysique, Université de Lausanne, Dorigny – Amphipôle, CH-1015 Lausanne
UpstreamofLakeGeneva,theRhôneRiverunderwentseveralmorphologicalchangesduringtheHolocene.Severalgeo-electricalmeasurementshavebeencarriedoutbetweenSionandMartigny(Valais),particularlyintheSaillonregion,inordertoidentifyformerburiedchannels.ComparisonsofseveralhistoricalmapsshowthattheRhôneRiverunderwentf luvialmetamorphosesduringthe19thcentury(Reynardetal.,2009;Laigreetal.,inpress).TheassociationofhistoricalmapsandDEM-LIDARanalyseshelpedustoidentifysomepalaeochannelsanteriortothoseindicatedbymaps.
Becauseofthedifferentelectricalresponsesgivenbygravels,sand,clayandsilts,geoelectricalmeasurementscangivepreciousinformationaboutthegeometryofsediments.Furthermore,ithelpedustolocaliseformerchannelsandtoret-racef luvialdynamics(channelmigration,changeoff luvialpattern).Twosetsofmeasurementswereappliedona500-mwidesite:(i)a5m-depthprofile,withafineresolution,inordertoobserverecentarchitectureofsediments;(ii)a40 m-depthprofile,withalowerresolutionthatprovidedadeeperviewofthesedimentstratigraphy.Inparallel,somehandhaugerdrillings(upto3m-depth)weredoneregularlyalongthegeoelectricalprofilesinordertocomparethenatureoftheextractedsedimentswithreturnedelectricalsignals.Thesetworesolutionrecordsshowtheexistenceofbraidedchan-nelsnowburiedatadepthofalmost20mthatdisappearatadepthof6m.Somechannelmigrationsarealsovisibleinthefirst5meters,andbringfundamental informationthathelpsustoreconstructthef luvialdynamicsoftheRhôneRiver,thatislittledocumentedupstreamofLakeGeneva.
190Sy
mp
osi
um
8:
Qu
ater
nar
y R
esea
rch
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
REFERENCESLaigre, L.,Arnaud-Fassetta,G., Reynard, E. Cartographie sectorielle dupaléoenvironnement de la plaine alluviale du
RhônesuissedepuislafinduPetitAgeGlaciaire: lamétamorphosef luvialedeViègeàRarogneetdeSierreàSion.BulletindelaMurithienne(inpress).
Reynard,E.,Arnaud-Fassetta,G.,Laigre,L.&SchoeneichP.2009:LeRhônealpinsousl’angledelagéomorphologie:étatdes lieux. In: LeRhône: dynamique,histoire et société (Ed.ByReynard,M., Evéquoz-Dayen,M.&Dubuis, P.) Sion:CahierdeVallesia21,75-102.
8.16
Chironomids as indicators of the past 1000 years of mean July air tempe-ratures: the Sivaplana and Seebergsee records
Larocque-ToblerIsabelle1,QuinlanRoberto2,MüllerStewartMonique1,&GrosjeanMartin1
1 Oeschger Center and Institute of Geography, University of Bern, Erlachstrasse 9A, 3012 Bern ([email protected])2 Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada, M3J 1P3
Chironomid(non-bitingmidges)larvaepreservedinlakesedimentscanbeusedtoquantitativelyandsuccessfullyrecon-structmeanJulyairtemperature,asshownbyacomparisonbetweenchironomid-inferredtemperaturesandinstrumentaldata(Larocqueetal.,2009).Althoughtheyareoneofthemostpromisingbiologicalproxytoreconstructclimate,theywere,up-to-date,rarelyusedtoreconstructhigh-resolutionclimaticchangesofthepast1000years.Thefirstnear-annualtemperaturereconstructionwasrecentlypublished (Fig.1;Larocque-Tobleretal.,2010)andshowed±1°Ctemperaturevariations(comparedtotheclimatenormal(1961-1990)duringtheendofthe“MedievalClimateAnomaly”,the“LittleIceAge”andduringthe“Anthropocene”inLakeSilvaplana,Engadine.LakeSilvaplana(46°26’56’’N,9°47’33’’E)isatanaltitu-deof1791ma.s.l.,ithasamaximumdepthof77mandavolumeof127X106m3.Attemptingatemperaturereconstruc-tionissuchadeep,varvedlakewas,forchironomids,unprecedentedatnear-annualresolution.
Basedonthissuccess,asecondattemptatreconstructingmeanJulytemperatureforthepast1000yearsathightemporalresolutionusingchironomidspreserved inthesedimentof themeromicticSeebergseewasmade.Seebergsee (46°37’N,7°28’E)islocatedat1830ma.s.l.inthenorthernSwissAlps.Thesurfaceareaofthelakeis0.06km2,itsvolumeis0.38km2andithastwobasinswithmaximumdepthsof15.5and9m.Anoxiaisoneoftheinfluentialfactors,otherthanclimate,affectingchironomidassemblagesandanoxiclakesareusuallydismissedforclimatereconstruction.However,biogenicvarvesareoftencreatedwhenanoxiaispresent.Ifanoxiclakesaredisregardedfortemperaturereconstructionusingchironomids,ithampersthepossibilityofhigh-resolutionrecords.Here,wereconstructedclimateusingchirono-midsinthesedimentofSeebergseetodetermineifa)chironomidsinanoxiclakecanbeusedtoquantitativelyandsuc-cessfullyreconstructmeanJulyairtemperatureandb)ifthepatternoftemperaturechangesforthepast1000yearsinbothcantons(EngadineandBern)issimilar.
Today,theanalysisinSeebergseehasbeenmadefortheAnthropoceneperiod(Fig.1).Thepatternoftemperaturechangesforthepast100yearsissimilartotheinstrumentaldata(Larocque-Tobleretal.submitted)andsimilartotheSilvaplanarecord.68moresamplesarebeingcurrentlyanalyzedandwillbepresentedduringthemeeting,tocompletethepast1000-yearreconstructionofmeanJulytemperatureatSeebergseeandcomparewiththeSilvaplanarecord.
REFERENCESLarocque, I., Grosjean,M., Heiri, O., Bigler, C. & Blass, A. 2009: Comparison between chironomid-inferred July
temperatures andmeteorological dataAD1850–2001 fromvarved Lake Silvaplana, Switzerland. J Paleolimnol 41:329–342
Larocque-Tobler, I., Grosjean,M., Heiri, O., Trachsel,M. &Kamenik, C. 2010: Thousand years of climate changereconstructed fromchironomidsubfossilspreserved invarved-lakeSilvaplana,Engadine,Switzerland.QuatSciRev29:1940-1949
191
Sym
po
siu
m 8
: Q
uat
ern
ary
Res
earc
h
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
Figure1.TemperaturereconstructionsusingchironomidspreservedinthesedimentofSilvaplana(leftgraph;fromLarocque-Tobleret
al.2010)andSeebergsee(rightgraph).
8.17
Pre-Columbian human adaptation to seasonal inundations in the Llanos de Moxos, Bolivian Amazonia.
LombardoUmberto1,Canal-BeebyElisa2,FehrSeraina1,VeitHeinz1
1 Institute of Geography, University of Bern, Hallerstrasse CH-3012, Bern ([email protected])2 School of International Development, University of East Anglia, UK
TheLlanosdeMoxos(LM),inBolivia,isoneofthelargestseasonallyf loodedsavannahintheworldandcoversmostofthesoutheasternAmazonbasin.Inthelastdecade,theLM,hascapturedtheinterestofgeographersandarchaeologistsbe-causeoftheimpressiveamountofpre-Columbianearthworksitholds.
DifferentkindsofearthworksarefoundindifferentareasoftheLM,butitisstillunclearwhetherthisisduetothedif-ferentculturesthatinhabitedtheLMortodifferencesinthegeographicalsettingsbetweentheeasternandwesternsidesof the region. The western Llanos holds an impressive amount of pre-Columbian agricultural fields (raised fields),(Lombardo et al. submitted) while the eastern Llanos is characterized by a dense distribution of monumental earthmounds,canalsandcauseways(figure1)(Lombardo&Prümers,2010).Earthmoundsarehugebuildingsthatcancoverupto20hectaresandcanbeupto20metershigh.Archaeologicalexcavationshaveshownthattheyaremanmadeanddatebacktopre-Columbiantimes.
Currentmodelssuggestthatraisedfieldagricultureprovidedhighyieldswithouttheneedoffallowperiods,representingakindofpre-Columbiangreenrevolution.However,evidencesuggeststhatthehighestlevelofsocialcomplexitywasre-achedintheeasternLlanos,whereraisedfieldsarenotpresent.Ourresearchhasfocusedontryingtoexplainthisappa-rentcontradiction.
An importantdifferencebetween theeasternLlanosand thewesternLlanoswhichhasoftenbeenoverlooked is theirhydrology.FloodinginthewesternLlanosismoreseverethanintheeasternLlanosbecauseitistheresultoflocalpreci-pitationsandriveroverflows,whilefurthereastitonlyrespondstolocalprecipitations.Therefore,inthewesternLlanos,inordertoproducefood,morefar-reachingdrainageinfrastructureswereneededthanintheeast,whereconditionsweremorefavorableforcultivationandcanalsweresufficienttodrainthesoil.
Webelievethatraisedfieldagriculturewasnotaprehistoricgreenrevolution,assuggestedbysome,butratheraf loodriskmitigationstrategy.Raisedfieldsallowedpre-ColumbianpeoplesinthewesternLMlessentheriskofmoreintenseandfrequentf loodingthanwasexperiencedintheeasternLM.Itwouldappearthatpre-Columbianpeoplesadaptedto
192Sy
mp
osi
um
8:
Qu
ater
nar
y R
esea
rch
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
theharshenvironmentalconditionsoftheLMfollowingdifferentstrategiesindifferentareas:IntheeasternLMabetternaturaldrainageseemstohavefavoredthef lourishingofpre-Columbiansocietieswithhighlevelsofsocialcomplexity,whilefurtherwestseveref loodingobligedpre-Columbianpeoplestobuildraisedfieldsandconstrainedtheirgrowthanddevelopment.
Thisstudyhighlightstheimportanceofenvironmentalconstraintsinconditioningpopulationgrowthandculturaldeve-lopmentintheTropics.
REFERENCESLombardo,U.&Prümers,H., 2010. Pre-Columbianhumanoccupationpatterns in the easternplains of the Llanosde
Moxos,BolivianAmazonia.JournalofArchaeologicalSciences,37,1875-1885Lombardo,U., Canal-Beeby, E., Fehr, S., Veit,H., 2010. Raised fields in the BolivianAmazonia: a prehistoric green
revolutionoraf loodriskmitigationstrategy?.SubmittedtoJournalofArchaeologicalSciences
Figure1.MapoftheearthworksintheeasternLlanos.Thesmalltrianglesrepresentmoundsoflessthan8hectares,themediumtri-
anglesrepresentmoundsbetween8and16hectaresandthelargetrianglesrepresentmoundslargerthan16hectares.Thedotsre-
presentforestislandsandtheblacklinescausewaysandcanals.Theforestareaisshadedinlightgreyandthelakesareadarkener
grey(Lombardo&Prümers,2010).
193
Sym
po
siu
m 8
: Q
uat
ern
ary
Res
earc
h
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
8.18
Holocene Climatic Variability In Central Asia; A Geo-Archaeological Case Study In Samarkand, Uzbekistan
MalatestaL.1,CastelltortS.1,PicottiV.2,MantelliniS.3,HajdasI.4,SimpsonG.5,WillettS.1
1 Institute of Geology, ETH Zurich, 8092 Zurich, Switzerland 2 Dipartimento di Scienze della Terra e Geologico-Ambiantali, Università di Bologna, 40127 Bologna, Italy 3 Facolta di Conservazione dei Beni Culturali, Università di Bologna, 48100 Ravenna, Italy 4 Insitute of Particle Physics, ETH Zurich, 8092 Zurich, Switzerland 5 Department of Geology and Palaeontology, University of Geneva, 1211, Geneva, Switzerland
ThelateHolocene(around0-500a.AD)climaticregimeofCentralAsiaischaracterisedbycoldwinters,relativelycoolsummersandaridconditions(Oberhänslietal.,2007).TotheWest,theAralSeaexperiencedanimportantregressionofover20mduringthe4thc.AD(Boomeretal.,2000).TheprecipitationpatternintheAralbasinislinkedbytheWesterliestotheatmosphericchangesintheEasternMediterranean,whichisthemainmoisturesourcefortheregion(Sorreletal.,2007).PaleoclimaticdataforthisregionhavebeenmostlygainedbythestudyofsedimentcoresfromtheAralSea(Boomeretal.,2000).FurthermoreHistoricalpaleoclimaticdataforthelasttwomillenniumsinEasternAsiaindicateacoolingtrendintheorderofca.1.2°Cbetween250and350aAD(Zhengetal.,2001).
ThedensehumanHistoryofthecentralAsianMesopotamia–thelandbetweenthetwotributariesoftheAralSea,theSyrDaryaandtheAmuDarya–providesapotentialsupplementaryrecordofpaleoclimateevolution.Settlements,whichwereinfluencedbylocalclimatevariability,stronglymodifiedinreturnthehydrologicregimeofthecatchmentdrainingtotheAralSeathroughextensiveirrigationworks(Kes,1995;Oberhänslietal.,2007).
ThisisparticularlytrueintheZeravshanValley,animportanttributaryoftheAmuDarya.Fromthe4thc.BConwards,itwasoneoftheSilkRoadmainpaths.Largeirrigationworkswereengineeredtosustaintheagriculturearoundthehis-toricalcityofAfrosiab,nowSamarkand(Mantellini,2001;Strideetal.,2009).
TheirrigationsystemupstreamfromthehistoricalcityofAfrosiabconsistsoftwomaincanals,theDargomandtheJangiAryk(Strideetal.,2009).AparticularlywellstudieddwellingnexttotheDargomdocumentsdestructivef loods.Byapply-ingsedimentologicalandsurfaceprocessesmethodstothisarchaeologicalsitewebringoriginalconstraintstotheframe-workandnatureofprecipitationsatthistime.
Wedatedthemainf loodingeventat160±80a.AD.X-RayDiffractionanalysisofthef lood-relatedsedimentssuggestsasourceforthesandsfurtherupstreaminthevalley,i.e.transportedinthecanalandnotcomingfromthenaturalsurroun-dinghillslopes.Weestimatethatanintenseprecipitationeventofatleast65mm/hforatleast2hoursallowsfora0.5mdeepf loodingofthearchaeologicalsitebasedonanumericalmodelsurfaceoverlandf low(SimpsonandCastelltort,2006).Theusualconstructiontype inthevalleyatthistime,elevateddwellings,andtherecurrenceoff loodhorizons inthestratigraphyattestarepetitionoff loodsofsimilarmagnitudeduringthefirstcenturiesADinwesternCentralAsia.
REFERENCES:Boomer,I.,Aladin,H.,Plotnikov,I.,andWhatley,R.,2000,QuaternarySciRev,v.19,p.1259-1278.Kes,A.,1995,GeoJournal.Mantellini,S.,2001,CooperationinArchaeologyandIslamicStudiesOberhänsli,H.,Boroffka,N.,andSorrel,P.,2007,IrrigationandDrainageSystemsSimpson,G.,andCastelltort,S.,2006,ComputGeosci-Uk,v.32,p.1600-1614.Sorrel,P.,Oberhaensli,H.,Boroffka,N.,Nourgaliev,D.,Dulski,P.,andRoehl,U.,2007,QuaternaryRes,v.67,p.371-382.Stride,S.,Rondelli,B.,andMantellini,S.,2009,WorldArchaeology.Zheng,J.,Zhang,P.,Ge,Q.,andMan,Z.,2001,ProgNatSci,v.11,p.280-287.
194Sy
mp
osi
um
8:
Qu
ater
nar
y R
esea
rch
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
8.19
Holocene glacier oscillations at Damma
OttAndrea1,Ivy-OchsSusan2,BauderAndreas3,AkçarNaki1&SchlüchterChristian1
1 Institut für Geologie, Baltzerstrasse 1+3, CH-3012 Bern ([email protected])2 Laboratory of Ion Beam Physics, HPK, Schafmattstrasse 20, CH-8093 Zürich3 Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW), Gloriastrasse 37-39, CH-8092 Zürich
IntherecentlyfreeforefieldoftheDammaglacierintheGöscheneralp,cantonUri,scientistsoftheBIGLINKprojectoftheETHZuricharestudyingmineralweathering,soilformationandinitialecosystemdevelopment.InordertoconstrainindetailwhentheBIGLINKsamplingsitesbecameice-free,ageomorphologicmapwasdrawn,togetherwithashorthis-toryoftheglacierretreatsandadvancessince1956.Formoreinformationabouttheageofthemorainesandassociatedlandforms,somerocksampleswillbetakenandmeasured.
ForthemappingoftheDammaglacierforefield,thefocuswassetongeomorphologicfeatures.CharacteristicfortheareaarethetwobigHolocenelateralmorainesreachingabout100moverthevalleybottom.Inbetween,afewmuchsmallerdistinctmorainesareclearlyvisible.
ThefrontpositionoftheDammafirnhasbeenmeasuredeveryyearsince1921.Detaileddocumentationincludingrefe-rencepointsandsketchmapsexistsbackto1956.Themeasurementsshowaretreatphasebefore1972whentheglacierre-advanceduntil1991,followedbyretreatstilllastinguntiltoday.Observedfrontvariationsdonotexactlymatchwithexistingmorainesintheforefield.Thedatabaseallowsustogeo-locateformerobservationsandcombinewithmapsandresolveinconsistency.
8.20
Holocene landscape evolution of the Llanos de Moxos, NE Bolivia
PlotzkiAnna1,VeitHeinz1
1 Geographisches Institut, Universität Bern, Hallerstrasse 12, CH-3012 Bern ([email protected])
TheLlanosdeMoxos,whicharelocatedinthelowlandsofnortheasternBolivia(Beni),areoneofthelargestseasonallyinundatedsavannahs intheworld.Theregionischaracterizedbyacomplexf luvialdrainagepatternbelongingtotheAmazonsystem.In2009,theUniversityofBernstartedtoinvestigatetheHolocenehydrogeomorphologyandpre-Colum-bianwatermanagementintheLlanosdeMoxos(fundedbytheSwissNationalScienceFoundation).Assofarlittledataexistabouthuman-environmentalinteractionsintheBeniregion,palaeoenvironmentalandgeoarchaeologicalstudiesarebeingconducted.Firstresultswithrespecttolandscapeevolutionarebeingpresentedhere.
Weexaminedsedimentarysequencesalongriverbanksacrossa300-km-longN-Stransectandfoundlargelyasystematicpedostratigraphicpattern.Sandysiltsatthebottomaresuperimposedbyyellow-ochretoredclayeysilts.Abovethesese-dimentsapalaeosolwasfoundinallsections.Itsmaximumthicknessisabout1.5manditissuperimposedbysilty-clayeydepositsagain.Insomeprofilesweidentifiedasecondburiedsoilinthesesilty-clayeylayers.AMS14Cdatesindicatethatsoilformationoccurredbetween9.3to3.4calkaBPandaround2.9to2.0calkaBP.
Basedontheevaluationofthesedimentarysequenceswedevelopedapreliminarychronologyoflandscapeevolution.Thedepositionofsiltyclayspriorto9.3calkaBPisinterpretedasalowenergeticsedimentaryenvironment.Itisassumedthatrelativelyhumidconditionsprevailed,withseasonalinundationofthesavannah.Betweenapproximately9.3and2.0calkaBPsoilformationwasthedominantprocess,suggestingadryerearlytomid-Holocene.Inundationsduringthatperiodwereabsentorlesssevere.Thislongsoilformationperiodwasprobablyinterruptedbyseveralshortmorehumidphases.Thesubsequentdepositionofsiltyclaysindicateashifttomodernwetconditionsaround2calkaBP.
ThisinterpretationisinaccordancewithpollenrecordsfromNoelKempffMercadoNationalPark(Burbridgeetal.,2004),lakelevelf luctuationsofLakeTiticaca(Bakeretal.,2001)andgeomorphologocalandsedimentaryanalysisintheBolivianChaco(Mayetal.,2008a,b).AdryearlytomidHolocenecouldbetheconsequenceofminimumsummerinsolationat15-20°SduringthattimeandacorrespondingweakeningoftheSouthAmericanSummerMonsoon(SASM).
195
Sym
po
siu
m 8
: Q
uat
ern
ary
Res
earc
h
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
REFERENCESBaker,P.A.,Seltzer,G.O.,Fritz,S.C.,Dunbar,R.B.,Grove,M.J.,Tapia,P.M.,Cross,S.L.,Rowe,H.D.&Broda,J.P.2001:
ThehistoryofSouthAmericantropicalprecipitationforthepast25,000years.Science,291,640-643.Burbridge,R. E.,Mayle, F. E.&Killeen, T. J. 2004: Fifty-thousand-year vegetation and climatehistory ofNoelKempff
MercadoNationalPark,BolivianAmazon.QuaternaryResearch,61,215-230.May, J.-H., Argollo, J. &Veit,H. 2008a:Holocene landscape evolution along theAndean piedmont, BolivianChaco.
Palaeogeography,Palaeoclimatology,Palaeoecology,260,505-520.May, J.-H., Zech,R.&Veit,H. 2008b: LateQuaternarypaleosol-sediment-sequences and landscape evolution along the
Andeanpiedmont,BolivianChaco.Geomorphology,98,34-54.
8.21
Quaternary glaciation history of northern Switzerland
PreusserFrank1,GrafHansRudolf2,KellerO.3,KrayssEdgar4,SchlüchterChristian1
1 Institut für Geologie, Universität Bern, Baltzerstrasse 1+3, CH-3012 Bern([email protected])2 Dorfstrasse 40, 8014 Gächlingen3 Brühlstrasse 90, 9320 Arbon4 Myrtenstrasse 9, 9010 St. Gallen
ArevisedglaciationhistoryofthenorthernforelandoftheSwissAlpsispresentedbysummarisingfieldevidenceandchronologicaldata fordifferentkeysitesandregions.TheoldestQuaternarysedimentsofSwitzerlandaremultiphasegravelsintercalatedbytillandoverbankdeposits(‘Deckenschotter’).MammalremainsplacetheoldestofthesedepositsintoMammaliaNeogeneZone17(2.5-1.8Ma).ThepresenceoftillwithinthesedimentarysequencesimpliesglaciationsoftheSwissalpineforelandduringtheEarlyPleistocene.Importantdifferencesinthebaselevelofthegraveldepositsallowdistinguishingtwosub-units(‘HöhereDeckenschotter’,‘TiefereDeckenschotter’),separatedbyaperiodofsubstantialin-cision.Eachofthesub-unitscontainsevidenceforatleasttwobutprobablyevenfourindividualglaciations.TheEarlyPleistoceneisseparatedfromMiddlePleistocenedepositionbyatimeofimportanterosion,probablyrelatedtotectonicmovementsand/orre-directionoftheAlpineRhine.TheMiddle-LatePleistocenecomprisesfourorfiveglaciations,namedMöhlin, Habsburg, Hagenholz (uncertain, inadequately documented), Beringen, and Birrfeld after their key regions.MöhlinrepresentsthemostextensiveglaciationoftheSwissalpineforelandandBeringenwasonlyofjustsmallerextent.The lastglacial cycle (Birrfeldglaciation)probablycomprises twooreven three independentglacial advancesdated toabout105ka,65ka,and25ka.Forthelastglacialadvance,adetailedradiocarbonchronologyforicebuild-upandmel-tdownispresented.
196Sy
mp
osi
um
8:
Qu
ater
nar
y R
esea
rch
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
8.22
Quaternary glacial chronology in Anatolia
ReginaReber1,DmitryAndreevichTikhomirov1,NakiAkçar1,VuralYavuz2,ChristianSchlüchter1
1 Institute of Geological Sciences, Baltzerstrasse 1+3, CH-3012 Bern,([email protected])2 Istanbul Technical University, Faculty of Mines, TR-80626 Maslak, Istanbul,
Surfaceexposuredatingisamethodusedtoplaceglacierf luctuationsandmorainesequencesintoachronologicalframe.Anatoliaisoneofthemostsensitiveplacestothechangesinatmosphericcirculationpatternsthatinfluencetheclimateof theEasternMediterraneanRegion.Consequently it is important to construct theQuaternary glacial chronology tounderstandtheclimatechangesinthepast.
Fromcosmogenic10Be,26Aland36Clsurfaceexposureagesitisknownthatthelastlocalmaximumglaciationoccurrednolaterthanaround20kainUludağ(Zahnoetal.,2010),21kainMountErciyes(Sarıkayaetal.,2009),20kaMountSandıras(Sarıkayaetal.,2008);andbetweenaround24and18kaintheDedegölMts.(Zahnoetal.,2009),22–18kaintheEasternBlackSeaMountains(Akçaretal.,2008andreferencestherein).ThisappeartobesynchronouswiththelastmaximumglaciationoccurredintheEuropeanAlps,CentralApennines(Italy)andtheGreekMountainsduringtheglobalLastGlacialMaximum(21±2ka)withinMarineIsotopeStage-2.
AttheLateglacialsubsequentglacieroscillationsweredated:ataround16kainMountSandıras(Sarıkayaetal.,2008),15kainMountErciyes(Sarıkayaetal.,2009);betweenaround16and15kainUludağ(Zahnoetal.,2010).ProbablytheLateGlacialadvanceintheEasternBlackSeaMts.wasrestrictedtothetributaryvalleys,butthetimingofthisadvanceisstillunknown,howeverthisadvancecontinueduntilaround16ka(Akçaretal.,2008andreferencestherein).SoanoscillatingglacierrecessioninAnatoliaduringTermination-1issuggestedbythisevidence.IngoodagreementwiththisAnatoliadataarepublishedsurfaceexposureagesrelatedtotheLateglacialGschnitzandEgesenmorainesintheEuropeanAlps.Thisimpliestheparalleloccurrenceofmajorclimaticshiftsonmillennialtime-scaleintheEuropeanAlpsandAnatoliaduringMIS-2.
Alreadyice-freeweretheglacialvalleysinSWAnatolia (Mt.Sandıras,DedegölMountains)andincentralAnatolia (Mt.Erciyes)duringYoungerDryas(Sarıkayaetal.,2008,2009;Zahnoetal.,2009),whereasinthesouthernBlackSeacoast,YoungerDryasoccurredbetweenaround13kaand11ka(Akçaretal.,2008andreferencestherein;Zahnoetal.,2010).During theHoloceneafter thedeglaciationof thevalleys in theEasternBlackSeaMountains, rockglaciersandsnow-avalancheridgeshavebeenactiveprocesses.Then10BeexposureagesfromtheseridgesshowthattheseeventsoccurredduringtheHoloceneandarethereforenotlinkedtoglacierf luctuations (Akçaretal.,2008andreferencestherein). InAnatoliaLittleIceAge(LIA)morainesappeartobeabsent.TerrestrialgeologicalrecordsinAnatoliawithregardtotheYoungerDryasandtheLIAcoolingstillremaintobestudiedindetail.HugeandactiverockglaciersinthecirqueareasmayberelatedtotheLIAcooling;absolutedates,however,arestillabsent.DryandcoldclimaticconditionsduringtheLIAcouldexplaintheabsenceofglacieradvance,astheconditionswerenotconduciveforthebuild-upofice.
REFERENCESAkçarN.,YavuzV.,Ivy-Ochs,S.,KubikP.W.,VardarM.,SchlüchterC.,2008:ACaseforadownwastingMountainGlacier
duringtheTermination-I,VerçenikValley,NETurkey.JournalofQuaternaryScience,23(3),273–285.Sarıkaya,M.A.,Zreda,M.,Çiner,A.andZweck,C.2008:ColdandwetLastGlacialMaximumonMountSandıras,SW
Turkey,inferredfromcosmogenicdatingandglaciermodeling.QuaternaryScienceReviews,27,769-780.Sarıkaya,M.A.,Zreda,M.andÇiner,A.2009:GlaciationsandpaleoclimateofMountErciyes,centralTurkey,sincethe
LastGlacialMaximum,inferredfromCl-36cosmogenicdatingandglaciermodeling.QuaternaryScienceReviews,28,2326-2341.
ZahnoC.,AkçarN.,YavuzV.,KubikP.W.,SchlüchterC.,2009:SurfaceexposuredatingofLatePleistoceneglaciationsattheDedegöl
Mountains(LakeBeyşehir,SWTurkey).JournalofQuaternaryScience,24(8),1016–1028.ZahnoC.,AkçarN.,YavuzV.,KubikP.W.,SchlüchterC.,2010:ChronologyofLatePleistoceneglaciervariationsat the
UludağMountain,NWTurkey.QuaternaryScienceReviews,29,1173–1187.
197
Sym
po
siu
m 8
: Q
uat
ern
ary
Res
earc
h
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
8.23
Late Glacial and early Holocene climatic changes in the Southern Swiss Alps, reconstructed using subfossil chironomid assemblages.
StéphanieSamartin1,OliverHeiri1andWillyTinner1
1 Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern, CH-3013 Bern, Switzerland.
Lakesarearchivesofpastenvironmentalconditions.Biological,chemical,andphysicalcomponentsaccumulate inthesediments,fromwithinandwithoutthelake(Douglas2006).LarvaeoftheChironomidaearefoundinmostfreshwatersituationsfromthetropicstothearctic;somespeciesareterrestrialorsemi-terrestrial;someareevenmarine(Brooksetal.2007).Duetotheirshortgenerationtimesandthedispersalcapacityofthewingedadults,theChironomidaerapidlyrespondtoenvironmentalchanges.ThestronglysclerotizedheadcapsulesoftheChironomidaelarvaepreservewellinlakesedimentsforthousandsofyears.Differenttaxahavespecificecologicalpreferencesandtoleranceswithrespecttoenvironmentalvariables,includingtemperature,pH,waterdepth,substratemorphologyetc.(Brooksetal.2007),makingthemusefulasproxyindicators.Knowledgeofchironomidecology,togetherwiththedevelopmentoftransferfunctions,hasallowedforthereconstructionofpalaeotemperatures(Walkeretal.1991;Lotteretal.1997).Withthesetransferfunc-tionssummerairtemperatureswithapredictionerrorof1-1.5°Ccanbereconstructed.Today,midgesarewidelyused,especiallyas indicatorsofclimaticchange,andhavebeenconsideredtobe“themostpromisingbiologicalmethodforreconstructingpasttemperature”(Battarbee2000).
AvailableclimaticreconstructionsofLateGlacialandHoloceneclimatefromtheNorthern,Western,andCentralAlpsandtheJuramountainsaremainlybasedonpollenandchironomidassemblages(Lotteretal.2000;Hofmann2001;Heirietal.2003a,b,2005; Ilyashuketal.2009). IntheSouthernAlpsonlyfewquantitativepalaeoclimaticreconstructionsareavailablesofar(Frisiaetal.2005;Heirietal.2007,LarocqueandFinsinger2008).Theabsenceofquantitativetemperatu-rereconstructionslimitsourcomprehensionofclimaticpatternsandofthebioticresponseofvegetationtotemperaturechangesonbothsidesoftheAlps.InthisstudywepresentaLateGlacialandearlyHolocenechironomid-basedsummertemperaturereconstructionfromFoppe(1470ma.sl.)intheSouthernSwissAlps.Chironomidassemblageswerestudiedin58samplesalonga6.4mlongsedimentcorecoveringthepast17200years.Twotrainingset(Swiss,Norwegian/Swiss)wereusedtoinfersummertemperatures(Heiri2003a,Heiriunpublished).
On thebasisof apreliminary chronology,ouranalyses suggest thatmidgeassemblageshave responded tomajorandminor climatic f luctuationsduring the last17200years, suchas theYoungerDryas event in theLateGlacial and thePreborealOscillationatthebeginningoftheHolocene.ThemodelsreconstructedsimilarJulyairtemperaturesofaround9.2°CduringtheOldestDryas,anabruptriseintemperatureofabout3.6°Cbetween17000and15500cal.BP(Pre-Bøllingwarming)upto12.8°C.AtthistimeafforestationintheSouthernAlpsstartedca.2000yearsearlierthanNorthoftheAlps(i.e.beforetheBøllingonsetatca.14700cal.BP(Vescovietal.2007).Thiswarmingisingoodagreementwithhigh-reso-lutionfaunal,isotopic,andsedimentologicdatafromtheEuropeanNorthAtlantic.Theserecordsindicateastrongtem-peratureincreasefrom17500-17300cal.BP(Lagerklint&Wright1999).Aclimaticwarmingpriortothelarge-scaleclima-techangeat15900cal.BPwasalsorecordedintheGRIPice-coreatca.17500-17000cal.BP(Björcketal.1998).Adistinctcoolingofabout1°Cataround14300cal.BP(11.8°C,maybesynchronouswiththeOlderDryas)isapparent.Temperaturesincreasegraduallyfrom14500cal.BPuntil12800cal.BP.Temperaturesofabout12.8°CarereachedattheendoftheAllerødbeforetemperaturesdeclineagainattheAllerød/YoungerDryastransition.Lowtemperaturesofaround10.4°CareinferredduringtheYoungerDryaswithseveralminorf luctuations.TheHolocenestartswithanabruptwarmingofaround4.4°Candreachesvaluesofabout14.8°C.At11600cal.BPtheFoppecoreshowsacoolingofabout1.4°CwhichcanprobablybereferredtoasthePreborealOscillation.AtFoppethefollowingamplitudesofchangeatclimatetransitionswererecorded:OldestDryas/Bølling:3.6°C,Allerød/YoungerDryas:2.4°C,andYoungerDryas/Preboreal:4.4°C.Inasecondstep temperature reconstructions fromtheSouthern,NorthernandCentralAlpswillbecomparedwithother recordsfromtheNorthAtlanticrealmtoinferspatialvariabilityofsummertemperaturechanges.
REFERENCES:BattarbeeR.W., 2000. Palaeolimnological approaches to climate change,with special regard to the biological record.
Quat.Sci.Rev.19:107-124.BjörckS.,WalkerM.J.C.,CwynarL.C.,JohnsonS.,KnudsenK.L.,LoweJ.J.andWohlfarthB.,INTIMATEmembers,1998.
AneventstratigraphyfortheLastTerminationintheNorthAtlanticregionbasedontheGreelandice-corerecord:aproposalbytheINTIMATEgroup.J.Quat.Sci.13:283-292
Brooks S.J., Langdon P.G.&HeiriO., 2007. The identification anduse of Palaearctic chironomids in palaeoecology.QuaternaryResearchAssociationTechnicalGuideQuat.Res.Assoc.TechnicalGuide,10:1-276.
DouglasM.S.V.,2006.Paleolimnology.InEncyclopediaofQuaternarySciences(S.A.EliasEd.),p.2021.Elsevier,Amsterdam.
198Sy
mp
osi
um
8:
Qu
ater
nar
y R
esea
rch
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
FrisiaS.,BorsatoA.,SpötlC.,VillaI.M.&CucchiF.,2005.ClimatevariabilityintheSEAlpsofItalyoverthepast17000yearsreconstructedfromastalagmiterecord.Boreas34:445-455.
Heiri O., Lotter A.F., Hausmann S. & Kienast F., 2003a. A chironomid-basedHolocene summer air temperaturereconstructionfromtheSwissAlps.Holocene13:477-484.
Heiri O.,Wick L., van Leeuwen J.F.N., van der KnaapW.& LotterA.F., 2003b.Holocene tree immigration and thechironomidfaunaofasmallSwisssubalpinelake(Hinterburgsee,1515masl).Palaeogeogr.Palaeoclimatol.Palaeoecol.189:35-53.
HeiriO.&Millet L., 2005.Reconstructionof LateGlacial summer temperatures fromchironomid assemblages in LacLautrey(Jura,France).J.Quat.Sci.20:33-44.
HeiriO., FilippiM.L.& LotterA.F., 2007. Lateglacial summer temperatures in the Trentino area (Northern Italy) asreconstructedbyfossilchironomidassemblagesinLagodiLavarone(1100ma.s.l.).StudiTrentinidiScienzeNaturali,ActaGeologica82(2005):299-308.
HofmannW.,2001.Late-Glacial/HolocenesuccessionofthechironomidandcladoceranfaunaoftheSoppensee(CentralSwitzerland).J.Paleolim.25:411-420.
IlyashukB.,GobetE.,HeiriO.,LotterA.F.,vanLeeuwenJ.F.N.,vanderKnaapW., IlyashukE.,OberliF.&AmmannB.,2009. Lateglacial environmental and climatic changes at theMaloja Pass, Central Swiss Alps, as recorded bychironomidsandpollen.Quat.Sci.Rev.28:1340-1353.
Lagerklint,M.I.andWright J.D.,1999.Lateglacialwarmingprior toHeinrichevent1:The influenceof iceraftingandlargeicesheetsonthetimingofinitialwarming.Geology27:1099-1102.
LarocqueI.&FinsingerW.,2008.Late-glacialchironomid-basedtemperaturereconstructionsforLagoPiccolodiAviglianainthesouthwesternAlps(Italy).Palaeogeogr.Palaeoclimatol.Palaeoecol.257:207-223.
LotterA.F.,BirksH.J.B.,HofmannW.&MarchettoA.,1997.Moderndiatom,cladocera,chironomid,andchrysophytecystassemblagesasquantitativeindicatorsforthereconstructionofpastenvironmentalconditionsintheAlps.I.Climate.J.Paleolim.18:395-420.
Lotter A.F., BirksH.J.B., EicherU.,HofmannW., Schwander J.&Wick L., 2000.YoungerDryas andAllerød summertemperatures at Gerzensee (Switzerland) inferred from fossil pollen and cladoceran assemblages. Palaeogeogr.Palaeoclimatol.Palaeoecol.159:349-361.
VescoviE.,RavazziC.,ArpentiE.,FinsingerW.,PiniR.,ValsecchiV.,WickL.,AmmannB.&TinnerW.,2007.Interactionsbetween climate and vegetationduring the Lateglacial period as recordedby lake andmire sediment archives inNorthernItalyandSouthernSwitzerland.Quat.Sci.Rev.26:1650-1669.
WalkerI.R.,SmolJ.P.,EngstromD.R.&BirksH.J.B.,1991.AnassessmentofChironomidaeasquantitativeindicatorsofpastclimaticchange.Can.J.Fish.Aquat.Sci.48:975-987.
199
Sym
po
siu
m 8
: Q
uat
ern
ary
Res
earc
h
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
8.24
Switzerland at the Last Glacial Maximum (LGM): A new map (2009) by swisstopo 1 : 500 000
SchlüchterChristian1&RetoBurkhalter2
1 Institut für Geologie, Baltzerstrasse 1+3, CH-3012 Bern ([email protected])2 Geologische Landesaufnahme, Swisstopo, CH – 3074 Wabern
Map-sheetNo.9oftheAtlasofSwitzerland(1970)showingtheareaofthecountryattheLastGlacialMaximumbyEduardImhofundHeinrichJäcklihasbeensoldoutformanyyears.Thissimplefactandnewdataonthegeometryoftheinner-alpineLGMglaciers,mainlybyFlorineth(2000)andKelly(2004),initiatedtheideatoproduceanewmapoftheLGMinSwitzerland.Thisideawasthebeginningofahardjobwhichhaskeptusbusyforalmost10years.Thenewmap1:500000isavailablenowthroughbook-andmap-storesandcanbedownloadedatwww.swisstopo.ch.
Whatinformationisnewonthismap?Thisarethefollowingreconstructions:
(1)TheicecoveronthehighestandcentralpartsoftheJuraMountainsismoreextensiveandmoreimportantthanpre-viouslythought.ThemaindatainsupportofthisreconstructionisexcellentmappingevidencetothenorthwestoftheHighJurainFrance;
(2)TheHighlandsoftheNapfinthecentralSwissMidlandswithamax.elevationof1408mhasbeencoveredwithsmall,howeverwelldefinedvalleyglaciers.Thishasnotbeenrecognisedonthepreviousmap.ThelocalLGMvalleyglaciationoftheNapfissupportedbytheexistenceofnivationareasandsmallglaciersintheadjoininghills;
(3)DetailedmappingoftrimlinesintheHighAlpsbetweentheEngadineValleytotheeastandtheMontBlancareatothewestshowstheexistenceduringLGMtimeofwelldefinedicedomeareasintheUpperEngadine,intheSurselvaandintheUpperRhoneValley(includingtheiceplateauintheZermattarea).AllfoursuchiceaccumulationsaresituatedtothesouthofthemainorographicdivideoftheAlpswithinterestingimplicationsonatmosphericpaleocirculationpatterns.Asaresultofthisconfigurationicef lowwasfromsouthtonorthalongcertaintransfluencesaccrossthetheHighAlps.–ThehugeoutletglacierfromtheMattertal(drainingtheiceplateauintheuppervalleyofZermatt)tothemainvalleyoftheWalliswassoimportantthattheicefromtheupperRhonevalleywasblocked-offatBrig-VispanddiverteddirectlytothesouthaccrossSimplonpass(causingacomplexdivergenttransfluenticef lowregimeintheBrig-Visparea).WithsuchareconstructionofthepaleoiceflowintheRhonevalleyitispossiblenowforthefirsttimetoexplainthedistribu-tionoferraticindicatorlithologiesinthewesternSwissMidlands;
(4)TheglaciersinsouthernSwitzerlanddisplayanarrowvalleyglaciermorphology,quitedifferentfromearlierreconst-ructions.Thismorphologymayreflectglacierswithveryhighmassturnover(comparedtotheglaciersinSouthWestlandofNewZealand’sSouthIsland)asaresultofthemaintrackofprecipitationtotheAlpsfromthesouth.ThepositionsoftheLGMicedomescoincidewiththecentersoffoehncontrolledprecipitationtoday.
REFERENCESFlorineth,D.& Schlüchter, C., 2000:Alpine evidence for atmospheric circulationpatterns in Europeduring the last
glacialmaximum.QuaternaryResearch,54,295-308.Jäckli, H., 1970: Die Schweiz zur letzten Eiszeit, Karte 1:550 000. Atlas der Schweiz, Blatt 6, Bundesamt für
Landestopographie,Wabern–Bern,Switzerland.Kelly,M., Buonchristiani, J.F.,& Schlüchter,C., 2004:A reconstructionof the last glacialmaximum (LGM) ice-surface
geometryinthewesternSwissAlpsandcontiguousAlpineregionsinItalyandFrance.EclogaeGeologicaeHelvetiae,97,57–75.
200Sy
mp
osi
um
8:
Qu
ater
nar
y R
esea
rch
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
8.25
How to derive weathering rates from ice core measurements of atmospheric tetrafluoromethane?
JochenSchmitt*,BarbaraSeth*&HubertusFischer*
* Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Switzerland ([email protected])
Fluorite,whichisanaccessorymineralfoundinrockslikegraniteandgneiss,containstraceamountsoftetrafluorome-thane(Harnischetal.,1996).Recentsourcesaredominatedbyanthropogenicemissionsfromaluminumsmeltersandtheproductionforthesemiconductorindustry,whereasweatheringoff luoritebearingrocksistheonlynaturalsourceofthisatmospherictracegas.
Astetrafluoromethane(CF4)isinerttodestructionprocessesinthetroposphereandstratospheretheonlysinkliesinthehighmesosphereduetodestructionbyshortwaveUVradiation.Asaconsequence,CF4hasaverylonglifetimeintheorderof50-100kaorevenlonger.
AsCF4ismainlyreleasedfromweatheringofgraniticrocksweassumethatitsatmosphericconcentrationmightshowfluctuationsonlongertimescalesasweatheringintensityshouldchangeonglacial-interglacialtimescalesorlonger.AlsoglacialerosionofthelargecontinentalicesheetsinCanadaandScandinaviacouldbeimportantastheseareashavewi-despreadgraniticorgneissbasementrocksandglacialerosionismoreintensethanordinaryf luvialerosion.
Fromfirnairmeasurementsweknowthatitspreindustrialconcentrationwasabout35pptv(Wortonetal.,2007).TheonlyinformationfromoldertimescomesfromafewmeasurementsaroundtheLGMandthelastdeglaciationonoutcrop-pingicefromGreenland,withalmostconstantvaluesaround35pptv(Muhleetal.,2010).So,thereexistsnoindicationofvariationsontimescalesof10000years.
Ourfirstlowresolutionmeasurementscoveringthelast750kashowrelativelyconstantCF4concentrations,rangingbet-ween 31 and 37pptv.Additionally,wedon’t seemarked concentration changes during glacial-interglacial transitions.However,alotofquestionshavetobeansweredbeforepastatmosphericCF4concentrationscanbeusedtoestimatewea-theringrates,e.g.onlyfewrocksamplespercontinenthavebeenanalysedontheirCF4content (Harnischetal.,1998,Harnischetal.,2000).AstheCF4concentrationofthesegranitesamplesshowedalargevariability(oneorderofmagnitu-de),itisclearthatweatheringinoneregionemitsmoreCF4thanotherregionsthusbiasinganyglobalestimate.WithabetterdatabasisonCF4rockconcentrationonecouldpossiblyidentifykeyregions,whichdominatetheglobalCF4budged.
REFERENCESHarnischJ,BorchersR,FabianP,GaggelerHW,SchottererU.Effectofnaturaltetrafluoromethane.Nature1996;384:32.WortonDR, SturgesWT,Gohar LK, ShineKP,Martinerie P,OramDE,Humphrey SP, Begley P,Gunn L, Barnola J-M,
Schwander J,Mulvaney R. Atmospheric trends and radiative forcings of CF4 and C2F6 inferred from firn air.EnvironmentalScience&Technology2007;41:2184.
Muhle JM,GanesanAL,Miller BR, SalamehPK,HarthCM,GreallyBR,RigbyM, Porter LW, Steele LP, TrudingerCM,KrummelPB,O›DohertyS,FraserPJ,SimmondsPG,PrinnRG,WeissRF.Perfluorocarbonsintheglobalatmosphere:tetrafluoromethane,hexafluoroethane,andoctafluoropropane.AtmosphericChemistryandPhysics2010;10:5145.
HarnischJ,EisenhauerA.NaturalCF4andSF6onEarth.GeophysicalResearchLetters1998;25:2401.Harnisch J, FrischeM, Borchers R, Eisenhauer A, Jordan A. Natural f luorinated organics in f luorite and rocks.
GeophysicalResearchLetters2000;27:1883.
201
Sym
po
siu
m 8
: Q
uat
ern
ary
Res
earc
h
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
8.26
Detection of volcanic ash layers by high-resolution XRF core scanning
SteinemannStefanie1,HamannYvonne1,GilliAdrian1
1 Geological Institute, ETH Zurich, Sonneggstrasse 5, 8092 Zürich, Switzerland ([email protected])
Volcanicashlayers(tephras)inlakesedimentsareveryimportantmarkerbedsforestablishingrobustagemodelsandtosynchronizerecordsfromdifferentarchive.Sofar,detectingtephrasinthesedimentaryrecordsoflacustrinelakeshasbeenlaboriousastheyareoftenverythin.X-rayf luorescence(XRF)corescanning,arapid,non-destructivemethodtoscansplitsedimentcoresfortheirrelativechemicalcomposition,wasnowsuccessfullyusedforthedetectionoftephrasinthesedimentaryrecordsoffourSwisslakes(Soppensee,Gerzensee,BaldeggerseeandBurgäschisee).
HavingtestedfourdifferentanalyticalsettingsforXRFcorescanningontheLaacherSeeTephra(12’880varveyearsBP;Braueretal.,1999) inthesedimentcoreofSoppensee (So08-02C2), itcanbeconcludedthat it ismost likelytodetectvolcanicasheswithamaximumtubevoltageof2000µA,ahighcounttimeof50sandadowncoreresolutionof0.2mm.TheelementpeaksintheLSTarehigherinusingsetting4thanintheothertestedsettings.
TheLaacherSeeTephra (LST),veryprominent in theobserved lakesand thereforeeasilydetectablewith thismethod,couldbecharacterizedbyhighelementpeaksofmainlyK,Ca,Rb,ZrandNb.Thechemicalcompositionofthesurround-ingsedimentand the thicknessof theash influence theXRFexpressionsof theLST.Two invisiblevolcanicash layers(cryptotephras)couldbelocatedbyXRFcorescanning.TheVassetKilianTephra(VKT)fromtheMassifCentral(9407±44calyearsBP;Hajdasetal.,1993)wasfoundinSoppenseeandtheIcelandicVeddeAsh,erupted12’225–11’832calyearsBP(Blockleyetal.,2007)couldsuccessfullybelocatedinBaldeggerseeandBurgäschisee,whereithasnotbeenfoundbe-fore.BothoftheseasheshavepositiveelementpeaksofK,RbandZrinXRFcorescanningdata.TheXRFdataoftheVKTintheSoppenseecoreisshownindetailinFigure1.
TheevidenceforhavingindeeddetectedavolcanicashlayerbyXRFcorescanningwasgivenforallthenamedtephrasbysmearslidesanalysis,wherethepresenceofvolcanicglassshardscouldbeconfirmed(Fig.2).
DetectingtheVeddeAshandtheVassetKilianTephrabyXRFcorescanningisapromisingresult,whichshowsthehighpotentialofthisapplicationfornicelylaminatedandwell-preservedsedimentcoreswithhomogeneousgrainsizes.Thepossibilitytoapplythisnon-destructive,fastandeasytechniquetodetectcryptotephrasinsedimentcoresisasteptoamoreefficientuseoftephrochronologyinlakesedimentstudies.
Fig.1:XRFcorescanningdata(intotalcountsofpeaksurface)aroundtheVKT(shadedarea)intheSoppenseecore(So08-01B3)
K Ca
RbZr
Core depth (mm) max.: 280 mm
200 280210 220 230 240 250 260 270
-500
100
700
0
20000
40000
60000
-50
50
150
-200
200
600
202Sy
mp
osi
um
8:
Qu
ater
nar
y R
esea
rch
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
Fig.2:Microscopepictureofvolcanicglassshards(smearslide)fromtheLaacherSeeTephralayerintheGerzenseecore(left)andthe
Burgäschiseecore(right)
REFERENCESBlockleyS.P.E.,LaneC.S.,LotterA.F.,PollardA.M.,2007.EvidenceforthepresenceoftheVeddeAshinCentralEurope.
QuaternaryScienceReviews,26,3030-3036.BrauerA., EndresC.,GünterC., Litt T., StebichM.,Negendank J.F.W., 1999.High resolution sediment and vegetation
responses toYoungerDryas climate change in varved lake sediments fromMeerfelderMaar,Germany.QuaternaryScienceReviews,18,321-329.
Hajdas I., Ivy S.D.,Beer J.,BonaniG., ImbodenD., LotterA.F., SturmM., SuterM., 1993.AMS radiocarbondatingandvarvechronologyofLakeSoppensee:6000to1200014CyearsBP.ClimateDynamics,9,107-116.
8.27
A review on tunnel valleys in northern Europe
DorotheaStumm1,UrsH.Fischer1,MichaelSchnellmann1&WilfriedHaeberli2
1 Nagra, Hardstrasse 73, CH-5430 Wettingen ([email protected])2 Department of Geography, University of Zurich-Irchel, Winterthurerstrasse 190, CH-8057 Zürich
TheexistenceofburiedQuaternaryvalleysindicatesthatglacialerosionisanimportantprocessinshapingthelandscapeof theSwissalpine foreland.Considering the timeof concernof1Ma forhigh-levelnuclearwaste repositoriesglacialerosionneedstobeaddressedforassessingtheirlong-termsafety.AsoneapproachtobetterunderstandtheformationprocessesofQuaternaryvalleys,aliteraturereviewwithfocus‘tunnelvalleys’outsidethealpinerealmwascarriedout.
DeepglacialvalleyshavebeendocumentedinEurope,NorthAmerica,Africa,AustraliaandAntarctica.However,thefocusoftheliteraturereviewisontunnelvalleysinnorthernEurope(NorthSea,Denmark,northernGermany,theNetherlandsandnorthernPoland)whichhavebeeninvestigatedindetail.Herewegiveanoverviewofobservedvalleymorphologies,theirgeographicaldistributions,bedrockmorphologiesandformationprocesstheories.
Tunnelvalleysaredefinedaslarge,elongated,overdeepeneddepressionscutintosedimentsorbedrock(ÓCofaigh1996).Theyoccuras individualsegmentsorasananastomosingnetwork,areoftenseveralkilometres long,maximumafewhundredmetresdeepandhundredsofmetresuptoacoupleofkilometreswide(Jørgensen&Sandersen2006).Usuallytheyaresteep-sidedwithf latundulatingbottoms,beginandterminateabruptlyandareopenorfilledwithsediments(Kristensenetal.2007;Fig.1).Occasionally,eskersandlakesoccupythevalleys.Tunnelvalleysareformedbelowpasticesheetmargins,andaregenerallyorientedparalleltothesubglacialhydraulicpotentialgradient.Insomecases,thetunnelvalleysterminateatmajormoraineswheretheymaygradeintolargeoutwashfans.
Themostimportantformationprocessesoftunnelvalleysdiscussedintheliteratureincludemeltwaterdrainage,catast-rophicoutbursts(jökulhlaups)andsedimentdeformation,andareoccasionallycombinedwithdirectglacialerosion(e.g.Boulton&Hindmarsh1987;Jørgensen&Sandersen2006).However,thereisstillcontroversyabouttheoriginoftunnelvalleys(ÓCofaigh1996).
203
Sym
po
siu
m 8
: Q
uat
ern
ary
Res
earc
h
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
Figure1.Exampleofburiedtunnelvalleysintheea-
sternNorthSeain(A)planand(B)perspectiveview
(TWT:two-way-traveltime).Theseafloorisabout60
mb.s.l.(80msTWT)andtheupperlimitofthetun-
nelvalleys,andthecolouredplaneistheNearBase
Quaternary(NBQ)horizon.Thetunnelvalleysseem
todeflectaroundtwosaltdiapirs(SD)thatpossibly
controlledthelocalsubglacialdrainagesystem
(Kristensenetal.2007).
REFERENCESBoulton,G.S.&Hindmarsh,R.C.A. 1987:Deformationof subglacial sediments: rheology andgeological consequences.
JournalofGeophysicalResearch,92,9059–9082.Kristensen, T.B.,Huuse,M., Piotrowski, J.A.&Clausen,O.R. 2007:Amorphometric analysis of tunnel valleys in the
easternNorthSeabasedon3Dseismicdata.JournalofQuaternaryScience,22,801–815.ISSN0267-8179.Jørgensen,F.&Sandersen,P.B.E.2006:BuriedandopentunnelvalleysinDenmark–erosionbeneathmultipleicesheets.
QuarternaryScienceReviews,25,1339−1363.Nagra2008:Vorschlag geologischer Standortgebiete fürdas SMA-unddasHAA-Lager.GeologischeGrundlagen.Nagra
TechnischerBerichtNTB08-04.Wettingen,Switzerland.ÓCofaigh,C.1996:Tunnelvalleygenesis.ProgressinPhysicalGeography,20,1-19.
204Sy
mp
osi
um
8:
Qu
ater
nar
y R
esea
rch
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
8.28
Calibration of 36Cl Production Rate on 39K in Saturated Antarctica Samples
TikhomirovDmitry1,AlfimovVasily2,AkçarNaki1,Ivy-OchsSusa2,3,SchlüchterChristan1
1 Institut fuer Geologie, Uni Bern, Baltzerstrasse 1+3, CH-3012 Bern ([email protected])2 Labor f. Ionenstrahlphysik, ETH Zürich3 Geographisches Institut, Uni Zürich
ThesurfaceexposuredatingofK-richmineralslikeK-feldsparandbiotitewiththecosmogenic36Clispresentlylimitedbypoorlyknownrateof36Clproductionfrom39K.36Clproducedinsituon39Kbysecondaryparticlesofcosmicraysinfollo-wingnuclearreactions:highenergyspallation,negativemuoncaptureandthermalneutroncapture.Atthesurfacemajorcontributionto36Clproductionismadebyspallationreactions,whilethenegativemuoncapturedominatesbelow2me-tersofrock.Previouslypublished36Clproductionrateson39Kbyspallationreactionsliesinwidebandofnumbersbetween106±8and228±18at·g(K)-1·yr-1 (Evans1997,Phillips1996,Swanson2001,Zreda1991).Moreaccurateevaluationof 36Clproductionratefrom39Kfromisessentialbecausetheinaccuracyoftheproductionratetranslatesintosignificanterrorsinderivedages.
Properproductionratecalibrationrequiresmanyconditionsonsamples tobemet.K-richminerals inthesamples forcalibrationshouldcontainlowlevelof40Caand35Cltoreducetheother36Clproductionpathways.Exposurehistory(shiel-ding,erosion)ofthesamplessincetheirexposureshouldbeclear.Exposuretimemustbewell-determinedbyotherinde-pendentmethodsorthesteadystateassumptionmustbejustified.
Inanidealcase,theobtainedproductionratecanbeuniquelyscaledtoanyotherlatitudeandaltitude,andappliedinanypossibletimespan.However,duetopresentdayknowledgeofscalingproceduresandpastmagneticfieldvariations,thescalingandapplicationofproductionratescanhaveacertainbiasduetoscalingschemeandestimationsofthemagneticfieldduringtimespanofthecalibratedsite.Theseuncertaintiescaninfluencetheapplicationoftheproductionrateatthelevelofupto10%,thereforeourestimatedlocalproductionrateswillbegiventogetherwithallrelevantlocalpara-meters.
LongtermexposedsamplesofgranitesfromTableMountain,Antarcticawerechosen(Ivy-Ochs1995).Steadystateof36Clbuildupandindependentdatingby10Bemakethesesamplesperfectforcalibration.Howeverpreviouscalibrationbasedonsimilarsamplesgaveavalue,whichishigherthanallotheravailableestimates.Verificationandexplanationofthisoutlierwillbeimportantfor36CldatingoflongtermexposedK-feldspars.
REFERENCESEvans,J.M.,Stone,J.O.H.,Fifield,L.K.,Cresswell,R.G.1997.Cosmogenicchlorine-36productioninK-feldspar.Nucl.Instr.
Meth.Phys.Res.,B123,334-340.Phillips, F.M., Zreda,M.G., Flinsch,M.R. 1996.A reevaluationof cosmogenic 36Cl production rates in terrestrial rocks.
Geoph.Res.Lett.,23,949-952.Swanson, T.W.&Caffee,M.L. 2001.Determination of 36Cl production rates derived from thewell-dated deglaciation
surfacesofWhidbeyandFidalgoIslands,Washington.Quart.Res.,56,366-382.Zreda,M.G.,Phillips,F.M.,Elmore,D.,Kubik,P.W.,Sharma,P.,Dorn,R.I.1991.Cosmogenicchlorine-36productionrates
interrestrialrocks.EarthPlanet.Sci.Lett.,105,94-109.Ivy-Ochs,S.,Schlüchter,C.,Kubik,P.W.,Dittrich-Hannen,B.,Beer,J.1995.Minimum10BeexposureagesofearlyPliocenefor
theTableMountainplateauandtheSiriusGroupatMountFleming,DryValleys,Antarctica.Geology,23,1007-1010.
205
Sym
po
siu
m 8
: Q
uat
ern
ary
Res
earc
h
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
8.29
How does the elemental composition of Swiss lake sediments reflect past climate conditions?
UlrikevanRaden1,AdrianGilli1,JessicaKind2
1 Geological Institute, ETH Zurich, CH-8096 Zurich, Switzerland ([email protected])2 Institute of Geophysics, ETH Zurich, CH-8096 Zurich, Switzerland
Aspartofan interdisciplinarymulti-proxystudy,weconductedahigh-resolutionXRF-corescananalysison lacustrinesedimentsfromSoppensee(CentralSwitzerland)coveringthelatePleistoceneandHolocenetoanswerthequestionofhowtheelementalcompositionoflakesedimentsreflectspastclimateconditions.
Climatehasastronginfluenceonsedimentationrates,redoxconditions,primaryproduction,andtheamountoferosiveinputofalake,andthisinturnaffectsthecompositionofthelakesediment.Sincespecificelementsandelementratiosoftencharacterizespecificlithologicalproperties,XRFanalysishelpstodefinethesediment’ssourceandgiveshintstoreconstructthepaleo-environmentand-climate.
AtSoppensee,thesedimentdepositedattheendoftheWürmglaciationmainlyconsistofdetritalmaterial,detectedinhighratesofK,Al,Rb,Ti,andZr.WeobserveastrongdecreaseintheseelementsjustattheonsetoftheBölling/Alleröd(B/A)warmperiod.WiththebeginningoftheB/AtheCavaluesstarttoincreaseindicatingfirstauthigeniccalcitepreci-pitationdue tohigher temperaturesanddevelopingprimaryproduction.Siderite isdetectedbyXRDanalyses (Fischer1996)insedimentsdepositedduringtheB/AandYoungerDryas(YD).ThepresenceofSideritecanalsobeseeninhighFeandatthesametimelowK,Al,Rb,TiandZrvaluesintheXRFcorescanresults.Thisdepositionscoincidewithaperiodofsummeranoxiamostprobablycausedbyadditionalorganicmatterinputfromthecatchment,aswellaslongerphasesofstratificationduetoreducedwindexposurecausedbytheincreasedvegetationcover(Lotter2001).Atthesametimefirstmagnetotacticbacteriaappear,resultinginsingledomainmagnetiteofuniformgrainsize.
AttheendoftheYD,firstformationofcalciticvarvesstarts.Theseannuallylaminatedsediments,mainlyreflectedinhighCavalues,indicaterisingprimaryproductionatthelakesurfaceduetowarmertemperaturesintheupperwatercolumn,andanoxicconditionsatthesedimentsurfaceduetodecompositionoforganicmaterialandpoormixingofthehypolimnion.Varvesbecomedarker,discontinuousandeventuallyfaintataround5500calyBP.Forthesametimeperiod,previousstudiesreportincreasingairtemperaturesandachangeintreecoverintheenvironmentfrommainlymixedoakforesttoshadow-tolerantfir-beechforest(Lotter2001).Thesechangesintheenvironmentleadtomoreorganicmatterproducedwithintheepilimnionandalsotransportedintothelake,whichthendecaysatthelakebottom.ThisrottingprocessusesupoxygenandproducescarbonicacidandhenceleadstopHchangesinthehypolimnion,whichsupposedlycircumventsthebuild-upofcalcitevarves.Inaddition,thesemoreacidicandreducingconditionsresultinanrapidinc-reaseofferromagneticmineralsaswellasincreasedmobilityofmetalions,resultinginhighervaluesofmainlyFe,butalsoMn,ZnandPb.
FirsthumanactivityinthecatchmentandfirstlocalsettlementsmaybeseeninthesedimentrecordedbydecreasingCaandincreasingFeandMnvaluesatabout5500and3500ycalBPduetoanthropogenicchangesoftheenvironment.AnabruptincreaseinFeandMnduringtheMiddleAges(about1500-500ycalBP)coincideswithmassivedeforestationinthecatchmentandaroundthelake.Thelackofforestpresumablyenabledmixingofthelakewaterduetowindsandincre-asedsoilerosionsuppliedadditionalnutrientstothelake.Thetopmostpartofthelakesedimentisstronglyinfluencedbyanthropogeniceutrophicationofthelakeduetointenseagricultureinthecatchment.
OurresultsnotonlyconfirmpreviouslypublishedclimatereconstructionsofSwitzerlandandEurope,buttogetherwiththeinterpretationofpaleomagneticpropertiesoftheexactsamesedimentcorematerial,weareabletoaddnewinsightsaboutthedevelopmentandeffectsofpastenvironmentalandclimatechange.
REFERENCESLotter,A. 2001: Thepalaeolimnology of Soppensee (Central Switzerland), as evidencedby diatom, pollen, and fossil-
pigmentanalyses,JournalofPaleolimnology,25,65-79.Fischer A. 1996: Isotopengeochemische Untersuchungen (δ18O und δ13C) imWasser und in den Sedimenten des
Soppensees(Kt.Luzern,Schweiz),Diss.ETHNr.11’924
206Sy
mp
osi
um
8:
Qu
ater
nar
y R
esea
rch
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010
8.30
Past glaciation in the Central Andes record alteration in the tropical cir-culation and the Southern Westerlies
ZechJana1,ZechRoland2,KubikPeterW.3andVeitHeinz1
1 Institute of Geography, University of Bern, Hallerstr. 12, 3012 Bern, Switzerland ([email protected])2 Department of Geological Sciences, Brown University, Box 1846, Providence RI 02912, USA3 Laboratory of Ion Beam Physics, ETH Zurich, Schafmattstrasse 20, 8093 Zurich, Switzerland
Themassbalanceofglaciersismostsensitivetochangesinprecipitationandtemperature.Thusthereconstructionofpastglacialadvancescanprovideimportantinformationaboutpastclimatechanges.InthearidCentralAndes,whereglaciersareparticularlysensitivetoprecipitationchanges(Kulletal.2008),thetimingofglaciationdocumentshowandwhenthethree main atmospheric circulation systems - the South American Summer Monsoon (SASM), the El Niño SouthernOscillationandtheSouthernWesterlies-changedtheirintensityandpositionovertime.
WedatedseveralwellpreservedglacialstagesintheSierradeQuilmes(~26°S)applying10Besurfaceexposuredating.Ourresultsshowthatglaciersadvancedinphasewiththegloballastglacialmaximum(LGM)at25.8±0.8kaandduringtheLateglacialat13.5±0.5kaand12.8±0.5ka.TheLateglacialadvancesarecoincidewiththeTauca(16-14ka)andCoipasa(13-11ka)laketransgressionphasesontheAltiplanoandreflecttheprecipitationsensitivityofglaciersinthearidCentralAndes.AglacierclimatemodelingstudycorroboratesthattheLateglacialadvancesoccurredasaresultofmoderatetomassiveprecipitationincreases;reconstructedtemperaturedepressionsare-1.4to-5.4°C(Schmidhauser2007).SufficientmoisturefortheLateglacialglacialadvancecanbeexplainedbyenhanceduppertroposphericeasterliesasresponsetoanintensifiedtropicalcirculationandsustainedlaNiña-likeconditionsintheeasternPacific.TheseresultsagreecloselywithpreviouslyreportedLateglacialadvancesfarthernorthinNWArgentina(~22°S)(Zechetal.2009)andBolivia(~17°S)(Zechetal.2010).OurnewglacialchronologyfromtheSierradeQuilmes,however, isunique, insofarastheoldestdatedmorainedocu-mentsanearlierglacialadvanceat~34.6±1.1ka.ThisisroughlycontemporaneouswiththelocalLGMfurthersouth,datedto~38kainnorthernChile(~30°S)andCentralArgentina(~39°S)(Zechetal.2008).Thesepre-LGMadvancesdocu-mentincreasedprecipitationrelatedtoanorthwardshiftandintensificationoftheSouthernWesterlies,whichaffectedthehydrologicalconditionsinregionsfurthernorth(northof30°S)thanpreviouslyassumed.ThenewresultsfromtheSierradeQuilmesthusraisequestionsregardingthesouthernmostmigrationofthetropicalcirculationsystemandtheroleoftheSouthernWesterliesforglacialadvancesevennorthof30°S.
REFERENCESKull,C.,Imhof,S.,Grosjean,M.,Zech,R.&Veit,H.,2008:LatePleistoceneglaciationintheCentralAndes:Temperature
versushumidity control -A case study from the easternBolivianAndes (17°S) and regional synthesis.Global andPlanetaryChange60,148-164.
Schmidhauser,A.2007:Modellingglacier-climateinteractionintheCentralAndeanSierradelQuilmes,NW-Argentina,DiplomaThesis,UniversityofBern,127.
Zech,J.,Zech,R.,Kubik,P.W.&Veit,H.,2009:GlacierandclimatereconstructionatTresLagunas,NWArgentina,basedon10Besurfaceexposuredatingandlakesedimentanalyses.Palaeogeography,Palaeoclimatology,Palaeoecology284,180-190.
Zech,J.,Zech,R.,May,J.-H.,Kubik,P.W.&Veit,H.,2010:LateglacialandearlyHoloceneglaciationinthetropicalAndescausedbyLaNiña-likeconditions.Palaeogeography,Palaeoclimatology,Palaeoecology293,248-254.
Zech,R.,May,J.-H.,Kull,C.,Ilgner,J.,Kubik,P.W.&Veit,H.,2008:TimingofthelateQuaternaryglaciationintheAndesfrom~15to40°S.JournalofQuaternaryScience236-7,635-647.
207
Sym
po
siu
m 8
: Q
uat
ern
ary
Res
earc
h
Platform Geosciences, Swiss Academy of Science, SCNATSwiss Geoscience Meeting 2010