29
Advances in Electrolyte Thermodynamics

Advances in Electrolyte Thermodynamicsdownloads.olisystems.com/OLISimulationConferences/SIMCONF14/... · MSE (ionic) 2nd liquid phase: SRK (non-ionic) ... molecular adsorption

  • Upload
    lytuyen

  • View
    224

  • Download
    0

Embed Size (px)

Citation preview

Advances in Electrolyte

Thermodynamics

MSE thermo thermo Standard-

state: HKF

(direct)

GEX: MSE no limit on

concentration

Solid phases: thermochemical

properties

AQ thermo Standard-state: HKF (via fitting

equations)

GEX: Bromley-Zemaitis

I < 30m; xorg < 0.3

Solid phases: equilibrium

constants (Kfits)

Surface

tension

Interfacial tension

2nd liquid phase:

MSE (ionic)

2nd liquid phase:

SRK (non-ionic)

Electrical conductivity

Electrical

conductivity

Viscosity Viscosity

Self -

diffusivity

Thermal

conductivity

Self -

diffusivity

Interfacial phenomena: ion exchange, surface

complexation, molecular adsorption

Thermophysical

property frameworks

Scope

New Chemistries in 2012 - 2014

New Chemistries in 2012 - 2014

Revisions and Extensions in 2012 - 2014

Rare earth elements:

Addressing critical material needs

Solubility of NdCl3 and EuCl3 in aqueous solutions

NdCl3 + H2O

EuCl3 + H2O

Similarity of phase

behavior of chlorides

Searching for

regularities in phase

behavior of rare-earth

elements

0

1

2

3

4

5

6

7

8

-60 -40 -20 0 20 40 60 80 100 120

m N

dC

l 3

T / oC

Zelikman 1971 Zuravlev et al. 1971 Bunyakina et al. 1991,1992Shevtsova et al. 1961 Kost et al. 1970 Dilebaeva et al. 1973Zhuravlev et al. 1980 Zhuravlev et al. 1973 Bayanov et al. 1979Shevtsova et al. 1968 Friend and Hale 1940, 1940a Matignon 1906sokolova et al. 1980 Sokolova et al. 1981 Sokolova et al. 1981Williams et al. 1925 Nikolaev et al. 1978 Sokolova et al. 1979Sokolova et al. 1979 Nikolaev et al. 1977 Shevtsova et al. 1958Sopueva et al. 1978 Calc. - NdCl3.6H2O Calc. - NdCl3.7H2OCalc. - NdCl3.8H2O Calc. - Ice

NdCl3.6H2O

NdCl3.7H2O

NdCl3.8H2O

Ice

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70

mE

uC

l 3

T / oC

Sokolova 1987 Sokolova 1987

Nikolaev et al. 1977 Powel 1959

Nikolaev et al. 1978 Kotlyar-Sharipov et al. 1977

Nikolaev et al. 1967 Nikolaev et al. 1971

Spedding et al. 1974 Spedding et al. 1975

Spedding et al. 1977 Spedding et al. 1967

Wang et al. 2007 Sokolova 1987

Calc. - Ice Calc. - EuCl3.8H2O

Calc. - EuCl3.6H2O

EuCl3.8H2O

Ice

EuCl3.6H2O

Solubility of Nd(OH)3 and Eu(OH)3

Primary effects:

pH and T

Secondary

effects: ionic

environment

(NaCl, NaClO4,

etc.)

Qualitatively

similar behavior

of various REEs

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

3 5 7 9 11 13 15

m E

u(O

H) 3

pH

Calc. @ 25C - 0.001m HClO4

Calc. @ 25C - 0.1m NaOH

Calc. @ 25C - 0.001m HCl

Calc. @ 50C - 0.001m HClO4

Calc. @ 50C - 0.001m HCl

Calc. @ 50C - 0.1m NaOH

Calc. @ 100C - 0.001m HClO4

Calc. @ 100C - 0.001m HCl

Calc. @ 100C - 0.1m NaOH

Calc. @ 150C - 0.001m HClO4

Calc. @ 150C - 0.001m HCl

Calc. @ 150C - 0.1m NaOH

Eu(OH)3

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

3 4 5 6 7 8 9 10 11 12 13 14 15

Nd

to

tal

(m)

pH

Nd(OH)3 crystalline

---- Nd(OH)3 amorphous

30C - NaCF3SO3 - Wood(2002) am 30C

50C - NaCF3SO3 - Wood(2002) am 50C

100C - NaCF3SO3 - Wood(2002) cr100C

150C - NaCF3SO3 - Wood(2002) cr150C

200C - NaCF3SO3 - Wood(2002) cr200C

250C - NaCF3SO3 - Wood(2002) cr250C

290C - NaCF3SO3 - Wood(2002) cr290C

25C - 0.1 m NaCl - Silva (1982)cr 25C - 0.1 m NaCl

22C - 0.01 m NaClO4 - Makino(1993) am 22C - 0.01 m NaClO4

25C - 0.1 m NaCl - Neck (2009)am 25C - 0.1 m NaCl

25C - 0.5 m NaCl - Neck (2009)am 25C - 0.5 m NaCl

25C - 2.6 m NaCl - Neck (2009)am 25C - 2.6 m NaCl

25C - 5.6 m NaCl - Neck (2009)am 25C - 5.6 m NaCl

25C - 0.1 m NaCl - Rao (1996)cr 25C - 5.6 m NaCl - Runde(1994) cr

Nd(OH)3

Predicting mercury behavior in hydrocarbon – water –

CO2 – H2S systems

1.0E-07

1.0E-06

1.0E-05

0 10 20 30 40 50 60

x-H

g0

t, C

Solubility of Hg0 in Hydrocarbons:n-alkane vs. aromatic

n-C10H22

n-C8H18

n-C7H16

n-C6H14

isopropylbenzene (C9)

o-xylene (c8)

toluene (c7)

benzene (c6)

aromatic

n-alkane

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

0 100 200 300

x-H

g0

t, C

Solubility of Hg0 in water

Ps - 1994M

Ps - 1971GH

Ps - Sorokin et al. 1978

500 bar - Sorokin et al. 1978

1000 bar-Sorokin et al 1978

Elemental mercury in oil and gas environments

Hg carbonate and

sulfide

HgCO3 + H2O (in presence of

CO2)

25~90C, Ps~1 atm

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1 2 3 4 5 6 7 8

Hg(

II)_

tota

l, m

ol·

kg-1

pH

solubility of HgCO3.2HgO (25C)

pCO2=1atm, NaClO4=0.5m

pCO2=1atm, NaClO4=3m

pCO2=0.5atm, NaClO4=3m

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 300 600 900 1200 1500 1800

HgS

, mo

l·kg

-1

p, atm

Solubility of HgSRefs: 1964D & 1961D

150C, Na2S=0.178m

50C, Na2S=0.178m

50C, Na2S=0.269m

50C, Na2S=0.52m

HgS + H2O (in presence of

sulfides)

17~270C, Ps~1800 atm

CO2 capture in mixed-salts

Miscibility gap

Modeling carboxylic acid chemistry:

Methacrylic acid

90

100

110

120

130

140

150

160

170

0 0.2 0.4 0.6 0.8 1

t[C

]

x MAA

Chubarov et al. 1974Chubarov et al. 1974 (y)Danov et al. 1991Danov et al. 1991 (y)Eck and Maurer 2003Eck and Maurer 2003 (y)Frolov et al. 1962Frolov et al. 1962 (y)MSEMSE (y)

-5

0

5

10

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t[C

]

x MAA

Bruhl 1880

Chubarov et al. 1978 LLE

Chubarov et al. 1978 SLE

Eck and Maurer 2003 LLE

Eck and Maurer 2003 SLE

Efremov et al. 1981

Hino et al. 2011

Karabaev et al. 1985

Kolesnikv et al. 1979

Oswald and Urquharta 2011

Rabinovich et al. 1967

MSE

VLE

LLE + SLE

Modeling carboxylic acid chemistry:

Methacrylic acid

-2

-1

0

1

2

3

4

0.002 0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034

log

K2

v

1/T

Jasperson et al.

1989

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

-50 0 50 100 150 200 250 300

pK

a

t[C]

Dong et al. 2008Larsson 1932Peralta et al. 2005Pomogailo et al. 200MSE

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

% d

iffe

ren

ce

to

DIP

PR

eq

ua

tio

n

t[C]

Braude and Evans 1956

Daubert et al. 1987

Chubarov et al. 1989 (eq)

Chubarov et al. 1978

Chubarov et al. 1974

Eck and Maurer 2003 (eq)

Eck and Maurer 2003

Frolov et al. 1962

Gachokidse 1947

Jasperson et al. 1989

Li et al. 1989

Leontiev et al. 1970

Meitzner 1940

Ratchford et al. 1944

Stull 1947

Van-chin-syan et al. 1996

White 1943

MSE

Gas-phase

dimerization

Acid dissociation

Pure acid vapor

pressure

Filling important gaps in MSE

Filling important gaps in MSE

0.E+00

1.E-06

2.E-06

3.E-06

4.E-06

5.E-06

6.E-06

7.E-06

8.E-06

9.E-06

0 1 2 3 4 5 6 7

x O

2

m NaCl

Millero et al. (2002b), 0.5°CMillero et al. (2002b), 5°CMillero et al. (2002b), 10°CMillero et al. (2002b), 15°CMillero et al. (2002b), 20°CMillero et al. (2002a), 25°CSherwood1991LimnolOceanogr235-cal.25°CMillero et al. (2002b), 25°CMacArthur (1915), 25°CMillero et al. (2002b), 30°CMillero et al. (2002b), 35°CMillero et al. (2002b), 40°CMillero et al. (2002b), 45°C

Oxygen solubility in NaCl solution, POxygen = 0.2094

H2S – NaCl –

H2O mixtures

• Salting-out effect of

NaCl in both the

VLE and LLE

regions

• Pressure effect is

different in the VLE

and LLE regions

• Three-phase VLLE

pressure is nearly

independent of

NaCl

Prediction of pH

Systems containing acid gases

• Experimental data are

scarce

• Problems with

reproducible

measurements in

saline systems

• Prediction is essential

• pH rapidly decreases

with acid gas partial

pressure and then

plateaus

CO2 + H2O

Prediction of pH

Systems containing acid gases

• Salt content

reduces pH

• Effect of

nonideality –

interactions with

ions

• Data are scattered

• Pure prediction is

well within the

scattering of data

CO2 + NaCl + H2O

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

pH

(m NaHCO3)0.5 (mol·kg solvent-1)0.5

MEG = 90 wt%, PCO2~1atm

80˚C, pH

80˚C, pHst

25˚C, pH

25˚C, pHst

Hst

apH log

In MEG + water solutions

(mixed solvent-based):

MEGHOHccpH

3

log

In aqueous solutions (water-based):

pH in mixed-solvent systems

MEG + H2O +

NaHCO3 + NaCl Both protonated solvent species, H3O+

and MEGH+, contribute to the solution

pH

2 H2O = H3O+ + OH-

2 HOC2H4OH(aq) = HOC2H4OH2+ + HOC2H4O

-1

MEG + water + salt mixtures

Removal of H2S through formation of

thianes (S-substitutes of triazinane ring):

R=CH3

Modeling H2S scavenging:

1,3,5-trimethyl-1,3,5-triazinane + H2S

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

2 3 4 5 6 7 8 9 10 11 12

S, m

ol·

kgH

2O

-1

pH

Gonzalez, et al. 2011

MSE

S in solid phase

total S = 0.00235 mol·kgH2O-1

S in C4H9NS2·2CH3NH2(aq)

S in C4H9NS2(aq)

Un-scavenged S:

C6H15N3=0.0062 mol·kgH2O-1

pH dependence of scavenging

capacity:

The combined effects of

formation of

C4H9NS2·2CH3NH2(s) and

C4H9NS2·2CH3NH2(aq) cause

the decrease of total H2S

concentration with pH

C4H9NS2(aq) is important only

at lower pH

Improving density predictions

0

200

400

600

800

1000

1200

1400

1600

0.1 1 10 100

de

nsi

ty, k

g·m

3

P, MPa

Lines: volume translated-SRK220K

250K

270K

290K

300K

305K

315K

330K

350K

400K

450K

500K

550K

500

Pure CO2

Liquid density:

CO2 + salt + H2O

1028

1030

1032

1034

1036

1038

1040

1042

1044

1046

1048

0.0 0.5 1.0 1.5

De

nsi

ty, k

g·m

3

m-CO2

Song et al. 2005densities in CO2 + seawater

10C, 70 bar10C, 80 bar10C, 90 bar10C, 100 bar10C, 110 bar10C, 120 bar10C, 130 bar

1035

1040

1045

1050

1055

1060

1065

0 50 100 150 200 250 300

de

nsi

ty, k

g·m

3

P, atm

Teng and Yamasaki, 1998densities of synthetic sea water + CO2

5C

10C

15C

20C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-30 0 30 60 90 120 150 180 210

the

rma

l c

on

du

cti

vit

y, W

.m-1

.K-1

t, oC

pure H2O

xMEG=0.0882

xMEG=0.225xMEG=0.26

xMEG=0.5

xMEG=0.75pure MEG

0.1

1

10

100

0 30 60 90 120 150 180

vis

co

sit

y,

cP

t, oC

pure H2O

pure MEG

xMEG=0.25

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

75.0

0.0 0.2 0.4 0.6 0.8 1.0

su

rfa

ce

te

ns

ion

, m

N.m

-1

x-MEG

25C, Won, et al. 1981

25C, Habrdova, et al. 2004

25C, Hoke & Chen, 1991

25C, Horibe, et al. 1996

30C, Nakanish et al 1971

30C, Hoke & Chen, 1991

50C, Hoke & Chen, 1991

80C, Hoke & Chen, 1991

100C, Hoke & Chen, 1991

120C, Hoke & Chen, 1991

Thermal conductivity

MEG + water

Viscosity

Surface tension 0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.0 0.3 0.6 0.9 1.2

sp

ecif

ic c

on

du

cta

nce

, S

.cm

-1

NaCl, mol.kg solvent-1

NaHCO3=0.25 mol.kg solvent-1

x' MEG=0

x' MEG=0.2

x' MEG=0.998

MEG + water

MEG + water

MEG + H2O +

NaHCO3 + NaCl

Electrical

conductivity

Other

Thermophysical

Properties:

MEG Systems

Databank statistics

Overall, MSE databank

is ~44% the size of AQ

databank

AQ

MSE

Which model to use?

Which model to use?

••

••

Plans for the Future