17
Angle Modulated Systems 1. Consider an FM wave () = cos[2 + 1 sin 2 1 + 2 2 2 ] The maximum deviation of the instantaneous frequency from the carrier frequency f c is (a) 1 1 + 2 2 (b) 1 2 + 2 1 (c) 1 + 2 (d) 1 + 2 [GATE 2014: 1 Mark] Soln. The instantaneous value of the angular frequency = + ( + ) + + = + + Frequency deviation (βˆ† ) = + Option (a) 2. A modulation signal is () = () cos(40000), where the baseband signal m(t) has frequency components less than 5 kHz only. The minimum required rate (in kHz) at which y(t) should be sampled to recover m(t) is ____ [GATE 2014: 1 Mark] Soln. The minimum sampling rate is twice the maximum frequency called Nyquist rate The minimum sampling rate (Nyquist rate) = 10K samples/sec

Angle Modulated Systems1

Embed Size (px)

DESCRIPTION

hjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjfe

Citation preview

Page 1: Angle Modulated Systems1

Angle Modulated Systems

1. Consider an FM wave

𝑓(𝑑) = cos[2πœ‹π‘“π‘π‘‘ + 𝛽1 sin 2πœ‹π‘“1𝑑 + 𝛽22πœ‹π‘“2𝑑]

The maximum deviation of the instantaneous frequency from the carrier

frequency fc is

(a) 𝛽1𝑓1 + 𝛽2𝑓2

(b) 𝛽1𝑓2 + 𝛽2𝑓1

(c) 𝛽1 + 𝛽2

(d) 𝑓1 + 𝑓2

[GATE 2014: 1 Mark]

Soln. The instantaneous value of the angular frequency

πŽπ’Š = πŽπ’„ +𝒅

𝒅𝒕(𝜷𝟏 𝐬𝐒𝐧 πŸπ…π’‡πŸπ’• + 𝜷𝟐 𝐬𝐒𝐧 πŸπ…π’‡πŸπ’•)

πŽπ’„ + πŸπ…πœ·πŸπ’‡πŸ 𝐜𝐨𝐬 πŸπ…π’‡πŸπ’• + πŸπ…πœ·πŸπ’‡πŸ 𝐜𝐨𝐬 πŸπ…π’‡πŸπ’•

π’‡π’Š = 𝒇𝒄 + πœ·πŸπ’‡πŸ 𝐜𝐨𝐬 πŸπ…π’‡πŸπ’• + πœ·πŸπ’‡πŸ 𝐜𝐨𝐬 πŸπ…π’‡πŸπ’•

Frequency deviation (βˆ†π’‡)π’Žπ’‚π’™

= πœ·πŸπ’‡πŸ + πœ·πŸπ’‡πŸ

Option (a)

2. A modulation signal is 𝑦(𝑑) = π‘š(𝑑) cos(40000πœ‹π‘‘), where the baseband

signal m(t) has frequency components less than 5 kHz only. The minimum

required rate (in kHz) at which y(t) should be sampled to recover m(t) is ____

[GATE 2014: 1 Mark]

Soln. The minimum sampling rate is twice the maximum frequency called

Nyquist rate

The minimum sampling rate (Nyquist rate) = 10K samples/sec

Page 2: Angle Modulated Systems1

3. Consider an angle modulation signal π‘₯(𝑑) = 6π‘π‘œπ‘ [2πœ‹ Γ— 103 +

2 sin(8000πœ‹π‘‘) + 4 cos(8000πœ‹π‘‘)]𝑉. The average power of π‘₯(𝑑) is

(a) 10 W

(b) 18 W

(c) 20 W

(d) 28 W

[GATE 2010: 1 Mark]

Soln. The average power of an angle modulated signal is

𝑨𝒄

𝟐

𝟐=

πŸ”πŸ

𝟐

=18 W

Option (b)

4. A modulation signal is given by 𝑠(𝑑) = π‘’βˆ’π‘Žπ‘‘ cos[(πœ”π‘ + βˆ†πœ”)𝑑] 𝑒(𝑑),

where,πœ”π‘ π‘Žπ‘›π‘‘ βˆ†πœ” are positive constants, and πœ”π‘ ≫ βˆ†πœ”. The complex

envelope of s(t) is given by

(a) exp(βˆ’π‘Žπ‘‘) 𝑒π‘₯𝑝[𝑗(πœ”π‘ + βˆ†πœ”)]𝑒(𝑑)

(b) exp(βˆ’π‘Žπ‘‘) exp(π‘—βˆ†πœ”π‘‘) 𝑒(𝑑)

(c) 𝑒π‘₯𝑝(π‘—βˆ†πœ”π‘‘)𝑒(𝑑)

(d) 𝑒π‘₯𝑝[(π‘—πœ”π‘ + βˆ†πœ”)𝑑]

[GATE 1999: 1 Mark]

Soln. 𝒔(𝒕) = π’†βˆ’π’‚π’• 𝐜𝐨𝐬[(πŽπ’„ + βˆ†πŽ)𝒕]𝒖(𝒕)

Complex envelope 𝒔(𝒕)Μƒ = 𝒔(𝒕)π’†βˆ’π’‹πŽπ’„π’•

= [π’†βˆ’π’‚π’•π’†π’‹(πŽπ’„+βˆ†πŽ)𝒕. 𝒖(𝒕)]π’†βˆ’π’‹πŽπ’„π’•

= π’†βˆ’π’‚π’•π’†π’‹βˆ†πŽπ’•π’–(𝒕)

Option (b)

Page 3: Angle Modulated Systems1

5. A 10 MHz carrier is frequency modulated by a sinusoidal signal of 500 Hz,

the maximum frequency deviation being 50 KHz. The bandwidth required.

as given by the Carson’s rule is ___________

[GATE 1994: 1 Mark]

Soln. By carson’s rule

𝑩𝑾 = 𝟐(βˆ†π’‡ + π’‡π’Ž)

= 𝟐(πŸ“πŸŽ + 𝟎. πŸ“)

= 𝟏𝟎𝟏 𝑲𝑯𝒛

6. 𝑣(𝑑) = 5[cos(106πœ‹π‘‘) βˆ’ sin(103πœ‹π‘‘) Γ— sin(106πœ‹π‘‘)] represents

(a) DSB suppressed carrier signal

(b) AM signal

(c) SSB upper sideband signal

(d) Narrow band FM signal

[GATE 1994: 1 Mark]

Soln. 𝒗(𝒕) = πŸ“ 𝐜𝐨𝐬(πŸπŸŽπŸ”π…π’•) βˆ’πŸ“

𝟐𝐜𝐨𝐬(πŸπŸŽπŸ” βˆ’ πŸπŸŽπŸ‘) 𝝅𝒕 +

πŸ“

𝟐𝐜𝐨𝐬(πŸπŸŽπŸ” + πŸπŸŽπŸ‘)𝝅𝒕

Carrier and upper side band are in phase and lower side band is out of

phase with carrier

The given signal is narrow band FM signal

Option (d)

7. The input to a coherent detector is DSB-SC signal plus noise. The noise at

the detector output is

(a) the in-phase component

(b) the quadrature-component

(c) zero

(d) the envelope

[GATE 2003: 1 Mark]

Page 4: Angle Modulated Systems1

Soln. The coherent detector rejects the quadrature component of noise

therefore noise at the output has in phase component only.

Option (a)

8. An AM signal and a narrow-band FM signal with identical carriers,

modulating signals and modulation indices of 0.1 are added together. The

resultant signal can be closely approximated by

(a) Broadband FM

(b) SSB with carrier

(c) DSB-SC

(d) SSB without carrier

[GATE 2004: 1 Mark]

Soln. 𝑽𝑨𝑴(𝒕) = 𝑨 𝐜𝐨𝐬 πŽπ’„ 𝒕 +𝟎.πŸπ‘¨

𝟐𝐜𝐨𝐬(πŽπ’„ + πŽπ’Ž)𝒕 +

𝟎.πŸπ‘¨

𝟐𝐜𝐨𝐬(πŽπ’„ βˆ’ πŽπ’Ž)𝒕

𝑽𝑭𝑴(𝒕)(π’π’‚π’“π’“π’π’˜π’ƒπ’‚π’π’…)

= 𝑨 𝐜𝐨𝐬 πŽπ’„π’• +𝟎. πŸπ‘¨

𝟐𝐜𝐨𝐬(πŽπ’„ + πŽπ’Ž)𝒕 βˆ’

𝟎. πŸπ‘¨

𝟐𝐜𝐨𝐬(πŽπ’„ βˆ’ πŽπ’Ž)𝒕

𝑽𝑨𝑴(𝒕) + 𝑽𝑭𝑴(𝒕) = πŸπ‘¨ 𝐜𝐨𝐬 πŽπ’„π’• + 𝟎. πŸπ‘¨ 𝐜𝐨𝐬(πŽπ’„ + πŽπ’Ž)𝒕

The resulting signal is SSB with carrier

Option (b)

9. The List-I (lists the attributes) and the List-II (lists of the modulation

systems). Match the attribute to the modulation system that best meets it.

List-I

(A) Power efficient transmission of signals

(B) Most bandwidth efficient transmission of voice signals

(C) Simplest receiver structure

(D) Bandwidth efficient transmission of signals with significant dc

component

Page 5: Angle Modulated Systems1

List-II

(1) Conventional AM

(2) FM

(3) VSB

(4) SSB-SC

A B C D

(a) 4 2 1 3

(b) 2 4 1 3

(c) 3 2 1 4

(d) 2 4 3 1

[GATE 2011: 1 Mark]

Soln. FM is the most power efficient transmission of signals AM has the

simplest receiver. Vestigial sideband is bandwidth efficient transmission

of signals with sufficient dc components. Single sideband, suppressed

carrier (SSB-SC) is the most bandwidth efficient transmission of voice

signals.

Option (b)

10. The signal m(t) as shown I applied both to a phase modulator (with kp as the

phase constant) and a frequency modulator with (kf as the frequency

constant) having the same carrier frequency

The ratio π‘˜π‘/π‘˜π‘“ (in rad/Hz) for the same maximum phase deviation is

-2 0 2 4 6 8 t(seconds)

m(t)

-2

Page 6: Angle Modulated Systems1

(a) 8Ο€

(b) 4Ο€

(c) 2Ο€

(d) Ο€

[GATE 2012: 2 Marks]

Soln. For a phase modulator, the instantaneous value of the phase angle ππ’Š is

equal to phase of an unmodulated carrier πŽπ’„(𝒕) plus a time varying

component proportional to modulation signal m(t)

𝛙𝑷𝑴(𝒕) = πŸπ…π’‡π’„π’• + π’Œπ’‘π’Ž(𝒕)

Maximum phase deviation (𝛙𝑷𝑴)π’Žπ’‚π’™

= 𝑲𝒑 𝐦𝐚𝐱 π’Ž(𝒕) = πŸπ‘²π’‘

For a frequency modulator, the instantaneous value of the angular

frequency

πŽπ’Š = πŽπ’„ + πŸπ…π‘²π’‡π’Ž(𝒕)

The total phase of the FM wave is

𝛙𝑭𝑴 = ∫ πŽπ’Šπ’…π’•

= πŽπ’„π’• + πŸπ…π‘²π’‡ ∫ π’Ž(𝒕)𝒅𝒕

𝒕

𝟎

(𝛙𝑭𝑴)π’Žπ’‚π’™ = πŸπ…π‘²π’‡ ∫ πŸπ’…π’•

𝟐

𝟎

= πŸ–π…π‘²π’‡

𝑲𝑷

𝑲𝒇=

πŸ–π…

𝟐

Page 7: Angle Modulated Systems1

= πŸ’π…

Option (b)

11. Consider the frequency modulated signal

10[cos 2πœ‹ Γ— 105𝑑 + 5 sin(2πœ‹ Γ— 1500𝑑) + 7.5 sin(2πœ‹ Γ— 1000𝑑)]

with carrier frequency of 105 Hz. The modulation index is

(a) 12.5

(b) 10

(c) 7.5

(d) 5

[GATE 2008: 2 Marks]

Soln. Frequency modulated signal

𝟏𝟎 𝐜𝐨𝐬[πŸπ… Γ— πŸπŸŽπŸ“π’• + πŸ“ 𝐬𝐒𝐧(πŸπ… Γ— πŸπŸ“πŸŽπŸŽπ’•) + πŸ•. πŸ“ 𝐬𝐒𝐧(πŸπ… Γ—

πŸπŸŽπŸŽπŸŽπŸŽπ’•)]

The instantaneous value of the angular frequency

πŽπ’Š = πŽπ’„ +𝒅

𝒅𝒕[πŸ“ 𝐬𝐒𝐧(πŸπ… Γ— πŸπŸ“πŸŽπŸŽπ’•) + πŸ•. πŸ“ 𝐬𝐒𝐧(πŸπ… Γ— πŸπŸŽπŸŽπŸŽπ’•)]

Frequency deviation

βˆ†πŽ= πŸ“ Γ— πŸπ… Γ— πŸπŸ“πŸŽπŸŽ 𝐜𝐨𝐬(πŸπ… Γ— πŸπŸ“πŸŽπŸŽ) + πŸ•. πŸ“ Γ— πŸπ… Γ— 𝟏𝟎𝟎𝟎 𝐜𝐨𝐬(πŸπ… Γ— πŸπŸŽπŸŽπŸŽπ’•)

(βˆ†πŽ)π’Žπ’‚π’™ = πŸπ…(πŸ•πŸ“πŸŽπŸŽ + πŸ•πŸ“πŸŽπŸŽ)

Frequency deviation (𝜹) =(βˆ†πŽ)π’Žπ’‚π’™

πŸπ…= πŸπŸ“πŸŽπŸŽπŸŽπ‘―π’›

Modulation index π’Žπ’‡ =πŸπŸ“πŸŽπŸŽπŸŽ

πŸπŸ“πŸŽπŸŽ

= 10

Option (b)

Page 8: Angle Modulated Systems1

12. A message signal with bandwidth 10 KHz is Lower-Side Band SSB

modulated with carrier frequency 𝑓𝑐1= 106𝐻𝑧. The resulting signal is then

passed through a narrow-band frequency Modulator with carrier frequency

𝑓𝑐2 = 109𝐻𝑧.

The bandwidth of the output would be

(a) 4 Γ— 104𝐻𝑧

(b) 2 Γ— 106𝐻𝑧

(c) 2 Γ— 109𝐻𝑧

(d) 2 Γ— 1010𝐻𝑧

[GATE 2006: 2 Marks]

Soln. Lower side band frequency = πŸπŸŽπŸ‘ βˆ’ 𝟏𝟎

= πŸ—πŸ—πŸŽ 𝑲𝑯𝒛

Considering this as the baseband signal, the bandwidth of narrow band

FM

= 𝟐 Γ— πŸ—πŸ—πŸŽ 𝑲𝑯𝒛

β‰ˆ πŸπ‘΄π‘―π’›

Option (b)

13. A device with input π‘₯(𝑑) and output 𝑦(𝑑) is characterized by: 𝑦(𝑑) = π‘₯2(𝑑).

An FM signal with frequency deviation of 90 KHz and modulating signal

bandwidth of 5 KHz is applied to this device. The bandwidth of the output

signal is

(a) 370 KHz

(b) 190 KHz

(c) 380 KHz

(d) 95 KHz

[GATE 2005: 2 Marks]

Soln. Frequency deviation βˆ†π’‡= πŸ—πŸŽπ‘²π‘―π’›

Modulating signal bandwidth = 5 KMz

When FM signal is applied to doubler frequency deviation doubles.

𝑩. 𝑾 = 𝟐(βˆ†π’‡ + π’‡π’Ž)

Page 9: Angle Modulated Systems1

= 𝟐(πŸπŸ–πŸŽ + πŸ“)

= πŸ‘πŸ•πŸŽ 𝑲𝑯𝒛

Option (a)

14. An angle-modulation signal is given by

𝑠(𝑑) = cos(2πœ‹ Γ— 2 Γ— 106𝑑 + 2πœ‹ Γ— 30 sin 150𝑑 + 2πœ‹ Γ— 40 cos 150𝑑)

The maximum frequency and phase deviations of s(t) are

(a) 10.5KHz, 140Ο€ rad

(b) 6 KHz, 80Ο€ rad

(c) 10.5 KHz, 100Ο€ rad

(d) 7.5 KHz, 100Ο€ rad

[GATE 2002: 2 Marks]

Soln. The total phase angle of the carrier

𝛙 = π›šπœπ­ + π›‰πŸŽ

𝛙 = πŸπ›‘ Γ— 𝟐 Γ— πŸπŸŽπŸ” + πŸπ›‘ Γ— πŸ‘πŸŽ 𝐬𝐒𝐧 πŸπŸ“πŸŽ 𝐭 + πŸπ›‘ Γ— πŸ’πŸŽ 𝐜𝐨𝐬 πŸπŸ“πŸŽπ­

Instantaneous value of angular frequency πŽπ’Š

πŽπ’Š = πŽπ’„ +𝒅

𝒅𝒕(πŸπ… Γ— πŸ‘πŸŽ 𝐬𝐒𝐧 πŸπŸ“πŸŽπ’• + πŸπ… Γ— πŸ’πŸŽ 𝐜𝐨𝐬 πŸπŸ“πŸŽπ’•)

= πŽπ’„ + πŸπ… Γ— πŸ‘πŸŽ Γ— πŸπŸ“πŸŽ 𝐜𝐨𝐬 πŸπŸ“πŸŽπ’• βˆ’ πŸπ… Γ— πŸ’πŸŽ Γ— πŸπŸ“πŸŽ 𝐬𝐒𝐧 πŸπŸ“πŸŽπ’•

= πŽπ’„ + πŸπ… Γ— πŸ’πŸ“πŸŽπŸŽ 𝐜𝐨𝐬 πŸπŸ“πŸŽπ’• βˆ’ πŸπ… Γ— πŸ”πŸŽπŸŽπŸŽ 𝐬𝐒𝐧 πŸπŸ“πŸŽ 𝒕

Frequency deviation βˆ†πŽ= πŸπ… Γ— πŸπŸ“πŸŽπŸŽ[πŸ‘ 𝐜𝐨𝐬 πŸπŸ“πŸŽπ’• βˆ’ πŸ’ 𝐬𝐒𝐧 πŸπŸ“πŸŽπ’•]

= πŸ‘πŸŽπŸŽπŸŽπ…βˆšπŸ‘πŸ + πŸ’πŸ 𝒓𝒂𝒅/𝒔𝒆𝒄

= πŸπŸ“πŸŽπŸŽπ… 𝒓𝒂𝒅/𝒔𝒆𝒄

= πŸπ… Γ— πŸ•. πŸ“π‘² 𝒓𝒂𝒅/𝒔𝒆𝒄

βˆ†π’‡=βˆ†πŽ

πŸπ…= πŸ•. πŸ“π‘²π‘―π’›

Phase deviation βˆ†π›™ is proportional to 𝜽𝟎

Page 10: Angle Modulated Systems1

βˆ†π = πŸπ…βˆšπŸ‘πŸŽπŸ + πŸ’πŸŽπŸ

= πŸπ… Γ— πŸ“πŸŽ = πŸπŸŽπŸŽπ… 𝒓𝒂𝒅

Option (d)

15. In a FM system, a carrier of 100 MHz is modulated by a sinusoidal signal of

5 KHz. The bandwidth by Carson’s approximation is 1MHz. If y(t) =

(modulated waveform)3, then by using Carson’s approximation, the

bandwidth of y(t) around 300 MHz and the spacing of spectral components

are, respectively.

(a) 3 MHz, 5 KHz

(b) 1 MHz, 15 KHz

(c) 3 MHz, 15 KHz

(d) 1 MHz, 5 KHz

[GATE 2000: 2 Marks]

Soln. In an FM signal, adjacent spectral components will get separated by

modulating frequency π’‡π’Ž = πŸ“π‘²π‘―π’›

𝑩𝑾 = 𝟐(βˆ†π’‡ + π’‡π’Ž) = πŸπ‘΄π‘―π’›

βˆ†π’‡ + π’‡π’Ž = πŸ“πŸŽπŸŽ 𝑲𝑯𝒛

βˆ†π’‡= πŸ’πŸ—πŸ“ 𝑲𝑯𝒛

The nth order non-linearity makes the carrier frequency and frequency

deviation increased by n-fold, with baseband frequency fm unchanged.

(βˆ†π’‡)π’π’†π’˜ = πŸ‘ Γ— πŸ’πŸ—πŸ“

= πŸπŸ’πŸ–πŸ“ 𝑲𝑯𝒛

π‘΅π’†π’˜ 𝑩𝑾 = 𝟐(πŸπŸ’πŸ–πŸ“ + πŸ“) Γ— πŸπŸŽπŸ‘

= 𝟐. πŸ—πŸ– 𝑴𝑯𝒛

β‰ˆ πŸ‘ 𝑴𝑯𝒛

Option (a)

Page 11: Angle Modulated Systems1

16. An FM signal with a modulation index 9 is applied to a frequency tripler.

The modulation index in the output signal will be

(a) 0

(b) 3

(c) 9

(d) 27

[GATE 1996: 2 Marks]

Soln. The frequency modulation index Ξ² is multiplied by n in ntimes

frequency multiplier.

𝑺𝒐, πœ·β€² = πŸ‘ Γ— πŸ—

= 27

Option (d)

17. A signal π‘₯(𝑑) = 2 cos(πœ‹. 104𝑑) volts is applied to an FM modulator with

the sensitivity constant of 10 KHz/volt. Then the modulation index of the

FM wave is

(a) 4

(b) 2

(c) 4/Ο€

(d) 2/Ο€

[GATE 1989: 2 Marks]

Soln. Modulation index

𝜷 =π‘²π’‡π‘¨π’Ž

π’‡π’Ž

𝑲𝒇 = πŸπŸŽπ‘²π‘―π’›/𝒗𝒐𝒍𝒕

Am is the amplitude of modulating signal

fm is the modulating frequency

𝜷 =𝟏𝟎 Γ— πŸπŸŽπŸ‘ Γ— 𝟐

π…Γ—πŸπŸŽπŸ’

πŸπ…

= πŸ’

Option (a)

Page 12: Angle Modulated Systems1

18. A carrier 𝐴𝐢 cos πœ”π‘ 𝑑 is frequency modulated by a signal πΈπ‘š cos πœ”π‘š 𝑑.The

modulation index is mf. The expression for the resulting FM signal is

(a) 𝐴𝑐 cos[πœ”π‘π‘‘ + π‘šπ‘“ sin πœ”π‘šπ‘‘]

(b) 𝐴𝑐 cos[πœ”π‘π‘‘ + π‘šπ‘“ cos πœ”π‘šπ‘‘]

(c) 𝐴𝑐 cos[πœ”π‘π‘‘ + 2πœ‹ π‘šπ‘“ sin πœ”π‘šπ‘‘]

(d) 𝐴𝐢 cos [πœ”π‘π‘‘ +2πœ‹π‘šπ‘“πΈπ‘š

πœ”π‘šcos πœ”π‘šπ‘‘]

[GATE 1989: 2 Marks]

Soln. The frequency modulated signal

𝑽𝑭𝑴(𝒕) = 𝑨𝒄 𝐜𝐨𝐬[πŽπ’„π’• + 𝑲𝒇 ∫ π’Ž(𝒕)𝒅𝒕]

Kf is the frequency sensitivity of the modulator

∫ π’Ž(𝒕)𝒅𝒕 = ∫ π‘¬π’Ž 𝐜𝐨𝐬 πŽπ’Žπ’• 𝒅𝒕 =π‘¬π’Ž 𝐬𝐒𝐧 πŽπ’Žπ’•

πŽπ’Ž

𝑽𝑭𝑴(𝒕) = 𝑨𝒄 𝐜𝐨𝐬 [πŽπ’„π’• +π‘²π’‡π‘¬π’Ž

πŽπ’Žπ¬π’π§ πŽπ’Žπ’•]

= 𝑨𝒄 𝐜𝐨𝐬[πŽπ’„π’• + π’Žπ’‡ 𝐬𝐒𝐧 πŽπ’Žπ’•]where mf is the modulation index

Option (a)

19. A message m(t) bandlimited to the frequency fm has a power of Pm. The

power of the output signal in the figure is

multiplyOutput signal

Ideal low

Pass filter

Cut of f=fm

Pass band

gain=1

Page 13: Angle Modulated Systems1

(a) π‘ƒπ‘š cos πœƒ

2

(b) π‘ƒπ‘š

4

(c) π‘ƒπ‘šπ‘ π‘–π‘›2πœƒ

4

(d) π‘ƒπ‘šπ‘π‘œπ‘ 2πœƒ

4

[GATE 2000: 2 Marks]

Soln. Output of the multiplier = π’Ž(𝒕) 𝐜𝐨𝐬 πŽπŸŽπ’• 𝒄𝒐𝒔(πŽπŸŽπ’• + 𝜽)

=π’Ž(𝒕)

𝟐[𝐜𝐨𝐬(πŸπŽπŸŽπ’• + 𝜽) + 𝐜𝐨𝐬 𝜽]

Output of LPF π‘½πŸŽ(𝒕) =π’Ž(𝒕)

𝟐𝐜𝐨𝐬 𝜽

=𝟏

𝟐𝐜𝐨𝐬 𝜽 π’Ž(𝒕)

Power of output signal

= π₯π’π¦π‘»β†’βˆž

𝟏

π‘»βˆ« π‘½πŸŽ

𝟐(𝒕)𝒅𝒕

𝑻

𝟎

= π₯π’π¦π‘»β†’βˆž

𝟏

π‘»βˆ«

π‘ͺπ’π’”πŸπœ½

πŸ’π’ŽπŸ(𝒕)𝒅𝒕

=π’„π’π’”πŸπœ½

πŸ’π₯π’π¦π‘»β†’βˆž

𝟏

π‘»βˆ« π’ŽπŸ(𝒕)𝒅𝒕

𝑻

𝟎

=π’„π’π’”πŸπœ½

πŸ’π‘·π’Ž

Option (d)

20. c(t) and m(t) are used to generate an FM signal. If the peak frequency

deviation of the generated FM signal is three times the transmission

bandwidth of the AM signal , then the coefficient of the term

Page 14: Angle Modulated Systems1

5cos[2πœ‹(1008 Γ— 103𝑑)] in the FM signal (in terms of the Bessel

coefficients) is

(a) 5𝐽4(3)

(b) 5

2𝐽8(3)

(c) 5

2𝐽8(4)

(d) 5𝐽4(6)

[GATE 2003: 2 Marks]

Soln.

𝑽𝑭𝑴(𝒕) = βˆ‘ 𝑨𝑱𝒏(π’Žπ’‡) 𝐜𝐨𝐬(πŽπ’„ + π’πŽπ’Ž)𝒕

∞

𝒏=βˆ’βˆž

Peak frequency deviation of FM signal is three times the bandwidth of

AM signal

πœΉπ’‡ = πŸ‘ Γ— πŸπ’‡π’Ž = πŸ”π’‡π’Ž

Modulation index

π’Žπ’‡ =πœΉπ’‡

π’‡π’Ž=

πŸ”π’‡π’Ž

π’‡π’Ž= πŸ”

πŸ“ 𝐜𝐨𝐬[πŸπ…(πŸπŸŽπŸŽπŸ– Γ— πŸπŸŽπŸ‘π’•)] = πŸ“ 𝐜𝐨𝐬[πŸπ…(𝟏𝟎𝟎𝟎 + πŸ’ Γ— 𝟐) Γ— πŸπŸŽπŸ‘]

𝒏 = πŸ’

The required coefficient is πŸ“π‘±πŸ’(πŸ”)

Option (d)

21. Consider a system shown in the figure. Let 𝑋(𝑓) π‘Žπ‘›π‘‘ π‘Œ(𝑓) denote the

Fourier transforms of π‘₯(𝑑)π‘Žπ‘›π‘‘ 𝑦(𝑑) respectively. The ideal HPF has the

cutoff frequency 10 KHz.

Page 15: Angle Modulated Systems1

Balanced

ModulatorHPF

10KHzx(t) Balanced

Modulator

10 KHz 13 KHz

X(f)

f (KHz)

-3 31-1

The positive frequencies where Y(f) has spectral peaks are

(a) 1 KHz and 24 KHz

(b) 2 KHz and 24 KHz

(c) 1 KHz and 14 KHz

(d) 2 KHz and 14 KHz

[GATE 2004: 2 Marks]

Soln. Input signal x(f) has the peaks at 1KHz and -1Mhz.

The output of balanced modulator will have peaks at

𝒇𝒄 Β± 𝟏, 𝒇𝒄 Β± (βˆ’πŸ)𝒇𝒄 Β± 𝟏 = 𝟏𝟎 Β± 𝟏

= 𝟏𝟏 𝒂𝒏𝒅 πŸ— 𝑲𝑯𝒛

𝒇𝒄 Β± (βˆ’πŸ) = 𝟏𝟎 Β± (βˆ’πŸ) = πŸ— 𝑲𝑯𝒛 𝒂𝒏𝒅 𝟏𝟏 𝑲𝑯𝒛

9 MHz will be filtered out by the HPF

After passing through 13 KHz balanced modulator, the signal will have

πŸπŸ‘ Β± 𝟏𝟏 frequencies.

π’š(𝒇) = πŸπŸ’ 𝑲 𝒂𝒏𝒅 𝟐 𝑲

Option (b)

Page 16: Angle Modulated Systems1

Common Data for Questions 22 & 23

Consider the following Amplitude Modulated (AM) signal,

Where π‘“π‘š < 𝐡 𝑋𝐴𝑀(𝑑) = 10(1 + 0.5 sin 2πœ‹ π‘“π‘šπ‘‘) cos 2πœ‹π‘“π‘π‘‘

22. The average side-band power for the AM signal given above is

(a) 25

(b) 12.5

(c) 6.25

(d) 3.125

[GATE 2006: 2 Marks]

Soln. The average sideband power for the AM signal is

𝑷𝑺𝑩 = 𝑷𝒄

π’Žπ’‚πŸ

𝟐

𝑷𝒄 β†’ π’„π’‚π’“π’“π’Šπ’†π’“ π’‘π’π’˜π’†π’“

π’Žπ’‚ β†’ π’Žπ’π’…π’–π’π’‚π’•π’Šπ’π’ π’Šπ’π’…π’†π’™

𝑷𝒄 =π‘¨π’„πŸ

𝟐=

𝟏𝟎𝟐

𝟐

= πŸ“πŸŽπŽ

π’Žπ’‚ = 𝟎. πŸ“

So,

𝑷𝑺𝑩 = πŸ“πŸŽ(𝟎. πŸ“)𝟐

𝟐

=πŸ“πŸŽ Γ— 𝟎. πŸπŸ“

𝟐

= πŸ”. πŸπŸ“ π’˜π’‚π’•π’•π’”

Option (c)

Page 17: Angle Modulated Systems1

23. The AM signal gets added to a noise with Power Spectral Density Sn(f)

given in the figure below. The ratio of average sideband power to mean

noise power would be:

(a) 25

8𝑁0𝐡

(b) 25

4𝑁0𝐡

(c) 25

2𝑁0𝐡

(d) 25

𝑁0𝐡

[GATE 2006: Marks]

Soln. The AM signal gets added to a noise with spectral density 𝒔𝒏(𝒇)

The noise power

𝑷𝑻 = ∫ 𝒔𝒏(𝒇)𝒅𝒇

∞

βˆ’βˆž

= 𝟐 ∫ 𝒔𝒏(𝒇)𝒅𝒇

∞

𝟎

Noise power = πŸ’ [𝟏

πŸΓ—

𝑩

πŸΓ—

π‘΅πŸŽ

𝟐]

= π‘΅πŸŽπ‘©

Power in sidebands 𝑷𝑺𝑩 =πŸπŸ“

πŸ’ π’˜π’‚π’•π’•π’”

𝑷𝑺𝑩

π’π’π’Šπ’”π’† π’‘π’π’˜π’†π’“=

πŸπŸ“

πŸ’π‘΅πŸŽπ‘© π’π’‘π’•π’Šπ’π’ (𝒃)