Click here to load reader

Anlage C - · PDF file Antrag auf Reakkreditierung des Master-Studiengangs Computational Engineering C1 Anlage C (Seite C1 – C76) Modulhandbuch zum Masterkurs Computational Engineering

  • View
    2

  • Download
    0

Embed Size (px)

Text of Anlage C - · PDF file Antrag auf Reakkreditierung des Master-Studiengangs Computational...

  • Antrag auf Reakkreditierung des Master-Studiengangs Computational Engineering C1

    Anlage C (Seite C1 – C76)

    Modulhandbuch

    zum

    Masterkurs Computational Engineering

    Ruhr-Universität Bochum

    Fakultät für

    Bau- und Umweltingenieurwissenschaften

  • Antrag auf Reakkreditierung des Master-Studiengangs Computational Engineering C2

    Content Curriculum ......................................................................................................................... C2

    Compulsory Courses P01 – P07 ...................................................................................... C3

    CE-P01: Mathematical Aspects of Differential Equations and Numerical Mathematics .... C4

    CE-P02: Mechanical Modelling of Materials ..................................................................... C6

    CE-P03: Computer-based Analyses of Steel Structures................................................... C8

    CE-P04: Modern Programming Concepts in Engineering ............................................... C10

    CE-P05: Finite Element Methods in Linear Structural Mechanics ................................... C12

    CE-P06: Fluid Dynamics ................................................................................................ C14

    CE-P07: Continuum Mechanics ..................................................................................... C16

    Compulsory Optional Courses WP01 – WP22 ............................................................... C18

    CE-WP01: Variational Calculus and Tensor Analysis ..................................................... C19

    CE-WP02: Concrete Engineering and Design ................................................................ C21

    CE-WP03: Dynamics and Adaptronics ........................................................................... C23

    CE-WP04: Advanced Finite Element Methods ............................................................... C26

    CE-WP05: Computational Fluid Dynamics ..................................................................... C28

    CE-WP06: Finite Element Method for Nonlinear Analyses of Materials and Structures .. C31

    CE-WP07: Computational Modelling of Mixtures ............................................................ C33

    CE-WP08: Numerical Methods and Stochastics ............................................................ C35

    CE-WP09: Numerical Simulation in Geotechnics and Tunnelling ................................... C37

    CE-WP10: Object-oriented Modelling and Implementation of Structural Analysis Software . C39

    CE-WP11: Dynamics of Structures ................................................................................ C41

    CE-WP12: Computational Plasticity ............................................................................... C43

    CE-WP13: Advanced Control Methods for Adaptive Mechanical Systems ..................... C45

    CE-WP14: Computational Wind Engineering ................................................................. C47

    CE-WP15: Design Optimization ..................................................................................... C49

    CE-WP16: Parallel Computing ....................................................................................... C51

    CE-WP17: Adaptive Finite Element Methods ................................................................. C53

    CE-WP18: Safety and Reliability of Engineering Structures ........................................... C56

    CE-WP19: Numerical Simulation of Fracture Materials .................................................. C58

    CE-WP20: Materials for Aerospace Applications............................................................ C60

    CE-WP21: CE-WP01 Energy Methods in Material Modelling ......................................... C62

    CE-WP22: Case Study A ............................................................................................... C64

  • Antrag auf Reakkreditierung des Master-Studiengangs Computational Engineering C3

    Optional Courses W01 – W03 ......................................................................................... C66

    CE-W01: Training of Competences (Part 1) ................................................................... C67

    CE-W02: Training of Competences (Part 2) ................................................................... C69

    CE-W03: Case Study B.................................................................................................. C70

    Master Thesis .................................................................................................................. C72

    CE-M: Master Thesis ..................................................................................................... C73

  • Antrag auf Reakkreditierung des Master-Studiengangs Computational Engineering C4

    Curriculum 2015

  • Antrag auf Reakkreditierung des Master-Studiengangs Computational Engineering C5

    Compulsory Courses P01 – P07

  • Antrag auf Reakkreditierung des Master-Studiengangs Computational Engineering C6

    Study course: Master Course Computational Engineering

    Module name: CE-P01: Mathematical Aspects of Differential Equations and Numerical Mathematics

    Abbreviation, if applicable:

    MADENM

    Sub-heading, if applicable:

    -

    Module Coordinator(s): Prof. Dr. B. Bramham

    Classification within the curriculum:

    Master of Science course Computational Engineering: compulsory course.

    This course is not offered in any other study program.

    Courses included in the module, if applicable:

    Mathematical Aspects of Differential Equations and Numerical Mathematics

    Semester/term: 1st Semester / WS

    Lecturer(s): Prof. Dr. B. Bramham, Assistants

    Language: English

    Requirements: No prior knowledge or preliminary modules Basic calculus and experience with matrices.

    Teaching format / class hours per week during the semester:

    Lectures: 2h

    Exercises: 2h

    Remark: Due to the mixed background of the students, the exercise sessions often amount to additional lectures.

    Study/exam achievements:

    Written examination / 180 minutes

    Workload [h / LP]: 180 / 6

    Thereof face-to-face teaching [h]

    60

    Preparation and post- processing (including examination) [h]

    90

    Seminar papers [h] -

    Homework [h] 30

    Credit points: 6

  • Antrag auf Reakkreditierung des Master-Studiengangs Computational Engineering C7

    Learning goals / competences:

    The course will focus on the mathematical formulation of differential equations with applications to elastic theory and fluid mechanics. It gives an introduction to geometric linear algebra with emphasis on function spaces, coupled with the elementary aspects of partial differential equations. The students should learn to understand the mathematics side of the Finite Element Method for elliptic PDE in low dimensions, appropriate Sobolev geometries, the FEM for Dirichlet and Neumann problems. For that reason the basic principles in methods of error estimation are described to realize the understanding of fast and efficient solvers for the resulting matrix equations. As overall learning goal the students should attain familiarity with modern methods and concepts for the numerical solution of complicated mathematical problems.

    Content:

    Linear algebra: Basic concepts and techniques for finite- and infinite- dimensional function spaces stressing the role of linear differential operators. Numerical algorithms for solving linear systems. The mathematics of the finite element method in the context of elliptic partial differential equations (model problems) in dimension two.

    Forms of media: Blackboard presentations, one-to-one discussions and discussions in small groups.

    Literature: Claes Johnson, Numerical solution of partial differential equations by the finite element method, Cambridge 1987

  • Antrag auf Reakkreditierung des Master-Studiengangs Computational Engineering C8

    Study course: Master Course Computational Engineering

    Module name: CE-P02: Mechanical Modelling of Materials

    Abbreviation, if applicable:

    MECHMOD

    Sub-heading, if applicable:

    -

    Module Coordinator(s): Prof. Dr.-Ing. R. Jänicke

    Classification within the Curriculum:

    Master of Science course Computational Engineering: compulsory course.

    This course is not taught in any other study course.

    Courses included in the module, if applicable:

    Mechanical Modelling of Materials

    Semester/term: 1st Semester / WS

    Lecturer(s): Prof. Dr.-Ing. R. Jänicke, Assistants

    Language: English

    Requirements: Basic knowledge in Mathematics and Mechanics (Statics, Dynamics and Strength of Materials)

    Teaching format / class hours per week during the semester:

    Lectures: 2h

    Exercises: 2h

    Study/exam achievements:

    Written examination / 180 minutes

    Workload [h / LP]: 180 / 6

    Thereof face-to-face teaching [h]

    60

    Preparation and post processing (including examination) [h]

    90

    Seminar papers [h] -