33
Antiproton Limits on Decaying Gravitino Dark Matter Michael Grefe Departamento de F´ ısica Te´ orica Instituto de F´ ısica Te´ orica UAM/CSIC Universidad Aut´ onoma de Madrid Particle Theory Journal Club Rudolf Peierls Centre for Theoretical Physics – University of Oxford 13 June 2013 based on T. Delahaye and MG: arXiv:1305.7183 Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 1 / 26

Antiproton Limits on Decaying Gravitino Dark Mattermgrefe/files/Grefe_Oxford2013.pdf · 2014. 7. 2. · Outline I Motivation for Decaying Gravitino Dark Matter I Gravitino Dark Matter

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • Antiproton Limits on Decaying Gravitino Dark Matter

    Michael GrefeDepartamento de Fı́sica TeóricaInstituto de Fı́sica Teórica UAM/CSICUniversidad Autónoma de Madrid

    Particle Theory Journal ClubRudolf Peierls Centre for Theoretical Physics – University of Oxford

    13 June 2013

    based on T. Delahaye and MG: arXiv:1305.7183

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 1 / 26

  • Outline

    I Motivation for Decaying Gravitino Dark Matter

    I Gravitino Dark Matter with Broken R Parity

    I Indirect Detection of Gravitino Dark Matter

    I Antiproton Limits on the Lifetime and the Amount of R-Parity Violation

    I Conclusions

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 2 / 26

  • Motivation for Decaying Gravitino Dark Matter

    Motivation forDecaying Gravitino Dark Matter

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 3 / 26

  • Motivation for Decaying Gravitino Dark Matter

    What Do We Know about Dark Matter?

    I Observed on various scales through its gravitational interactionI Contributes significantly to the energy density of the universe

    [M. Whittle] [ESA / Planck Collaboration] [NASA / Clowe et al.]

    I Dark matter properties known from observations• No electromagnetic and strong interactions• At least gravitational and at most weak-scale interactions• Non-baryonic• Cold (maybe warm)• Extremely long-lived but can be unstable!

    [ESA / Planck Collaboration]

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 4 / 26

  • Motivation for Decaying Gravitino Dark Matter

    How Can We Unveil the Nature of Dark Matter?

    I Three search strategies for dark matter

    • Direct detection in the scattering off matter nuclei• Production of dark matter particles at colliders• Indirect detection in cosmic ray signatures

    [Max-Planck-Institut für Kernphysik]

    [CERN] [Aprile et al. (2012)] [AMS Collaboration]

    A combination will be necessary to identify the nature of particle dark matter!

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 5 / 26

  • Motivation for Decaying Gravitino Dark Matter

    How Can We Unveil the Nature of Dark Matter?

    I Three search strategies for dark matter

    • Direct detection in the scattering off matter nuclei• Production of dark matter particles at colliders• Indirect detection in cosmic ray signatures

    [Max-Planck-Institut für Kernphysik]

    [CERN] [Aprile et al. (2012)] [AMS Collaboration]

    A combination will be necessary to identify the nature of particle dark matter!

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 5 / 26

  • Motivation for Decaying Gravitino Dark Matter

    Gravitino Dark Matter: Stable or Unstable?

    I Stable Gravitino Dark Matter• Typical in gauge mediation with conserved R-parity• No direct detection signal expected: σN ∼ M−4Pl• No annihilation signal expected: σann ∼ M−4Pl• Collider signals from long-lived NLSP expected• Long-lived NLSP can be in conflict with BBN

    [The Particle Zoo]

    I Unstable Gravitino Dark Matter• Typical candidate in models with R-parity violation• Lifetime larger than the age of the universe• No direct detection signal expected: σN ∼ M−4Pl• Decays could lead to observable cosmic-ray signals• Collider signals from long-lived NLSP expected

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 6 / 26

  • Motivation for Decaying Gravitino Dark Matter

    Why Decaying Gravitino Dark Matter?I Smallness of observed neutrino masses motivates seesaw mechanism

    I Explains baryon asymmetry via thermal leptogenesis [Fukugita, Yanagida (1986)]• Needs high reheating temperature: TR & 109 GeV [Davidson, Ibarra (2002)]

    I Supergravity predicts gravitino as spin-3/2 superpartner of the graviton

    I Gravitinos are thermally produced after inflation in the early universe:

    ΩTP3/2h2 '

    3∑i=1

    ωi g2i

    (1 +

    M2i3 m23/2

    )ln(

    kigi

    )(m3/2

    100 GeV

    )(TR

    1010 GeV

    )[Pradler, Steffen (2006)]

    I Problem in scenarios with neutralino dark matter:• Gravitino decays suppressed by Planck scale:

    τ3/2 ∼M2Pl

    m33/2≈ 3 years

    (100 GeV

    m3/2

    )3• Decays with τ & O(1–1000 s) spoil BBN ⇒ Cosmological gravitino problem

    Possible solution: Gravitino is the LSP and thus stable!

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 7 / 26

  • Motivation for Decaying Gravitino Dark Matter

    Why Decaying Gravitino Dark Matter?I Smallness of observed neutrino masses motivates seesaw mechanism

    I Explains baryon asymmetry via thermal leptogenesis [Fukugita, Yanagida (1986)]• Needs high reheating temperature: TR & 109 GeV [Davidson, Ibarra (2002)]

    I Supergravity predicts gravitino as spin-3/2 superpartner of the graviton

    I Gravitinos are thermally produced after inflation in the early universe:

    ΩTP3/2h2 '

    3∑i=1

    ωi g2i

    (1 +

    M2i3 m23/2

    )ln(

    kigi

    )(m3/2

    100 GeV

    )(TR

    1010 GeV

    )[Pradler, Steffen (2006)]

    I Problem in scenarios with neutralino dark matter:• Gravitino decays suppressed by Planck scale:

    τ3/2 ∼M2Pl

    m33/2≈ 3 years

    (100 GeV

    m3/2

    )3• Decays with τ & O(1–1000 s) spoil BBN ⇒ Cosmological gravitino problem

    Possible solution: Gravitino is the LSP and thus stable!

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 7 / 26

  • Motivation for Decaying Gravitino Dark Matter

    Why Decaying Gravitino Dark Matter?I Relation between gravitino mass and reheating temperature:

    m g =

    500Ge

    V

    m g =

    10Te

    V

    no thermal leptogenesis

    Gravitino not LSPexc

    luded

    by

    gluino

    search

    es

    disfav

    oured

    by

    hierar

    chypro

    blem

    Delahaye & Grefe H2013L

    1 10 100 1000 10 000

    107

    108

    109

    1010

    1011

    Gravitino Mass m32 HGeVL

    Reh

    eatin

    gT

    empe

    ratu

    reT

    RHG

    eVL

    I With thermal leptogenesis correct relic density possible forO(10) GeV < m3/2 < O(500) GeV ⇒ Gravitino dark matter

    [Buchmüller et al. (2008))]

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 8 / 26

  • Motivation for Decaying Gravitino Dark Matter

    Why Decaying Gravitino Dark Matter?

    I Still problematic:• NLSP can only decay to gravitino LSP:

    τNLSP '48πM2Plm

    23/2

    m5NLSP≈ 9 days

    (m3/2

    10 GeV

    )2(150 GeVmNLSP

    )5• Late NLSP decays are in conflict with BBN ⇒ Cosmological gravitino problem

    Possible solution: R-parity is not exactly conserved!

    I Other options:• Choose harmless NLSP like sneutrino [Covi, Kraml (2007)]• Dilute NLSP density by late entropy production [Buchmüller et al. (2006)]

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 9 / 26

  • Motivation for Decaying Gravitino Dark Matter

    Why Decaying Gravitino Dark Matter?

    I Still problematic:• NLSP can only decay to gravitino LSP:

    τNLSP '48πM2Plm

    23/2

    m5NLSP≈ 9 days

    (m3/2

    10 GeV

    )2(150 GeVmNLSP

    )5• Late NLSP decays are in conflict with BBN ⇒ Cosmological gravitino problem

    Possible solution: R-parity is not exactly conserved!

    I Other options:• Choose harmless NLSP like sneutrino [Covi, Kraml (2007)]• Dilute NLSP density by late entropy production [Buchmüller et al. (2006)]

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 9 / 26

  • Gravitino Dark Matter with Broken R-Parity

    Gravitino Dark Matterwith Broken R-Parity

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 10 / 26

  • Gravitino Dark Matter with Broken R-Parity

    Gravitino Dark Matter with Bilinear R-Parity Violation

    I Bilinear R-parity violation: W/Rp = µiHuLi , −Lsoft/Rp

    = BiHu ˜̀i + m2Hd`i H∗d

    ˜̀i + h.c.

    • Only lepton number violated ⇒ Proton remains stable!

    I R-parity violation can be parametrized by sneutrino VEV: ξ =〈ν̃〉v

    I Bound from contribution to neutrino masses• Upper bound: Below limit on sum of neutrino masses: ξ . O(10−4–6)

    I Cosmological bounds on R-violating couplings• Lower bound: The NLSP must decay before the time of BBN: ξ & O(10−11–14)• Upper bound: No washout of lepton/baryon asymmetry: ξ . O(10−6)

    I Tiny bilinear R-parity violation can be related to U(1)B–L breaking[Buchmüller et al. (2007)]

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 11 / 26

  • Gravitino Dark Matter with Broken R-Parity

    Gravitino Dark Matter with Bilinear R-Parity Violation

    I Gravitino decay suppressed by Planck scale and small R-parity violation

    • Gravitino decay width: Γ3/2 ∝ξ2 m33/2

    M2Pl= 2.6× 10−24 s−1

    ( m33/210 GeV

    )3 (ξ

    10−7)2

    [Takayama, Yamaguchi (2000)]

    • The gravitino lifetime by far exceeds the age of the universe (τ3/2 � 1017 s)

    The unstable gravitino is a well-motivated and viable dark matter candidate!

    I Rich phenomenology instead of elusive gravitinos:

    • A long-lived NLSP could be observed at the LHC[Buchmüller et al. (2007), Bobrovskyi et al. (2010, 2011, 2012)]

    • Gravitino decays can possibly be observed at indirect detection experiments[Takayama et al. (2000), Buchmüller et al. (2007), Ibarra, Tran (2008), Ishiwata et al. (2008) etc.]

    Gravitinos could be observed at colliders and in the spectra of cosmic rays!

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 12 / 26

  • Gravitino Dark Matter with Broken R-Parity

    Gravitino Dark Matter with Bilinear R-Parity Violation

    I Gravitino decay suppressed by Planck scale and small R-parity violation

    • Gravitino decay width: Γ3/2 ∝ξ2 m33/2

    M2Pl= 2.6× 10−24 s−1

    ( m33/210 GeV

    )3 (ξ

    10−7)2

    [Takayama, Yamaguchi (2000)]

    • The gravitino lifetime by far exceeds the age of the universe (τ3/2 � 1017 s)

    The unstable gravitino is a well-motivated and viable dark matter candidate!

    I Rich phenomenology instead of elusive gravitinos:

    • A long-lived NLSP could be observed at the LHC[Buchmüller et al. (2007), Bobrovskyi et al. (2010, 2011, 2012)]

    • Gravitino decays can possibly be observed at indirect detection experiments[Takayama et al. (2000), Buchmüller et al. (2007), Ibarra, Tran (2008), Ishiwata et al. (2008) etc.]

    Gravitinos could be observed at colliders and in the spectra of cosmic rays!

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 12 / 26

  • Gravitino Dark Matter with Broken R-Parity

    Gravitino Decay ChannelsI Several two-body decay channels: ψ3/2 → γ νi , Z νi , W `i , h νi

    + ...

    • Γγνi 'ξ2i m

    33/2

    32πM2Pl|Uγ̃Z̃ |

    2 ∝ξ2i m

    33/2

    M2Pl

    (M2−M1M1 M2

    )2• ΓZνi '

    ξ2i m33/2

    32πM2Pl

    (1− m

    2Z

    m23/2

    )2{U2Z̃ Z̃ f

    (m2Z

    m23/2

    )+ ...

    }• ΓW+`−i '

    ξ2i m33/2

    16πM2Pl

    (1− m

    2W

    m23/2

    )2{U2W̃W̃ f

    (m2W

    m23/2

    )+ ...

    }• Γhνi '

    ξ2i m33/2

    192πM2Pl

    (1− m

    2h

    m23/2

    )4I Dependence on mass mixings → dependence on gaugino masses

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 13 / 26

  • Gravitino Dark Matter with Broken R-Parity

    Gravitino Decay Width and Branching Ratios

    I Three benchmark models• Bino-like NLSP: M1 = 1.1 m3/2• Wino-like NLSP: M2 = 1.1 m3/2• Higgsino-like NLSP: µ = 1.1 m3/2

    I Common asymptotic decay width

    Ξ = 10-9

    Bino NLSP

    Wino NLSP

    Higgsino NLSP

    asymptotic value: G32 =Ξ

    2 m323

    48 Π MPl2

    Delahaye & Grefe H2013L

    10 100 1000 10 000

    10-60

    10-59

    10-58

    10-57

    Gravitino Mass m32 HGeVL

    Gra

    vitin

    oD

    ecay

    Wid

    thG

    32

    m3

    23

    HGeV

    -2 L

    Bino NLSP

    Wino NLSP

    Higgsino NLSP

    ΓΝ

    W{

    Delahaye & Grefe H2013L

    100 1000 10 000

    0.001 %

    0.01 %

    0.1 %

    1 %

    10 %

    100 %

    Gravitino Mass m32 HGeVL

    Bra

    nchi

    ngR

    atio I Branching ratios are independent

    of strength of R-parity violation

    I Exact ratio between channels ismodel-dependent, in particular γν

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 14 / 26

  • Gravitino Dark Matter with Broken R-Parity

    Final State Particle Spectra

    I Gravitino decays produce stable cosmic rays: γ, e, p, d , νe/µ/τ• Proton/antiproton spectra from gravitino decay generated with PYTHIA• No protons from γν; Zν and W ` very similar; a bit more protons from hν

    Ψ32 ® ZΝi , pp Spectrum

    m32 =100 GeV

    1 TeV10 TeV

    Delahaye & Grefe H2013L

    10-6 10-5 10-4 10-3 0.01 0.1 1

    10-6

    10-5

    10-4

    10-3

    0.01

    0.1

    1

    Kinetic Energy x = 2 Tm32

    Prot

    onA

    ntip

    roto

    nSp

    ectr

    umx

    dNd

    x

    Ψ32 ® W {i , pp Spectrum

    m32 =100 GeV

    1 TeV10 TeV

    Delahaye & Grefe H2013L

    10-6 10-5 10-4 10-3 0.01 0.1 1

    10-6

    10-5

    10-4

    10-3

    0.01

    0.1

    1

    Kinetic Energy x = 2 Tm32

    Prot

    onA

    ntip

    roto

    nSp

    ectr

    umx

    dNd

    x

    Ψ32 ® hΝi , pp Spectrum

    mh = 125 GeV

    m32 =150 GeV

    1 TeV10 TeV

    Delahaye & Grefe H2013L

    10-6 10-5 10-4 10-3 0.01 0.1 1

    10-6

    10-5

    10-4

    10-3

    0.01

    0.1

    1

    Kinetic Energy x = 2 Tm32

    Prot

    onA

    ntip

    roto

    nSp

    ectr

    umx

    dNd

    x

    Basis for phenomenology of indirect gravitino dark matter searches!

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 15 / 26

  • Gravitino Dark Matter with Broken R-Parity

    Final State Particle Spectra

    I Gravitino decays produce stable cosmic rays: γ, e, p, d , νe/µ/τ• Proton/antiproton spectra from gravitino decay generated with PYTHIA• No protons from γν; Zν and W ` very similar; a bit more protons from hν

    Ψ32 ® ZΝi , pp Spectrum

    m32 =100 GeV

    1 TeV10 TeV

    Delahaye & Grefe H2013L

    10-6 10-5 10-4 10-3 0.01 0.1 1

    10-6

    10-5

    10-4

    10-3

    0.01

    0.1

    1

    Kinetic Energy x = 2 Tm32

    Prot

    onA

    ntip

    roto

    nSp

    ectr

    umx

    dNd

    x

    Ψ32 ® W {i , pp Spectrum

    m32 =100 GeV

    1 TeV10 TeV

    Delahaye & Grefe H2013L

    10-6 10-5 10-4 10-3 0.01 0.1 1

    10-6

    10-5

    10-4

    10-3

    0.01

    0.1

    1

    Kinetic Energy x = 2 Tm32

    Prot

    onA

    ntip

    roto

    nSp

    ectr

    umx

    dNd

    x

    Ψ32 ® hΝi , pp Spectrum

    mh = 125 GeV

    m32 =150 GeV

    1 TeV10 TeV

    Delahaye & Grefe H2013L

    10-6 10-5 10-4 10-3 0.01 0.1 1

    10-6

    10-5

    10-4

    10-3

    0.01

    0.1

    1

    Kinetic Energy x = 2 Tm32

    Prot

    onA

    ntip

    roto

    nSp

    ectr

    umx

    dNd

    x

    Basis for phenomenology of indirect gravitino dark matter searches!

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 15 / 26

  • Indirect Detection of Gravitino Dark Matter

    Indirect Detection ofGravitino Dark Matter

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 16 / 26

  • Indirect Detection of Gravitino Dark Matter

    Cosmic-Ray PropagationI Cosmic rays from gravitino decays propagate through the Milky Way

    I Experiments observe spectra of cosmic rays at Earth

    [NASA E/PO, SSU, Aurore Simonnet] [PAMELA Collaboration] [IceCube Collaboration]

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 17 / 26

  • Indirect Detection of Gravitino Dark Matter

    Cosmic-Ray PropagationI Diffusion equation for cosmic-ray density ψ:

    ~∇ · (~Vc ψ − K0 β pδ ~∇ψ) + 2 h δ(z) ∂E (bloss ψ − DEE ∂Eψ)= Qprim + 2 h δ(z)

    (Qsec + Qter

    )− 2 h δ(z) Γann ψ

    + boundary conditions

    • ~Vc : velocity of the convective wind from stars in the Galactic plane• K0 β pδ: spatial diffusion from irregularities of the Galactic magnetic field• bloss: energy losses from interaction with interstellar gas• DEE : coefficient for diffusion in energy• Qsec: antiprotons from collisions of cosmic-ray protons or α with interstellar gas• Qter: antiprotons from inelastic collisions of antiprotons with interstellar gas• Γann: annihilation of antiprotons with cosmic-ray protons

    I Gravitino decays are a primary antiproton source in the Galactic halo:

    Qprim(T , r) =ρhalo(r)

    m3/2 τ3/2dNdT

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 18 / 26

  • Indirect Detection of Gravitino Dark Matter

    Cosmic-Ray Propagation

    I Two approaches to solve diffusion equation:• Numerical: GALPROP, DRAGON• Semi-analytical: Two-zone diffusion model for the Milky Way (USINE)

    I Propagation parameters constrained by secondary-to-primary ratios

    I Typical approach: 3 parameter sets to estimate uncertainty

    L (kpc) K0 (kpc2/Myr) δ ‖~Vc‖ (km/s) Va (km/s)

    MIN 1 0.0016 0.85 13.5 22.4MED 4 0.0112 0.70 12 52.9MAX 15 0.0765 0.46 5 117.6

    I Our approach: Scan over all allowed propagation parameters• Roughly 1600 parameter sets [Maurin et al. (2001))]• Allows to reliably estimate the uncertainty from cosmic-ray propagation

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 19 / 26

  • Indirect Detection of Gravitino Dark Matter

    Gravitino Decay Signals in Antiproton Spectra

    æ

    æ ææ æ æ

    ææ æ

    æ ææ

    æ

    æ ææ

    æ

    æ

    æ

    æ

    æ

    æ

    æ

    ææ PAMELA dataAstrophysical Background

    MAXMEDMIN

    100 GeV1 TeV10 TeV

    Bino NLSP

    Τ32 = 1028 s

    Delahaye & Grefe H2013L

    0.1 1 10 100 1000

    10-7

    10-6

    10-5

    10-4

    10-3

    0.01

    0.1

    Kinetic Energy T HGeVL

    Ant

    ipro

    ton

    Flux

    Fp

    HGeV

    -1

    m-

    2s-

    1sr

    -1

    L

    I Observed antiproton spectrum well described by astrophysical background• No need for contribution from dark matter

    I Propagation uncertainty roughly one order of magnitude• Expected to be improved by forthcoming AMS-02 cosmic-ray data

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 20 / 26

  • Antiproton Limits on the Lifetime and the Amount of R-Parity Violation

    Antiproton Limits on the Lifetimeand the Amount of R-Parity Violation

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 21 / 26

  • Antiproton Limits on the Lifetime and the Amount of R-Parity Violation

    Limits on the Gravitino Lifetime

    I Lifetime limits derived using chi-squared statistics

    χ2 =∑

    i

    (Oi − Ei )2

    σ2i

    • Oi : Observed flux in energy bin i• Ei : Expected flux in energy bin i (DM signal + astrophysical background)• σi : Data error bar in energy bin i

    I Limits at 95 % CL derived from deviation from best fit

    χ2(τ95 % CL) = χ2(τbest fit) + ∆χ

    2

    • χ2(τbest fit)/dof ∼ 0.7 (in general no DM contribution)• ∆χ2 = 4 (corresponding to 2σ exclusion for 1 fit parameter)

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 22 / 26

  • Antiproton Limits on the Lifetime and the Amount of R-Parity Violation

    Limits on the Gravitino Lifetime

    I Bounds on gravitino lifetime derived from PAMELA antiproton data

    MAX

    MED

    MIN

    Full range from scan

    Bino NLSP

    with solar modulation

    all PAMELA p data

    Delahaye & Grefe H2013L

    100 1000 10 000

    1026

    1027

    1028

    1029

    Gravitino Mass m32 HGeVL

    95%

    CL

    Low

    erL

    imit

    onL

    ifet

    ime

    Τ95

    %C

    LHsL

    I Gravitino lifetimes below a few times 1028 s to 1026 s excluded• Scan over propagation parameters can change highest/lowest limits by ∼ 40 %• Gravitino decay cannot explain rise in positron fraction (PAMELA, AMS-02)

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 23 / 26

  • Antiproton Limits on the Lifetime and the Amount of R-Parity Violation

    Limits on the Amount of R-Parity Violation

    I Gravitino lifetime limits constrain R-parity violation: τ3/2 ∝M2Pl

    ξ2 m33/2

    MAX

    MED

    MIN Bino NLSP

    Wino NLSP

    Higgsino NLSP

    Envelope of Antiproton Constraints

    excluded by washout

    excluded by BinoWino NLSP decay

    excluded by Higgsinostau NLSP decay

    excluded by neutrinomass

    excluded by antiprotons

    Delahaye & Grefe H2013L

    100 1000 10 00010-15

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    Gravitino Mass m32 HGeVL

    R-

    Par

    ity

    Vio

    lati

    ngP

    aram

    eter

    Ξ

    Indirect searches set strong limits on R-parity violation!

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 24 / 26

  • Antiproton Limits on the Lifetime and the Amount of R-Parity Violation

    Limits on the Amount of R-Parity Violation

    I Gravitino lifetime limits constrain R-parity violation: τ3/2 ∝M2Pl

    ξ2 m33/2

    MAX

    MED

    MIN Bino NLSP

    Wino NLSP

    Higgsino NLSP

    Envelope of Antiproton Constraints

    excluded by washout

    excluded by BinoWino NLSP decay

    excluded by Higgsinostau NLSP decay

    excluded by neutrinomass

    excluded by antiprotons

    Delahaye & Grefe H2013L

    100 1000 10 00010-15

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    Gravitino Mass m32 HGeVL

    R-

    Par

    ity

    Vio

    lati

    ngP

    aram

    eter

    Ξ

    Indirect searches set strong limits on R-parity violation!

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 24 / 26

  • Conclusions

    Conclusions

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 25 / 26

  • Conclusions

    Conclusions

    • Both, stable and unstable gravitinos, are viable dark matter candidates

    • Gravitino DM with broken R-parity is well motivated from cosmology

    • Decaying gravitino DM can be probed in colliders and cosmic rays

    • Strong constraints on the lifetime from PAMELA antiproton data

    • Antiproton limits constrain the strength of R-parity violation

    Thanks for your attention!

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 26 / 26

  • Conclusions

    Conclusions

    • Both, stable and unstable gravitinos, are viable dark matter candidates

    • Gravitino DM with broken R-parity is well motivated from cosmology

    • Decaying gravitino DM can be probed in colliders and cosmic rays

    • Strong constraints on the lifetime from PAMELA antiproton data

    • Antiproton limits constrain the strength of R-parity violation

    Thanks for your attention!

    Michael Grefe (IFT UAM/CSIC) Antiproton Limits on Decaying Gravitino Dark Matter University of Oxford – 13 June 2013 26 / 26

    Motivation for Decaying Gravitino Dark MatterGravitino Dark Matter with Broken R-ParityIndirect Detection of Gravitino Dark MatterAntiproton Limits on the Lifetime and the Amount of R-Parity ViolationConclusions