Artwork for Chem Ideas

Embed Size (px)

Citation preview

  • 8/9/2019 Artwork for Chem Ideas

    1/47

     Figure 3 If the 6.02 x 10 23 atoms in 12 g of 

    carbon were turned into marbles, the marbles

    could cover Great Britain to a depth of 1500 km!

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    2/47

     Figure 3 The mass spectrometer.

     Figure 3 The mass spectrometer.

     Figure 7 Variation of first ionisation enthalpy

    with atomic number for elements with atomic

    numbers 1 to 56.

     Figure 8 Successive ionisation enthalpies

     for aluminium.

    sample inlet

    electron gun

    magnetic field

    (at right anglesto paper)

    ion detector 

    ionisation chamber 

    accelerating electric field

    heavy particles

    intermediate

    particles

    lighter particles

    pump maintains

    low pressure

    He

    Li

    Ne

    Na

     Ar 

    K

    Kr 

    Rb

    Xe

    Cs

    2500

    2000

    1500

    1000

      500

     Atomic number 

    50403010 200   I

      o  n   i  s  a   t   i  o  n  e  n   t   h  a   l  p  y   /

       k   J  m  o   l  –   1

    Ionisation1st 2nd 3rd 4th 5th 6th 7th 8th

    20 000

    10 000

    0   I  o  n   i  s  a   t   i  o

      n  e  n   t   h  a   l  p  y   /   k   J  m  o   l  –   1

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    3/47

     Figure 9 Successive ionisation enthalpies

     for phosphorus.

    Energy

    Shell Sub-shell

    n= 4

    n= 3

    n= 2

    n= 1

    444343

    3

    22

    1

    f dpdsp

    s

    sp

    s

     Figure 10 Energies of electron sub-shells from

    n = 1 to n = 4 in a typical many-electron atom.

    The energy of a sub-shell is not fixed, but falls as

    the charge on the nucleus increases as you go

     from one element to the next in the Periodic

    Table. The order shown in the diagram is correct 

     for the elements in Period 3 and up to nickel in

     Period 4. After nickel the 3d sub-shell has lower energy than 4s.

    1s

    2s

    3s

    3p

    2p

    3d

    Energy

     Figure 13 Arrangement of electrons in atomic

    orbitals in a ground state sodium atom.

    Ionisation1st 2nd 3rd 4th 5th 6th 7th 8th

    20 000

    10 000

    0   I  o  n   i  s  a   t   i  o  n  e  n   t   h  a   l  p  y   /   k   J  m  o   l  –

       1

    30 000

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    4/47

       F   i  g  u  r  e   1   4

       B  u   i   l   d   i  n  g  u  p   t   h  e   P  e  r   i  o   d   i  c   T  a   b   l  e .

      s  y  m   b

      o   l

      e   l  e  c   t  r  o  n   i  c  c  o  n   f   i  g  u  r  a   t   i  o  n

       (  o  u   t  e  r  s  u   b  -  s   h  e   l   l   (  s   )  o  n   l  y   )

      a   t  o  m   i  c

      n  u  m   b  e  r

       K   E   Y   O

       8

       2  p

       4

       A  c   t   i  n   i   d  e  s

       L  a  n   t   h  a  n   i   d  e  s

        P   a

        N   p

        P   r

        T    h

        U

        C   e

        N    d

        P   m

        A   c

        F   r

        R   a

       5   8

       5   9

       6   0

       6   1

       9   0

       9   1

       9   2

       9   3

       8   7

       8   8

       8

       9

       4 5 6 7

       3   d

       1   4  s

       2

       3   d

       3   4  s

       2

       4   d   1   5  s

       2

       4   d   3   5  s

       2

       5   d

       1   6  s

       2

       5   d

       3   6  s

       2

       3   d

       2   4  s

       2

       3   d

       5   4  s

       1

       4   d   2   5  s

       2

       4   d   5   5  s

       2

       5   d

       2   6  s

       2

       5   d

       4   6  s

       2

       4  s

       1

       5  s

       1

       6  s

       1

       7  s

       1

       4  s

       2

       5  s

       2

       6  s

       2

       7  s

       2

       4   d   5   5  s

       1

       3   d

       5   4  s

       2

       5   d

       5   6  s

       2

       3   1   1

       1   9

       4 1   2

       2   0

       3   7

       5   5

       3   8

       5   6

       2   3

       2   5

       2

       1

       3

       9

       5

       7

       2   4

       4   1

       2   2

       4   0

       7   2

       4   3

       4   2

       7   3

       7   5

       7   4

        L    i

        B   e

        N   a

        M   g

        K

        C   a

        R    b

        S   r

        C   s

        B   a

        L   a    S

       c     Y

        H    f

        T    i

        Z   r

        T   a    V     N

        b

        W    C   r

        M   o

        R   e

        M   n

        T   c

       f   i   l   l   i  n

      g   d  s  u   b  -  s   h  e   l   l  s

       f   i   l   l   i  n  g   4   f  s  u   b  -  s   h  e   l   l

       f   i   l   l   i  n  g   5   f  s  u   b  -  s   h  e   l   l

       3   d

       6   4  s

       2

       4   d   7   5  s

       1

       5   d

       6   6  s

       2

       3   d

       7   4  s

       2

       4   d   8   5  s

       1

       5   d

       7   6  s

       2

       3   d

       8   4  s

       2

       5   d

       9   6  s

       1

       3   d   1

       0   4  s

       1

       4   d   1

       0   5  s

       1

       5   d   1

       0   6  s

       1

       3   d

       1   0   4  s

       2

       4   d   1   0   5  s

       2

       5   d

       1   0   6  s

       2

       2   7

       2   9

       2   8

       4   5

       2   6

       4   4

       7   6

       4   7

       4   6

       7   7

       7   9

       7   8

       3   0

       4   8

       8   0

       6   3

       6   2

       9   4

       6   5

       6   4

       9   5

       9   7

       9   6

       6   6

       9   8

        A   m

        B    k

        E   u

        P   u

        C   m

        S   m

        G    d

        T    b

        O   s

        F   e

        R   u

        I   r    C   o

        R    h

        P    t

        N    i

        P    d

        A   u

        C   u

        A   g

        C    f

        D   y

        H   g

        Z   n

        C    d

       4   d   1   0   5  s

       0

       4  p

       1

       5  p

       1

       6  p

       1

       4  p

       2

       5  p

       2

       6  p

       2

       4  p

       2

       6  p

       3

       4  p

       4

       5  p

       4

       6  p

       4

       4  p

       5

       5  p

       5

       6  p

       5

       3   2

       3   4

       3   3

       5   0

       3   1

       4   9

       8   1

       5   2

       5   1

       8   2

       8   4

       8   3

       3   5

       5   3

       8   5

       6   8

       6   7

       9   9

       7   0

       6   9

       1   0   0

       1   0   2

       1   0   1

       7   1

       1   0   3

        F   m

        N   o

        E   r

        E   s

        M    d

        H   o

        T   m

        Y    b

        T    l

        G   a

        I   n

        P    b

        G   e

        S   n

        B    i

        A   s

        S    b

        P   o

        S   e

        T   e

        L   r

        L   u

        A    t

        B   r   I

       5  p

       3

       4  p

       6

       5  p

       6

       6  p

       6

       3   6

       5   4

       8   6    R

       n    K   r

        X   e

       f   i   l   l   i  n  g  p  s  u   b  -  s   h  e   l   l  s

        3

        4

        5

        6

        7

        0

       2  p

       1

       3  p

       1

       2  p

       2

       3  p

       2

       3  p

       3

       2  p

       4

       3  p

       4

       2  p

       5

       3  p

       5

       6

       5 1   3

       8

       7

       1   4

       1   6

       1   5

       9 1   7

        T    l

        B

        S    i

        C

        P    N

        S    O

        C    l

        F

       2  p

       3

       1  s

       2

       2  p

       6

       3  p

       6

       2 1   0

       1   8

        A   r

        H   e

        N   e

       1  s

       1

       1

        H

       2  s

       1

       3  s

       1

       2  s

       2

       3  s

       2

       P  e  r   i  o   d

       1   2 3

       f   i   l   l   i  n  g  s  s  u   b  -  s   h  e   l   l  s

        1

        2

        G   r   o   u   p

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    5/47

     Figure 15 Dividing up the Periodic Table.

    s block

    d block

    p block

    metals non-metalsf block

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    6/47

    Cl

     –

     ion

    Na+ ion

    ‘Pool’ of delocalised

    electrons

    attraction

    nucleus

    + +

     –

     –

    shared  electrons

     Figure 9 In a hydrogen molecule, the atoms are

    held together because their nuclei are both

    attracted to the shared electrons.

    Li1.0

    Be1.6

    B2.0

    C2.6

    N3.0

    O3.4

    F4.0

    Na0.9

    Mg1.3

    K0.8

    Ca1.0

    Rb0.8

    Sr 1.0

    Al1.6

    Si1.9

    P2.2

    S2.6

    Cl3.2

    Br 3.0

    I2.7

    H2.2

    Li1.0

    Period

    symbol

    electronegativity

    KEY

    Group

    2

    1

    1 2 3 4 5 6 7

    3

    4

    5

     Figure 2 The sodium chloride lattice, built up

     from oppositely charged sodium ions and 

    chloride ions.

     Figure 15 A model of metallic bonding.

     Figure 13 Pauling electronegativity values for 

     some main group elements in the Periodic Table.

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    7/47

    Figure 17 The relative sizes of atoms and ions.

     Figure 18 Ions with higher charge densities

    attract more water molecules

    (ions are only shown in two dimensions).

    Na+  ion(charge 1+, radius 0.098nm)

    On average, eachNa+  ion is surrounded by

    5 water molecules

    Mg 2+  ion(charge 2+, radius 0.078nm)

    On average, eachMg 2+ ion has 15

    water molecules around it

    +  2+

     Figure 19 Hydrated ions are much bigger than

    isolated ions.

    Li+

     (g)

    isolated Li+ ion(radius = 0.078nm)

    Li+ (aq)

    hydrated Li+ ion (radius = 1.00nm)

    Na+ (g)

    Na+ (aq)

    isolated Na+ ion(radius = 0.098nm)

     Figure 36 Two isomers of alanine.

    H

    C

    HOOC NH2CH3

    H

    C

    COOHH2NH3C

     Figure 38 The CORN rule. Look down the

     H—C bond from hydrogen towards the central 

    carbon atom.

    COOH  COOH

    C

    H

    CORN

    L isomer 

    H2N

    R

    C

    H

    CORN

    D isomer   NH2

    R

    hydrated Na+ ion (radius = 0.79nm)

    Li Li+

    Li atom

    r atom = 0.152 nm

    Li+ ion

    r ion = 0.078 nm

    Na Na+

    Na atom

    r atom = 0.186 nm

    Na+ ion

    r ion = 0.098 nm

    Mg Mg2+

    Mg atom

    r atom = 0.160 nm

    Mg2+ ion

    r ion = 0.078 nm

    F F –

    F atom

    r atom = 0.071 nm

    F – ion

    r ion = 0.133 nm

    O O2 –

    F atom

    r atom = 0.073 nm

    F – ion

    r ion = 0.132 nm

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    8/47

           E     n      t       h     a       l     p     y

    reactants products

    Progress of reaction

    chemicalreactants

    energy given outto surroundings∆H negative

    eg CH4+2O2

    products

    eg CO2+2H2O

     Figure 1 Enthalpy level diagram for an

    exothermic reaction, eg burning methane:

    CH4 +2O2 g CO

    2 + 2H 

    2O.

    thermometer 

    water 

    electrically heatedwire to ignite sample

    air jacket

    oxygen underpressure

    crucible containingsample under test

    stirrer 

     Figure 3 A bomb calorimeter for making 

    accurate measurements of energy changes. The

     fuel is ignited electrically and burns in the

    oxygen inside the pressurised vessel. Energy istransferred to the surrounding water, whose

    temperature rise is measured.

     Note that the experiment is done at constant

    volume in a closed container. Enthalpy changes

    are for reactions carried out at constant pressure ,

     so the result needs to be modified accordingly.

    energy taken infrom surroundings∆H positive

    chemicalreactants

    eg CaCO3

           E     n      t       h     a       l     p     y

    reactants 

    products

    Progress of reaction

    products

    eg CaO+CO2

     Figure 2 Enthalpy level diagram for an

    endothermic reaction, eg decomposing calcium

    carbonate:

    CaCO3 g CaO + CO

    2.

    ∆H  going this way...

    ... is the sameas ∆H  going

    this way

    CH4(g)

    CO2(g) + 2H2O(I)

    C(s) + 2H2(g)

     Figure 4 An enthalpy cycle for finding the enthalpy

    change of formation of methane, CH 4.

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    9/47

       E  n  e

      r  g  y

    +

    breaking bonds(takes in energy)

    making new bonds(gives out energy)

    H

    H

    O O

    O O

    C H

    O O O O

    H H H

    C OOO

    HH

    O

    HH

    C

    HH

     Figure 9 Breaking and making bonds in the reaction between methane and oxygen.

    Solid Liquid Gas

    particles in fixed positions particles moving around

    regular lattice pattern random arrangement

    particles close together   particles widely separated

    volume depends only slightlyon pressure and temperature

    volume depends strongly ontemperature and pressure

     Figure 14 A comparison of solids, liquids and 

     gases.

    Increasingenergy

    each rotationallevel has its own

    translational levels

    each vibrationallevel has its own

    rotational levels

    each electroniclevel has its own

    vibrational levels

    groundelectronicenergylevel

    vibrationalenergylevels

    rotationalenergylevels

    translationalenergylevels

     Figure 15 Each electronic energy

    level has within it several 

    vibrational, rotational and 

    translational energy levels. Note

    that the levels are not to scale.

    ‘stack’ of ‘stack’ of ‘stack’ of  

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    10/47

    ionic lattice + solvent   solution

    gaseous ions+

    solvent

    ∆H solution

    ∆H LE  ∆H hyd(cation)+

    ∆H hyd(anion)

     Figure 21 An enthalpy cycle to show the

    dissolving of an ionic solid.

     Figure 26 Born–Haber cycle for sodium

    chloride.

    NaCI(s)Na(s) + ½CI2(g)

    Na+(g) + CI-(g)Na(g) + CI(g)

    ∆H 2 

    ∆H 1

    ∆H 3

    ∆H 4

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    11/47

     Figure 27 Born–Haber cycles for sodium chloride and potassium chloride.

    Enthalpy/kJmol –1

    Na+(g) + Cl(g)

    +800

    +700

    +600

    +500

    +400

    ∆H i  (1)(Na)

    ∆H EA(1)(Cl)

    Na+(g) + Cl(g)

    K+(g) + Cl(g)

    ∆H i  (1)(K)

    K+(g) + Cl(g)

    K+(g) + Cl –(g)

    ∆H EA(1)(Cl)

    +400

    +200

    +100

    0

    +300

     –100

     –200

     –300

     –400

     –500

    Na(g) + Cl(g)

    ∆H at (Cl)

    Na+(g) + 12 Cl2(g)

    ∆H at (Na)

    Na(s) + 12 Cl2(g)

    ∆H f  (NaCl)

    NaCl(s)

    ∆H LE(NaCl)

    ∆H at (Cl)

    K(g) + 12 Cl2(g)

    ∆H at (K)

    K(s) + 12 Cl2(g)

    ∆H f (KCl)   ∆H LE(KCl)

    KCl(s)

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    12/47

     Figure 27 Born–Haber cycles for sodium chloride and potassium chloride.

    Enthalpy/kJmol –1

    Na+(g) + Cl(g)

    +800

    +700

    +600

    +500

    +400

    Na+(g) + Cl(g)

    K+(g) + Cl(g)

    K+(g) + Cl(g)

    K+(g) + Cl –(g)

    +400

    +200

    +100

    0

    +300

     –100

     –200

     –300

     –400

     –500

    Na(g) + Cl(g)

    Na+(g) + 12 Cl2(g)

    Na(s) + 12 Cl2(g)

    NaCl(s)

    K(g) + 12 Cl2(g)

    K(s) + 12 Cl2(g)

    KCl(s)

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    13/47

     Figure 2 What happens when an ionic substance

     such as sodium chloride dissolves in water.

     Figure 5 Polar water molecules attract the ions in

    a solid lattice.

     Figure 11 (a) The structure of diamond and (b)

    the structure of graphite.

    (a) (b)

     Figure 12 Imagine you are inside a diamond. The

    regular network structure would repeat in all 

    directions – as far as the edge of the diamond.

     Figure 13 The fullerenes are a recently discovered 

    molecular form of carbon.

    (a) shows C 60  , named buckminsterfullerene.

     It is made up of a mixture of 5-membered and 6-

    membered rings and looks like a football 

    (b) is another way of presenting C 60  , showing the

     positions of the carbon atoms

    (c) shows C 70  , which is shaped like a rugby ball.

    (a) (b) (c)

     – +  –

     –  –

     –  –

     –  –

     – –

     –

     –

    +

    + +

    + +

    + +

    +

    +

    +

    +

    Solid sodium chloridea retular ionic lattice

    Cl – Na+ Cl –(aq) Na+(aq) water molecule

    Sodium chloridedissolved in water 

    δ−δ+

    solid lattice

    polar water molecule

    hydrated ions

    +

     –

    +

    +

    + +

    + +

    + + +

    + + +

     –

     –  –

     –  –

     – –

     –  –  –

    δ−

    δ−

    δ−

    δ−

    δ−

    δ−

    δ−

    δ−

    δ−

    δ−

    δ−δ−

    δ−

    δ−δ+

    δ+

    δ+

    δ+

    δ+   δ+

    δ+

    δ+

    δ+

    δ+

    δ+

    δ+

    δ+

    δ+

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    14/47

     Figure 14 On heating, the molecular substance

    (represented by ) changes from a solid to a

    liquid and then to a gas. Energy must be supplied 

    to overcome the intermolecular forces. Note that the covalent bonds within the molecules remain

    intact.

    heat

    m.p.

    heat

    b.p.

    Solid   Liquid   Gas

    δ +   δ –

     At some instant, more of the electroncloud happens to be at one end of themolecule than the other; moleculehas an instantaneous dipole.

    Electron cloud evenlydistributed; no dipole.

    Cl   Cl   Cl   Cl

     Figure 15 How a dipole forms in a chlorine

    molecule.

    This atom is not yetpolarised, but itselectrons are repelledby the dipole next to it ...

    Xe

    This atom isinstantaneouslypolarised

    Xeδ +   δ – Xeδ + δ –

    ... so it becomespolarised

    Xeδ + δ –

     Figure 18 How an induced dipole is formed in a

     Xe atom.

       B  o   i   l   i  n  g  p  o   i  n   t   /   K

    400

    300

    200

    100

    Period2 3 4 5

    H2TeSbH3HISnH4

    H2O

    HF

    NH3

    CH4

    Group 4Group 5Group 6Group 7

     Figure 20 Variation in the boiling points of the

    hydrides of some Group 4, 5, 6 and 7 elements.

       E  n

       t   h  a   l  p  y  c   h  a  n  g  e  o   f

      v  a  p

      o  r   i  s  a   t   i  o  n   /   k   J  m  o           l     -           1

       l

    40

    20

    0

    Period2 3 4 5

    H2TeSbH3HISnH4

    H2O

    HF

    NH3

    CH4

    Group 4Group 5Group 6Group 7

     Figure 21 Variation in the enthalpy changes of 

    vaporisation of some Group 4, 5, 6 and 7 

    elements.

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    15/47

    Lone pair;concentratednegative

    charge

    F

    H

    H

    δ +

    Fδ–

     Figure 23 The positively charged H atom lines

    up with the lone pair on an F atom.

    H

    HHH

    O

    Hydrogen bond

    Lone pair 

    O

    HH

    O

     Figure 25 The positively charged H atoms line

    up with the lone pairs on the O atoms.

    Key

    oxygen

    hydrogenhydrogen bond

     Figure 28 The arrangement of water molecules

    in ice.

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    16/47

    HEAT

    easily broken by heating; polymer canbe moulded into new shape.

    chains cannot be easily broken; polymer keeps shape on heating.

    polymer chain

    cross–link

     Figure 29 Thermoplastics and thermosets.

    crystalline region

    amorphous region

     Figure 32 Crystalline and amorphous regions of 

    a polymer.

    GIANTLATTICEgoes on

    indefinitely

    STRUCTURES

    MOLECULARmade of groups of atoms

    COVALENTMOLECULAR

    COVALENTNETWORK

    METALLICIONIC MACROMOLECULAR(eg polymers)

     Figure 36 A summary of the structures of 

     substances.

    (a) Thermoplastic: no cross–linking

    HEAT

    Weak forces between polymer chains

    (b) Thermoset: extensive cross–linking  Strong covalent bonds between polymer 

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    17/47

     Figure 3 Obtaining a line emission spectrum.

     Figure 4 Obtaining a line absorption

     spectrum.

    electron hasbeen excitedto level 5,drops back tolevel 1

    etclevel 5level 4

    level 3

    level 2

    level 1

    groundstate

    Lyman series

    this line

    correspondsto electronsdroppingfrom level 5 1

      1   2

     1  3

    1 5

    2 1 3 1 4 1

     1  4

    Frequency

     Figure 6 How the Lyman series in the

    emission spectrum is related to energy

    levels in the H atom.

    wire with sampleof element

    excited atoms

    in hot flameemit light

    slit

    prism

    line emission spectrum(bright lines on a blackbackground)

    source of white light

    wire with sampleof element

    cool flame:most atoms invapour are in their ground state line absorption spectrum (black lines

    on a bright coloured background)

    slit

    prism

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    18/47

    Increasingenergy

    Cl 

    H

    ELECTRONICENERGY

    VIBRATIONALENERGY

    ROTATIONALENERGY

    TRANSLATIONALENERGY

    Cl   H

    Cl   H

    Cl 

    H

    Cl   H Figure 7 An HCl molecule has energy associated 

    with different aspects of its behaviour.

     Figure 16 The basic parts of a double beaminfrared spectrometer.

    3000   2000   1000

    Wavenumber/cm –1

         T    r    a    n    s    m     i     t     t    a    n    c    e     /     %

    100

    80

    60

    40

    20

     Figure 21 Infrared spectrum of butane.

     Absorption/cm –1 Bond2970 C—H (alkane)

    CH3 CH2 CH2 CH3

    sample cell for solution of sample

    infrared source(electrically heatedfilament)

    reference cellfor solvent only

    NaCl prism(or diffraction

    grating)

    infrareddetector 

    chart recorder 

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    19/47

    3000 2000 1000

    Wavenumber/cm –1

       T  r  a  n  s  m   i   t   t  a  n  c  e   /   %

    100

    80

    60

    40

    20

     Figure 23 Infrared spectrum of benzoic acid.

    Absorption/cm

     –1

    Bond3580 O−H3080 C−H (arene)1760 C=O

    COHO

     Figure 22 Infrared spectrum of methylbenzene.

    Absorption/cm –1 Bond3050 C−H (arene)2940 C−H (alkane)

    CH3

    powerfulmagnet

    sample

    RF signalgenerator 

    detector 

    recorder 

    SN

     Figure 37 A simplified diagram of an n.m.r.

     spectrometer.

    N S

    N S

    E2

    E1

    ∆Ealigned against

    magnetic field

    aligned withmagnetic field

    N S

    NS

     Figure 36 The principle of n.m.r.: a small 

    magnet in a strong magnetic field can have two

    different energies.

    100

    80

    60

    40

    20

    3000 2000 1000

    Wavenumber/cm –1

         T    r    a    n    s    m     i     t     t    a    n    c    e     /     %

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    20/47

    Chemical Relative Type of  shift no. protons proton0.9 3 CH31.3 4 CH2

    CH3 CH2 CH2 CH2 CH2 CH3

          A      b    s    o    r    p      t      i    o    n

    012345

    Chemical shift

    8H

    6H

    TMS

    678910

     Figure 43 N.m.r. spectrum of hexane.

    Chemical Relative Type of  shift no. protons proton1.6 3 CH3

    5.6 1

    C C

    H

    CH3

    H3C

    H

    H C C H

     Figure 44 N.m.r. spectrum of trans-but-2-ene.

          A      b    s    o    r    p      t      i    o    n

    012345

    Chemical shift

    3H

    2H

    2H

    1H

    TMS

    678910

    Chemical Relative Type of  shift no. protons proton0.9 3 CH3

    1.6 2

    2.3 1 OH

    3.6 2

    CH3

    CH2

    CH2

    OH

    C CH2 C

    C CH2 O Figure 45 N.m.r. spectrum of propan-1-ol.

    transparent object,glass or a solution

    all wavelengths of visible light transmitted:appears colourless

    all wavelengthsof visible lightreflected:appears white

    opaque object,eg a piece of chalk

     Figure 52 How light behaves with transparent 

    and opaque objects.

    Chemical shift

         A     b    s    o

        r    p     t     i    o    n

    6H

    TMS2H

    10 9 8 7 6 5 4 3 2 1 0

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    21/47

    transparent object

    absorbsred

    transmits wavelengths correspondingto other colours: appears green

    reflects wavelengths corresponding toother colours: appears orange

    opaqueobject absorbs blue

     Figure 53 How colours arise from absorption of 

    light.

       I

      n   t  e  n  s   i   t  y  o   f  a   b  s  o  r  p   t   i  o  n

    ultra violet 

    visible 

    infra red

    260 

    300 

    340 

    380 

    420 

    460 

    500 

    540 

    580 

    620 

    660 

    700

    Wavelength/nm

    ultra violet  visible

    violet blue   green   yellow   red

    infra red

     Figure 57 The absorption spectrum of carotene

    (in solution in hexane).

    λ /nm

    blue light istransmitted

    blue light isreflected(Reflectancespectrumshown below)

    opaque,colouredobject,eg painting

       I  n   t  e  n  s   i   t  y  o   f  a   b  s  o  r  p   t   i  o  n

    absorption spectrum

       R  e   f   l  e  c   t  a  n  c  e

    reflectance spectrum

    red and yellow lightis absorbed. (Absorptionspectrum shown below)

    transparentcolouredobject, egsolution

    600 700500400 600 700500400

    paint layer absorbsred and yellowlight

    100

    0

    λ /nm

     Figure 59 Absorption and reflectance spectra of 

     Monastral Blue.

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    22/47

    excitationenergy   excited electronic state

    energy absorbed corresponds toultraviolet light 

    excitation energies inthis region correspond to visible radiation

    energy absorbed corresponds tovisible light 

    excited electronic state

    ground electronic states

    COLOUREDCOMPOUND

    COLOURLESSCOMPOUND

     Figure 63 The energy needed to excite an

    electron in a coloured compound and in a

    colourless compound.

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    23/47

  • 8/9/2019 Artwork for Chem Ideas

    24/47

     Figure 5 The pH scale.

    H+ (aq)  +

    stays roughlyconstantbecause

    plenty of HA to make moreH+ (aq) if some used up by alkali that gets added

    plenty of A – to combine

    with any H+(aq) that getsadded

    A –HA

     Figure 6 How a buffer solution keeps the pH 

    constant.

    pH [H+(aq)]/mol dm –3

    Moreacidic

    Neutral

    Morealkaline

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    1

    10 –1

    10 –2

    10

     –3

    10 –4

    10 –5

    10 –6

    10 –7

    10 –8

    10 –9

    10 –10

    10 –11

    10 –12

    10 –13

    14 10 –14

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    25/47

     Figure 2 The reaction of chlorine with potassium

    iodide solution.

    +

     –

     –

    Cu2+ ion+

     –

     –

     –

    +

     –

    +

    +

    +

    +

    SO42– ion

     –

    Zn atom

    Cu atom

     – –

     –

     – –

     –

    +

    +

    + +

    +

    SO42– ion    –

    +

    Zn2+ ion+

     Figure 4 The reaction of zinc with

    copper(II) sulphate solution:

     Zn(s) + Cu2+

    (aq) g  Cu(s) + Zn2+

    (aq)

     Figure 5 The general arrangement for an

    electrochemical cell.

    Velectronflow

    ELECTRONSRELEASED

    ELECTRONS ACCEPTED

    oxidationreaction

    reductionreaction

     Figure 6 An ordinary dry cell – the kind you use

    in a torch.

     – +   I – ion

    I2 molecules

    Cl – ion

    K+ ionK+ ion

    Cl2

     molecules

     –

     – –

     – –

     –

     –  –

     –  –

     –  –

     –

    ++

    +

    + ++

    ++ +

    ++

    +

    +

    seal+

    electronflow alongexternalwire

    mixture of chemicalscontaining ammoniumchloride which acceptselectrons and isreduced

    card covering

    zinc container (–) terminalzinc supplies

    electrons and isoxidised

    carbon rod(+) terminal

     –

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    26/47

  • 8/9/2019 Artwork for Chem Ideas

    27/47

    platinum electrode

    solution containing

    equal concentrationsof Fe2+(aq) andFe3+ (aq)

     Figure 12 A standard half-cell for the

     Fe3+

    (aq)/Fe2+

    (aq) half-reaction.

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    28/47

     Figure 2 Enthalpy profile for an exothermic

    reaction.

       N  u  m   b

      e  r  o   f  m  o   l  e  c  u   l  e  s  w   i   t   h

       k   i  n  e   t   i  c  e  n  e  r  g  y      E

    Kinetic energy (E )

    300 K

    310 K

     Figure 4 Distribution curves for molecular 

    kinetic energies in a gas at 300 K and 310 K.

     Figure 5 Distribution curve showing collisions

    with energy 50 kJ mol  –1

      and above.

     Figure 6 Distribution curves showing the effect 

    on the proportion of collisions with energy

    50 kJ mol  –1  and above of changing the

    temperature from 300 K to 310 K.

    X

     Activation enthalpy

    Reactants∆H 

    Products

    Progress of reaction

       E  n   t   h  a   l  p  y

     Activation enthalpyE a= 50 kJ mol

     –1

    Kinetic energy (E )

       N  u  m   b  e  r  o   f  c  o   l   l   i  s   i  o  n  s  w   i   t   h

       k   i  n  e   t   i  c  e  n  e  r  g  y      E

    300 K

    310 K

    Number of collisions withenergy greater than50 kJ mol –1 at 310 K

    Number of collisions withenergy greater than50kJ mol–1 at 300 K

    Kinetic energy (E )

     Activation enthalpyE a= 50 kJ mol

     –1

       N  u  m

       b  e  r  o   f  c  o   l   l   i  s   i  o  n  s  w   i   t   h

       k   i  n  e   t   i  c  e  n  e  r  g  y      E

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    29/47

    invertedburette

    water 

    yeastsuspension+ hydrogen

    peroxidesolution

     Figure 8 Apparatus for investigating the rate of 

    decomposition of hydrogen peroxide. The yeast 

     provides the enzyme catalase.

     Figure 10 The decomposition of hydrogen

     peroxide solutions of differing concentrations.

     Figure 11 The initial rate of decomposition of 

    hydrogen peroxide plotted against concentration

    of hydrogen peroxide.

    [H2O2] =0.40 mol dm –3

    [H2O2] =0.40 mol dm –3

    [H2O2] =0.40 mol dm –3

    [H2O2] =0.40 mol dm –3

    [H2O2] =0.40 mol dm –3

       V  o   l  u  m  e   O   2   /  c  m

       3

    Time /s

    262422

    201816

    14121086

    42

    0 20 40 60 80 100 120 140 160 180

       R  a   t  e  o

       f  r  e  a  c   t   i  o  n   /  c  m

       3   (   O   2   )  s  –   1

    0.5

    0.4

    0.3

    0.2

    0.1

    0 0.1 0.2 0.3 0.4

    Concentration of hydrogenperoxide/mol dm –3

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    30/47

  • 8/9/2019 Artwork for Chem Ideas

    31/47

    Second bondforms, and productdiffuses away fromcatalyst surface,leaving it free toadsorb freshreactants.

    4

    H H H

     C 

     H C

     H

        H

     H

     H

    New bond forms.

     H

     C 

     H C

     H

    3

    HH H

     H

     H

    C

    H

    C

    H

    H

    H

    HH HH

    Bonds break.2

    Reactants get

    adsorbed ontocatalyst surface.Bonds are weakened.

    1

    HH   CH

    C

    H

    H

    H

    HH

    catalyst surface

     H H

    C H 

     C  H C

     H

     H

     H

     H H

     Figure 18 An example of heterogeneous

    catalysis. The diagrams show a possible

    mechanism for nickel catalysing the reaction

    between ethene and hydrogen to form ethane.

    activation enthalpyuncatalysed reaction

    activation enthalpycatalysed reaction

    uncatalysedreaction

    catalysedreaction

    reactants

    products

    ∆H 

       E  n   t   h  a   l  p  y

    Progress of reaction

     Figure 19 The effect of a catalyst on the enthalpy

     profile for a reaction.

       E  n   t   h  a   l  p  y

    Progress of reaction

     Figure 19 The effect of a catalyst on the enthalpy

     profile for a reaction.

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    32/47

       D  e  n  s   i   t  y   /  g  c  m  –   3

    2

    1

    3

    0Li Be B  C  N  O  F Ne Na Mg  Al Si P  S  Cl   Ar 

     Figure 3 Densities of elements in Periods

    2 and 3.

     Figure 4 Melting and boiling points of elements

    in Period 3.

       M  e   l   t   i  n  g  a  n   d   b  o   i   l   i  n  g

      p  o   i  n   t  s   /

       K

    Na  Mg   Al   Si   P  S  Cl    Ar 

    m.p.

    Key

    b.p.

    1000

    0

    2000

    3000

     Figure 5 Variation in atomic size across Period 3.

       A   t  o  m   i  c  r  a   d   i  u  s

       /  n  m

    Na  Mg   Al   Si   P  S  Cl    Ar 

    0.2

    0.1

    0

       F   i  r  s   t   i  o  n   i  s  a   t   i  o  n  e  n   t   h  a   l  p  y   /   k   J  m  o   I  –   1

    1000

    0H He Li Be B  C  N  O  F Ne NaMg  Al Si  P  S Cl Ar   K Ca

    2000

     Figure 6 First ionisation enthalpies of elements

    1–20.

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    33/47

    Element Atomic number Electronic arrangement

    3d

    Sc

    Ti

    V

    Cr 

    Mn

    Fe

    Co

    Ni

    Cu

    Zn

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    [Ar]

    [Ar]

    [Ar]

    [Ar]

    [Ar]

    [Ar]

    [Ar]

    [Ar]

    [Ar]

    [Ar]

    building up of inner3d sub-shell

    outer shell

    4s

     Figure 20 Arrangement of electrons in the

     ground state of elements of the first row of the d 

    block. [Ar] represents the electronic

    configuration of argon.

    force

    (a)   (b)

    force The open circles representatoms of iron. The blackcircles are the larger atomsof a metal added to make analloy.

     Figure 22 The arrangement of metal 

    atoms in a crystal (a) before and (b) after 

     slip has taken place. The shaded circles

    represent the end row of atoms.

     Figure 23 The arrangement of metal

    atoms in an alloy.

    Sc  Ti  V  Cr   Mn  Fe  Co  Ni  Cu  Zn

    +1

    +5

    +7

    +4 +4 +4

    +2 only+2+2  +2  +2 +2 +2 +2

    +6 +6  +6

    +3 only +3 +3 +3 +3  +3  +3 +3  +3 

     Figure 24 Oxidation states shown by elements inthe first row of the d block. The most important 

    oxidation states are in boxes.

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    34/47

     Figure 27 An octahedral complex of Fe(III). Coordination number 6.

     Figure 28 A tetrahedral complex of Ni(II). Coordination number 4.

     Figure 29 A square planar complex of Ni(II). Coordination number 4.

     Figure 30 A linear complex of Ag(I).

    Coordination number 2.

     Figure 32

    (a) Edta4–  , a hexadentate ligand.

    (b) The nickel–edta complex ion [Ni(edta)]2 – 

    .

    octahedral complex of FE(III)coordination number 6

    CN

    CN

    CN

    CN

    NC

    NC

    Fe

    3–

    shape

    CN

    NC

    Fe

    NC

    NC

    NC

    Fe

    CN

    CN

    CN

    CN

    CN

    CN

    CN

    ClCl

    ClCl

    Cl Cl

    ClCl

    Cl Cl Cl

    Cl

    NiNiNi

    tetrahedral complex of Ni(II)

    coordination number 5shape

    2–

    Ni Ni Ni

    NC

    NC

    NC

    NC NC

    NC

    CN

    CN

    CN

    CN

    CN

    CN

    2–

    square planar complex of Ni(II)

    coordination number 4

    shape

    H3N Ag NH3+

    O

    CO

    O O

    O

    OO

    O

    O

    O

    O

    O

    O

    O

    O

    C

    C

    CH2

    C

    C

    C

    C

    C

    CH2 CH2

    CH2

    CH2

    CH2

    CH2 CH2

    CH2

    CH2

    H2C

    H2C

    2–

    Ni

    (a)

    (b)

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    35/47

     Figure 33 Relative energy levels for the five 3d 

    orbitals of the hydrated Ti 3+  ion.

     Figure 36 The cis and trans isomers of 

    [Co(NH 3 )

    4Cl 

    2 ]+ have different colours.

    energy

     Average energy

    of 3d orbitals in[Ti(H2O)6]

    3+

    if there was no

    splitting [Ti(H2O)6]3+

    ground state

    3d level split

    [Ti(H2O)6]3+

    excited state

    light

    hv   ∆E 

    cis isomer: violet trans isomer: green

    NH3

    NH3

    NH3

    H3N

    NH3 NH3

    NH3

    NH3

    Cl

    Cl

    Cl

    Cl

    Co Co

    ++

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    36/47

    Name  Molecular Full structural Shortened Further  formula formula structural shortened

    formula to

    methane

    ethane

    propane

    Table 2 Structural formulae of alkanes.

    CH4CH4 H C H

    H

    H

    C2H6 H C C

    H

    H

    H

    H

    H

    CH3CH3CH3 CH3

    C3H8 H C C C

    H

    H H H

    H H

    H CH3CH2CH3CH3 CH2 CH3

    109°

    represents a bond inthe plane of the paper

    represents a bond ina direction behindthe plane of the paper

    represents a bond ina direction in front ofthe plane of the paper

    H

    C

    H H

    H Figure 5 The three-dimensional shape of 

    methane.

    a simpler way of drawingethane which shows theshape less accurately

    C C

    H

    H

    H

    H

    H

    H

     Figure 6 The three-dimensional shape of ethane.

    C C

    H

    HH

    HH

    H

     Figure 7 The three-dimensional shape of butane.

    C

    C

    C

    C

    H

    HH

    HH

    H

    H

    H

    H

    H

    skeletal formulaof butane

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    37/47

       A   L   K   A   N   E   S

       I  s  o  m  e  r   i  s  a   t   i  o  n

       R  e   f  o  r  m   i  n  g

       C  r  a  c   k   i  n  g

       S   t  e  a  m   c  r  a  c   k   i  n  g

       C  a   t  a   l  y   t   i  c  c  r  a  c   k   i  n  g

       F  e  e   d  s   t  o  c   k

       C

       4  –   C   6  a   l   k  a  n  e  s

      n  a  p

       h   t   h  a

      n  a  p   h   t   h  a   /   k  e  r  o  s  e  n  e

      g  a  s  o   i   l

       P  r  o   d  u  c   t

      s  a  m  e  m  o   l  e  c  u   l  a  r   f  o  r  m  u   l  a  a  s

      s  a  m

      e  n  u  m   b  e  r  o   f   C

      a   t  o  m  s  a  s  r  e  a  c   t  a  n   t  s  ;

      m  o  r  e  m  o   l  e  c  u   l  e  s  ;

      m  o  r  e  m

      o   l  e  c  u   l  e  s  ;

      m  o   l  e  c  u   l  e  s

      r  e  a  c   t  a  n   t  s  ;

      c  y  c

       l   i  c

       f  e  w  e  r   C

      a   t  o  m  s   t   h  a  n  r  e  a  c   t  a  n   t  s  ;

       f  e  w  e  r   C

      a   t  o  m  s   t   h  a  n  r  e  a  c   t  a  n   t  s  ;

       b  r  a  n  c   h  e   d

      s  m  a   l   l  m  o   l  e  c  u   l  e  s ,  s  u  c   h  a  s

      s  o  m  e  u

      n  s  a   t  u  r  a   t  e   d  ;

       C   2   H   4 ,

       C   2   H   6 ,

       C   3   H   6 ,

       C   3   H   8 ,

      s  o  m  e   b

      r  a  n  c   h  e   d  ;

       C   4  a  n   d   C   5  a   l   k  e  n  e  s  a  n   d

      s  o  m  e  c

      y  c   l   i  c

      a   l   k  a  n  e  s

       C  o  n   d   i   t   i  o  n  s

       P

       t   /   A   l   2   O   3  ;

       P   t   /   A

       l   2   O   3  ;

      n  o  c  a   t  a   l  y  s   t  ;

      z  e  o   l   i   t  e  ;

       1   5   0   °   C

       5   0   0

       °   C  ;

       9   0   0   °   C  ;

       5   0   0   °   C

       h  y   d

      r  o  g  e  n   i  s  r  e  c  y  c   l  e   d   t   h  r  o  u  g   h  m   i  x   t  u  r  e   t  o

      s   h  o  r   t  r  e  s   i   d  e  n  c  e   t   i  m  e  ;

      r  e   d  u  c  e   ‘  c  o   k   i  n  g   ’

      s   t  e  a  m    i

      s  a   d   i   l  u   t  e  n   t   t  o  p  r  e  v  e  n   t

       ‘  c  o   k   i  n  g   ’

       E  x  a  m  p   l  e

       U  s  e  s  o   f

       t  o

       i  m  p  r  o  v  e  o  c   t  a  n  e  r  a   t   i  n  g  o   f  p  e   t  r  o   l

       t  o   i  m  p  r  o  v  e  o  c   t  a  n  e  r  a   t   i  n  g  o   f  p  e   t  r  o   l

       t  o  m  a  n  u   f  a  c   t  u  r  e  p  o   l  y  m  e  r  s

       t  o   i  m  p  r

      o  v  e  o  c   t  a  n  e  r  a   t   i  n  g  o   f  p  e   t  r  o   l

      p  r  o   d  u  c   t  s

       F  u  r   t   h  e  r

       D

      e  v  e   l  o  p   i  n  g   F  u  e   l   l  s  s   t  o  r  y   l   i  n  e , 

       D  e  v  e   l  o  p   i  n  g   F  u  e   l  s  s   t  o  r  y   l   i  n  e ,

       T   h  e   P  o   l  y  m  e  r   R  e  v  o   l  u   t   i  o  n

       D  e  v  e   l  o

      p   i  n  g   F  u  e   l   l  s  s   t  o  r  y   l   i  n  e ,

       d  e   t  a   i   l  s

       S  e  c   t   i  o  n   D   F   4

       S

      e  c   t   i  o  n   D   F   4

      s   t  o  r  y   l   i  n  e ,

       S  e  c   t   i  o  n  s   P   R   3

       S  e  c

       t   i  o  n   D   F   4

       C   h  e  m   i  c  a   l   I   d  e  a  s   1   5 .   2

      a  n   d   P   R   4

       C   h  e  m   i

      c  a   l   I   d  e  a  s   1   5 .   2

       C   h  e  m   i  c  a   l   I   d  e  a  s   1   5 .   2

       T  a   b   l  e   5

       T   h  e  a  c   t   i  o

      n  o   f   h  e  a   t  o  n  a   l   k  a  n  e  s .   S   k  e   l  e   t  a   l   f  o  r  m  u   l  a  e  a  r  e

      u  s  e   d   i  n   t   h  e  e  x  a  m  p   l  e  s .

       i  s   t   h  e  s   k

      e   l  e   t  a   l   f  o  r  m  u   l  a   f  o  r  a   b  e  n  z  e  n  e  r   i  n  g .

      +

      +

      +

       H   2

      +

       3   H   2

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    38/47

    C–C bond length0.139 nm

    120°

    C

    CC

    C

    CCH

    H

    H

    H

    H

    H

     Figure 11 The structure of the benzene ring.

    Scale 0.1nm0

     Figure 14 An electron density map for benzene

    at –3 °C. The lines are like contour lines on a

    map: they show parts of the molecule with equal 

    electron density.

     Figure 15 Enthalpy changes for the

    hydrogenation of benzene and the hypothetical 

     Kekulé structure.

    regions of higher electrondensity above and belowthe benzene ring

     Figure 16 The regions of higher electron density

    above and below the benzene ring.

       E  n   t   h  a   l  p  y

    Progress of reaction

    ∆H   = –360 kJ mol –1

    (estimated enthalpy change

    for Kekulé’s benzane)

    C6H12 cyclohexane

    + 3H2

    + 3H2

    ∆H   = –208 kJ mol –1

    measured enthalpy

    change for benzane)

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    39/47

    Full structural Skeletal Nameformula formula

    1-chloropropane

    1,2-dichloropropane

    3-bromo-1-chlorobutane

    Table 1 Naming halogenoalkanes.

    Cl

    H

    C

    H

    H C C

    H

    H

    Cl

    H

    H

    Cl

    ClH

    C

    H

    H C C

    Cl

    H

    Cl

    H

    H

    Cl

    BrH

    C

    H

    H C C

    Br

    H

    C

    H

    H

    Cl

    H

    H

    Table 3 Some common nucleophiles.

    Full structural Skeletal Nameformula formula

    propan-1-ol

    propan-2-ol

    pentan-3-ol

    Table 4 Naming alcohols.

    H

    C

    H

    H C C OH

    H

    H

    H

    H

    OH

    H

    C

    H

    H C C H

    OH

    H

    H

    H

    OH

    H

    C

    H

    H C C C

    H

    H

    OH

    H

    C H

    H

    H H

    H

    OH

    Name and Structure, showingformula lone pairs

    hydroxide ion,OH –

    cyanide ion,CN –

    ethanoate ion,CH3COO

     –

    ethoxide ion,C2H5O

     –

    water molecule,H

    2O

    ammoniamolecule,NH3

    H

    H H

    H HH

    O

    O

    O

    O

    O

    N

    CH3

    CH3CH2

    N C

    C

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    40/47

    Table 6 Some examples of acid derivatives.

    Acid derivative Dealt with in Section(s) Example

    13.5 and 14.2

    13.5 and 14.2

    13.8

    13.5 and 14.2

    ester 

    acyl chloride

    amide

    acid anhydride

    C

    O

    OR

    C

    O

    Cl

    C

    O

    NH2

    C

    O

    O

    C

    O

    ethyl ethanoate

    ethanoyl chloride

    ethanamide

    ethanoic anhydride

    CH3 C

    O

    O

    CH3 C

    O

    Cl

    CH3 C

    O

    NH2

    CH3 C

    O

    O

    CCH3

    O

    CH2CH3

    Type of alcohol Position of —OH Examplegroup

    primary at end of chain:  propan-1-ol 

    secondary in middle of chain:  propan-2-ol 

    tertiary attached to a carbonatom which carriesno H atoms: 2-methylpropan-2-ol 

    CH3CH2  C OH

    H

    H

    CH3  C CH3

    H

    OH

    CH3  C CH3

    CH3

    OH

    Table 7 Primary, secondary and tertiary alcohols.

    H

    C

    H

    R OH

    H

    C

    OH

    R R'

    R'

    C

    OH

    R R''

     Figure 6 How to name an ester.

    ethyl ethanoate

    This part comes from

    the alcohol and is

    named after it

    This part comes

    from the acid and

    is named after it

    O

    OCH3

    CH3

    CH2

    C

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    41/47

    H

    CH O C

    C

    O

    H

    C

    O

    H

    H

    O

    C

    C

    O

    O

    R1 (long carbon chain)

    R2

    R3

    glycerol part −

    always the same

    fatty acid parts − R1, R2 and R3

    may be different or the same

     Figure 7 The general structure of the triesters

     found in fats and oils.

    O

    O

    O

    O

    O

    Unsaturated triglyceride

    O

    O

    O

    O

    O

    O

    O

    Saturated triglyceride

     Figure 9 Representations of triglycerides.

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    42/47

    carboxylic acid  amine  amide group

    C

    O

    N  C

    O

    H

    + H2ON

    O

    H

    H

    H

     Figure 18 Making a secondary amide.

    acid groupamino group

    α-carbon: the first carbon atomattached to the –COOH group

    H

    R

    H2N  C  COOH

     Figure 20 The generalised structure of an α-amino acid.

     Figure 21 How an amino acid forms a zwitterion.

    C

    R

    H

    C

    O

    OH

    N

    H

    H

    C

    R

    H

    C

    O

    O−

    N

    H

    H

    H

    receives H+ froma COOH group

    H+ donated toan NH2 group

    a zwitterion 

    +

    +

    azo compound

    N  +  H+N

    diazonium ion

    NN+

    coupling agent

    H

     Figure 22 A generalised coupling reaction.

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    43/47

    + HCl(g)sunlight

    Cl2(g)

    room temp   alkene 

    naddition polymer

    trace O2(g)

    200 oC and

    1500 atm.

    H2O(g)

    phosphoric

    acid catalyst

     300 oC and 60 atm.

    HBr

    conc H2SO4followedby H2O

    or 

    organic solvent

    Br2

    organic solvent

    H2(g)

    finely divided Ni

    at 150 oC and 5 atm.

    (or Pt at room tempand 1 atm.)

    HC CH

    CH2 CH2

    HC CH

    H Br

    HC CHHC CH

    H OH

    HC CH

    Br Br

    CH2 CH

    Cl

     Figure 2 Reactions of alkenes.

     Figure 3 Reactions of halogenoalkanes.

    alcohol 

      heat in asealed tube

    halogenoalkane 

    c. NH3(aq)

    H2O(l)

    NaOH(aq)

    amine 

    alcohol 

    slow

    reflux

    R OH

    R HalR NH2

    R OH

    R CH2 O C R'

    O

    R CH2 OH

    R CHO R COOH

    R CH2 Br

    R CH2 Cl

    R CH CH2

    ester 

    bromoalkane 

    chloroalkane 

    carboxylic acid aldehyde 

    alkene primary alcohol 

    R'−COCl

    or (R'CO)2O

    anhydrous

    conditions

    R'−COOH

    c. H2SO4 catalyst

    reflux

    c. HCl

    HBr(aq)

    (NaBr(s) + c. H2SO4)

    reflux

    Cr2O72− /H+(aq)

    reflux

    Cr2O72− /H+(aq)

    reflux

    NaBH4

    Al2O3(s), 300 °C

    or c. H2SO4reflux

     Figure 4 Reactions of primary alcohols.

    room temp

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    44/47

    R

    O

    C

    H

    carboxylate ion

    carboxylic acid 

    NaOH(aq) HCl(aq)

    R'

    O –

    O

    R

    O

    C

    OHc. H2SO4 catalyst

    reflux with

    aqueous acid or alkali*

    R

    O

    C

    O

    R C

    O

    acid anhydride

    R' OH

    anhydrous

    conditions

    reflux

    R

    O

    C

    O R'

    ester 

    R' OHroom

    temperature

    acyl chloride

    R

    O

    C

    Cl

    R' NH2

    room

    temperature

    room

    temperature

     primary amide

    R

    O

    C

    NH2

    c. NH3(aq)

    RO

    C

    NH R'

    secondary amide

    R C

    O

    H

    aldehyde 

    C

    OH

    H

    CN

    RC

    OH

    H

    H

    R

    primary alcohol a cyanohydrin  

    R C

    O

    OH

    carboxylic acid 

    HCN

    (+ alkali)

    NaBH4

    Cr2O72− /H+(aq)

    reflux

    or heat with

    Fehling's

    solution

    R C

    O

    R'

    ketone 

    C

    OH

    R'

    CN

    RC

    OH

    R'

    H

    R

    secondary alcohol a cyanohydrin  

    HCN

    (+ alkali)

    NaBH4

     Figure 6 Reactions of ketones.

     Figure 5 Reactions of aldehydes.

     Figure 7 The reactions of carboxylic acids and some related compounds.

    Note Esters and amides are both hydrolysed by heating with aqueous acid or aqueousalkali. Alkaline hydrolysis gives the salt of the corresponding carboxylic acid. The freecarboxylic acid is formed on acidification of the solution.

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    45/47

     Figure 8 Reactions of arenes.

    Cl

    Cl2(g) AlCl3

      room

    temperature

    NO2c. HNO3

    c. H2SO4

    < 55 °C

    alkylation

    R

    R Cl  AICI3

    reflux

    Friedel-Crafts

    reactions

    R COCl or  (RCO)2O

    acylation

    O

    CR

    finely divided Ni

    H2(g)

    300 °C, 30 atm.

    Br 2(l)FeBr 3 (or FE)

    room

    temperature

    Br 

    SO2OH

    c. H2SO4reflux

     AICI3reflux

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    46/47

    Feedstock(reactants)

    Feedstockpreparation

    Energy in or out

    REACTION

    Temperature, pressure, catalyst

    Separation

    Products

    Co-products

    Recycle loop   Unused feedstock

    Input or removal of energy may be required at any stage

    (and by-products)

     Figure 1 Sequence of unit operations in a

    chemical plant.

    Startingmixture

    Batch reactor  At start Reactants in Some time later 

    Productmixture

    Continuous (stirred tank) reactor 

    Stirrer 

    Product mixturecontinuously removed

    Reactants added continuously

    (a)   (b)

     Figure 2 Comparison of (a) batch and

    (b) continuous tank reactors.

    LiverpoolManchester 

    Castner/Kellner 

    Works

    Lancaster 

    Durham

    Newcastle

    SunderlandCarlisle

     Annan

    Dumfries

    Selkirk

    Jedburgh

    Peebles

    Lanark

    Stirling

    Kelso

    Hawick

    Glasgow

    Edinburgh

    STRATHCLYDE

    DUMFRIES &

    GALLOWAY

    Kendal

    Chester 

    Hillhouse Works

    CLWYD CHESHIRE

    LANCASHIRE

    CUMBRIA

    NORTH WESTERN

    ETHENE PIPELINE

    SOLWAY FIRTH

    WILTON

    GRANGEMOUTH

    TRANS PENNINE

    ETHENE PIPELINE

    NORTH

    YORKSHIRE

    NORTHUMBERLAND

    FIRTH OF FORTH

    ETHENE

    PIPELINE

    Wilton Works

    MOSSMORRAN

    GRANGEMOUTH

     Figure 3 Pipelines from BP, Grangemouth, and  Exxon, Mossmorran, for the distribution of 

    ethene.

    M

    ?

  • 8/9/2019 Artwork for Chem Ideas

    47/47

    OIL

    Fractionaldistillation

    LPG  Naphtha

    Steamcracking

    Ethene,propene

    Steamcracking

    Ethene,propene

    Reforming

    Branched alkanes, cycloalkanesand aromatic hydrocarbons

    for high-grade petrol

    Catalyticcracking

    Gas Oil

    Ethene, propene,high-grade petrol

    ResidueKerosene

     Figure 5 Feedstocks from oil.

     Figure 4 Feedstocks from natural gas.

    NATURAL GAS

    Fractionaldistillation

    Steamcracking

    Methane   Ethane

    Ethene,propene

    Steamcracking

    Propane

    Ethene,propene

    Steamcracking

    Butane

    Ethene,propene

     Figure 6 (a) An example of how energy can be used in a chemical process. (b) A diagram to illustrate a heat exchanger.

    (a)

    Reactants

    at 20°C

    (a)Heat exchanger 

    Reactants

    at 20°C

    Reactants

    at 180°C

    Reactor 

    at 200°C

    Products at 200°C

    Products at about 60°C

    (b) Steamin Steamout Hotfeed out

    Cold

    feed in

    Cross section:Condensed

    steamSteam pipe

     A single-pass tubular heat exchanger 

    M

    ?