46
Jos Benschop & Wolfgang Rupp Eindhoven, 24 April 2013 ASML-Zeiss, a successful partnership enabling Moore’s law

ASML-Zeiss, a successful partnership enabling Moore’s law · ASML /40 ASML /300 ASML /1100 ASML 19x0i ASML 3100 ASML 3300 Year of 1st Prototype 1975 1987 1995 2000 2007 2009 2012

Embed Size (px)

Citation preview

Jos Benschop & Wolfgang Rupp

Eindhoven, 24 April 2013

ASML-Zeiss, a successful partnership enabling Moore’s law

Agenda

• Introduction

• Integrated Circuit

• Lithography

• Optical lithography

• Co-development

• Summary

28 April 2013

public

Slide 2

How it all got started...

1947

The Point contact transistor

Bell Labs

1958

The First IC

Texas Instruments

1961

The First Planar IC

Fairchild

28 April 2013

public

Slide 3

Moore’s lawIn 1965 Gordon Moore predicted that chip capacity would double every 18-24 months. G. Moore, ”Cramming more components onto integrated circuits”, Electronics, Vol. 38, Nb. 8 (1965)

Itanium 2

(9 MB core)Itanium 2

Pentium 4

Pentium III

Pentium IIPentium

486

386286

8086

808080084004

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1960 1970 1980 1990 2000 2010

year

tra

nsi

sto

rs

Over 45 years his prediction has been true.

28 April 2013

public

Slide 4

Smaller and cheaper chips mean market growthexample: NAND Flash memory

Source: ASML MCC, WSTS, Gartner

1 GB

USB stick

4 GB

Digital cameras

8 GB

MP3 player

10 - 20 GB

60 - 80 GB

Hybrid HDD

FLASH camcorders

Solid state disk-based laptops

2 -16 GB

80 - 150 GB

0

100200

300

400

500600

700

800

9001000

1100

1200

13001400

1500

’95 ’96 ’97 ’98 ’99 ’00 ’01 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10

Year

FLA

SH

IC

Ma

rke

t (m

illi

on

s o

f u

nit

s)

FLASH units forecast

Several new NAND-based

applications on the horizon

3G smart-phones

28 April 2013

public

Slide 5

Anything will be connected!that can benefit from connection

Source: Eriicson, ISS Europe, Feb 2011

28 April 2013

public

Slide 6

Moore’s law helps to reduce energy usageComputations per Kilowatt hour double every 1.5 years

Source: Jonathan Koomey, Lawrence Berkeley National Laboratory and Stanford University, 2009

Dell Optiplex GXI

486/25 and 486/33 Desktops

IBM PC-ATIBM PC-XT

Commodore 64

DEC PDP-11/20

Cray 1 supercomputer

IBM PC

SDS 920

Univac I

EniacEDVAC

Univac II

Univac III (transistors)

Regression results:N = 76Adjusted R-squared = 0.983Comps/kWh = exp(0.440243 x year – 849.259)Average doubling time (1946 to 2009) = 1.57 years

IBM PS/2E + Sun SS1000

Gateway P3. 733 MHzDell Dimension 2400

SiCortex SC5832

2008 + 2009 laptops

1.E+15

1.E+12

1.E+09

1.E+06

1.E+03

1.E+00

Co

mp

uta

tio

ns p

er

kW

h

1940 1950 1960 1970 1980 1990 2000 2010

28 April 2013

public

Slide 7

Communication became ~ 1013 more energy efficientenabled by scaling of semiconductors

Frederic Remington, “The Smoke signal”, 1905, Amon Carter Museum, Forth Worth, USA

5 MJ/b20 wood sticks of 2 cm diameter and 50 cm long equals ~3 dm³ Message size 10 characters or 10 ~15 MJ/dm³ energy from burning wood we use 45 MJ/message or 5 MJ/b

High Speed Downlink Packet Access, HSDPA speed 3.65 Mb/s using 5.5 W resulting in ~1µJ/b (Siemens UR5 router)

1 µJ/b

28 April 2013

public

Slide 8

Agenda

• Introduction

• Integrated Circuit

• Lithography

• Optical lithography

• Co-development

• Summary

28 April 2013

public

Slide 9

Lithography is at the heart of chip manufacturing

Repeat 30 to 40 times to build 3

dimensional structure

28 April 2013

public

Slide 10

Animation lithography scanner28 April 2013

public

Slide 11

A chip has more than just one layer 28 April 2013

public

Slide 12

Time to market is essential to IC maker

Average selling price DRAM in days after introduction

28 April 2013

public

Slide 13

Agenda

• Introduction

• Optical lithography

• Past

• Present

• Future

• Co-development

• Summary

28 April 2013

public

Slide 14

Evolution optical lithography

Stage

Reticle

Wafer

Reticle Wafer

Mirror

(1960)

Contact printingreticle and wafer 2”

(1975)

Projection (scanning) 1:1reticle and wafer 3”

28 April 2013

public

Slide 15

Evolution optical lithography -2-

Stage

Reticle

Wafer

Lens

5 :1

Stage

Reticle

Wafer

Lens

4 :1

Stage Stage

(1980)Wafer steppers, projection 5:1

6” reticle to Die, 20x20mm

(1996)

Wafer scanners, projection 4:1

reticle to Die, 26x32mm

28 April 2013

public

Slide 16

In 1971 Philips Research proposed to build a litho system

28 April 2013

public

Slide 17

The conclusion28 April 2013

public

Slide 18

The cost28 April 2013

public

Slide 19

First Philips system operational in 1975

Lens:

Tulipe, Cerco (Paris)

5X reduction

NA=0.26

field=10x10mm

λλλλ=436 nm

resolution= 2 um

Stages:hydraulic

wafer:X-direction

lens: Y-direction

interferometric X/Y control

Alignment:through the lens

Focus:air pressure

Wafer:

3” and 4”

28 April 2013

public

Slide 20

ASML product generations

1984: PAS 2000

Resolution: >1µm

Overlay: 250 nm

1989: PAS 5000

Resolution: <500 nm

Overlay: 100 nm

1990’s: PAS 5500 Resolution: 400 to 90 nm

Overlay: 100 to 12 nm

2000’s: TWINSCAN

Resolution: 100 to 38 nm

Overlay: 20 to 4 nm

2010’s: NXE EUV systems

Resolution: 32 to <20 nm

Overlay: 2 nm

28 April 2013

public

Slide 21

Wafer size transitions

200 300mm 450mm150100

1975 1980 1990 2000 2015?

28 April 2013

public

Slide 22

Carl Zeiss has been active in lithography for decades

1965 1970 1975 1980 1985 1990 1995 2000

1977

► First Printer (Telefunken)

with Zeiss Optics from Zeiss

Photo Division

1983

► Start of Strategic

Alliance with ASML

1992/1993

► First Projection &

Illumination Optics for

Philips / ASML

► First Wafer Stepper (GCA)

with Zeiss Optics

1968

28 April 2013

public

Slide 23

Optical litho enables shrinkThrough combination of lens-NA increase and wavelength decrease

Optical resolution is described by formula: R = k1 * λ / NA

Whereby:

R = half period

λ = wavelength of light

NA = numerical aperture of optics = n * sin(α)

k1 = Litho process improvements: tool & mask & resist

Single exposure: minimum k1 = 0.25

α

0.25 λ0/( n sin(α) )

n = refractive index

28 April 2013

public

Slide 24

How to print smaller lines

28 April 2013

public

Slide 25

CD = k1 * λ

NA

Larger numericalaperture

NA

Lower

k1

shorterwavelenght

λλλλ

321

λ = wavelength of light

NA = numerical aperture of optics = n * sin(α)

k1 = Litho process improvements: tool & mask & resist

Tuning the illuminator enables lower k1

Illumination Optics

Glasstab

Projection

Lens

Field

StopRelay Optics

Field Mixing

(here: glas rod)

Create Field

Uniformity

∆I < 1%

Beam Delivery

28 April 2013

public

Slide 26

1

Flexible illumination:from Diffractive Optical Element (DOE) to programmable illuminator using MEMs

28 April 2013

public

Slide 27

Asphere technology enabled NA=0.9+

1998/99 2000 2002…2004

USP 6,801,364 B2

0.9 NA

Aspheres

USP 6,349,005 B1

0.8 NA0.7 NA 0.8 NA

WO 2003/075049 A2

Stronger

Aspheres

28 April 2013

public

Slide 28

2

Catadioptric lenses enabled NA=1.35

n waterArF NA

0

2

4

6

8

10

12

Dioptric with geometrical scaling

0.93 i 1.1 i 1.2 i 1.3 i

Len

sco

mp

lexit

y

1.43 i

Dioptric

Catadioptric lens design

Catadioptric

28 April 2013

public

Slide 29

Lens quality was improved while increasing NA

0

0.5

1

1.5

2

2.5

3

3.5

Wa

ve

fro

nt

RM

S (

Z5

-3

6)

[nm

]

1100

1150

1150i

1250i

1250

1200

14001400i

1700i 1900i

1950i

1450

Diffraction limit (Maréchal): RMS < 14 nm

2000 2010

NA = 0.85 NA = 0.93NA = 0.75 NA = 1.20 NA = 1.35

28 April 2013

public

Slide 30

no contrast 193nm 1.35NA single

Spacer technology: 18 nm

Wavelength changes

25

35

50

70

100

130

180

250

350

500

700

1000

1985 1990 1995 2000 2005 2010 2015

Tech

no

log

y N

od

e*

(n

m)

365nm

Projected first use 365nm

Projected first use 248nm

no contrast 248nm NA 0.8 = 78 nm

248nm

no contrast 365nm, NA 0.65 = 140nm

no contrast 193nm 1.35NA single

exposure: 36 nm

Projected first use 193nm

193nm

EUVEUV

10’s M€ 100’s M€ >1 B€ R&D

28 April 2013

public

Slide 31

3

1000nm 100nm 10nm 1nm 0.1nm

1eV 10eV 100eV 1keV 10keV

13.5nm

92eV

IR VUV Soft X-rays

UV EUV Hard X-rays

λλλλ

E

EUV = 13.5 nm

radiation

Generated with plasma

source

Extreme UltraViolet Lithography (EUVL)

Requires atomic flat

multilayer coated

aspheric mirrors

And an all

vacuum system

• Measured shape accuracy: 45 pico meter

• => much less than diameter of Si atom

CxHy = 1x10-9 mbar

H2O = 1x10-7 mbar

28 April 2013

public

Slide 32

USA:

40 nm hp

70nm

L&S

Japan:

80

nm

160

nm40 nm hp

NL:

28 nm

Lines and spaces

40 nm hp

NL:

19 nm

Lines and spaces

’85 ’91 ’97 ’00 ’01 ’06 ’10’86 ’87’84 ’88 ’89 ’90 ’92 ’93 ’94 ’95 ’96

NL:

5 µµµµm

’98 ’99 ’02 ’03 ’04 ’05 ’07 ’08 ’09 ’11 ’12

EUV has 35+ years of history

28 April 2013

public

Slide 331ste publications

EUV lithography

(LLNL, Bell Labs, Japan)

ASML/Zeiss starts

EUVL research

programm

ASML/Zeiss shipment of

1st pre-prduction tool

(Korea)

ASML/Zeiss are

shipping

2 alpha tools:

IMEC (B) & CNSE (US)

Deterministic Figure Correction with atomic accuracy

Interferometric Surface Metrology

for Spheres and Aspheres

repeatability ~10pm rms

reproducibility ~20pm rms

Ion Beam Figuring

for Atomic Level Figure Control

Computer Controlled Polishing

Deterministic Figure Control28 April 2013

public

Slide 34

EUV – Flare Becomes Essential

2004

MS

FR

[n

m r

ms]

2005 2006 2007 2008 2009 2010 2011 2012

0.30

0.25

0.20

0.15

0.10

0.05

0

ADT

3100

3300

Today:

< 6% flare on

system level

Today:

< 6% flare on

system level

28 April 2013

public

Slide 35

EUV – Flare Becomes Essential 28 April 2013

public

Slide 36

ADT

3100

3300

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

MS

FR

[nm

rms]

[year]

EUV multilayer coatings

Mo

Si

Substrat

θ

d

γγγγ

> 50 bilayers

Reflectivity > 67%

Coating

stress< 100 MPa

Thermal

stability200° C

Thickness

variation< 0.2%

EUV Multilayer SpecsMoSi Coating for

Bragg Reflection

28 April 2013

public

Slide 37

Mirror systems are highly sensitive to tilt

Mechatronical challenges

28 April 2013

public

Slide 38

Tilt control for EUV mirror corresponds to

hitting a point a the moon from the earth

within 10cm

0,3 nrad

~ 10 cm

Testmodule demonstrating

0.6 nrad, 2x improvement

expected In vacuum

EUV factory28 April 2013

public

Slide 39

CD = k1 * λ

NA

50.000x pixels/field improvement over 35 years

David Mann

(GCA) 4800

ASML

/40

ASML

/300

ASML

/1100

ASML

19x0i

ASML

3100

ASML

3300

Year of 1st Prototype 1975 1987 1995 2000 2007 2009 2012

Wavelength [nm] 436 365 248 193 193 13,5 13,5

NA 0,28 0,4 0,57 0,75 1,35 0,25 0,33

k1 0,90 0,77 0,57 0,39 0,27 0,50 0,44

CD [nm] 1400 700 250 100 38 27 18

Step/Scan field [mm] 10x10 14x14 22 x 27 26 x 33 26 x 33 26 x 33 26 x 33

# Pixels per field 50 x 106

400 x 106

10 x 109

86 x 109

600 x 109

1,2 x 1012

2,6 x 1012

Weight [kg] 2 20 250 400 1080 700 1600

Critical Dimension

Minimal lithographic

feature size

28 April 2013

public

Slide 40

Agenda

• Introduction

• Optical lithography

• Co-development

• Summary

28 April 2013

public

Slide 41

Sustaining our technology leadership

Slide 42

Company (> 5,000 employees)R&D per

employee (€)

ASML (semiconductors) 78,000

Lundbeck (pharma) 71,700

Porsche (automotive) 58,100

UBIsoft Entertainment (software) 54,400

Boehringer Ingelheim (pharma) 53,300

AstraZeneca (pharma) 48,400

Sanofi-Aventis (pharma) 43,600

GlaxoSmithKline (pharma) 41,300

Merck (pharma) 40,900

Source: European Commission: 2010 EU Industrial R&D Investment Scoreboard

28 April 2013

public

Slide 42

Factors of Success: Our leadership is the result of an

integrated knowledge network

Slide 43 |

Resist Track

Semiconductor device manufacturers

Wafer scanner

R&D Partners (our virtual research lab)

OEM partners

providing key sub

systems

OthersMasks

28 April 2013

public

Slide 43

An Example: joined ASML & Zeiss investment in research group Prof. Bijkerk – University Twente

28 April 2013

public

Slide 44

ASML / Zeiss: two companies – one business

Frequent communication at all levels

• Board of management: Joined Management Meetings 3x/year

• Roadmap Meeting 6x/year

• Overall program reviews:

Interface Meeting (technical) 5x/year

Operations Meeting (operational) 5x/year

Commercial Meeting (commercially) 5x/year

• Project Meetings > 10x/year

• Close alignment of project milestones between ASML and Zeiss

28 April 2013

public

Slide 45

Executive summary

28 April 2013

public

Slide 46