43
ASTROPHYSICAL NEUTRINOS STEEN HANNESTAD, Aarhus University GLA2011, JYVÄSKYLÄ n e n m n t

ASTROPHYSICAL NEUTRINOS

  • Upload
    adelle

  • View
    60

  • Download
    0

Embed Size (px)

DESCRIPTION

ASTROPHYSICAL NEUTRINOS. n e n m n t. STEEN HANNESTAD, Aarhus University GLA2011, JYVÄSKYLÄ. Nuclear Reactors. . Sun. . Supernovae (Stellar Collapse). Particle Accelerators. . SN 1987A . Earth Atmosphere (Cosmic Rays). . Astrophysical - PowerPoint PPT Presentation

Citation preview

Page 1: ASTROPHYSICAL NEUTRINOS

ASTROPHYSICAL NEUTRINOS

STEEN HANNESTAD, Aarhus UniversityGLA2011, JYVÄSKYLÄ

ne

nm

nt

Page 2: ASTROPHYSICAL NEUTRINOS

Where do Neutrinos Appear in Nature?

AstrophysicalAccelerators Soon ?

Cosmic Big Bang (Today 330 n/cm3) Indirect Evidence

Nuclear Reactors

Particle Accelerators

Earth Atmosphere(Cosmic Rays)

Sun

Supernovae(Stellar Collapse)

SN 1987A

Earth Crust (Natural Radioactivity)

Page 3: ASTROPHYSICAL NEUTRINOS

Fermion Mass Spectrum

10 1001 10 1001 10 1001 10 1001 10 1001 1meV eV keV MeV GeV TeV

d s bQ = -1/3

u c tQ = +2/3

Charged Leptons e m t

All flavorsn3

Neutrinos

Page 4: ASTROPHYSICAL NEUTRINOS

------

-

132313231223121323122312

132313231223121323122312

1313121312

ccescsscesccsscsesssccessccsescscc

Uii

ii

i

1212

1212

sin

cos

s

c

)()()(

33

22

11

mmm

Ue

nnn

nnn

t

m

FLAVOUR STATES PROPAGATION STATES

MIXING MATRIX (UNITARY)

Page 5: ASTROPHYSICAL NEUTRINOS

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Sanduleak -69 202Sanduleak -69 202

Large Magellanic Cloud Distance 50 kpc (160.000 light years)

Tarantula Nebula

Supernova 1987A23 February 1987

Page 6: ASTROPHYSICAL NEUTRINOS

Stellar Collapse and Supernova Explosion

Collapse (implosion)ExplosionNewborn Neutron Star

50 km

Proto-Neutron Starr rnuc 3 1014

g cm-3

T 30 MeV

Page 7: ASTROPHYSICAL NEUTRINOS

Stellar Collapse and Supernova Explosion

Newborn Neutron Star

50 km

Proto-Neutron Starr rnuc 3 1014

g cm-3

T 30 MeV

Neutrinocooling bydiffusion

 

Page 8: ASTROPHYSICAL NEUTRINOS

Neutrino Signal of Supernova 1987AKamiokande-II (Japan)Water Cherenkov detector2140 tonsClock uncertainty 1 min

Irvine-Michigan-Brookhaven (US)Water Cherenkov detector6800 tonsClock uncertainty 50 ms

 

Within clock uncertainties,all signals are contemporaneous

Page 9: ASTROPHYSICAL NEUTRINOS

Interpreting SN 1987A Neutrinos

Assume • Thermal spectra• Equipartition of energy between , , , , and

Spectral temperature [MeV]

Jegerlehner, Neubig & Raffelt,PRD 54 (1996) 1194

Contours at CL68.3%, 90% and 95.4%

Recent long-termsimulations

(Basel, Garching)

Page 10: ASTROPHYSICAL NEUTRINOS

Three Phases of Neutrino EmissionPrompt ne burst Accretion Cooling

• Shock breakout• De-leptonization of outer core layers

• Shock stalls 150 km• Neutrinos powered by infalling matter

Cooling on neutrinodiffusion time scale

• Spherically symmetric model (10.8 M⊙) with Boltzmann neutrino transport• Explosion manually triggered by enhanced CC interaction rate

Fischer et al. (Basel group), A&A 517:A80, 2010 [arxiv:0908.1871]

Page 11: ASTROPHYSICAL NEUTRINOS

Exploding Models (8–10 Solar Masses) with O-Ne-Mg-Cores

Kitaura, Janka & Hillebrandt: “Explosions of O-Ne-Mg cores, the Crab supernova,and subluminous type II-P supernovae”, astro-ph/0512065

Page 12: ASTROPHYSICAL NEUTRINOS

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Flavor Oscillations

Neutrinos from Next Nearby SN

Page 13: ASTROPHYSICAL NEUTRINOS

Operational Detectors for Supernova Neutrinos

Super-Kamiokande (104)KamLAND (400)

MiniBooNE(200)

In brackets eventsfor a “fiducial SN”at distance 10 kpc

LVD (400)Borexino (100)

IceCube (106)

Baksan (100)

Page 14: ASTROPHYSICAL NEUTRINOS

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Flavor Oscillations

Supernova Rate

Page 15: ASTROPHYSICAL NEUTRINOS

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Local Group of Galaxies

Current best neutrino detectorssensitive out to few 100 kpc

With megatonne class (30 x SK)60 events from Andromeda

Page 16: ASTROPHYSICAL NEUTRINOS

Core-Collapse SN Rate in the Milky Way

References: van den Bergh & McClure, ApJ 425 (1994) 205. Cappellaro & Turatto, astro-ph/0012455. Diehl et al., Nature 439 (2006) 45. Strom, Astron. Astrophys. 288 (1994) L1. Tammann et al., ApJ 92 (1994) 487. Alekseev et al., JETP 77 (1993) 339 and my update.

Gamma rays from26Al (Milky Way)

Historical galacticSNe (all types)

SN statistics inexternal galaxies

No galacticneutrino burst

Core-collapse SNe per century0 1 2 3 4 5 6 7 8 9 10

van den Bergh & McClure(1994)Cappellaro & Turatto (2000)

Diehl et al. (2006)

Tammann et al. (1994)

Strom (1994)

90 % CL (30 years) Alekseev et al. (1993)

Page 17: ASTROPHYSICAL NEUTRINOS

Diffuse Supernova Neutrino Background (DSNB)

• Approx. 10 core collapses/sec in the visible universe

• Emitted energy density ~ extra galactic background light ~ 10% of CMB density

• Detectable flux at Earth mostly from redshift

• Confirm star-formation rate

• Nu emission from average core collapse & black-hole formation

• Pushing frontiers of neutrino astronomy to cosmic distances!

Beacom & Vagins, PRL 93:171101,2004

Window of opportunity betweenreactor and atmospheric bkg

Page 18: ASTROPHYSICAL NEUTRINOS

Neutrino Oscillations in Matter2-flavor neutrino evolution as an effective 2-level problem

Mass-squared matrix, rotated by mixing angle relative to interactionbasis, drives oscillations

Solar, reactor and supernova neutrinos:E 10 MeV

Weak potential difference

for normal Earth matter, butlarge effect in SN core(nuclear density 31014 g/cm3)

With a 22 Hamiltonian matrix

i 𝜕𝜕 𝑧 (𝜈𝑒

𝜈𝜇)=𝐻 (𝜈𝑒

𝜈𝜇)

Δ𝑚2

2𝐸 ∼{ 4 p eV for  12  mass    splitting120 peV for  13  mass    splitting

Negativefor

Page 19: ASTROPHYSICAL NEUTRINOS

Suppression of Oscillations in Supernova Core 

• Inside a SN core, flavors are “de-mixed”• Very small oscillation amplitude• Trapped e-lepton number can only escape by diffusion

Page 20: ASTROPHYSICAL NEUTRINOS

Signature of Flavor Oscillations

≲10− 5

1-3-mixing scenarios

A B C

survival prob.

Normal (NH) Inverted (IH) Any (NH/IH)Mass ordering

adiabatic non-adiabaticMSW conversion

0 sin2𝜃12≈ 0.3sin 2𝜃12≈ 0.3 survival prob. 0cos2𝜃12≈0.7 cos2𝜃12≈0.7

Earth effects NoYes Yes

May distinguish mass ordering

Assuming collective effects are not important during accretion phase (Chakraborty et al., arXiv:1105.1130v1)

Page 21: ASTROPHYSICAL NEUTRINOS

Normal hierarchy Inverted hierarchy

If neutrino masses are hierarchical then oscillation experimentsdo not give information on the absolute value of neutrino masses

If neutrino masses are degenerate

no information can be gained from such experiments.

Experiments which rely on either the kinematics of neutrino massor the spin-flip in neutrinoless double beta decay are the most efficient for measuring m0

catmospherimm 0

SOLAR nKAMLAND

ATMO. nK2KMINOS

Page 22: ASTROPHYSICAL NEUTRINOS

LIGHTEST

INVERTED

NORMAL

HIERARCHICAL DEGENERATE

Page 23: ASTROPHYSICAL NEUTRINOS

experimental observable is mn2

model independent neutrino mass from ß-decay kinematicsonly assumption: relativistic energy-momentum relation

E0 = 18.6 keVT1/2 = 12.3 y

ß-decay and neutrino mass

T2:

Page 24: ASTROPHYSICAL NEUTRINOS

Tritium decay endpoint measurements have provided limitson the electron neutrino mass

This translates into a limit on the sum of the three mass eigenstates

(95%) eV 3.22/1

22 iei mU

eV 7im

Mainz experiment, final analysis (Kraus et al.)

emn

Page 25: ASTROPHYSICAL NEUTRINOS

NEUTRINO MASS AND ENERGY DENSITYFROM COSMOLOGY

NEUTRINOS AFFECT STRUCTURE FORMATIONBECAUSE THEY ARE A SOURCE OF DARK MATTER(n ~ 100 cm-3)

HOWEVER, eV NEUTRINOS ARE DIFFERENT FROM CDM BECAUSE THEY FREE STREAM

1eVFS Gpc 1~ -md

SCALES SMALLER THAN dFS DAMPED AWAY, LEADS TOSUPPRESSION OF POWER ON SMALL SCALES

eV 932 n

n

mh FROM K2

114 3/1

n TT

Page 26: ASTROPHYSICAL NEUTRINOS

N-BODY SIMULATIONS OF LCDM WITH AND WITHOUT NEUTRINO MASS (768 Mpc3) – GADGET 2

eV 9.6nm 0nm

Haugboelle & STH, Aarhus University

256Mpc

Page 27: ASTROPHYSICAL NEUTRINOS

DARK MATTER NEUTRINOS

eV 2.1nmSIMULATION WITH

STH, HAUGBØLLE, RIIS & SCHULTZ (IN PREPARATION)

Page 28: ASTROPHYSICAL NEUTRINOS

AVAILABLE COSMOLOGICAL DATA

Page 29: ASTROPHYSICAL NEUTRINOS

WMAP-7 TEMPERATURE POWER SPECTRUM

LARSON ET AL, ARXIV 1001.4635

Page 30: ASTROPHYSICAL NEUTRINOS

LARGE SCALE STRUCTURE SURVEYS - 2dF AND SDSS

Page 31: ASTROPHYSICAL NEUTRINOS

SDSS DR-7LRG SPECTRUM(Reid et al ’09)

Page 32: ASTROPHYSICAL NEUTRINOS

Sm = 0.3 eV

FINITE NEUTRINO MASSES SUPPRESS THE MATTER POWERSPECTRUM ON SCALES SMALLER THAN THE FREE-STREAMINGLENGTH

Sm = 1 eV

Sm = 0 eV

P(k)

/P(k,m

n0

TOTFS

m

kkPP

rrn8~)(

0

-

Page 33: ASTROPHYSICAL NEUTRINOS

NOW, WHAT ABOUT NEUTRINOPHYSICS?

Page 34: ASTROPHYSICAL NEUTRINOS

WHAT IS THE PRESENT BOUND ON THE NEUTRINO MASS?

STH, MIRIZZI, RAFFELT, WONG (arxiv:1004:0695)HAMANN, STH, LESGOURGUES, RAMPF & WONG (arxiv:1003.3999)

DEPENDS ON DATA SETS USED AND ALLOWED PARAMETERS

C.L. 95 @ eV 44.0nmUSING THE MINIMAL COSMOLOGICALMODEL

THERE ARE MANY ANALYSES IN THE LITERATURE

JUST ONE EXAMPLE

Page 35: ASTROPHYSICAL NEUTRINOS

THE NEUTRINO MASS FROM COSMOLOGY PLOT

Larger modelspace

More data

CMB only

+ SDSS

+ SNI-a+WL

+Ly-alpha

MinimalLCDM

+Nn +w+……

1.1 eV

0.6 eV

~ 0.5 eV

~ 0.2 eV

~ 2 eV 2.? eV ??? eV

~ 1 eV 1-2 eV

0.5-0.6 eV 0.5-0.6 eV

0.2-0.3 eV 0.2-0.3 eV

Page 36: ASTROPHYSICAL NEUTRINOS

Gonzalez-Garcia et al., arxiv:1006.3795

Page 37: ASTROPHYSICAL NEUTRINOS

WHAT IS Nn?

A MEASURE OF THE ENERGY DENSITY IN NON-INTERACTINGRADIATION IN THE EARLY UNIVERSE

THE STANDARD MODEL PREDICTION IS

nn

n rrrr 3/4

0,0, 11

487 , 046.3

N

BUT ADDITIONAL LIGHT PARTICLES (STERILE NEUTRINOS,AXIONS, MAJORONS,…..) COULD MAKE IT HIGHER

Mangano et al., hep-ph/0506164

Page 38: ASTROPHYSICAL NEUTRINOS

TIME EVOLUTION OFTHE 95% BOUND ONNn

ESTIMATED PLANCKSENSITIVITY

Pre-WMAP

WMAP-1

WMAP-3

WMAP-5

WMAP-7

Page 39: ASTROPHYSICAL NEUTRINOS

ASSUMING A NUMBER OF ADDITIONAL STERILE STATES OF APPROXIMATELY EQUAL MASS, TWO QUALITATIVELY DIFFERENTHIERARCHIES EMERGE

3+N N+3

ns

nsnA

nA

A STERILE NEUTRINO IS PERHAPS THE MOST OBVIOUS CANDIDATEFOR AN EXPLANATION OF THE EXTRA ENERGY DENSITYHamann, STH, Raffelt, Tamborra, Wong, arxiv:1006.5276 (PRL)

Page 40: ASTROPHYSICAL NEUTRINOS

WHAT IS IN STORE FOR THE FUTURE?

BETTER CMB TEMPERATURE AND POLARIZATIONMEASUREMENTS (PLANCK)

LARGE SCALE STRUCTURE SURVEYS AT HIGH REDSHIFT

MEASUREMENTS OF WEAK GRAVITATIONAL LENSINGON LARGE SCALES

Page 41: ASTROPHYSICAL NEUTRINOS

Distortion of background images by foreground matter

Unlensed Lensed

WEAK LENSING – A POWERFUL PROBE FOR THE FUTURE

Page 42: ASTROPHYSICAL NEUTRINOS

EUCLIDESA M-CLASS MISSION2020-25

Page 43: ASTROPHYSICAL NEUTRINOS

STH, TU & WONG 2006