27
Attribute-Assisted Seismic Processing and Interpretation http://geology.ou.edu/aaspi/ Attribute-Assisted Seismic Processing and Interpretation http://geology.ou.edu/aaspi/ Brazilian carbonate reservoir study using the Wavelet Transform Teager-Kaiser Energy Attribute-Assisted Seismic Processing and Interpretation http://geology.ou.edu/aaspi/ Marcílio Castro de Matos [email protected] or www.matos.eng.br Kurt J. Marfurt [email protected] Oklahoma University Paulo Roberto Schroeder Johann [email protected] João Adolfo Rosseto [email protected] Petrobras AASPI

Attribute-Assisted Seismic Processing and Interpretation Attribute-Assisted Seismic Processing and Interpretation

Embed Size (px)

Citation preview

Page 1: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

Attribute-Assisted Seismic Processing and Interpretation

http://geology.ou.edu/aaspi/

Attribute-Assisted Seismic Processing and Interpretation

http://geology.ou.edu/aaspi/

Brazilian carbonate reservoir study using the Wavelet Transform Teager-Kaiser Energy

Attribute-Assisted Seismic Processing and Interpretation

http://geology.ou.edu/aaspi/

Marcílio Castro de Matos [email protected] or www.matos.eng.br

Kurt J. Marfurt [email protected]

Oklahoma University

Paulo Roberto Schroeder Johann [email protected]

João Adolfo Rosseto [email protected]

Petrobras

AASPI

Page 2: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

Motivation

Seismic attributes applied to carbonate reservoirs examples: Masaferro et al. (2004) state that the combined effects of variation in

depositional facies and diagenetic alteration play a key role in controlling variations in sonic velocities and thus is acoustic impedance in carbonate systems.

Pearson and Hart (2004) showed that spectral components can be used in carbonate reservoir characterization. Specifically, they predicted the porosity of a carbonate reservoir from a linear combination of the slope from peak to maximum spectral frequency and the ratio of the number of positive samples over the number of negative samples within a time interval.

Chopra and Marfurt (2007) show how the shape or geomorphology of reflection patterns, coupled with appropriate models deposition and diagenesis, further aid the mapping of carbonate facies. Thus, both geometric (measuring lateral changes) and trace shape (measuring vertical seismic waveform) seismic attributes can be a great aid in the characterization of carbonate reservoirs.

Now, carbonates are very important to Brazil !!!

Page 3: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

Objectives

To show how the seismic density energy can be related to the Wavelet Transform Teager-Kaiser Energy

To show that this nonlinear energy-tracking algorithm allows us to differentiate high amplitude reservoir from other high amplitude reflections

To show how we applied this technique to a Brazilian carbonate reservoir

Page 4: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

Summary

• Introduction: Seismic x Teager-Kaiser Wave Energy

• The Wavelet Transform TK Energy - WaveTeKE

• WaveTeKE applied to a Brazilian carbonate reservoir

• Conclusions

Page 5: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

Seismic Wave Energy Density (Sheriff and Geldart, 1995)

Simple Harmonic Motion Energy (Kaiser, 1990)

22222 22

1 f 22

2

1 m

22

Newton’s law of motion of a mass m suspended by a spring of force constant k:

02

2

xm

k

dt

xd tAtx cos

Total Energy E of the system:

22

2

1

2

1xmkx

Total energy is equal to the maximum value of the kinetic energy

X

Mass-spring system

F=-kx

Animation courtesy of Dr. Dan Russell, Kettering University http://www.kettering.edu/~drussell/demos.html

http://web.ics.purdue.edu/~braile/edumod/waves/WaveDemo.htm

Page 6: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

Teager-Kaiser Energy(Kaiser, 1990)

11sin 222 nxnxnxA

nEnxnxnxAA 11sin 22222

tAtx cos A/D conversion

Oscillatory Phenomena

sin0when

sampling period: ts sampling frequency: fs

4 ms 250 Hz 31.25 Hz

2 ms 500 Hz 62.5 Hz

22

ss fff 2

Teager-Kaiser Energy

TK energy estimation error < 11 %8

.,.,7854.04

sffeiwhen

nAnx cos

Page 7: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

Teager-Kaiser Energy: examples and drawbacks

0 10 20 30 40 50 60 70 80 90 100-1

-0.5

0

0.5

1

Am

plitu

de

10 20 30 40 50 60 70 80 90 1000

0.2

0.4

0.6

0.8

TK

Ene

rgy

Sample number n

0 10 20 30 40 50 60 70 80 90 100-2

-1

0

1

2

Am

plitu

de10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

TK

Ene

rgy

Sample number n

Ex: Signal consisting on two sinusoids

sin(pi/6*n)+sin(pi/4*n)sin(pi/6*n) sin(pi/4*n)

TK Energy crossterms

It is essential to separate the components of the signal by some form of band-pass filtering before applying the algorithm.

22AE

drawback

Page 8: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

Summary

• Introduction: Seismic x Teager-Kaiser Wave Energy

• The Wavelet Transform TK Energy - WaveTeKE

• WaveTeKE applied to a Brazilian carbonate reservoir

• Conclusions

Page 9: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

Continuous Wavelet Transform

0 1 2 3 4 5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

tempo

Am

plitu

de

0.02 0.04 0.06 0.08 0.1 0.12 0.14

0

2

4

6

8

10

12

14

16

18

frequencia normalizada (x )

Am

plit

ude

Cdd0 2

0

2 ˆˆ

0

dtt

s

ut

stsu 1

, 00ˆ

dtt

-5 -4 -3 -2 -1 0 1 2 3 4 5-0.4

-0.2

0

0.2

0.4

0.6

0.8

1Wavelet Chapeu Mexicano

tempo

Am

plitu

de

(x) L2() is called a wavelet

Page 10: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

100 200 300 400 500 600 700 800 900 1000

-0.2

0

0.2

0.4

Amostras

Am

plitu

de

Amostras

Esc

ala

100 200 300 400 500 600 700 800 900 1000

10

20

30

40

50

60

Continuous Wavelet Transform (CWT)

time

Amplitude

( ),

1( , ) ( , ) , ( )x u s

t uCWT u s Wf u s f f t dt

ss

1

( , ) ( ) s

t uWf u s f t dt f u

ss

s

t

sts 1

ˆ ˆs s s The CWT can be interpreted

as a band pass filter response at each scale s

Sca

les

Time (ms)

Time (ms)

f t t

Page 11: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

WaveTeKEDescription

Band pass filter 1

Band pass filter 2

Band pass filter n

...

Teager-Kaiser Energy

Teager-Kaiser Energy

Teager-Kaiser Energy...

WaveTeKE

Reservoir

Wavelet Transform

Case 01: Carbonate Oil Well

Page 12: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

Time-frequency attributes

Frequency

Amplitude

Peak Frequency

Peak Amplitude Highest Frequency Peak Amplitude

Highest Frequency Peak

Mean

Highest Frequency Peak Amplitude over mean

Peak Amplitude over mean

Difference between PF and HFP

Difference between PA and HFPA

Page 13: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

WaveTeKE Applied to wedge model

(b)

Tra

vel t

ime

(ms)

(a)

5 10 15 20 25 30 35 40 45 50

50100150200250

-200

0

200

(c)

Tra

vel t

ime

(ms)

5 10 15 20 25 30 35 40 45 50

50100150200250

20

40

Temporal thickness (ms)

Tra

vel t

ime

(ms)

5 10 15 20 25 30 35 40 45 50

50100150200250

0.511.52x 10

4

0 5 10 15 20 25 30 35 40 45 500

1

2

3x 10

4

Am

plitu

de o

f th

e M

axim

um F

requ

ency

Temporal thickness (ms)0 5 10 15 20 25 30 35 40 45 50

20

30

40

50

Max

imum

Fre

quen

cy

(d)

Amp Max Freq

Max Freq

Amplitude of the maximum

instantaneous frequency

Maximum instantaneous

frequency

Instantaneous seismic attributes generated from the time-frequency

analysis

Time interval seismic attributes generated from the time-frequency

analysis

0 5 10 15 20 25 30 35 40 45 50

0

0.05

0.1

0.15

0.2

0.25

Temporal Thickness (ms)

Travel tim

e (m

s)

Temporal Thickness (ms)

Travel tim

e (m

s)

5 10 15 20 25 30 35 40 45 50

50

100

150

200

250-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

a)

b)

Thin bed model

CWT with real Morlet

WaveTeKE with real Morlet

Seismic trace

WaveTeKE with complex

Morlet

CWT with complex Morlet

The same dominant frequency and instant time

Page 14: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

-200 0 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Amplitude

tim

e

20 40 60 80 100 120

50

100

150

200

250

20

40

60

80

100

120

140

20 40 60 80 100 120

50

100

150

200

250

20

40

60

80

100

120

140

20 40 60 80 100 120

50

100

150

200

250

10

20

30

40

50

60

70

80

90

-200 0 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Amplitude

time

20 40 60 80 100 120

50

100

150

200

250

10

20

30

40

50

60

70

80

90

20 40 60 80 100 120

50

100

150

200

250

10

20

30

40

50

60

70

80

90

20 40 60 80 100 120

50

100

150

200

250

10

20

30

40

50

60

70

80

90

-200 0 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Amplitude

tim

e

time

5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 ms

30 ms

35 ms

Peak Amplitude

Highest Frequency Peak Amplitude

Peak Amplitude

Highest Frequency Peak Amplitude

20 40 60 80 100 120

50

100

150

200

250

20

40

60

80

100

120

140

Amplitude

High

Low

Freq

Time

Freq

Time

Freq

Time

Freq

Time

Freq

Time

Freq

Time

Page 15: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

Summary

• Introduction: Seismic x Teager-Kaiser Wave Energy

• The Wavelet Transform TK Energy - WaveTeKE

• WaveTeKE applied to a Brazilian carbonate reservoir

• Conclusions

Page 16: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

80 ms below the negative peak horizon

2 km

AA’

400 ms

B B’

dry

ho

le

pro

du

ce

r

B

B’

A’

A

1.2 km

A’

400 ms

pro

du

ce

r

BB’A

Negative

Positive

Amplitude

Reservoir Base Map AmplitudeSeismic Sections (dip/strike) of a Carbonate

Oil Field - Campos Basin

Page 17: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

Reservoir Base Maps

Reservoir topStructural Time

Semblance

Time (s)

1.4

1.5

1.6

1.7

(a)

Low

High

Semblance

Page 18: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

Reservoir Base Maps

Most negative curvature

Sobel filter

(d)

(b)

B

B’

A’

A Sobel FilterLow

High

Most Neg Curv

Pos

Neg

0

Page 19: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

AA’

400 ms

B B’

dry

ho

le

pro

du

ce

r

A’

400 ms

pro

du

ce

r

BB’A

1.2 km

Zero

Positive

2 km

B

B’

A’

A

TE energy absolute sum value between the top Horizon and 80 ms bellow it

WaveTeKEPeak amplitude

Carbonate Oil Field - Campos Basin

Page 20: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

low highPeak energy

50

10

Pe

ak

fre

qu

en

cy

(H

z)

++ ++

Minimum amplitude

Max

Min

Minimum amplitude bellow the reservoir top

80 ms Time interval seismic attributes

Peak WaveTeKE frequency and its associated amplitude plotted together using a 2D color bar bellow the reservoir top

Page 21: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

RGB display of spectrum attributes

Frequency

Peak Frequency

Mean

Peak Amplitude over mean

Difference between PF and HFP

Red

Green

Blue

Page 22: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

RGB display of spectrum attributes

Frequency

Highest Frequency Peak

Mean

Highest Frequency Peak Amplitude over mean

Difference between PF and HFP

Red

Green

Blue

Page 23: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

RGB display of spectrum attributes

Frequency

Highest Frequency Peak

Mean

Difference between PF and HFP

Green

Blue

Peak Frequency

Red

Page 24: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

RGB display of spectrum attributes

Frequency

Mean

Peak Amplitude over mean

Difference between PF and HFP

Red

Green

Highest Frequency Peak Amplitude over mean

Blue

Page 25: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

Summary

• Introduction: Seismic x Teager-Kaiser Wave Energy

• The Wavelet Transform TK Energy - WaveTeKE

• WaveTeKE applied to a Brazilian carbonate reservoir

• Conclusions

Page 26: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

Conclusions

We show that the Teager-Kaiser energy can be computed for seismic data through the joint time-frequency representation.

The TK energy appears to be quite effective in delineating strong amplitude, high frequency events associated with a producing areas of a carbonate reservoir.

The results obtained with real seismic data show the WaveTeKE potential use as an exploratory tool to detect energy associated with important geological marks and potential exploratory leads.

Page 27: Attribute-Assisted Seismic Processing and Interpretation  Attribute-Assisted Seismic Processing and Interpretation

Acknowledgements

We also would like to thank PETROBRAS for their cooperation in providing the data, support and the authorization to publish this work.

Attribute-Assisted Seismic Processing and Interpretation

http://geology.ou.edu/aaspi/

The first two authors would like to thank the support from the University of Oklahoma Attribute-Assisted Seismic Processing and Interpretation Consortium and its sponsors.