20
LIGO-G010114-00-Z B. Willke, Mar 01 Laser Developement for Advanced LIGO Benno Willke LSC meeting LIGO-Livingston Site, Mar 2001

B. Willke, Mar 01 LIGO-G010114-00-Z Laser Developement for Advanced LIGO Benno Willke LSC meeting LIGO-Livingston Site, Mar 2001

Embed Size (px)

Citation preview

LIGO-G010114-00-Z B. Willke, Mar 01

Laser Developement for Advanced LIGO

Benno Willke

LSC meeting

LIGO-Livingston Site, Mar 2001

LIGO-G010114-00-Z B. Willke, Mar 01

LIGOII PSL – requirements

Fourier Frequency (Hz)

Frequency Noise Spectral Density

(Hz/Hz1/2)

10 10

100 1

1k 10-1

10k 10-2

Fourier Frequency (Hz)

Power Noise Spectral Density (1/Hz1/2)

10 10-6

100 10-7

1k 10-7

10k 10-7

25MHztechnical noise <10%

shot noise of 1W

• 180W in gausian TEM00 mode

• less than 10W in non - TEM00 modes

LIGO-G010114-00-Z B. Willke, Mar 01

LIGOII PSL – subsystem layout

front end powerstages

modecleaner

pre-mode

cleaner

referencecavity

long baselinecavities

20W 200W

180W

frequency stabilization

power stabilizaiton

LIGO-G010114-00-Z B. Willke, Mar 01

LIGOII PSL – project stages

• develop concepts

• design and build laboratory version

• design and build final version

• PSL fabrication

• PSL installation

LIGO-G010114-00-Z B. Willke, Mar 01

develop concepts

• increase power of front-end

• evaluate high-power-stage concepts– MOPA slab (Stanford)– stable-unstable slab oscillator (Adelaide)– rod systems (Hannover)

• test power and frequency stabilization schemes

LIGO-G010114-00-Z B. Willke, Mar 01

Laser for GEO600: Injection Locked Ring Laser

LIGO-G010114-00-Z B. Willke, Mar 01

Nd:YAG Master-Laser

NPRO (non-planar ring oscillator) by Innolight*

• output power: 800mW

• frequency noise: [ 10kHz/f ] Hz/sqrt(Hz)

• power noise: 10-6 /sqrt(Hz)

* US dristibution: Resonant optics Corp., San Martin CA

LIGO-G010114-00-Z B. Willke, Mar 01

Laser for GEO600: Injection Locked Ring Laser

LIGO-G010114-00-Z B. Willke, Mar 01

GEO 600 Slave Laser

LIGO-G010114-00-Z B. Willke, Mar 01

GEO 600 Slave Laser Prototype IIFrequency Stability

1 10 100 1000 10000 10000010

-1

100

101

102

103

104

105

106

quasi monolithic slave relative to stabilized NPRO (inj.-lock actuator signal)

discrete component slave (ditto) free running NPRO

relative to a reference cavity

Fre

que

ncy

Flu

ctua

tions

[H

z/H

z1/2 ]

Frequency [Hz]

LIGO-G010114-00-Z B. Willke, Mar 01

Power Scaling of End Pumped Nd:YVO4

0 5 10 15 20 25 30 35 400

2

4

6

8

10

12

14

16

18

GEO slave with standard Nd:YVO4 "rods"

brewsterplates removed

outp

ut p

ower

[W]

pump power [W]

Advantages of Nd:YVO4 1)

• amplifies 1064 nm emission of Nd:YAG (basic requirement)

• birerefingence na= 1.96 / nc= 2.17 no depolarization

• emission || = 25x10-19 cm-2 = 7x10-19 cm-2

polarized emission• large product of || sp (sp 90 s)

loss insensitive high gain lasers• 8 nm broad absorption @ 808 nm

low requirements on pump diodes

Disadvantage of Nd:YVO4 1)

• low pump intensity damage threshold58 W / mm2 @ 0.5 % doping29 W / mm2 @ 1.0 % dopingincreased by 50 % by undoped endcaps

1) Data from Y.-F. Chen, IEEE J. Q. E. 35(2), 234 (1999) / Tsunekane et. al. Elt. Lett. 32(1), 41 (1996) / VLOC, Casix, Castech web pages

LIGO-G010114-00-Z B. Willke, Mar 01

PBS

/4

DeformableMirror

Injection-locked

osc. (20 W)

WavefrontSensor

Mode-matchinglenses

Mode-matchinglenses

To Mode-Cleaner(s)

AmplifierStage 1

AmplifierStage 2

Stanford MOPA design

LIGO-G010114-00-Z B. Willke, Mar 01

results Stanford Jan01

• 12W injection locked laser was shipped to

Stanford and showed stable operations

• 27W stable operation of first ampl. stage

• some fluid (oil ?) developed on the entrance

surface of second ampl. slab and degraded

its performance for powers above 35W

LIGO-G010114-00-Z B. Willke, Mar 01

Adelaide 100W configuration

LIGO-G010114-00-Z B. Willke, Mar 01

design and build lab-version

• design reliable laser heads for power stages

• include suitable actuators in laser design

• integrate stabilized front-end, high-power-stages and pre-modecleaner

• design power stabilization (in-loop test)

LIGO-G010114-00-Z B. Willke, Mar 01

design and build final version

• optimize design according to lessons learned with lab-version and including system aspects like reliability, safety, robustness, automation and system interfaces (DAQ, power, cooling, ...)

• keep flexibility to react on long-term behavior of lab-version

LIGO-G010114-00-Z B. Willke, Mar 01

PSL fabrication & installation

• quality check

• system integration (if components are fabricated at different locations)

• reproducibility

• user training

LIGO-G010114-00-Z B. Willke, Mar 01

Laser Zentrum Hannover

Max-Planck InstitutUniversity of GlasgowUniversity of Hannover

GEO600 pre-stabilized laser

High-power solid- state-lasers design

power and frequency stabilization

LIGOII pre-stabilized laser

LIGO LabStanford

Adelaide

the LIGOII laser-team

LIGO-G010114-00-Z B. Willke, Mar 01

LIGOII laser-team

• 4 FTE Laser Zentrum Hannover – Fallnich, Ralf, Ivo, Mike, Martina

• 1 FTE Stanford - Rutherford • 1 FTE Adelaide - Veitch • 3 FTE University Hannover/Max-Planck-Group

– Willke, Kirchner, Weidner, Nagano• 1 FTE Glasgow

– Ward, Robertson• 1 FTE LIGO

– King, Abbott• workshop support Hannover / CDS

LIGO-G010114-00-Z B. Willke, Mar 01

LIGOII Laser – project plan

• concept phase (100W) Jan01 - Apr02

• lab-version phase (200W) Apr02 – Feb04

• longterm test (Hannover/LASTI) Feb04 – Feb 05

• final version phase Feb04 – Jul05

• installation PSL1 Jul05 – Feb06

• fabr. & inst. PSL2&3 Feb06 –Oct06