Bearing Capacity of Soil (With Diagram)

Embed Size (px)

DESCRIPTION

ghjdmgfkjh

Citation preview

  • BearingCapacityofSoil(WithDiagram)byZ.KhanSoil

    Advertisements:

    Duringrainyseason,immediatelyafterrain,whenwesteppedintosoilsoftenbytherain,ourshoepenetratesintothesoil.Thesoilsqueezesoutfromunderourshoeandemergesaroundthesidesofourshoe.Duringthisprocessweloseourbalancetillthesoilbelowthesurfacesupportsourweightandprovidesusstability.

    Thesoilbelowourshoejustgaveway.ThisgivingwayorrunningawayofsoiliscalledbearingcapacityfailurebyGeotechnicalengineers.Bearingcapacityfailureisafailurebyshear.Soknowledgeofbearingcapacityofanysoilbeforeconstructionofstructureisveryessential.

    Definitions:

    (i)Foundation:

    Itisthelowestpartofthestructurewhichsupportsastructure.

    (ii)Foundationbed:

    Thematerialonwhichafoundationrestsiscalledfoundationbed.

    (iii)Shallowfoundation:

    Whenthedepthofthefoundationislessthanorequaltothewidthofthefoundation,itiscalledshallowfoundation.

    (iv)Deepfoundation:

    Whenthedepthofafoundationisgreaterthanthewidth,itiscalleddeepfoundation.

    (v)Bearingcapacity:

    Itistheloadcarryingcapacityofsoil.

    (vi)Ultimatebearingcapacity(qu):

    http://www.yourarticlelibrary.com/category/soil/
  • Itistheminimumgrosspressureatthebaseofthefoundationatwhichsoilfailsinshear.

    (vii)Grosspressure(q):

    Thegrosspressureisthetotalpressureatthebaseofthefootingduetotheweightofthesuperstructure,selfweightofthefootingandweightoftheearthfill.

    (viii)Netpressureintensity(qn):

    Itisthedifferenceinintensitiesofthegrosspressureandtheoriginaloverburdenpressure.IfDisdepthoffoundation,thenqn=qyD

    (ix)Netultimatebearingcapacity(qnu):

    Itistheminimumnetpressureintensitywhichcausesshearfailureofsoil.

    Qu=qnu+yD

    qnu=qu+yD

    (x)Safebearingcapacity(qs):

    Itisthemaximumpressureintensitywhichthesoilcancarrysafelywithouttheriskofshearfailure.

    qs=qns+yD

    =qnu/F+yD

    whereFisthefactorofsafety

    (xi)Netsafebearingcapacity(qns):

    Itisthenetultimatebearingcapacitydividedbyafactorofsafety.

    Qns=qns/F

    (xii)Allowablebearingcapacity(qa):

    Itisthenetloadingintensityatwhichneitherthesoilfailsinshearnorthereisexcessivesettlementdetrimentaltothestructure.

  • ConceptofBearingCapacity:

    Allcivilengineeringstructureswhethertheyarebuildings,dams,bridgesetc.arebuiltonsoils.Afoundationisrequiredtotransmittheloadofthestructureonalargeareaofsoil.Thefoundationofthestructureshouldbesodesignedthatthesoilbelowdoesnotfailinshearnorthereisexcessivesettlementofthestructure.Theconventionalmethodoffoundationdesignisbasedontheconceptofbearingcapacity.

    Thebearingcapacityoffoundationisthemaximumloadperunitareawhichthesoilcansupportwithoutfailure.Itdependsupontheshearstrengthofsoilaswellasshape,size,depthandtypeoffoundation.Figure9.1showsatypicalloadvs.settlementcurveofafooting.Fromthefigureitisclearthatasthefootingloadisincreased,thesettlementalsoincreases.

    Thesettlementincreaseslinearlywithloadattheinitialstage.Onfurtherincreaseinload,thesettlementincreasesmorerapidlyandthencontinuestoincreasewithoutanyappreciableincreaseinload.Thisstageiscalledfailureoffoundationi.e.,thesoilhasreacheditscapacitytobearload.

    Toavoidbearingcapacityfailureoffoundationitisessentialtotakeintoconsideration,beforedesignoffoundation,twotypesofactionbythesoilwhensubjectedtoload:

    (i)Thebearingcapacityshouldbelowenoughtoensurethatthesettlementcausedisnotexcessive.

    (ii)Thebearingcapacityshouldbesuchthatexcessiveshearstrainisnotcaused.

    http://cdn.yourarticlelibrary.com/wp-content/uploads/2015/01/clip_image00211.jpg
  • BearingCapacityofShallowFoundations(TerzaghiAnalysis):

    AssumptionsinTerzaghisAnalysis:

    1.Thefootingisstriponeatshallowdepthandhasroughbase(L>5B,D>B,whereL=length,B=widthandD=depthofthefooting).

    2.Thesoilishomogeneous,isotropic#andrelativelyincompressible.

    3.Thefailurezonesdonotextendabovethehorizontalplanethroughthebaseofthefooting.

    4.Theelasticzonehasstraightboundariesinclinedat=tothehorizontalandtheplasticzonesfullydeveloped.

    Alsocalledgeneralbearingcapacityequationforstripfooting

    qu=CNc+0.5BN+qNq

    wherequ=ultimatebearingcapacity

    q=overburdenpressureatthebase

    =yD(useD,ifsubmerged)Ccohesionofsoil

    =unitweightofsoilatbaseleveloffoundation

    (useofsubmerged)

    B=Widthoffoundation

    D=Depthoffoundation

    NC,NgandNqarebearingcapacityfactorswhichdependon(angleofinternal

    http://cdn.yourarticlelibrary.com/wp-content/uploads/2015/01/clip_image0049.jpg
  • friction).

    BearingCapacityfromBuildingCodes:

    Forpreliminarydesignofanystructureandfordesignoffoundationoflightlyloadedstructures,thepresumptivebearingcapacitymaybeused.Table9.1givespresumptivesafebearingcapacitiesforvarioustypesofsoilrecommendedbyNationalbuildingcodeofIndia.

    Note1:

    Valuesofbearingcapacitylistedarefromshearconsiderationonly.

    http://cdn.yourarticlelibrary.com/wp-content/uploads/2015/01/clip_image0084.jpg
  • Note2:

    Valueslistedinthetableareverymuchroughforthefollowingreasons:

    (i)Effectofdepth,width,shapeandroughnessoffoundationhavenotbeenconsidered.

    (ii)EffectOfangleoffriction,cohesion,watertable,densityetc.,havenotbeenconsidered.

    (iii)Effectofeccentricityandindicationofloadshasnotbeenconsidered.

    Note3:

    Drymeansthatthegroundwaterlevelisatadepthnotlessthanthewidthoffoundationbelowthebaseofthefoundation.

    Note4:

    Forcohesionlesssoils,thevalueslistedinthetableshallbereducedby50%ifthewatertableisaboveornearthebaseoffooting.

    Note5:

    Compactnessofcohesionlesssoilsmaybedeterminedbydrivingaconeof65mmdiaand60apexanglebyahammerof65kgfallingfrom75cmIfthecorrectedNvaluefor30cmpenetrationislessthan10,thesoiliscalledloose,ifNliesbetween10and30,itismediumandifmorethan30,thesoiliscalleddense.

    FactorsAffectingBearingCapacityofSoils

    Thefollowingfactorsaffectthebearingcapacityofsoils:

    (i)Typeofsoil:

    (ii)Physicalcharacteristicsoffoundation

    (iii)Soilproperties

    (iv)Typeoffoundation

    (v)Watertable

  • (vi)Amountofsettlement

    (vii)Eccentricityofloading.

    (i)Typeofsoil:

    Thebearingcapacityofsoilsdependsuponthetypeofsoil.Dependinguponthetypeofsoil,thebearingcapacityofsoilisdifferentwhichisclearfromTerzaghibearingcapacityequation.

    qu=CNC+0.5yBNy+qNq

    Forpurelycohesionlesssoil

    C=0

    Equation(9.1)reduceto

    qu=0.5yBNy,+qNq

    Forpurelycohesivesoil

    =0,

    thevaluesofbearingcapacityfactorsare

    Nc=5.7

    Nq=1andN=0

    Equation(9.1)isthen

    qu=5.7C+q

    (ii)Physicalcharacteristicsoffoundation:

    Physicalcharacteristicslikewidth,shapeanddepthoffoundationaffectthebearingcapacityofsoils.Eq.9.1showsthatthebearingcapacityofsoilsdependsuponthewidthBanddepth(D)offoundation.SoanychangeinthevalueofBandDoffoundationwillaffectthebaringcapacity.

    Theshapeoffoundationalsoaffectsthebearingcapacitywhichisas

  • follows:

    Forsquarefootings:

    qu=1.2CNc+0.4BN+DNq(9.2)

    Forcircularfootings:

    qu=1.2CNC+0.3BN+DNq(9.3)

    whereBisthediameterofcircularfooting.

    (iii)Soilproperties:

    Soilpropertieslikeshearstrength,density,permeabilityetc.,affectthebearingcapacityofsoil.Densesandwillhavemorebearingcapacitythanloosesandasunitweightofdensesandismorethanloosesand.

    (iv)Typeoffoundation:

    Thetypeoffoundationselectedalsoaffectsthebearingcapacityofsoils.Raftormatfoundationadoptedsupportstheloadofstructuresafelybyspreadingtheloadtoawiderarea,evenifthesoilishavinglowbearingcapacity.

    (v)Watertable:

    Whenthewaterisabovethebaseofthefooting,thesubmergedunitweightofsoilisusedtocalculatetheoverburdenpressureandthebearingcapacityofthesoilreducesby50%.

    Foranypositionofthewatertablethegeneralbearingcapacitymaybemodifiedasunder:

  • (vi)Amountofsettlement:

    Theamountofsettlementofthestructurealsoaffectsthebearingcapacityofsoil.Ifthesettlementexceedsthepossiblesettlement,thebearingcapacityofsoilisreduced.

    (vii)Eccentricityofloading:

    IftheloadactseccentricallyinafootingthewidthBandlengthLshouldbereducedasunder

    B=B2e

    L=L2eand

    A=BXL

    Theultimatebearingcapacity(qu)ofsuchfootingsaredeterminedbyusingBandLinsteadof8andL.Hencequislessthanthatcorrespondstoactualsizeoffootingas

    http://cdn.yourarticlelibrary.com/wp-content/uploads/2015/01/image22.pnghttp://cdn.yourarticlelibrary.com/wp-content/uploads/2015/01/image21.png
  • showninfigure9.4.

    ConceptofVerticalStressDistributioninSoilsDuetoFoundationLoads:

    Whenasoilmassisloaded,verticalstressesaredevelopedinthesoil.Theestimationofverticalstressesatanypointinasoilmassduetoexternalloadingareofgreatsignificanceinthepredictionofsettlementofbuildings,bridges,embankmentsandotherstructures.Thestressesduetoexternalloadingaregreatestatshallowdepths,closetothepointloadapplicationandtheybecomesmallerastheverticaldistancebelowtheloadorthehorizontaldistancefromtheloadincreases.

    Theverticalstressdistributioninasoilmassdependsupon:

    (i)Thenatureofloadingi.e.,themannerofloadplacement,loaddistributionandshapeoftheloadedarea

    (ii)PhysicalpropertiesofsoillikePoissonsratio,modulusofelasticity,compressibilityetc.

    Indeterminingthestressesbelowafoundation,itisgenerallyassumedthatthesoilbehavesasanelasticmediumwithidenticalpropertiesatallpointsandinalldirections.Manyformulaebasedontheoryofelasticityhavebeenusedtocomputestressesinsoils.OnesuchformulawasfirstdevelopedbyBoussinesq(1885)forthestressesanddeformationintheinteriorofasoilmassduetoverticalpointload.ABritishscientistWestergaardin1938alsoproposedaformulaforcomputationofverticalstressinthesoilmassduetoverticalpointload.

    PointLoad:

    Businesssformula:

    http://cdn.yourarticlelibrary.com/wp-content/uploads/2015/01/clip_image0127.jpg
  • Businesssformulaisbasedonthefollowingassumptions:

    (i)Thesoilmassislinearlyelastic,homogeneous,isotropicandsemiinfinite.

    (ii)Theloadactsasaverticalconcentratedload.

    (iii)Thesoilisweightless.

    Theequationforverticalstressatapointasshowninfigure9.5

    http://cdn.yourarticlelibrary.com/wp-content/uploads/2015/01/image26.pnghttp://cdn.yourarticlelibrary.com/wp-content/uploads/2015/01/image25.pnghttp://cdn.yourarticlelibrary.com/wp-content/uploads/2015/01/clip_image0164.jpg
  • LineLoad:

    TheequationforverticalstressduetoalineloadP1perunitlengthonthesurfaceatapointlocatedatadepthzanddistancexlaterallyasshowninfigure9.6is

    Z=2p1/

    z3/(x2+z2)2

    UniformlyLoadedStrip:

    TheequationforverticalstressduetoauniformloadqonastripareaofwidthBandinfinitelengthintermsofandasshowninthefigure9.7is

    z=q/(+SinCos2)

    Belowthecentreofthestrip,verticalstressoatadepthzisgivenby

    Z=q/(a+sin)(iszeroandcos2=1)

    or2=qloz

    Thevaluesoftheinfluencefactoraregivenintable9.3,

    http://cdn.yourarticlelibrary.com/wp-content/uploads/2015/01/clip_image018.gifhttp://cdn.yourarticlelibrary.com/wp-content/uploads/2015/01/clip_image0195.jpg
  • SoilPropertiesGoverningChoiceofFoundationType:

    Thefollowingpropertiesofsoilgovernthechoiceoffoundationtype:

    (i)Bearingcapacityofsoil

    (ii)Settlementofsoil

    Theknowledgeofbearingcapacityandsettlementofthesoilisveryessentialfordesignoffoundationofanystructure.Thefoundationofanystructureshouldbesoselectedthatthesoilbelowdoesnotfailinshearandsettlementiswithinthepermissiblelimits.

    Ifthebearingcapacityofsoilatshallowdepthissufficienttosafelytaketheloadofthestructure,ashallowfoundationisprovided.Isolatedfooting,combinedfootingorstripfootingaretheoptionforshallowfoundation.Deepfoundationsareprovidedwhensoilimmediatelybelowthestructuredoesnothaveadequatebearingcapacity.Pile,piersorwellaretheoptionsfordeepfoundations.Matorraftfoundationsareusefulforsoilwhicharesubjectedtodifferentialsettlementorwherethereisawidevariationinloadingbetweenadjacentcolumns.Table9.4givessuitabilityoffoundationfor

    http://cdn.yourarticlelibrary.com/wp-content/uploads/2015/01/clip_image0233.jpghttp://cdn.yourarticlelibrary.com/wp-content/uploads/2015/01/clip_image0245.jpg
  • buildingsbasedonsoiltype.

    InSituTestsforDeterminationofUltimateBearingCapacity

    Thefollowinginsitutestsmaybeusedtodeterminetheultimatebearingcapacityorallowablebearingcapacityofsoil:

    (a)Plateloadtests

    (b)Standardpenetrationtest

    (c)Dynamicconepenetrationtest

    (d)Staticconepenetrationtest

    (e)Pressuremetertest

    PlateLoadTest:

    Plateloadtestessentiallyconsistsofloadingarigidplateatthefoundationlevelandrecordingthesettlementscorrespondingtoeachloadincrement.Theultimatebearingcapacityisthentakenastheloadatwhichtheplatestartssinkingatarapidrate.Theminimumandmaximumrecommendedsizestotestplateare30cmsquareand75cmsquarerespectively.Thethicknessofthesteelplateshouldnotbelessthan25mm.AlamSinghhasrecommendedthesizeofthetestplatetobe32cmsquare.

    http://cdn.yourarticlelibrary.com/wp-content/uploads/2015/01/clip_image0263.jpg
  • Thetestiscarriedinapithavingwidthequalto5timesthewidthofthetestplate.Atthecentreofthepit,asmallsquareholeisdugwhosesizeisequaltothesizeoftheplateandthebottomlevelofthepitcorrespondtotheleveloftheactualfoundation.

    Theloadingtothetestplatemaybeappliedbythefollowingtwomethods:

    (a)GravityLoadingPlatformmethod

    (b)ReactionTrussMethod

    Reactiontrussloadingisfoundconvenientandlesstimeconsuming,hencegenerallyused.Forthispurpose,asteeltrussisanchoredtogroundacrossthepit.Ahydraulicjackwithattachedpressuregaugeisplacedbetweentheundersideofthetrussandthetestplate.Atleasttwodialgauge,havingaccuracyof0.2mm,isusedtomeasurethesettlementofthetestplate.Thedialgaugesaremountedonindependentdatumbarandarejusttouchingthetestplate.

    http://cdn.yourarticlelibrary.com/wp-content/uploads/2015/01/clip_image0273.jpg
  • http://cdn.yourarticlelibrary.com/wp-content/uploads/2015/01/clip_image0294.jpg