26
Bio 6 – Principles of Genetic Inheritance Lab Overview In this laboratory you will learn about the basic principles of genetic inheritance, or what is commonly referred to as “genetics”. A true appreciation of the nature of genetic inheritance will require solving of a variety of genetics problems, and to do so you will need to understand several related concepts, some which should be familiar and others which may be new to you. Thus you will begin this lab by examining the concepts of genes, gamete production by meiosis, and probability. You will then use these concepts to work through a series of genetics problems addressing various aspects of genetic inheritance in plants and animals. Part 1: KEY GENETIC CONCEPTS We all know that when living organisms reproduce, their offspring are much like their parents. Chickens don’t give birth to lizards and apple trees don’t give rise to pine trees. So what is the biological basis for this obvious reality? You probably already know this has to do with genes, genes one inherits from one’s parents. However the process of passing on genes from one generation to the next is more complex than it may appear. The simplest form of genetic inheritance involves asexual reproduction. This is the case when a single parent organism passes its genes to offspring which are basically clones of the parent (i.e., genetically, and for the most part, physically identical). Although this mode of reproduction is quite convenient (imagine if you could simply have children identical to yourself, no partner necessary), it has one extremely significant shortcoming: NO genetic diversity. For some species asexual reproduction works quite well, however for most plants and animals (including humans) this just won’t cut it, genetic diversity is too important for the long term survival of species. So how is genetic diversity produced? The answer is sexual reproduction: the production of gametes (sperm and eggs) by meiosis followed by the fusion of sperm and egg (fertilization) to form a new, genetically unique individual. Sexual reproduction essentially “shuffles” the genes of each parent producing a unique combination of parental genes in each and every offspring. This is the sort of genetic inheritance we will focus on, genetic inheritance based on sexual reproduction. Through sexual reproduction, each offspring inherits a complete set of genes from each parent, however the study of genetic inheritance is generally limited to one or two genes at a time. Thus when you begin to work with genetics problems you will focus initially on a single gene at time, and then learn how to follow the inheritance of more than one gene. To focus on large numbers of genes would be rather complicated and is not necessary for our purposes. Before you begin to examine genetic inheritance via genetics problems, you will need to understand some important concepts that are central to the process: the nature of chromosomes, genes and genetic alleles; the process of gamete production by meiosis; and the concept of probability. Once these concepts and their associated terminology are clear, you will then be ready to immerse yourself into the world of genetic inheritance. 205

Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

Embed Size (px)

Citation preview

Page 1: Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

Bio6–PrinciplesofGeneticInheritanceLab

OverviewInthis laboratoryyouwill learnaboutthebasicprinciplesofgenetic inheritance,orwhatiscommonlyreferredtoas“genetics”.Atrueappreciationofthenatureofgeneticinheritancewillrequiresolvingofavarietyofgeneticsproblems,andtodosoyouwillneedtounderstandseveralrelatedconcepts,somewhichshouldbefamiliarandotherswhichmaybenewtoyou.Thusyouwillbeginthislabbyexaminingtheconceptsofgenes,gameteproductionbymeiosis,andprobability.Youwillthenusetheseconceptstoworkthroughaseriesofgeneticsproblemsaddressingvariousaspectsofgeneticinheritanceinplantsandanimals.

Part1:KEYGENETICCONCEPTSWeallknowthatwhenlivingorganismsreproduce,theiroffspringaremuchliketheirparents.Chickensdon’tgivebirthtolizardsandappletreesdon’tgiverisetopinetrees.Sowhatisthebiologicalbasisforthisobviousreality?Youprobablyalreadyknowthishastodowithgenes,genesoneinheritsfromone’sparents.Howevertheprocessofpassingongenesfromonegenerationtothenextismorecomplexthanitmayappear.Thesimplestformofgeneticinheritanceinvolvesasexualreproduction.Thisisthecasewhenasingleparentorganismpassesitsgenestooffspringwhicharebasicallyclonesoftheparent(i.e.,genetically,and for themost part, physically identical). Although thismode of reproduction is quite convenient(imagineifyoucouldsimplyhavechildrenidenticaltoyourself,nopartnernecessary),ithasoneextremelysignificantshortcoming:NOgeneticdiversity.Forsomespeciesasexualreproductionworksquitewell,however formostplantsandanimals (includinghumans) this justwon’tcut it,geneticdiversity is tooimportantforthelongtermsurvivalofspecies.Sohowisgeneticdiversityproduced?Theanswerissexualreproduction: theproductionofgametes(sperm and eggs) bymeiosis followed by the fusion of sperm and egg (fertilization) to form a new,genetically unique individual. Sexual reproduction essentially “shuffles” the genes of each parentproducingauniquecombinationofparentalgenesineachandeveryoffspring.Thisisthesortofgeneticinheritancewewillfocuson,geneticinheritancebasedonsexualreproduction.Throughsexualreproduction,eachoffspringinheritsacompletesetofgenesfromeachparent,howeverthestudyofgeneticinheritanceisgenerallylimitedtooneortwogenesatatime.Thuswhenyoubegintoworkwithgeneticsproblemsyouwillfocusinitiallyonasinglegeneattime,andthenlearnhowtofollow the inheritanceofmore thanone gene. To focuson largenumbersof geneswouldbe rathercomplicatedandisnotnecessaryforourpurposes.Beforeyoubegintoexaminegeneticinheritanceviageneticsproblems,youwillneedtounderstandsomeimportant concepts that are central to the process: the nature of chromosomes, genes and geneticalleles; the process of gamete production bymeiosis; and the concept of probability. Once theseconceptsandtheirassociatedterminologyareclear,youwillthenbereadytoimmerseyourselfintotheworldofgeneticinheritance.

205

Page 2: Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

Chromosomes,GenesandAllelesAsyoulearnedinthepreviouslab,chromosomesareextremelylongpiecesofDNAinthenucleiofcellsthatcontainuptoathousandormoregeneseach.Eachspeciesoforganismhasacharacteristicnumberofchromosometypes:distinctchromosomeseachhavingauniquesetofgenesandauniquelength.Forexample, the fruit fly Drosophila, an organism used in many genetic studies, has only 4 types ofchromosomes–3autosomes(non-sexchromosomes)andtheXandYsexchromosomes.Humanbeings(Homo sapiens) on the other hand have 23 types of chromosomes – 22 autosomes and the sexchromosomes(XandY)asillustratedinthehumanmalekaryotypeshownbelow(noticetheXandYsexchromosomes):

Notice one more thing about this humankaryotype:therearetwoofeachautosomeaswellas twosexchromosomes. This isbecausehumanbeingsarediploid,whichmeanshavingtwoofeachchromosometype.Mostplantsandanimalsareinfactdiploid,andasweinvestigatetheprocessof genetic inheritancewewill onlyconcernourselveswithdiploidspecies.Howeveryoushouldbeawarethatnotallorganismsarediploid.Somearenormallyhaploid(oneofeachchromosome)suchasthefungi,andsomemayhavemorethantwoofeachchromosome(e.g.,four of each = tetraploid, eight of each =octoploid) as seen in a fair number of plantspeciesaswellasafewanimalspecies.As shown in thediagramto the left, genes arediscrete sections of chromosomal DNAresponsible for producing a specific protein orRNAmolecule.Theprocessofgeneexpression,theproductionofproteinorRNA fromagene,willbeaddressedinafuturelab.

The functional protein or RNA molecule produced from a particular gene is its gene product. It isimportant to realize that theDNAsequenceofagene,andhence itsgeneproduct, canvarywithinaspecies.Inotherwords,aparticulargeneinaspeciessuchasHomosapienscanhavedifferentversions,whatarereferredtoingeneticsasalleles.Thegeneproductsproducedfromanorganism’sgeneticallelesaccountforitsphysicalandbehavioralcharacteristics,whatwecollectivelycallanorganism’straits.Thespecific traitsan individualexhibits,whetherphysicalorbehavioral,are referred toas the individual’sphenotype.Thespecificgeneticallelesanindividualhasforaparticulargeneistheindividual’sgenotype.Asyoushallsoonsee,anindividual’sphenotypeislargelydeterminedbyitsgenotype.

206

Page 3: Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

Sincediploidorganismshavetwoallelesforeachgene,anindividualcanhavetwocopiesofthesamealleleforageneortwodifferentalleles.Iftheallelesarethesame,theindividualissaidtobehomozygousforthatgene.Iftheallelesaredifferent,theindividualissaidtobeheterozygousforthatgene.Whenanindividualisheterozygousforagene,oneallelemayoverrideor“mask”theotherallelebydeterminingthephenotyperegardlessoftheotherallele.Inthissituation,theallelethatdeterminesthephenotypeissaidtobedominantwhiletheotheralleleissaidtoberecessive.Thetermsdominantandrecessivearerelativetermsjustlikethetermsbigandsmall.Somethingisonlybigorsmallinrelationtosomethingelse,andinthesamewayanalleleforageneisonlydominantorrecessiveinrelationtoanotheralleleforthesamegene.

MeiosisandtheProductionofGametesSexualreproductionindiploidplantandanimalspeciesrequirestheproductionofhaploidgametesbytheprocessofmeiosiswhichisillustratedbelow.

Sincemeiosiswascoveredinthepreviouslab,wewon’treviewtheprocessinmuchdetailotherthantoremindyouofseveralkeypointsthatpertaintogeneticinheritance:

1) Diploid organisms have two of each chromosome type, one haploid set of chromosomesinheritedfromthemother(maternalchromosomes)andanotherhaploidsetinheritedfromthefather(paternalchromosomes),andthustwoallelesforeachgene,onematernalalleleandonepaternalallele.

2) Thehaploidgametesproducedbymeiosis(eggorsperm)containoneofeachchromosometype(e.g.,oneofeachautosomeandonesexchromosome),andthuscontainonlyonealleleforeachgene.

3) Itiscompletelyrandomwhichchromosomeofagiventype,maternalorpaternal,endsupinagameteproducedbymeiosis.Thusitiscompletelyrandomwhichalleleforaparticulargene(maternalorpaternal)endsupinagamete.

4) Sinceanindividualhasonlytwoallelesforeachgene,thereisa50%chancethateitherallele(maternalorpaternal)willendupinagivengamete.

207

Page 4: Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

Thesepointsarecentral to thestudyofgeneticsas itpertains tosexual reproduction. Diploidparentorganisms produce large numbers of haploid gametes, any of which may fuse at the moment offertilization toproduceadiploidzygote, ageneticallyuniquenew individual. It is thecombinationofallelesinheritedfromeachparentthatdeterminethegenotypeandphenotypeofeachnewoffspring.Giventhevarietyofpossiblegenotypesandphenotypesfortheoffspringofanytwoparents,geneticsmustalsoaddresstheprobabilityofeachpossibility.Sobeforeyoubeginworkingwithgeneticcrossesitisimportantthatyouunderstandbasicconceptsofprobability.

Probability

Tounderstandgeneticinheritance,youneedtohaveabasicunderstandingofprobability. Probabilityreferstothelikelihoodthatsomethingwillhappenasopposedtowhatactuallyhappens.Forexample,weallknowthatasinglecoinfliphasa50%chanceofbeing“heads”or“tails”,thustheprobabilityofheadsis50%or0.5or½asistheprobabilityoftails.Howeverwealsoknowthatwecannotknowwhattheoutcomeofasinglecoinflipwillbe. Allwecando ispredictthe likelihoodorprobabilityofeachpossibleoutcome,inthiscaseheadsortails.Whenanalyzingtheinheritanceofgenesyouwillalsobedealingwithprobabilities.Whentwoorganismsmateandproduceoffspringwecannotknowwhatgeneticalleleswillbeinheritedbyagivenindividual(genotype) or its physical characteristics (phenotype). We can only predict the likelihood of variouscharacteristicsbasedontheprobabilityofinheritingparticulargeneticallelesfromeachparent.Thenexttwo exercises will help illustrate the nature of probability and help prepare you to solve geneticsproblems.

Exercise1A–ProbabilityandsamplesizeInthisexerciseyouwillperformseveralsetsofcoinflips.Thiswillbedonetocomparethepredictedoutcomebasedonprobabilitytotheactualoutcome,andhowthisrelatestosamplesize(i.e.,thenumberofrepetitions):

1. Onyourworksheet,determinetheexpectednumbersofheadsandtailsforsamplesizesof10and100coinflips(theprobabilityofheadsis50%or0.50,asistheprobabilityoftails).

2. Perform10setsof10coinflips,recordingtheresultsonyourworksheet.

3. Combinetheresultsforall10setsofcoinflipsonyourworksheettogetatotalnumberofheadsandtailsoutof100coinflips.

4. Onyourworksheet,comparetheactualresultstoexpectedresultsforeachsetof10coinflipsaswellasthecombinedsetof100coinflipsandanswerthecorrespondingquestions.

208

Page 5: Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

Whenflippingacointhereareonlytwopossibleoutcomes, each with the same probability.Sometimes, however, youmust dealwithmorethantwopossibleoutcomes,eachwithadifferentprobability. This is thecase, forexample,whenyourollapairofdice,forwhichthereareelevenpossibleoutcomesintermsofthetotalsum:2,3,4,5,6,7,8,9,10,11and12.

Theprobabilitiesofeachpossiblesumofthedicearenotthesame.Ifyouhaveeverplayedaboardgameorcrapsyouknowforexamplethatarolltotaling7ismuchmorelikelythanarolltotaling2.Sowhyaretheprobabilitiesdifferent?Ithastodowithhowmanydifferentcombinationsadduptoagivensum.Forexample,torollapairofdiceandgetasumof2,bothdicemustshowa“1”.Thereisnootherwaytorollatotalof2withapairofdice.Therearesixdifferentways,however,torolla7: Reddie Blackdie total 1 6 7 6 1 7 2 5 7 5 2 7 3 4 7 4 3 7Sohowdoyoudeterminetheprobabilitiesofeachpossiblesumof thedice? Asshown inthematrixbelow,thereare6x6=36differentcombinationsyielding11possiblesums:

black1 black2 black3 black4 black5 black6red1 2 3 4 5 6 7red2 3 4 5 6 7 8red3 4 5 6 7 8 9red4 5 6 7 8 9 10red5 6 7 8 9 10 11red6 7 8 9 10 11 12

Eachdiehassixpossibleoutcomes(1through6),eachofwhichareequallylikelyandeachofwhichcanbe paired with any roll on the other die. Looking carefully at thematrix, you can see there is onecombinationoutof36thatyieldsasumof2(probability=1/36or0.028or2.8%),twocombinationsthatyieldasumof3(2/36or0.056or5.6%),threecombinationsthatyieldasumof4(3/36or0.083or8.3%),andsoon.If you think about it, the rolling of a pair of dice is actually two independent events in combination.Whetheryourollthereddieorblackfirst,orbothatthesametime,isirrelevant.Theprobabilityofrollingasumof2(“snakeeyes”)forexampleisstill1/36,regardlessofthetiming.Thisleadstoanimportantruleregardingprobabilitycommonlyreferredtoasthe“productrule”:

209

Page 6: Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

Theprobabilityofaspecificcombinationoftwoormoreoutcomesisthe

productoftheprobabilitiesofeachindividualoutcome.

Inour“snakeeyes”example,theprobabilityofrolling1onthereddieis1/6andtheprobabilityofrolling1ontheblackdieis1/6,thustheprobabilityofrolling1onboththereddieANDtheblackdieis1/6x1/6whichequals1/36.Anotherexamplewouldbetheprobabilityofflippingtwocoinsandhavingbothturnup“heads”,orinotherwordstheprobabilityofcoin1ANDcoin2bothyielding“heads”.Usingtheruleabovetheprobabilitywouldbe1/2x1/2whichis1/4.Anotherimportantrulecommonlycalledthe“sumrule”or“additionrule”addressesprobabilitywhentherearemultiplewaystoarriveataparticularoutcome:

Theprobabilityofanoutcomethatcanoccurinmultiplewaysisthesumoftheprobabilitiesofeachindividualoutcome.

Forexample,wehavealreadydeterminedthattheprobabilityofrollingasumof3withapairofdiceis2/36sincethereare2differentwaystoobtainasumof3:red1plusblack2(1/36)ORred2plusblack1(1/36).Eachoutcomeyieldsarollof3andbyaddingbothprobabilitiesyouarriveatanoverallprobabilityof2/36.Anotherexamplewouldbetheflippingofacoin.TheprobabilityofflippingheadsORtailsonagiventossisclearly100%: 50%heads+50%tails=100%. Whatabouttheprobabilityof flippingtwocoinsandgettingheadsforoneandtailsfortheother?Thereareactuallytwowaysthiscanoccur:

headsfromcoin1andtailsfromcoin2(50%x50%=25%)

OR

tailsfromcoin1andheadsfromcoin2(50%x50%=25%)

Inthiscasetheoverallprobabilityofgettingoneheadsandonetailsfromtwocoinflips is25%+25%whichequals50%.Youarenowreadyforthenextsetofexercisesinprobability,andkeepinmindthattheprobabilityofXANDYoccurringmeansyoumultiply,andtheprobabilityofXORYoccurringmeansyouadd.Exercise1B–DiceBaseballInthisexerciseyouwillplayagameofbaseballusingapairofdice.Thiswillrequirethatyouconsidertheprobabilitiesofvariousoutcomesforan“atbat”andmatchthesewithprobabilitiesinrollingapairofdice:

1. Onyourworksheet,determinetheprobabilityofeachpossiblesumforapairofdice.

2. Considertheprobabilitiesofeachsumanduseyourworksheettodesignyourowndicebaseballgameinwhichagivensumofthediceequalsaparticularoutcomeofan“atbat”(e.g.,7=out,12=homerun).Doyourbesttoberealistic–yourinstructorwillexplainthisfurther.

3. Arrangeteamsof1to2peopleandplayanineinninggamekeepingscoreonyourworksheet(you

cangotoextrainningsifnecessary).210

Page 7: Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

Part2:SOLVINGGENETICSPROBLEMS

ImportantToolsforSolvingGeneticsProblemsBeforeyoubegintosolvegeneticsproblemsitisimportantthatyouarefamiliarwiththetypesofsymbolsusedtorepresentgeneticallelesaswellastwoimportanttoolsyouwillusetosolvegeneticproblems.Let’sfirstaddressthesymbolsforgeneticalleles:

SymbolizingAllelesGeneticallelesarecommonlyrepresentedbyasingleletter,withthedominantallelebeinguppercaseandtherecessiveallelebeinglowercase:

dominantallele–Arecessiveallele–a

Whenworkingwithmorethanonegeneinageneticproblem,theallelesofeachgenewillberepresentedusingadifferentletter:

Gene1 Gene2dominantallele–A dominantallele–Brecessiveallele–a recessiveallele–b

Whenwritingthegenotypeforanindividualitisbesttokeeptheallelesforaparticulargenenexttoeachotherandtolistadominantallelebeforearecessiveallele:

AaBb

Ifanalleleisunknown,indicatethiswithanunderscore:

A_bb

Whentherearemorethantwoallelesforagene,differentsuperscriptsonasingleletterarecommonlyusedtodistinguishalleles:

alleles–Cx,Cy,Cz

genotype–CxCyWhenageneislocatedontheXchromosome(“X-linkedgene”),allelesarerepresentedbysuperscriptsonacapitalX.Inmalesa“Y”withoutasuperscriptisusedtosymbolizetheYchromosomewhichwouldnothaveanallelefortheX-linkedgene:

femalegenotypeforanX-linkedgene–XAXamalegenotypeforanX-linkedgene–XAY

211

Page 8: Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

PedigreesForsomeproblemsitwillbehelpfultodiagramapedigreeofallfamilymembersrelevanttotheproblemasshownhereforthreegenerationsofahypotheticalfamily.As you can see, males are represented bysquares and females by circles. Individualsexhibiting the phenotype of concern have afilled-insymbol.Pedigreesareusefulinthattheyallowyou to representall familial relationshipsvisuallysothatyoucanfillinanddeduceasmanygenotypes as possible. In addition, they alsoallowyoutodeducethemodeofinheritanceofthe condition in question (i.e., dominant vsrecessive condition, sex-linked vs autosomalgene).Onmany occasions youmay find it simpler todiagram your pedigree without shapes andcolors, and simply represent individuals in thepedigreebytheirgenotypes(orasmuchofthegenotypeasyouknow)asshowntotheright.

AaxAa

A_,A_,aa

PunnettsquaresAnotherextremelyusefultoolisthePunnettsquare,whichisbasicallyagridormatrixshowingallpossiblecombinationsofgametesfromeachparenttoproduceoffspring.APunnettsquareisusefulifyouknowthegenotypesoftheparentsbeingcrossed.OnceyoudetermineallpossiblehaploidgametesforeachparentyousimplyfilloutthePunnettsquareasshownbelow:

cross:Aa(female)xAa(male)

gametes:A&a(female);A&a(male)

ByplacingthedifferentgametesforeachparentalongeithersideofaPunnettsquare,itbecomeseasytofillinallpossiblecombinationsofeggandsperm.Allthat’sleftistodeterminetheprobabilitiesofeachgenotypeand/orphenotype.Thisgetsabitmorecomplicatedwhendealingwithtwogenes,howevertheprincipleisthesameasshowninthenextexample:

A a

A AA Aa

a Aa aa

212

Page 9: Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

cross:AaBbxAabb

gametes:AB,Ab,aB&ab;Ab&ab

AB Ab aB ab

Ab AABb AAbb AaBb Aabb

ab AaBb Aabb aaBb aabb

NoticethatthePunnettsquaredoesn’thavetobeasquareatall, itsimplyneedstoaccommodateallparentalgametesandtheirpossiblecombinations,nothingmore.

TypesofGeneticsProblemsSolving geneticsproblems involvesusing the knowncharacteristicsof some individuals todeduce theprobability of unknown characteristics of other individuals. The characteristics given will relate tophenotype(physicaldescription),genotype(geneticalleles),orboth.Ingeneral,thegeneticsproblemsyouwillbeaskedtosolveareoftwobasictypes:

1) Characteristicsoftheparentsaregivenandyoumustdeterminetheprobabilitiesofeachpossibletypeofoffspring.

2) Characteristicsoftheoffspringaregivenandyoumustdeducecharacteristicsoftheparents.Regardlessofwhichtypeofproblemyouaresolving,youwillneedtousetheprincipleswehaveaddressedinPart1(genes,alleles,meiosis,gametes,probability),thetoolsreviewedintheprevioussection,andabitofcommonsense.Theapproachtosolvingeachtypeofproblem,however,isslightlydifferent.

SolvingType1problemsInType1problems,youwillbegivencharacteristicsoftheparentsbeingcrossedandaskedtofigureouttheprobabilitiesofallpossiblegenotypesand/orphenotypesintheoffspring.Solvingsuchproblemswillrequire4basicsteps:

1) Determinethegenotypesofbothparentsandwriteoutthecross.• genotypesmaybegivenintheproblemoryoumayhavetodeducethem

2) Determinethegenotypesofallpossiblegametesproducedbyeachparent,andwritethemonadjacent

sidesofaPunnettsquare.• gametesarehaploidandthushaveonealleleforeachgeneofinterest

3) FillinallpossibleoffspringgenotypesinthePunnettsquare.

• allpossiblecombinationsofgeneticallydifferenteggsandspermmustbeaccountedfor

4) Determinetheprobabilitiesofeachpossiblegenotype/phenotypeintheoffspring.

213

Page 10: Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

Toillustratethesestepslet’ssolvethesampleproblembelow: In pea plants, purple flower color is determined by a dominant allele P and white flower color is determinedbyarecessiveallelep.Iftwoheterozygouspeaplantswithpurpleflowersarecrossed,what aretheprobabilitiesofeachpossiblegenotypeandphenotypeintheoffspring?Step1:Writeoutthegenotypesofeachparentinthecross.

Due to the phrase “two heterozygous pea plants with purple flowers are crossed” we know that the genotypesoftheparentsbeingcrossedmustbe:

PpxPp

Step2:Determinethegenotypesofalldifferentgametesproducedbyeachparent,andarrangethemonadjacentsidesofaPunnettsquare.

Duetomeiosis,eachparentwillproducehaploidgametescontainingeitherthePalleleorthepallele, eachinequalproportions(50%ofeach):

genotypesofmalegametes–P,p

genotypesoffemalegametes–P,p

P pP

p

Step3:Determineallpossiblegenotypesintheoffspring.

SimplyfillinthePunnettsquarewiththegenotypesofallpossibleunionsofgametes:

P(1/2) p(1/2)P(1/2)

PP(1/4) Pp(1/4)

p(1/2)

Pp(1/4) pp(1/4)

NOTE:Theprobabilitiesofeachgameteandeachresultingoffspringgenotypeareshowninparentheses,

thoughthisnormallywouldnotbenecessary.

Step4:Summarizetheprobabilitiesofeachpossiblegenotype/phenotypeintheoffspring.

ThePunnettsquareaboverevealsthatthereareonly4differentcombinationsofspermandeggyielding 3possiblegenotypesand2possiblephenotypes.Probabilitiesaredeterminedbyfollowingtheproduct rule(e.g.,PandPinagamete=½x½=¼)andthesumrule(e.g.,PporPp=¼+¼=½):

Genotypes Phenotypes¼PP ¾purpleflowers(¼+¼+¼)

½Pp(¼+¼) ¼whiteflowers ¼pp

214

Page 11: Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

Onceyoucompletestep4youwillhaveyouranswer.Whetheryourepresenttheprobabilitiesasfractions,decimalsorpercentagesisuptoyou.Allthatmattersisthatthevalueforeachprobability,regardlessofhowitispresented,iscorrect.Nowyouarereadyforthenextexerciseinwhichyouwillsolvesimilarproblemsonyourown…Exercise2A–Type1geneticsproblemsForthefollowingtwoproblems,tallplantheight isdeterminedbyadominantallele(T)andshortplantheight isdeterminedbyarecessiveallele(t).Determinetheprobabilitiesforallpossiblegenotypesandphenotypesoftheoffspringresultingfromeachcross.

1. homozygousdominant(TT)xheterozygous(Tt)

2. heterozygous(Tt)xhomozygousrecessive(tt)

SolvingType2problemsInType2problemsyouwillbegiventhecharacteristicsofoffspringandmustfigureoutthecharacteristicsofoneorbothparents.Tosolvesuchproblemssimplyfollowthesetwosteps:

1) Diagramapedigree containingall individuals in theproblem,and indicate thegenotypesofasmanyindividualsaspossibleusingtheinformationprovided.

2) Usethepedigreetodeducetheinformationtheproblemasksfor.

Let’sdoasampleproblemofthistype: In cats, black fur color is determined by a dominant allele B and white fur color is determined by a recessivealleleb.Awhitecatgivesbirthto3whitekittensand2blackkittens.Whatisthegenotypeand phenotypeofthefather?Step1:Diagramapedigreeshowingthegenotypes.

bbx__

3bb,2B_

Thephenotypesgivenforthemothercatandherkittensindicatethegenotypesabove(forthisproblemafullpedigreeisnotnecessary,asimplediagramsuchasthiswillsuffice).

Step2:Deducemissinggenotypesinpedigreetoarriveattheanswer.

Sincesomeofthekittensarewhite(bb),bothparentsmustcarrythewhiteallele(b).Sincesomeofthekittensareblack(B_),atleastoneparentmusthaveablackallele(B)whichinthiscasecanonlybethefather. Thus the father catmust beblackwith the genotypeBb,which is the answer to theproblem.Thoughnotaskedintheproblem,youcanalsodeducethattheblackkittensallhavethegenotypeBbsince

215

Page 12: Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

allkittensreceiveawhiteallele(b)fromthemother.Keepinmind,itisalwaysagoodideatoconfirmyouranswerwithaPunnettsquarebasedontheparentalgenotypesyouhavededuced.

bbxBb

3bb,2Bb

Exercise2B–Type2geneticproblemsAlbinisminhumanbeings(lackofskinpigment)isduetoarecessiveallele.UseAtorepresentthedominant“normal”alleleandatorepresenttherecessivealbinismalleleinsolvingthetwoproblemsbelow:

1. Analbinochildisborntotwoparentswithnormalskinpigmentation.Whatarethegenotypesoftheparents?

2. Analbinowomanhas8childrenwiththesameman,3withnormalpigmentationand5thatarealbino.Whatcanyouconcludeaboutthefather?

IncompleteDominance,Codominance,andMulti-AllelicInheritance

Theproblemsyouhavesolvedsofararerelativelystraightforwardasfarasgeneticsproblemsgo.Ineachcasetheprobleminvolvedonlyonegene,twoalleles,andthealleleswereeitherdominantorrecessive.Thenext fewproblems youwill solve involve somenewconcepts that are frequently encountered ingenetics.The first issue is incomplete dominance, which occurs when a heterozygous genotype results in aphenotypethatisintermediatebetweenthetwohomozygousphenotypes.Forexample,twodifferentalleles forasinglegeneresult inthreedifferentcolorsofcarnationflowers.TheRalleleresults inredpigment production (red) and the r allele results in a lack of pigment production (white). The threepossiblegenotypesandphenotypesareshownbelow:

Genotype Phenotype

RR redcarnations

Rr pinkcarnations

rr whitecarnationsThisclearlyisnotcompletedominance,otherwisetheheterozygotes(Rr)wouldhaveredflowers.Thewhitealleleisstillconsideredrecessivesinceitresultsinthelackofpigment.Howeverthereislessredpigmentwithoneredallele(Rr)thanwithtworedalleles(RR).Thusinthiscasewewouldsaythattheredalleleisincompletelydominantoverthewhiteallele.Thenicethingaboutincompletedominanceisthatthephenotyperevealsthegenotype,somethingyouwillappreciatewhenyousolveproblemssuchasthoseinthenextexercise.

216

Page 13: Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

Exercise2C–IncompletedominanceInsnapdragons,redflowersareproducedbyhomozygousRRplantsandwhiteflowersareproducedbyhomozygousrrplants.Heterozygousplants(Rr)producepinkflowers.Solvethefollowingproblemsonyourworksheet,beingsuretoshowallyourwork:

1. Indicatetheprobabilitiesofeachgenotypeandphenotyperesultingfromtheacrossbetweentwopinksnapdragons.

2. Acrossbetweentwosnapdragonsproduced15offspringwithredflowersand17offspringwithpinkflowers.Whatarethegenotypesandphenotypesoftheparents?

Sometraitsinvolveagenethathasmorethantwoalleles.OnesuchexampleishumanABObloodtypewhichisdeterminedbyasinglegenewiththreedifferentalleles.The“A”and“B”alleleseachresultinadifferentglycoproteinonthesurfaceofredbloodcells.Whenpresentinthesameindividual,bothallelesareexpressedequallyresultingintheABbloodtype.Thisisanexampleofcodominance.The“O”alleleproduces no glycoprotein and thus is recessive to both the “A” and “B” alleles. Based on theserelationshipsthethreeallelesaresymbolizedIA,IB,andi,withthevariousABOgenotypesandphenotypessummarizedbelow:

Genotype BloodType

IAIA A IAi A IBIB B IBi B IAIB AB ii O

RefertotheinformationaboveasyousolvegeneticproblemsinvolvinghumanABObloodtypeinthenextexercise…Exercise2D–Multi-allelicinheritanceandcodominanceSolvethefollowingproblemsonyourworksheet,beingsuretoshowallyourwork:

1. IndicatetheprobabilitiesofeachgenotypeandphenotypeinthechildrenofawomanwithbloodtypeOandamanwithbloodtypeAB.

2. AwomanwithbloodtypeAandamanwithbloodtypeBhave3children,oneeachwithbloodtypesA,BandO.Whatarethegenotypesoftheparents?

217

Page 14: Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

SexLinkageAll of the geneticproblems youhave solvedup to this point involve genesonanautosome, i.e., anychromosomethatisnotasexchromosome.Forgenesonautosomes,inheritancepatternsaregenerallyno different for males and females. This is not the case, however, for genes on the X and Y sexchromosomes. Females have two X chromosomes and thus two alleles for each gene on the Xchromosome.MaleshaveonlyoneXchromosomealongwithasingleYchromosome. Withveryfewexceptions,genesontheXchromosomearenotfoundontheYchromosomeandviceversa.ThusmaleswillhaveonlyonealleleforeachgeneontheXchromosome.As a result of this disparity, the inheritancepatterns for geneson the sex chromosomes are typicallydifferent for males versus females. This phenomenon is called sex linkage, which refers to geneticinheritancethatdiffersdependingonthesexoftheindividual.GenesontheXchromosome,referredtoasX-linked,andgenesontheYchromosome,referredtoasY-linked,exhibitsexlinkageorsex-linkedinheritance.BecausetheYchromosomehassofewgenes,wewilllimitourfocustoX-linkedgenes.

TheapproachtosolvinggeneticproblemsinvolvingX-linkedgenesisbasicallythesameasforautosomalgenes.TheallelesforX-linkedgenesaresymbolizedusingan“X”withasuperscriptrepresentingtheallele(e.g.,XA).Inplaceofasecondalleleinmalesthesymbol“Y”isused,withnosuperscript,torepresenttheYchromosome.Let’snowlookatasampleproblem:

Inhumans,ageneticalleleresponsibleforcolor-blindnessisrecessiveandX-linked.Ifacolor-blindwoman andamanwithnormalcolorvisionplantohavechildren,whatsortofcolorvisionwouldyoupredict in theirchildren?Step1:Writeoutthegenotypesofeachparentinthecross.

UsingXBandXbtorepresentthedominantnormalandrecessivecolor-blindnessalleles,respectively,the onlypossiblegenotypesfor“acolor-blindwomanandamanwithnormalcolorvision”are:

XbXbxXBY

Step2:Determinethegenotypesofalldifferentgametesproducedbyeachparent.

Bymeiosis,thewomanproduceseggsallwiththegenotypeXb.ThemanproducesspermcontaininghisX chromosome(XB)orhisYchromosome:

genotypeoffemalegametes–Xbgenotypesofmalegametes–XBorY

Step3:Determineallpossiblegenotypesintheoffspring.

SimplydrawaPunnettsquareaccountingforallparentalgametesandfillinallpossiblegenotypesforthechildren:

XB YXb

XBXb XbY

218

Page 15: Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

Step4:Summarizetheprobabilitiesofeachpossiblegenotype/phenotypeintheoffspring.

Whenevertheresultsofacrossdifferformalesandfemales,youshouldindicatetheprobabilitiesfor maleandfemalegenotypes/phenotypesseparately.Theanswertothisproblemthereforeisbest expressedasfollows:

100%oftheirgirlswillhavenormalcolorvision(thoughallwillbecarriers)

100%oftheirboyswillbecolor-blindHopefully it isclear that themethodofsolvinganX-linkedgeneticproblem is reallynodifferent thansolvinganyotherproblem.SomegeneralfeaturesofX-linkedgenesyoumayhaverealizedbysolvingthisproblemandshouldkeepinmindare:

• sonsalwaysreceivetheirXchromosomefromtheirmother(dadcontributesY)

• daughtersalwaysreceivetheirfather’sXchromosome

• femalesarediploidforX-linkedgenesandcanbecarriersofrecessivealleles

• malesarehemizygousforX-linkedgenes(haveonlyoneallele)andthusshowthephenotypeofthesinglealleleinheritedfromthemother

Exercise2E–X-linkedinheritanceHemophilia,likecolor-blindness,isanX-linkedrecessivecondition.Solvethefollowingproblemsonyourworksheet,beingsuretoshowallyourwork:

1. Anormalwomanwhosefatherisahemophiliacmarriesanormalman.Whataretheoddsthathemophiliawillafflictanygivenmalechild?anygivenfemalechild?

2. Acouplehasthreechildren,anormalboyandaboyandgirleachwithhemophilia.Whatcanyousayabouttheparents?

TheInheritanceofMultipleGenesWhenfollowingtheinheritanceofmorethanonegene,theapproachissimilartosinglegeneinheritance.Thetrickistocorrectlydeterminealldifferentparentalgametesandkeeptrackoftheallelesforeachgene.Toillustratehowthisisdone,let’sdoasampleproblem: Inpeaplants,flowercolorisdeterminedbyadominantpurpleallelePandarecessivewhiteallelep,and plantheightisdeterminedbyadominanttallalleleTandarecessiveshortallelet.Atallpeaplantwith purpleflowersthatisheterozygousforbothgenesiscrossedwithashortplantwithpurpleflowersthatis heterozygousforflowercolor.Whataretheprobabilitiesofeachpossiblephenotypeintheoffspring?

219

Page 16: Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

Step1:Writeoutthegenotypesofeachparentinthecross.

TtPp(tallpurpleplant)xttPp(shortpurpleplant)

Thesearetheonlygenotypesconsistentwiththeinformationgivenintheproblem.

Step2:Determinethegenotypesofalldifferentgametesproducedbyeachparent.

Bymeiosis,eachparentwillproducehaploidgametescontainingonealleleforeachgene.Thedifferent gametesproducedbyeachparentare:

TP,Tp,tP,tp(tallpurpleplant)

tP,tp(shortpurpleplant)

Step3:Determineallpossiblegenotypesintheoffspring.

DrawaPunnettsquareshowingthegametesforeachparentandfillinthegenotypesofallpossibleoffspring:

TP Tp tP tptP

TtPP TtPp ttPP ttPp

tp

TtPp Ttpp ttPp ttpp

Step4:Summarizetheprobabilitiesofeachpossiblephenotypeintheoffspring.

BasedonthePunnettsquare,3outof8genotypesgivea“tallpurple”phenotype,3of8“shortpurple”,1of8“tallwhite”,and1of8“shortwhite”.Thustheprobabilitiesofallpossiblephenotypesintheoffspringare:

3/8–tallwithpurpleflowers3/8–shortwithpurpleflowers1/8–tallwithwhiteflowers1/8–shortwhiteflowers

Problemssuchasthiscangetrathercomplicated,howeverifyoukeeptrackofallallelesproperlyateachstep,youcaneasilysolveanysuchproblem.

Exercise2F–GeneticsproblemsinvolvingtwogenesSolvethefollowingproblemsonyourworksheet,beingsuretoshowallyourwork:

1. Indicatetheprobabilitiesofallphenotypesintheoffspringoftwotallpeaplantswithpurpleflowers,bothofwhichareheterozygousforbothgenes.

2. Anormalwomanwithanalbinofatherandnofamilyhistoryofhemophiliaplanstohavechildrenwithahemophiliacmanwithnormalskinpigmentationwhosemotherisalbino.Determinetheprobabilitiesofallpossiblephenotypesintheirchildren.

220

Page 17: Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

InterpretingPedigrees

Asmentionedearlier,pedigreescanbeaveryusefultooltovisualizephenotypesinafamilylineage(seepage8ofthislab).Onceapedigreehasbeenproducedonecandeducethelikelymodeofinheritanceofthegeneticcondition(i.e.,dominantvsrecessive,autosomalvsX-linked)andasaresultdeterminethegenotypesofvariousindividualsinthepedigree.Toillustratethislet’sconsidersomeexamples:

Thispedigreerevealsanautosomal recessivemodeofinheritance, i.e., the gene responsible for the geneticconditionisrecessiveandlocatedonanautosome(non-sex chromosome). The condition is clearly recessivesince unaffected couples have affected children. Thiswouldnotbepossiblewithadominantallele.Youwillalsonoticethatthecondition“skipsageneration”whichalso is only possible with a recessive allele. It also

appears tobeautosomalsincemalesandfemalesareaffectedequally (recall thatmalesare farmorelikelytobeaffectedbyanX-linkedrecessivecondition).Youshouldalsoexamineaffectedfemalessuchastheoneatthetopofthepedigree.IfaconditionisactuallyX-linkedthenallsonsofaffectedfemaleswouldhavethecondition.Ifthisisnotthecase,asinthispedigree,thegenemustbeonanautosome.Oncethemodeofinheritancehasbeendetermined,genotypescanthenbededucedforeveryoneinthepedigree. For example, all affected individuals abovemust be homozygous recessive (aa) and if twounaffectedparentshaveaffectedchildren,theybothmustbeheterozygous(Aa).Forsomeunaffectedindividualsthesecondallelecannotbededucedbasedonthepedigreeandthusisunknown(A?).Here is an example of apedigree revealing a geneticcondition to be X-linkedrecessive. This condition isrecessive for the samereasons as the previouspedigree. It ismost likelyX-linked since only males areaffected. However thiscannot be said with 100%certaintysincethereisaslightchancethegeneresponsibleforthisconditionisautosomalandbyrandomchanceonlymalesareaffectedinthisfamily.Thenextexample showsanautosomaldominant condition. Noticethat,consistentwithaconditioncausedbyadominantallele,thereareaffectedindividualswhoshowupeverygeneration.Also,therearenounaffectedcoupleshavingaffectedchildrenasyouwouldseewitharecessivecondition.ThisconditioncannotbeX-linkedsince,ifitwas,all fathers would pass the condition to their daughters since alldaughters receive their fathersXchromosome. Ifyou lookcarefullyyouwillseeoneaffectedfatherhavinganunaffecteddaughtermakingitcertainthatthelocusofthismutantalleleisanautosome.

221

Page 18: Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

ThislastexamplebelowshowsanX-linkeddominantcondition.Ithasallthecharacteristicsofadominantconditionasindicatedforthepreviouspedigree.YoucantelliftheconditionisX-linkedbylookingattheoffspring of an affectedman and an unaffected woman (there are 3 such couples in this pedigree).RememberthatfathersgivetheirXchromosometoalldaughtersandtheirYchromosometoallsons.ThusiftheconditionisX-linkedanddominant,alldaughtersofthesemenshouldbeaffectedandalloftheirsonsshouldbeunaffected.All7daughtersofthesemenhavethecondition,whereasnoneoftheir5sonsareaffected.Theoddsofthisoccurringforanautosomaldominantconditionwouldbe2-12or1in4096sincetherewouldbea50%chanceforeachdaughtertoinherittheconditionanda50%chanceforeachsontobeunaffected.ThereforeitisalmostcertainthatthisgeneticconditionisdominantandX-linked.

Inthefinalexerciseforthislabyouwillpracticediagrammingandinterpretingpedigrees.Exercise2G–InterpretingpedigreesSolvethefollowingproblemsonyourworksheet,beingsuretoshowallyourwork:

1. Examinethepedigreeonyourworksheetanddeterminethemodeofinheritance(dominantorrecessive,autosomalorX-linked).Basedonthemodeofinheritance,determinethegenotypesofeachindividualinthepedigreerepresentinganyunknownalleleswithaquestionmark(?).

2. Ahypotheticalmutationinasinglegeneresultsina“zombie”phenotype.Anormalmanandwomanhave3children–azombiegirl,anormalgirlandanormalboy.Themanhasanormalsisterandmotherbuthisfatherisazombie.Thewomanhasanormalbrotherandbothherparentsarenormal.Diagramapedigreeofthisfamilyanddeterminethemodeofinheritanceforthezombiecondition.Onceyouhavedoneso,determinethegenotypesofallfamilymembersandindicateanyunknownalleleswithaquestionmark(?).

222

Page 19: Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

GeneticInheritanceLabWorksheet Name________________________Exercise1A–Probabilityandsamplesize

Probabilityofheads=______ Probabilityoftails=______Fill in the table to the right with the expectednumbers of heads and tails based on theprobabilitiesabove:

10flips 50flips wholeclassheads

tails

Recordthenumbersofheads&tailsandthepercentagesforyouractualcoinflips:

set> 1 % 2 % 3 % 4 % 5 % all %heads % % % % % %

tails % % % % % %

TOTAL 10 100% 10 100% 10 100% 10 100% 10 100% 50 100%Usethetablebelowtorecordtheresultsfortheentireclass(whichshouldbeonthewhiteboard):

Comparetheresultsforsamplesizesof10,50andthewholeclassandcommentonwhichsamplesizecomesclosesttotheexpectednumberofheadsandtailsyoudeterminedabove.

class percentheads %

tails %

TOTAL 100%

Exercise1B–DiceBaseball

Refertothematrixonpage5ofthelabtofillintheprobabilitiesforeachsumofthedice:

sum> 2 3 4 5 6 7 8 9 10 11 12 totalprobability

(x/36)

36/36Determinethefollowing“atbat”outcomesforeachsumofthedice–single,double,triple,homerun,out,walk,doubleplay(ifrunneronfirst)–doingyourbesttobeconsistentwithrealbaseball:

sum> 2 3 4 5 6 7 8 9 10 11 12outcomefor“atbat”

223

Page 20: Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

Keepscoreforyourbaseballgameinthetablebelow.Asyouplay,keeptrackofyourbaserunnersusingthepropsprovidedinyourlabkit:

team 1 2 3 4 5 6 7 8 9 10 11 12 total

Exercise2A–Type1geneticsproblems

Solvetheproblemsbelowinthespaceprovided.Besuretoindicatetheprobabilitiesofeachpossiblephenotypeandgenotypeandtoshowyourwork:1.homozygousdominant(TT)xheterozygous(Tt)

2.heterozygous(Tt)xhomozygousrecessive(tt)

Exercise2B–Type2geneticsproblems

Solvetheproblemsbelowinthespaceprovided,andbesuretoshowyourwork:1.Analbinochildisborntotwoparentswithnormalskinpigmentation.Whatarethegenotypesoftheparents?2.Analbinowomanhas8childrenwiththesameman,5ofwhicharealbino.Whatcanyouconcludeaboutthefather?

224

Page 21: Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

Exercise2C–Incompletedominance

Solvetheproblemsbelowinthespaceprovided,andbesuretoshowyourwork:1.Indicatetheprobabilitiesofeachgenotypeandphenotyperesultingfromtheacrossbetweentwopinksnapdragons.2.Acrossbetweentwosnapdragonsproduced15offspringwithredflowersand17offspringwithpinkflowers.Whatarethegenotypesandphenotypesoftheparents?Exercise2D–Multi-allelicinheritanceandcodominance

Solvetheproblemsbelowinthespaceprovided,andbesuretoshowyourwork:1.IndicatetheprobabilitiesofeachgenotypeandphenotypeinthechildrenofawomanwithbloodtypeOandamanwithbloodtypeAB.2.AwomanwithbloodtypeAandamanwithbloodtypeBhave3children,oneeachwithbloodtypesA,BandO.Whatarethegenotypesoftheparents?

225

Page 22: Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

Exercise2E–Multi-allelicinheritanceandcodominance

Solvetheproblemsbelowinthespaceprovided,andbesuretoshowyourwork:1.Anormalwomanwhosefatherisahemophiliacmarriesanormalman.Whataretheoddsthathemophiliawillafflictanygivenmalechild?anygivenfemalechild?2.Acouplehasthreechildren,anormalboyandaboyandgirleachwithhemophilia.Whatcanyousayabouttheparents?Exercise2F–Geneticsproblemsinvolvingtwogenes

Solvetheproblemsbelowinthespaceprovided,andbesuretoshowyourwork:1.Indicatetheprobabilitiesofallphenotypesintheoffspringoftwotallpeaplantswithpurpleflowers,bothofwhichareheterozygousforbothgenes.2.Anormalwomanwithanalbinofatherandnofamilyhistoryofhemophiliaplanstohavechildrenwithahemophiliacmanwithnormalskinpigmentationwhosemotherisalbino.Determinetheprobabilitiesofallpossiblephenotypesintheirchildren.

226

Page 23: Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

Exercise2G–Interpretingpedigrees

1. Examinethepedigreeshownanddeterminethemodeofinheritance(dominantorrecessive,autosomalorX-linked).

Basedonthemodeofinheritance,determinethegenotypesofeachindividualinthepedigreerepresentinganyunknownalleleswithaquestionmark(?).

2. Ahypotheticalmutationinasinglegeneresultsina“zombie”phenotype.Anormalmanand

womanhave3children–azombiegirl,anormalgirlandanormalboy.Themanhasanormalsisterandmotherbuthisfatherisazombie.Thewomanhasanormalbrotherandbothherparentsarenormal.Diagramapedigreeofthisfamilyanddeterminethemodeofinheritanceforthezombiecondition.Onceyouhavedoneso,determinethegenotypesofallfamilymembersandindicateanyunknownalleleswithaquestionmark(?).

227

Page 24: Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

SupplementalProblemsToensureyouunderstandthekeyaspectsofgeneticinheritanceyouwillneedtopracticesolvinggeneticproblemsmuchliketheonesyou’vesolvedinthislaboratory.Whatfollowsaresetsofgeneticproblemsgroupedbycategory.Solvetheseproblemsonyourowninordertocompletethislaboratory.

SINGLEGENEPROBLEMSInDrosophila,atypeoffruitfly,thelong-wingallele(L)isdominantoverthevestigial-wingallele(l):1. Ifaheterozygous long-winged fly ismatedwithahomozygous long-winged fly,whatpercentageof the

offspringwouldbeexpectedtobehomozygouslong-winged?Wouldtherebeanyvestigial-wingedflies?2. Along-wingedflymatedwithaflyhavingvestigialwingsproduces35long-wingedand33vestigial-winged

offspring.Whatarethegenotypesoftheparentsandtheoffspring?PROBLEMSINVOLVINGTWOGENES3. Tworough,blackguineapigsproducetwooffspring,oneroughwhiteandtheothersmoothblack.Ifthese

sameparentsweretohaveadditionaloffspring,whatproportionofphenotypeswouldyouexpect?4. InDrosophila,graybodycolorisdominantoverebony,andstraightwingsaredominantovercurved. A

gray-bodiedfemalewithcurvedwingsismatedwithagray-bodiedmalewithstraightwings,yieldingsomeebony,curved-wingoffspring.Whatothertypesofoffspringcouldbeproducedandinwhatproportions?

Forthenextproblem,assumethatbrowneyes(B)aredominantoverblueeyes(b),andright-handedness(R)isdominantoverleft-handedness(r).(Inreality,modifyingfactorscomplicatetheinheritanceofthesetraits)5. Aright-handed,blue-eyedmanmarriesaright-handed,brown-eyedwoman.Theyhavetwochildren,one

left-handedandbrown-eyedandtheotherright-handedandblue-eyed.Byalatermarriagewithanotherwomanwhoisalsoright-handedandbrown-eyed,themanhasninechildren,allofwhomareright-handedandbrown-eyed.Whatarethegenotypesofthismanandhistwowives?

X-LINKEDPROBLEMS6. YellowbodycolorinDrosophilaisanX-linkedcharacteristicthatisrecessivetograybodycolor(Drosophila

femalesareXXandmalesXYasinhumans).Agrayfemalematedwithanunknownmaleandproducedsomeyellowandsomegrayoffspringofbothsexes.Whatisthegenotypeoftheoriginalfemale?Whatisthephenotypeofthemalewithwhichshemated?

Fortheseproblemskeepinmindthatcolor-blindnessandhemophiliaarebothX-linkedrecessiveconditions.7. Inhumans,migraine isduetoanautosomaldominantallele. Anormal-visionedwomanwhohasnever

sufferedfrommigraineheadachestakesherdaughtertoadoctorforanexamination.Intheexaminationthedoctordiscoversthatthegirliscolor-blindandsuffersfrommigraineheadaches.Whatcanthedoctorconcludeaboutthegirl’sfather?

228

Page 25: Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

8. Inhumans,aniridia(atypeofblindness)isduetoanautosomaldominantallele,andopticatrophy(anothertypeofblindness)isduetoarecessiveX-linkedallele.Amanblindfromopticatrophymarriesawomanblindfromaniridia.Assumingthatthewomanishomozygousforbothgenes,wouldanyoftheirchildrenbeexpectedtobeblind?Ifso,whattypeofblindnesswouldtheyhave?

9. Anon-hemophiliacmanwhoisblindfromaniridia(seepreviousproblem)andwhosemotherisnotblind

marries a non-hemophiliacwomanwho is not blind andwhose father has hemophilia. What kinds ofchildrenmighttheyhaveandinwhatproportions?

10. A normal-visionedmanmarries a normal-visionedwomanwhose father is color-blind. They have two

daughterswho growup andmarry. The first daughter has five sons, all normal-visioned. The seconddaughterhastwonormal-visioneddaughtersandacolor-blindson.Diagramthefamilyhistoryinapedigreeandindicatethegenotypesofallfamilymembers.

MULTIPLEALLELEPROBLEMSInrabbits,fourallelesforasinglegeneaffectingcoatcolorhavethefollowingrelationships:

C>cch>ch>cThustherearefourpossiblephenotypeswhichareassociatedwiththefollowinggenotypes:

fullcolor–C_(Cwithanyotherallele)

chinchilla–cchcchorcchchorcchc

Himalayan–chchorchc

albino–cc 11. Would it bepossible for a crossbetween two chinchilla rabbits to result inbothHimalayanandalbino

offspring?(besuretoqualifyyouranswer) Inmice,threeallelesforasinglegeneaffectingcoatcolorhavethefollowingrelationships:

AY>A>aTherearefourpossiblephenotypeswhichareassociatedwiththefollowinggenotypes: yellowcoat–AYAorAYa lethal(micedieinutero)–AYAY

agouti(gray)–AAorAa black–aa12. For the following crosses indicate the phenotypes of the parents and the expected proportions of all

possibleoffspring: a)AYaxAa b)AYaxAYa c)AAxAa d)AYAxAYa e)AYAxAYA

229

Page 26: Bio 6 – Principles of Genetic Inheritance Lab · Bio 6 – Principles of Genetic Inheritance Lab ... learn about the basic principles of genetic inheritance ... , genetics must

230