11
Spring 2007 Geog 210C: Phaedon C. Kyriakidis Bivariate Distributions Definition: class of multivariate probability distributions describing joint variation of outcomes of two random variables (discrete or continuous), e.g., temperature and precipitation, household size and number of cars owned Example: survey results of 100 households reporting # of people per household (household size) and # of cars owned per household: # of cars owned (y) size (x) 0 1 2 3 tot. 2 10 8 3 2 23 3 7 10 6 3 26 4 4 5 12 6 27 5 1 2 6 15 24 tot. 22 25 27 26 100 Bivariate PMF: probability mass function f X,Y (x, y) that two RVs X and Y attain simultaneously two respective outcomes x and y: f X,Y (x, y)= P rob{X = x, Y = y} = number of samples occurring jointly in classes x and y / total number of samples # of cars owned (y) size (x) 0 1 2 3 f X (x) 2 0.10 0.08 0.03 0.02 0.23 3 0.07 0.10 0.06 0.03 0.26 4 0.04 0.05 0.12 0.06 0.27 5 0.01 0.02 0.06 0.15 0.24 f Y (y) 0.22 0.25 0.27 0.26 1.00 note that 0 f X,Y (x, y) 1, and x y f X,Y (x, y)=1 Slide 1 Discrete Bivariate Distribution Example # of cars owned (y) size (x) 0 1 2 3 f X (x) 2 0.10 0.08 0.03 0.02 0.23 3 0.07 0.10 0.06 0.03 0.26 4 0.04 0.05 0.12 0.06 0.27 5 0.01 0.02 0.06 0.15 0.24 f Y (y) 0.22 0.25 0.27 0.26 1.00 Stem plot representation: 2 2.5 3 3.5 4 4.5 5 0 1 2 3 0 0.05 0.1 0.15 0.2 household size Bivariate pmf example number of cars Slide 2 Lecture Notes Bivariate & Multivariate Distributions total # of slides = 22

Bivariate Distributionschris/Medrano_GEO 210C/GEO 210C... · Spring 2007 Geog 210C: Phaedon C. Kyriakidis Statistics of Indicators (2) n =10joint realizations of two RVs Z and Y:

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Bivariate Distributionschris/Medrano_GEO 210C/GEO 210C... · Spring 2007 Geog 210C: Phaedon C. Kyriakidis Statistics of Indicators (2) n =10joint realizations of two RVs Z and Y:

Spring 2007 Geog 210C: Phaedon C. Kyriakidis

Bivariate Distributions

Definition: class of multivariate probability distributions describing

joint variation of outcomes of two random variables (discrete or

continuous), e.g., temperature and precipitation, household size and

number of cars owned

Example: survey results of 100 households reporting # of people per

household (household size) and # of cars owned per household:

# of cars owned (y)

size (x) 0 1 2 3 tot.

2 10 8 3 2 23

3 7 10 6 3 26

4 4 5 12 6 27

5 1 2 6 15 24

tot. 22 25 27 26 100

Bivariate PMF: probability mass function fX,Y (x, y) that two RVs

X and Y attain simultaneously two respective outcomes x and y:

fX,Y (x, y) = Prob{X = x, Y = y} = number of samples occurring

jointly in classes x and y / total number of samples

# of cars owned (y)

size (x) 0 1 2 3 fX (x)

2 0.10 0.08 0.03 0.02 0.23

3 0.07 0.10 0.06 0.03 0.26

4 0.04 0.05 0.12 0.06 0.27

5 0.01 0.02 0.06 0.15 0.24

fY (y) 0.22 0.25 0.27 0.26 1.00

note that 0 ≤ fX,Y (x, y) ≤ 1, and∑

x

∑y fX,Y (x, y) = 1

Slide 1

Discrete Bivariate Distribution Example

# of cars owned (y)

size (x) 0 1 2 3 fX (x)

2 0.10 0.08 0.03 0.02 0.23

3 0.07 0.10 0.06 0.03 0.26

4 0.04 0.05 0.12 0.06 0.27

5 0.01 0.02 0.06 0.15 0.24

fY (y) 0.22 0.25 0.27 0.26 1.00

Stem plot representation:

22.5

33.5

44.5

5

0

1

2

30

0.05

0.1

0.15

0.2

household size

Bivariate pmf example

number of cars

Slide 2

Lecture Notes Bivariate & Multivariate Distributions total # of slides = 22

Page 2: Bivariate Distributionschris/Medrano_GEO 210C/GEO 210C... · Spring 2007 Geog 210C: Phaedon C. Kyriakidis Statistics of Indicators (2) n =10joint realizations of two RVs Z and Y:

Spring 2007 Geog 210C: Phaedon C. Kyriakidis

Discrete Marginal Distributions

# of cars owned (y)

size (x) 0 1 2 3 fX (x)

2 0.10 0.08 0.03 0.02 0.23

3 0.07 0.10 0.06 0.03 0.26

4 0.04 0.05 0.12 0.06 0.27

5 0.01 0.02 0.06 0.15 0.24

fY (y) 0.22 0.25 0.27 0.26 1.00

Marginal (univariate) distributions:

• univariate PMFs of the two RVs X and Y

• obtained by integrating (summing up) the columns and rows of

the PMF table:

fX(x) =∑

y

fX,Y (x, y) and fY (y) =∑

x

fX,Y (x, y)

fX(x) = Prob{X = x, Y ∈ [−∞, +∞]}marginal PMF = bivariate PMF with one RV unconstrained

Examples:

• probability of a randomly selected household with 3 members:

fX(3) = 0.07 + 0.10 + 0.06 + 0.03 = 0.26

• probability of a randomly selected household with no cars:

fY (0) = 0.10 + 0.07 + 0.04 + 0.01 = 0.22

Slide 3

Discrete Conditional Distributions

# of cars owned (y)

size (x) 0 1 2 3 fX (x)

2 0.10 0.08 0.03 0.02 0.23

3 0.07 0.10 0.06 0.03 0.26

4 0.04 0.05 0.12 0.06 0.27

5 0.01 0.02 0.06 0.15 0.24

fY (y) 0.22 0.25 0.27 0.26 1.00

Conditional distribution:

• PMF of one RV, say Y , given an outcome, X = x of another

RV, say X:

fY |X(y|x) = Prob{Y = y|X = x}

• obtained by dividing (standardizing) the PMF fY,X(y, x) by the

marginal PMF fX(x) of conditioning event:

fY |X(y|x) =fY,X(y, x)

fX(x)=

fX,Y (x, y)

fX(x)

division by fX(x) standardizes (to unit sum) PMF entries corresponding

to particular row (column):∑

y

fY |X(y|x) = 1

Examples:

• conditional PMF of car ownership, given 3-member households:

fY |X (0|3) =0.07

0.26fY |X (1|3) =

0.10

0.26fY |X (3|3) =

0.03

0.26

• conditional PMF of household size, given 3-car ownership:

fX|Y (2|3) =0.02

0.26fX|Y (3|3) =

0.03

0.26fX|Y (4|3) =

0.06

0.26

Slide 4

Lecture Notes Bivariate & Multivariate Distributions total # of slides = 22

Page 3: Bivariate Distributionschris/Medrano_GEO 210C/GEO 210C... · Spring 2007 Geog 210C: Phaedon C. Kyriakidis Statistics of Indicators (2) n =10joint realizations of two RVs Z and Y:

Spring 2007 Geog 210C: Phaedon C. Kyriakidis

Covariance and Correlation

# of cars owned (y)

size (x) 0 1 2 3 fX (x)

2 0.10 0.08 0.03 0.02 0.23

3 0.07 0.10 0.06 0.03 0.26

4 0.04 0.05 0.12 0.06 0.27

5 0.01 0.02 0.06 0.15 0.24

fY (y) 0.22 0.25 0.27 0.26 1.00

σXY = Cov{X, Y } = E{[X − E{X}][Y − E{Y }]} = E{XY } − E{X}E{Y }

Covariance calculation:

σXY =5∑

x=2

3∑y=0

xyfX,Y (x, y)−5∑

x=2

xfX(x)3∑

y=0

yfY (y)

= 6.16− 3.52× 1.57 = 0.6336

Correlation coefficient: standardized (unit-free) version of covariance:

ρXY =σXY√

σX√

σY∈ [−1, +1]

σX = variance of RV X; σY = variance of RV Y

Correlation coefficient calculation:

ρXY =σXY√∑5

x=2 x2fX(x)− E{X}2√∑3

y=0 y2fY (y)− E{Y }2

=0.6336

1.0907× 1.0978= 0.5292

Slide 5

Correlation versus Dependence

# of cars owned (y)

size (x) 0 1 2 3 fX (x)

2 0.10 0.08 0.03 0.02 0.23

3 0.07 0.10 0.06 0.03 0.26

4 0.04 0.05 0.12 0.06 0.27

5 0.01 0.02 0.06 0.15 0.24

fY (y) 0.22 0.25 0.27 0.26 1.00

Independence:

fX,Y (x, y) = fX(x)fY (y) ∀x, y

bivariate PMF = product of two marginal PMFs,

for all possible combinations of x and y

Example:

fX,Y (3, 1) = 0.10 �= 0.26× 0.25 = fX(3)fY (1)

Important note:

• lack of of correlation, i.e., σXY = ρXY = 0, does not entail

independence, because possibly fX,Y (x, y) �= fX(x)fY (y) for

some combinations of x and y

• independence, however, entails lack of correlation:

fX,Y (x, y) = fX(x)fY (y), ∀x, y ⇒ σXY = ρXY = 0

Note: Covariance σXY and correlation ρXY are just a moments, i.e.,

summary statistics, of the bivariate PMF fX,Y (x, y)

Slide 6

Lecture Notes Bivariate & Multivariate Distributions total # of slides = 22

Page 4: Bivariate Distributionschris/Medrano_GEO 210C/GEO 210C... · Spring 2007 Geog 210C: Phaedon C. Kyriakidis Statistics of Indicators (2) n =10joint realizations of two RVs Z and Y:

Spring 2007 Geog 210C: Phaedon C. Kyriakidis

Joint Variability of Two Continuous Attributes

Consider two random variables Z and Y , and their sample scatter

plot, i.e., N realized pairs {(zn, yn), n = 1, . . . , N}

90 95 100 105 110190

192

194

196

198

200

202

204

206

208

210Sample scatterplot

Variable Y

Var

iabl

e Z

Joint and marginal PDFs:

(Z, Y )� fZY (z, y) = Prob {Z ∈ z ± dz , Y ∈ y ± dy}︸ ︷︷ ︸bivariate PDF

Z � fZ(z) = Prob {Z ∈ z ± dz}Y � fY (y) = Prob {Y ∈ y ± dy}

Bivariate density histogram = estimate of bivariate PDF

Slide 7

Sample Bivariate Density Histogram

Discretization step: mesh of rectangular bins overlaid on sample

scatter plot

90 95 100 105 110190

192

194

196

198

200

202

204

206

208

210Discretizing sample variability

Variable Y

Var

iabl

e Z

Normalized sample frequencies: = # of pairs falling in each bin,

divided by: (i) total # of pairs, and (ii) bin area

90 95 100 105 110190

192

194

196

198

200

202

204

206

208

210

Variable Y

Var

iabl

e Z

Sample bivariate density histogram

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Slide 8

Lecture Notes Bivariate & Multivariate Distributions total # of slides = 22

Page 5: Bivariate Distributionschris/Medrano_GEO 210C/GEO 210C... · Spring 2007 Geog 210C: Phaedon C. Kyriakidis Statistics of Indicators (2) n =10joint realizations of two RVs Z and Y:

Spring 2007 Geog 210C: Phaedon C. Kyriakidis

Bivariate Distributions

Bivariate CDF: FZY (z, y) = Prob {Z ≤ z, Y ≤ y} ∈ [0, 1]

Bivariate PDF: fZY (z, y) =∂2FZY (z, y)

∂z ∂y

with+∞∫−∞

+∞∫−∞

fZY (z, y)dzdy = 1

Marginal distributions:

Z : FZ(z) = Prob {Z ≤ z}= Prob {Z ≤ z, Y ∈ [−∞, +∞]}= FZY (z, +∞)

fZ(z) =+∞∫−∞

fZY (z, y) dy

Y : FY (y) = Prob {Y ≤ y} = FZY (+∞, y)

Marginal moments:

µZ = E{Z} =∫ +∞−∞ z fZ(z) dz

σZ = E{[Z − µZ ]2} =∫ +∞−∞ (z − µZ)2 fZ(z) dz

Slide 9

Statistics of Indicators (1)

n = 10 joint realizations of two continuous RVs Z and Y :

z-values 2 1 5 1 6 3 9 4 6 8

y-values 3 0 6 0 5 4 8 5 6 7

Indicator random variables:

IZ(z0) =

{0 if Z > z0

1 if Z ≤ z0IY (y0) =

{0 if Y > y0

1 if Y ≤ y0

Example (z0 = 5, y0 = 5):

z-indicators 1 1 1 1 0 1 0 1 0 0

y-indicators 1 1 0 1 1 1 0 1 0 0

Univariate indicator moment (mean):

E{IZ(z0)} =1

N

N∑n=1

in(z0) = FZ(z0) ⇒ FZ(z0 = 5) =6

10

average of indicators in(z0) =

proportion of values no greater than z0 = CDF FZ(z0)

Slide 10

Lecture Notes Bivariate & Multivariate Distributions total # of slides = 22

Page 6: Bivariate Distributionschris/Medrano_GEO 210C/GEO 210C... · Spring 2007 Geog 210C: Phaedon C. Kyriakidis Statistics of Indicators (2) n =10joint realizations of two RVs Z and Y:

Spring 2007 Geog 210C: Phaedon C. Kyriakidis

Statistics of Indicators (2)

n = 10 joint realizations of two RVs Z and Y :

z-values 2 1 5 1 6 3 9 4 6 8

y-values 3 0 6 0 5 4 8 5 6 7

Indicator values (example for z0 = 5, y0 = 5):

z-indicators 1 1 1 1 0 1 0 1 0 0

y-indicators 1 1 0 1 1 1 0 1 0 0

Bivariate indicator moment (mean):

E{IZ(z0) · IY (y0)} =1

N

N∑n=1

in(z0) · in(y0) = FZY (z0, y0)

Example: FZY (z0 = 5, y0 = 5) = 510

average of product of indicators in(z0) · in(y0) =

proportion of values jointly no greater than z0 and y0

= bivariate CDF FZY (z0, y0)

Slide 11

Bivariate Moments

Covariance σZY , a joint moment of order 2:

Cov{Z, Y } = E{[Z − µZ ][Y − µY ]} = E{ZY } − µZµY

=

+∞∫−∞

+∞∫−∞

(z − µZ)(y − µY )fZY (z, y) dzdy

Correlation: ρZY =Cov{Z, Y }√

V ar{Z}V ar{Y } ∈ [−1, +1]

• correlation = measure of linear dependence;

proportional to slope of regression line: Z = a + bY

• |ρZY | = 1⇔ Z linear combination of Y

• independence entails lack of correlation

FZY (z, y) = FZ(z) · FY (y), ∀z, y ⇒ ρZY = 0

• lack of correlation does not entail independence:

ρZY = 0 does not entail FZY (z, y) = FZ(z) · FY (y)

Moment of inertia:

γZY =1

2E{[Z − Y ]2} =

1

2

∫ ∫(z − y)2 fZY (z, y) dz dy

Points to remember: (i) moments summarize distributions and

condense scatter plots, (ii) two RVs with same CDFs/PDFs = two

RVs with same moments (reverse not always true)

Slide 12

Lecture Notes Bivariate & Multivariate Distributions total # of slides = 22

Page 7: Bivariate Distributionschris/Medrano_GEO 210C/GEO 210C... · Spring 2007 Geog 210C: Phaedon C. Kyriakidis Statistics of Indicators (2) n =10joint realizations of two RVs Z and Y:

Spring 2007 Geog 210C: Phaedon C. Kyriakidis

Conditional Probability (1)

Conditional PDF:

fZ|Y (z|y) =Prob{Z = z, Y = y}

Prob{Y = y} =fZY (z, y)

fY (y)

Conditional CDF:

FZ|Y (z|y) = Prob{Z ≤ z|Y = y} =Prob{Z ≤ z, Y = y}

Prob{Y = y}

More generally (for two events A and B):

Prob{A|B} =Prob{A and B}

Prob{B}

conditional probability =joint probability

prior probability of conditioning event

Bayes’ relation:

Prob{A|B} =Prob{A, B}Prob{B} =

Prob{B|A}Prob{B} · Prob{A}

Slide 13

Conditional Probability (2)

11 realizations of rain occurrence in(zε) = 1 if zn > zε, 0 if not

i-values 1 1 1 1 1 0 0 1 1 0 0

n-th day 1 2 3 4 5 6 7 8 9 10 11

Requisite: Probability of rain today, given rain yesterday = ?

Conditional probability:

Prob{In(zε) = 1|In−1(zε) = 1}︸ ︷︷ ︸p1|1

=P rob{In(zε)=1,In−1(zε)=1}

P rob{In−1(zε)=1}

=E{In(zε)·In−1(zε)}

E{In−1(zε)} =p1,1p1

Application: on “eroded” sequence {in(zε), n = 2, . . . , 11},for which both today’s and yesterday’s events available:

• p1,1 = E{In(zε) · In−1(zε)} = 510

• p1 = E{In−1(zε)} = E{In(zε)} = 610

• p1|1 = 56

= 0.83

Note that p1|1 = 0.83 > 0.6 = proportion of rainy days,

and p1,1 = 0.5 > 0.36 = p1 · p1 (under independence)

Slide 14

Lecture Notes Bivariate & Multivariate Distributions total # of slides = 22

Page 8: Bivariate Distributionschris/Medrano_GEO 210C/GEO 210C... · Spring 2007 Geog 210C: Phaedon C. Kyriakidis Statistics of Indicators (2) n =10joint realizations of two RVs Z and Y:

Spring 2007 Geog 210C: Phaedon C. Kyriakidis

Conditional Moments

Conditional mean:

µZ|y = E{Z|Y = y} =

+∞∫−∞

z · fZ|Y (z|y) dz

non-linear function of y-data, in general

Conditional variance:

σZ|y = V ar{Z|Y = y} =

+∞∫−∞

[z − E{Z|Y = y}]2 · fZ|Y (z|y) dz

non-linear function of y-data, in general

For two independent RVs:

fZ|Y (z|y) = fZ(z)⇔ fZ,Y (z, y) = fZ(z) · fY (y)

E{Z|Y = y} = mZ , and V ar{Z|Y = y} = σZ for any y

under independence, if Y = y, the best estimate of Z is mZ

(best in the least squared error sense)

Slide 15

Standard Normal Bivariate Distribution

(Z, Y )�N

⎧⎨⎩ 0, 1

0, 1ρZY ← one single parameter

Bivariate PDF:

fZY (z, y) =1

2π√

1− ρ2ZY

e[− 1

2(1−ρ2ZY

)(z2−2 ρZY zy+y2)]

Marginal distributions:

Z �N

⎧⎨⎩ 0 = µZ

1 = sZ

Y �N

⎧⎨⎩ 0 = µY

1 = sY

Zero correlation entails independence:

ρZY = 0⇒ fZY (z, y) = fZ(z)fY (y)

only for bivariate standard Normal RVs

Slide 16

Lecture Notes Bivariate & Multivariate Distributions total # of slides = 22

Page 9: Bivariate Distributionschris/Medrano_GEO 210C/GEO 210C... · Spring 2007 Geog 210C: Phaedon C. Kyriakidis Statistics of Indicators (2) n =10joint realizations of two RVs Z and Y:

Spring 2007 Geog 210C: Phaedon C. Kyriakidis

Bivariate Normal Distribution

(Z, Y )�N

⎧⎪⎪⎨⎪⎪⎩

µZ , σZ

ρZY

µY , σY

⇒(

Z − µZ√σZ

,Y − µY√

σY

)�N

⎧⎪⎪⎨⎪⎪⎩

0, 1

ρZY

0, 1

Marginal distributions:

Z �N

⎧⎨⎩ µZ

σZ

Y �N

⎧⎨⎩ µY

σY

Conditional distributions (Gaussian with two parameters):

• conditional mean: E{Z|Y = y} = µZ + ρZY

√σZ√σY

(y − µY )

• conditional variance: V ar{Z|Y = y} = σZ(1− ρ2ZY )

conditional mean = linear function of y-data,

conditional variance = independent of y-data (homoscedastic)

Zero correlation entails independence:

ρZY = 0⇒ fZY (z, y) = fZ(z)fY (y), only for bivariate Normal RVs

under independence: cond. mean = mZ , and cond. variance = σZ

under perfect correlation: cond. mean = µZ +√

σZ√σY

(y − µY ), and

cond. variance = 0

Slide 17

Multivariate Distributions (1)

K random variables: {Z1 . . . , ZK} or a random vector z

Joint CDF:

FZ1,...,ZK(z1, . . . , zK) = Prob {Z1 ≤ z1, . . . , ZK ≤ zK}

Joint PDF:

fZ1,...,ZK(z1, . . . , zK) =

∂KFZ1,...,ZK(z1, . . . , zK)

∂z1, . . . , ∂zK

K-th order partial derivative of joint CDF

Marginal univariate CDF:

FZk(zk) = Prob {Zk ≤ zk; Zi ≤ +∞, ∀ i �= k}

Marginal bivariate CDF:

FZ1Z2 (z1, z2) = Prob{Zk ≤ zk, Zk′ ≤ zk′ ; Zi ≤ +∞, ∀ i �= k, k′}

Slide 18

Lecture Notes Bivariate & Multivariate Distributions total # of slides = 22

Page 10: Bivariate Distributionschris/Medrano_GEO 210C/GEO 210C... · Spring 2007 Geog 210C: Phaedon C. Kyriakidis Statistics of Indicators (2) n =10joint realizations of two RVs Z and Y:

Spring 2007 Geog 210C: Phaedon C. Kyriakidis

Multivariate Distributions (2)

K random variables: {Z1 . . . , ZK}

Conditional univariate CDF:

FZk|Zi,∀ i�=k(zk|Zi = zi,∀ i�=k) = Prob{Zk ≤ zk|Zi = zi,∀i�=k}

Conditional mean:

E{Zk|Zi = zi,∀ i�=k} = ϕ(zi,∀ i�=k)

non-linear function ϕ(·), in general, of K − 1 conditioning values {zi,∀ i�=k}

Independence:

• Prob{Zk ≤ zk|Zi = zi,∀i�=k} = Prob{Zk ≤ zk}, ∀k

• fZ1,...,ZK(z1, ..., zK) =

K∏k=1

fZk(zk)

• fZkZk′ (zk, zk′ ) = fZk(zk) · fZk′ (zk′ ), ∀k, k′ ⇒ ρkk′ = 0

pairwise independence entails lack of correlation

higher-order (e.g., 3 by 3) independence entails pairwise independence

(reverse not always true)

Slide 19

Multivariate Gaussian Distribution

(K × 1) random vector z = [Z1, . . . , ZK ]T

Univariate and bivariate moments:

• (K × 1) mean vector: µ = [µ1, . . . , µK ]T

• (K ×K) covariance matrix: Σ = E{[z−µ][Z−µ]T }

Multivariate PDF:

fZ(z) =1

(2π)K/2|Σ|1/2exp

[−1

2[z−µ]T Σ−1[z−µ]

]fZ(z) = fZ1,...,ZK

(z1, . . . , zK) = c exp[− 12 Q(z1, . . . , zK)],

|Σ| = determinant of Σ, c = constant, Q = 2nd-order polynomial

Properties:

• all (K − k′)-variate marginal distributions are Gaussian

∀k′ = 1, . . . , K − 1

• all (K − k′)-variate conditional distributions are Gaussian

• any univariate cond. distribution has (cond.) expectation which

is a linear function of z-values, and (cond.) variance independent

of z-values

• any linear transformation of multivariate Gaussian RVs yields

multivariate Gaussian RVs

Slide 20

Lecture Notes Bivariate & Multivariate Distributions total # of slides = 22

Page 11: Bivariate Distributionschris/Medrano_GEO 210C/GEO 210C... · Spring 2007 Geog 210C: Phaedon C. Kyriakidis Statistics of Indicators (2) n =10joint realizations of two RVs Z and Y:

Spring 2007 Geog 210C: Phaedon C. Kyriakidis

Bivariate Gaussian Distribution

Standardized versus non-standardized variables:

(Z, Y )�N

⎧⎪⎪⎨⎪⎪⎩

µZ , σZ

ρZY

µY , σY

⇒ (Z − µZ√

σZ,Y − µY√

σY)�N

⎧⎪⎪⎨⎪⎪⎩

0, 1

ρZY

0, 1

Bivariate Gaussian PDF (non-standardized):

fZY (z, y) =1

2π√

σZσY (1− ρ2ZY )

× exp

[− 1

2(1−ρ2ZY

)

[(

z−µZ√σZ

)2−2ρZY (z−µZ√

σZ)(

y−µY√σY

)+(y−µY√

σY)2

]]

a scaled and shifted version

of the standardized bivariate Gaussian PDF

Slide 21

Bivariate Gaussian Distribution Examples

Standardized (zero mean, unit variance):

−4−3

−2−1

01

23

4

−4

−2

0

2

4

0

0.05

0.1

0.15

0.2

X−variable

Standardized bivariate normal pdf with r=0.25

Y−variable

pdf

−4−3

−2−1

01

23

4

−4

−2

0

2

4

0

0.05

0.1

0.15

0.2

0.25

X−variable

Standardized bivariate normal pdf with r=0.75

Y−variable

pdf

Non-Standardized:

−4−3

−2−1

01

23

4

−4

−2

0

2

4

0

0.02

0.04

0.06

0.08

0.1

X−variable

Bivariate normal pdf with mx=0, my=1, sx=1, sy=2, r=0.25

Y−variablepd

f

−4−3

−2−1

01

23

4

−4

−2

0

2

4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

X−variable

Bivariate normal pdf with mx=0, my=1, sx=1, sy=2, r=0.75

Y−variable

pdf

Slide 22

Lecture Notes Bivariate & Multivariate Distributions total # of slides = 22