4

Click here to load reader

BLIND MIMO EQUALIZATION AND JOINT-DIAGONALIZATION CRITERIA · BLIND MIMO EQUALIZATION AND JOINT-DIAGONALIZATION CRITERIA Pierre Comon ... Gr d , [q-Z q G and G Z ... l ¹ E ¶:Ã

Embed Size (px)

Citation preview

Page 1: BLIND MIMO EQUALIZATION AND JOINT-DIAGONALIZATION CRITERIA · BLIND MIMO EQUALIZATION AND JOINT-DIAGONALIZATION CRITERIA Pierre Comon ... Gr d , [q-Z q G and G Z ... l ¹ E ¶:Ã

BLIND MIMO EQUALIZATION AND JOINT-DIAGONALIZATIONCRITERIA

Pierre Comon

I3S,Algorithmes-Euclide-B2000routedeslucioles,BP 121

F-06903Sophia-AntipolisCedex, [email protected]

Eric Moreau

SIS,ISITV, Univ. Toulonav. G. Pompidou,BP56,

F-83162La ValetteduVar Cedex, [email protected]

ABSTRACT

We considerthe problemof convolutive blind signalsep-arationthroughthe optimizationof contrastfunctions. Inthis work, we show thatsomelinks betweencontrastsandjoint diagonalizationcriteria can be exhibited in the con-volutive case. This allows to devise a constructive algo-rithm performingMIMO blind equalization,with the helpof a joint approximatediagonalizationof a setof matricesbuilt from the observations. This analyticalalgorithmcanbe run block-wise,which is appropriatein the context ofshortburstcommunications.

1. INTRODUCTION

We considerthe problemof blind equalization,or decon-volution, of Linear Time Invariant (LTI) Multiple-InputMultiple-Output(MIMO) systems.Suchaproblemis of in-terestin multi-userwirelesscommunications,whereMIMOsystemsareexpectedto equalizetheobservedsignalsbothin spaceandtime. In fact,MIMO equalizationaimsatelim-inatinginter-symbolinterferencesdueto possibledelaysin-troducedby multi-pathspropagation,andco-channelinter-ferencesdueto thepossiblepresenceof simultaneoususersin the sameband. Examplesarefound in SpaceDivisionMultiple Access(SDMA) or CodeDivision Multiple Ac-cess(CDMA) communicationssystems.

Otherwell-known fieldsof applicationarethosewherethe genericproblemarises;this includesarrayprocessing,passive sonar, seismicexploration, speechprocessing,in-terception,surveillance...

One can find numerousworks on blind equalizationof Single-InputSingle-Output(SISO)channelsusinghigh-orderstatistics[2] [11], or constantmodulus[17] [9] or con-stantpower[8] properties,whereasthemultichannelframe-work,althoughmorerecent,alreadyseemsto bemorepow-erful; numerousreferencesinclude[12] [1] [3] [6] [13]. Aparticularinstanceof the problemis thestaticmixture,of-tenreferredto asthe“sourceseparation”problem,whereno

inter-symbolinterferenceis consideredbut only co-channelinterference[5] [4]. Thelatterproblemis relevantwhenthetimedelaysaresmallerthanthesymbolperiod,for example.

Blind MIMO deconvolution can be carried out withthehelpof on-line iterative algorithms[15], someof themextracting one sourceat a time (deflation) [16]. How-ever, blockmethodsbecomemoreandmoreattractivesincecomputerpower no longer appearsto be an impediment.The useof block (off-line) algorithmspresentsa numberof advantagesincluding: great improvementon the con-vergencetime (both estimationof statisticsandoptimiza-tion), increasedfacility to handlespuriouslocal extrema,betterrobustnessto loss of synchronization,possibility towork jointly with the reversed-timesignal,naturalformat-ting for TDMA transmission,especiallyshortburstslike intheGSMstandard[7]. Ontheotherhand,adaptive(on-line)algorithmscanalsobenefitfrom of blockupdates,andgainin convergencespeedandcomplexity [10].

In this paper, our goal is to relateblind MIMO decon-volutionto joint matrixdiagonalization,yieldingaconstruc-tiveblockalgorithm.Weconsidertheproblemof estimatinganinverseof theimpulseresponseof aLTI MIMO channel,given only outputmeasurements.Indeed,we estimateanequivalentmultivariateMoving Averagechannelregardlessof whattheactualchannelis. Ourapproachreliesoninversefilter criteriabasedonhigh-orderstatistics.

2. PROBLEM FORMULATION

We considerthe invertible multichannelLTI systemde-scribedby

��������� � ��� � ����������������� (1)

where ������� is the � � dimensionalvectorof sources,�������is the � � dimensionalvectorof observationsand � ��� def�� � �����! "�$# ZZ

�is asequenceof �&%'� matricesthatcorre-

spondsto theimpulseresponseof theLTI mixing filter. The

Page 2: BLIND MIMO EQUALIZATION AND JOINT-DIAGONALIZATION CRITERIA · BLIND MIMO EQUALIZATION AND JOINT-DIAGONALIZATION CRITERIA Pierre Comon ... Gr d , [q-Z q G and G Z ... l ¹ E ¶:Ã

multichannelblind deconvolution problemconsistsof esti-

matingaLTI filter (equalizer)� ( � def� �)( �����! "�$# ZZ�

us-ing only theoutputs������� of theunknownLTI system� ��� .�)( � ensuresthefact thatvector * ����� definedas

* �����+� � ��� (�������,�����-��� (2)

restoresthe � input signals.0/ ����� , 1 # �32 5454647 � � . We de-

finetheglobalLTI filter �08 � def� �98 �����: ;��# ZZ�

asfollows

* �����+� � ��� 8�������,���<����� def�>=@?8 ��A0�CB��+����� (3)

where ?8 ��A0� def� � ��� 8�����7A �D� standsfor the �&%'� trans-

fer matrixand A �FE thebackward-shiftoperator.

a

x

yG

C H

Processingline:�

is thechannel,( theequalizer, and 8theglobalsystem.

Assumptions. The following propertiesare assumedthroughoutthepaper:

A1. The sources. / ����� , 1 # �32 5454647 � � , are mutuallystatisticallyindependent.Eachsourceis a sequenceof zero-meanandunit power independentandidenti-cally distributed(i.i.d.) realrandomvariables.

A2. ������� is a randomprocessstationaryup to theconsid-eredorder G # IN H , i.e. IJ1 # �32 645454� � � , thecumu-lant KML9N = .9/ �����: 546454; .9/ �����O P6Q RS times

B is independentof � , and

canbedenotedcompactlyK S = .9/ B .A3. At most one of the consideredsourcecumulantsis

zero.

A4. Thetransfermatrix ?8 ��A0� satisfies?8 ��A9�9?8UT � 25V A H �+�Wwhere

Wis the �X%Y� identity matrix. In other

words,thematrix ?8 ��A0� is para-unitary.

The assumptionA4, althoughstrongerthanthat of [6]for Z �\[ , canbesatisfiedafterasecondorderprewhiteningof the observations,followedby a spatialstandardization.Thosetwo operationscan be carriedout with the help ofclassicalalgorithms,suchasspectralminimum phasefac-torizationandPrincipalComponentAnalysis.

Indeterminations. Sincesourcesareassumedto beunob-servable,someinherentindeterminationsin their restitutionsubsist:in mostcases,theorderaswell asthepowerandthetime delaycannotbe identified. Actually, theselimitationscombinetheinherentindeterminationsof thesourcesepara-tion problemtogetherwith thoseof theclassicalblind scalardeconvolution problem.Hence,signalsaresaidto besepa-ratedif andonly if (if f) theglobalLTI system ?8 ��A9� reads?8 ��A0�+�^]_��A9�a`cb (4)

where]d��A9�+�degfih jk��A �k� l 546454; "A �D�6m � with �6no# ZZ p , 2rqs qt� , ` is an invertibleconstantdiagonalmatrix and ba permutationmatrix. Notethat,because?8 ��A0� satisfies(4)andA4, theentriesof ` areof unit modulus.

Notations. Let us definesomeusefulnotations.The setof matrixsequencessatisfyingassumptionA4 is denotedbyu

. Thesetof sourcerandomvectorssatisfyingassumptionsA1 to A4 is representedby v . Thesubsetof

uof matrixse-

quencessuchthat(4) is satisfied,oftenreferredto astrivialfilters, is denotedby w . Finally, thesetof randomvectors* ����� satisfying(3) where �x# v and �08 � # u is denotedby y .

3. CONTRAST FUNCTIONS

3.1. New Contrast functions

First we generalizesomecontrastsavailable in the instan-taneouscaseto the convolutive one. With this goal, let usintroducethefollowing notation

K�z{9| S = 1 @}J @~6B��K�L0N =�� / �����: 546454; "� / �����O P5Q R{��i�a���M� "� n l ���c��� E �! 645454" ;� n;� ���<�����5�O P5Q R� � S � {r�i�a�i��� B(5)

whereG � Z��Y� standsfor thecumulantorderand} � � s E 645454" s �6�~ � ��� E 546454� @�:�6�,4Let us also considerthe following set of indices: � ���2 546454� � � � andthe setof delays � � ZZ

�. We have the

followingfirst result:

Proposition 1 Let G , Z and � be three integerssuch thatG���� , [ q�Z�qdG and � � G � Z , thefunction

� {9| S � * �+� p / ��E � � � � �0�k�� K z{9| S = 1 @}J @~5B ���

(6)

is a contrastfor 2ndorderstandardizedwhiteobservations* ������# y .

Page 3: BLIND MIMO EQUALIZATION AND JOINT-DIAGONALIZATION CRITERIA · BLIND MIMO EQUALIZATION AND JOINT-DIAGONALIZATION CRITERIA Pierre Comon ... Gr d , [q-Z q G and G Z ... l ¹ E ¶:Ã

Proof. It is easilyseenthat for a givenorder G of cu-mulants,we have

� {0| S � * � q � � | S � * � . Now recallingthat� � | S � * � is a contrast[14], then� � | S � * � q � � | S ����� . Be-

causethesourcesarei.i.d. statisticallyindependentsignals,all their cross-cumulantsarezeroand

� {9| S ���F��� � � | S ����� .Thenconsideringthe above resultsaltogether,

� {9| S � * � q� {9| S ����� . Finally, because� � | S � * � is a contrast,it is notdif-

ficult to seethattheequality� {9| S � * �+� � {0| S ����� holdsonly

for separatingstates.Thus� {0| S � * � is a contrast. �

Now onecanevennoticethat thefunction� {9| S � * � can

alwaysbewrittenas� {9| S � * �+�Y  S � * � �Y¡ {9| S � * � (7)

where   S � * ��� p / ��E �� K S =�� / B ���

(8)

and ¡ {0| S � * � def� p / ��E � � ��¢ � �0�!£ �� K z{9| S = 1 a}F @~6B ��� 4 (9)

In the above definition, the sets �5¤ and � H are de-fined respectively as �5¤ � �&¥¦� § with � § �� � 2 546454� 2 �! 645464; 5� � 546454; � � � and � H � ZZ

� ¥�� ��¨� 546454; "¨9� � .Let us remarkthat the function   S � * � involvesonly auto-cumulantsand was proved to be a contrastin [6]. Onthe contrary, the function ¡ {9| S � * � involves only cross-cumulantsandthusis zerowhenconsideringthesourcevec-tor, i.e. ¡ {9| S �������©¨ . Basedon the above remarkwe canproposethefollowing result:

Proposition 2 Let G , Z and � be three integers such thatGr�d� , [ q-Z�q�G and � � G � Z , with ª�q«2 thefunction� {9| S7| ¬ � * ���Y  S � * � �_ª�¡ {0| S � * � (10)

is a contrastfor 2ndorder standardizedwhiteobservations* �����,# y .

Proof. Theproof followsthesamelinesastheoneforproposition1. Briefly, becauseª­q®2 then

� {9| S7| ¬ � * � q� {9| S � * � . Now according to proposition 1� {9| S � * � q� {9| S ����� . Moreover

� {0| S7| ¬ �����¯� � {9| S �����¯�   S ����� .Thenconsideringtheabove resultsaltogether,

� {9| S7| ¬ � * � q� {9| S�| ¬ ���M� . Finally, because� {0| S � * � is a contrast,it is not

difficult to seethattheequality� {9| S7| ¬ � * �M� � {9| S7| ¬ ����� holds

only for separatingstates.Thus� {9| S7| ¬ � * � is a contrast. �

3.2. Link with a joint diagonalization criterion

From now on, we take Z �°[ ; this will be justifiedby thepropositionbelow. Assumethat theMIMO equalizer� ( �

is of finite length ± . Then,for all 1 , 2'qd1�qd� :

� / �������³² �FE´ ��µ p¶ ��E¸· / ¶ ��¹���º ¶ ������¹�� (11)

Next, denotethe G � th order cumulant multi-correlationfunctionof � as»

¼�| ½ ��¾¿ @ÀÁ�+� K�L9N =�º ¶ l ���<�¹ E �! º ¶:à ���<�Y¹ � �: �º�Ä l ���<�-Å E �: 546454; "º�Ä � �����ÆÅ��)�CB (12)

where � and ¾ arevectorsof size Z �¦[ , and Ç and À arevectorsof size � � G �&[ . For every fixed valueof . � ,Ç , ¹ � , and À , the cumulanttensor

»¼�| ½ ��¾¿ @ÀÁ� is a �È%�±

matrix with indices . E and ¹ E , and can thusbe storedina vector of size �ɱ . The sameremarkholds for indices. � and ¹ � whenotherindicesarefixed. As a consequence,when the vector indices Ç and À are fixed, the cumulanttensor

»¼�| ½ ��¾¿ @ÀÁ� canbestoredin a �ɱÂ%U�ɱ matrix that

can be denotedÊ � Ç aËÌ� . Then,with thesenotations,wehave thefollowing result:

Proposition 3 Thecontrast� � | S � * � canbewrittenasa cri-

terionof joint diagonalizationof a setof � � ± � matrices:� � | S � * �+� ½ ÍÏÎÐÎ Ñ�Ò�Ó�Ô �:Õ×Ö,Ê � Ç aËÌ� Õ � ÎØÎ � (13)

where Ç and Ë are vectorscontaining � � G ��[ indices,varyingin �32 545464; � � and � ¨� 546454; ± � 2 � , respectively, andÕ is semi-unitary.

Proof. Fist, replacein thedefinition(6) of� � | S � * � the

cumulantsof * by their expressionasafunctionof thoseof� :

K z{9| � = 1 @}J @~5BJ� ¼�| ½ Ù�| Ú · / ¶ l ��¹ E � · / ¶:à ��¹ � � · / Ä l �iÅ E ��45464· / Ä � �iÅ�� ��Û ¼�|a½ ��¾¿ aÀ � ~3� (14)

Yet, the para-unitarycondition A4 on ?8 ��A0� implies thatÜ ( ��A9� is alsopara-unitary, which itself yields n�Ý · n S ��Þ � �6� · n S"ß ��Þ�à � �!���dá S7S"ß á6â:â ßThus,takingthesquareof (14),makingthechangeof vari-ables ã � �°Å � � � � , andeliminatingthe unusefulindicesleadsto� � | S � * ��� / ¼9¼ ß Ù�Ù ß ½;½ ß Í�Í ß· / ¶ l ��¹ E � · / ¶ à ��¹ � � · / ¶ ß l ��¹ à E � · / ¶ ßà ��¹ à � �ä Û ¼�| ½ ��¾¿ @Ë�� ä Û ¼�ßØ| ½ ß ��¾ à @Ë à ��

Page 4: BLIND MIMO EQUALIZATION AND JOINT-DIAGONALIZATION CRITERIA · BLIND MIMO EQUALIZATION AND JOINT-DIAGONALIZATION CRITERIA Pierre Comon ... Gr d , [q-Z q G and G Z ... l ¹ E ¶:Ã

whichcanberearrangedinto� � | S � * �9� / ½7Í �� ¼0Ù · / ¶ l ��¹ E � · / ¶ à ��¹ � � ä Û ¼�| ½ ��¾� @ËÌ� ��

� 4Lastly, groupingindices . n and ¹ n togetherin a singlein-dex å n , one can remark that the ± matrices ( ��¹�� canbe stored in a �æ±ç%&� matrix, Õ , so that eventually� � | S � * �Æ�éè / ½7Í Î èxê l ê Ã Õ ê l / Õ ê à / � ê l ê à � Ç aË+� Î � . Herethepara-unitarypropertyof ( ��Þ�� impliesthat Õ Ö Õ � W p .�3.3. Results in the complex case

For thesakeof simplicity, ourderivationshave beencarriedout in thecaseof realinputandchannel.However, it canbeseenthattheabove threepropositionscanbegeneralizedtothecomplex caseof sourcesandmixtures.More precisely,the output cumulantin (5) can be definedwith any num-ber of complex conjugates,which imposesthe useof twoadditionalindicesandcomplicatesthe notation,henceourpresentationin the real case. The only restrictionis thenthatat mostonesuchsourcecumulantmay benull. Next,for Z �^[ , lookatthefirst two termsin thecumulant(5), i.e.,the two termswith the sameindex. If only oneof themisconjugated,thenonehasto replacethetranspositionin (13)by theHermitiantransposition.Otherwise,if bothtermsare(or arenot)conjugated,thetranspositionstaysasis in (13).

4. CONCLUSION

Theframework of contrastfunctionsis now well establishedandof recognizedinterest.Contrastsarewidely utilized instaticBlind SourceSeparation,but muchlessin DynamicBSS. On the other hand, in TDMA communications(asGSM), it is necessaryto equalizethechannelfrom a singleburst, that is, lessthan200symbols.Block methods,longdiscardedbecauseof their high computationalcomplexity,now hold appeal,andshow a betterefficiency onshortdatalengths.

Thesestatementsargue in favor of the proposedalgo-rithm, which solvesthe MIMO equalizationproblemwiththe help of Joint ApproximateDiagonalization(JAD) ofseveral matrices. Issuescurrently under investigationin-cludetherobustnesswith respectto Gaussiannoiseandtochannelordermisdetection,andthebehavior with randomspecularchannelsdrawn accordingto theClarkemodel.

5. REFERENCES

[1] K. ABED-MERAIM, E. MOULINES, P. LOUBATON,“Predictionerror methodfor second-orderblind identifica-tion”, IEEE Trans.Sig. Proc., vol. 45, no. 3, pp. 694–705,Mar. 1997.

[2] A. BENVENISTE, M. GOURSAT, “Blind equalizers”,IEEETrans.Com., vol. 32,no.8, pp.871–883,Aug. 1984.

[3] H. BROMAN, U. LINDGREN, H. SAHLIN, P STOICA,“Sourceseparation:aTITOsystemidentificationapproach”,SignalProcessing,Elsevier, vol. 73, no.2, Feb. 1999, spe-cial issueon blind separationanddeconvolution.

[4] J.F. CARDOSO,A. SOULOUMIAC, “Blind beamformingfor non-Gaussiansignals”, IEE Proceedings- Part F, vol.140,no.6, pp.362–370,Dec.1993,SpecialissueonAppli-cationsof High-OrderStatistics.

[5] P. COMON, “IndependentComponentAnalysis,anew con-cept?”, SignalProcessing,Elsevier, vol. 36,no.3, pp.287–314,Apr. 1994,Specialissueon Higher-OrderStatistics.

[6] P. COMON, “Contrastsfor multichannelblind deconvolu-tion”, SignalProcessingLetters, vol. 3, no.7, pp.209–211,July1996.

[7] P. COMON, “Block methodsfor channelidentificationandsourceseparation”, in IEEE Symposiumon AdaptiveSys-temsfor Sig. Proc. Comm.Contr., Lake Louise, Alberta,Canada,Oct.1-42000,pp.87–92,invitedplenary.

[8] P. COMON, O. GRELLIER, “Analytical blind identifica-tion of aSISOcommunicationchannel”,in IEEEWorkshopon StatisticalSignalandArray Processing, PoconoManor,Pennsylvania,Usa,Aug. 14-16,2000,pp.206–210.

[9] I. FIJALKOW, A. TOUZNI, J.R. TREICHLER, “Fraction-ally spacedequalizationusingCMA: Robustnessto channelnoiseandlackof disparity”, IEEETrans.Sig. Proc., vol. 45,no.1, pp.56–66,Jan.1997.

[10] K. HILAL, P. DUHAMEL, “A convergencestudy of theconstantmodulusalgorithmleadingto a normalized-CMAanda block normalized-CMA”, in Proc. EuropeanSignalProcessingConf. EUSIPCO, Brussels,Aug. 1992,pp.135–138.

[11] J. G. PROAKIS, C. L. NIKIAS, “Blind equalization”, inSPIEAdaptiveSignalProcessing, 1991,vol. 1565,pp. 76–88.

[12] C. SIMON, P. LOUBATON, C. VIGNAT, C. JUTTEN,G. d’URSO, “Blind sourceseparationof convolutive mix-turesby maximizationof fourth-ordercumulants: the noni.i.d. case”,in ICASSP, Seattle,May 12-151998.

[13] A. SWAMI, G. GIANNAKIS, S. SHAMSUNDER, “Multi-channelARMA processes”, IEEETrans.Sig. Proc., vol. 42,no.4, pp.898–913,Apr. 1994.

[14] N. THIRION, E. MOREAU, “New criteria for blind signalseparation”, in IEEE Workshopon StatisticalSignal andArray Processing, PoconoManor, Pennsylvania,Usa,Aug.14-16,2000,pp.344–348.

[15] A. TOUZNI, I. FIJALKOW, M. LARIMORE, J. R. TRE-ICHLER, “A globallyconvergentapproachfor blind MIMOadaptive deconvolution”, in ICASSP, Seattle,May 12-151998.

[16] J. TUGNAIT, “Adaptive blind separationof convolutivemixturesof independentlinearsignals”, SignalProcessing,Elsevier,, vol. 73,pp.139–152,Feb. 1999.

[17] A. J.vanderVEEN, A. PAULRAJ, “An analyticalconstantmodulusalgorithm”, IEEE Trans.Sig. Proc., vol. 44,no.5,pp.1136–1155,May 1996.