29
Capítulo 6 e 8 Comutação Circuitos/Pacotes/Mensagens Multiplexação FDM/TDM/WDM Prof. Esp. Rodrigo Ronner [email protected] rodrigoronner.blogspot.com Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Capítulo 6 e 8 comutação e multiplexação (3º unidade)

Embed Size (px)

Citation preview

Page 1: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

Capítulo 6 e 8

Comutação Circuitos/Pacotes/Mensagens

Multiplexação FDM/TDM/WDM

Prof. Esp. Rodrigo Ronner [email protected]

rodrigoronner.blogspot.com

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Page 2: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

• Dados e Sinais 1º Unidade – Sinais analógicos e digitais – Sinais Periódicos x Não periódicos – Período e Frequência – Domínio do Tempo x Frequência – Sinal composto e meio de transmissão – Largura de banda – Perda na Transmissão – Limite na Taxa de Transmissão de Dados – Taxa de Transferência

• Desempenho 1º Unidade

– Largura de Banda – Largura de Banda em Hertz – Largura de Banda em Bits por Segundo – Throughput – Latência (Retardo) – Tempo de Propagação – Tempo de Transmissão – Tempo de Fila – Jitter

• Transmissão Digital e Analógica 2º Unidade

– Principais combinações de dados e Sinais – Transmissão Analógica – Conversão Digital-Digital – Transmissão Digital Vantagens – Codificação em Linha

• Esquemas de codificação: unipolar, polar e bipolar

• codificação polar os esquemas NRZ, RZ, Manchester e Manchester Diferencial

– Codificação em Bloco • Fases da codificação de bloco

• 4B/5B

• Modos de Transmissão 2º Unidade – Serial – Paralela

• Códigos de Dados 2º Unidade – EBCDIC – ASCII – Unicode

• Multiplexação 3º Unidade

FDM TDM FDM versus TDM WDM FDMA Espalhamento de frequência

– FHSS (Frequency Hopping Spread Spectrum)

– DSSS (Direct Sequence Spread Spectrum)

• Comutação 3º Unidade Comutação Circuitos Comutação Pacotes Comutação de Mensagens

• Técnicas de Detecção de Erros 3º Unidade

Prevenção de Erros Detecção de Erros Controle de erros

• Seminário 3º Unidade -Sonet e Ethernet

-

Sumário

Page 3: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

Serviços de rede

Conjunto de operações implementadas por um protocolo Cada serviço pode ser usado por diferentes aplicações Uma aplicação também pode usar vários serviços

Ex. Browser de internet

Serviços orientados à conexão Estabelece conexão prévia à transmissão dos dados Gera uma comunicação de dados confiável Possibilita correção de erros e controle de fluxo Gera overhead na comunicação

Serviços sem conexão Envia dados sem conhecimento prévio Mais rápido Menos confiável, pois não há garantia de entrega

3

Page 4: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

Meios

Ambiente físico usado para conectar os nós de uma rede Todas as comunicações envolvem a codificação de dados em uma

forma de energia e respectivo meio de transmissão

Meios físicos são variados:

Cabo coaxial

Cabo par trançado

Fibra óptica

Ondas de rádio

Infravermelho

Outros meios

4

Page 5: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

Formas de transmissão

Simplex Ocorre em apenas uma direção

Ex. TV Aberta

Half-Duplex Ocorre em ambas as direções, mas um evento de cada

vez

Ex. Rádio amador

Full Duplex Recepção e envio ocorrem simultaneamente

Ex. tv a cabo

5

Page 6: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

Utilização da banda

• Largura de banda: Quantidade máxima de transmissão de sinais em um meio físico

• Largura de banda versus Taxa de transmissão – Largura de banda: MHz

– Taxa de transmissão: MBps

• Configuração de um “único” canal por meio de transmissão – Desperdício de recursos

• Como melhorar a transmissão? – Múltiplos canais por meio de transmissão

6

Page 7: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

Banda base e banda larga

• Banda base – Toda a largura de banda é utilizada por apenas um canal

– Tecnologia mais utilizada nas transmissões digitais

• Banda larga – Caracterizado pela divisão da largura de banda em múltiplos canais

– Cada canal pode transmitir diferentes conteúdos

– Utiliza multiplexação

7

Page 8: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

Canais

• Parcela do meio físico alocada para transmissão de um sinal

• Um meio físico pode ter diferentes canais disponíveis – Inclusive com destinações diferentes

• Um canal é diferente conforme a técnica de multiplexação usada – FDM – Um canal é uma faixa de freqüências

– TDM síncrono – um canal é o conjunto de todos os slots, um em cada frame, identificado por uma determinada posição fixa (ex. Canal 5= 5o slot)

8

Page 9: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

Multiplexação

Sempre que a banda passante existente é maior que a necessária, usa-se a multiplexação

Permite que múltiplos pares de receptores e emissores compartilhem o meio físico de transmissão

Multiplexação pode existir Por divisão de frequência (FDM)

Por divisão de tempo (TDM)

Por divisão do comprimento de onda (WDM)

Por divisão de código (CDM)

Multiplexador Centralizam as funções de modulação, filtragem e combinação dos

sinais

9

Page 10: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

FDM

• Frequency division multiplexing – Divide o espectro de frequência em canais lógicos

– Cada usuário terá uma parte da banda

– Cada canal pode ser utilizado individualmente

• Exemplo: Sinal de voz

10

Page 11: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

FDM

• A divisão dos canais no FDM é fixa e permanente

• Se um canal está ocioso, sua banda não pode ser usada para outro canal

• Necessita banda de segurança entre os canais – Evite interferências de um canal no outro

– Logo, a soma das capacidades dos subcanais é inferior à capacidade do canal principal

• É necessário usar técnicas de modulação para deslocar a faixa de frequência deste sinal para a faixa de frequência da transmissão

11

Page 12: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

Exemplos de FDM

• TV a cabo (cable modem) – Canais de TV normalmente usam 6 Mhz

– Transmissões podem alcançar até 30 Mbps no canal de 6 Mhz

– Frequências divididas pela natureza dos dados

• Voz; Vídeo; Dados; etc

12

Page 13: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

Exemplos de FDM

• ADSL – Limitação das linhas telefônicas convencionais com uso de

cabeamento de par trançado na infra-estrutura da operadora

• Largura de banda de 4 KHz aumenta para a faixa de MHz

– Bandas de subida e descida são assimétricas

• 16 a 640 KBps subida e 1 a 9 MBps descida

13

Page 14: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

Multiplexação por divisão de tempo

• Forma alternativa de separação do uso do canal

• Utiliza-se o tempo, e não a frequência como a grandeza a ser compartilhada – O compartilhamento do meio físico é alcançado intercalando-se

porções de cada transmissão ao longo do tempo

– Idéia é de que o meio físico suporta uma taxa de transmissão média maior que a geração de bits das estações

14

Page 15: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

TDM

• Tempo é dividido em intervalos regulares

• Cada subcanal tem direito a um intervalo de tempo para transmitir seus dados

• Toda banda do canal fica disponível

• TDM pode existir de 2 formas – Síncrono – desperdício maior de banda

– Assíncrono- uso mais eficaz,mas overhead de cabeçalho

15

Page 16: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

TDM Síncrono

• O tempo é dividido em frames de tamanho fixo – Por sua vez, é dividido em intervalos de tamanho fixo

• Canal no TDM é o conjunto de intervalos em cada frame – Ex. Canal 4 é o 4º intervalo de cada frame

– Exemplo: Se o intervalo 4 é atribuído a uma estação, apenas aquela estação pode usar o intervalo 4

• Se não o fizer, ninguém usará

• Uso de banda ainda é ineficiente – Ex. Se o intervalo de tempo é de 64kbps, há desperdício se a estação

não precisa de toda essa banda (8 ou 72 kbps, por exemplo)

16

Page 17: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

TDM Assíncrono

• O TDM assíncrono ou estatístico aumenta a eficiência do TDM

• Não há alocação de um canal para determinada fonte – A fonte pode usar qualquer intervalo de tempo, desde que esteja

disponível

• Parcelas de tempo são alocadas dinamicamente

• Diminui o desperdício de banda

• Causa overhead, pois cada unidade de informação deverá possuir um cabeçalho

17

Page 18: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

FDM versus TDM

• FDM requer modulação e os sinais digitais terão de ser convertidos em analógicos

• TDM os sinais são transmitidos em banda básica, portanto sinais digitais

• Como já vimos: transmissão digital é mais vantajosa! – Causo: Telefonia celular

18

Page 19: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

WDM

• Wavelength Division Multiplexing

• Usado em fibras – Usa comprimentos de onda laser diferentes

– Na verdade, é um tipo de FDM (lasers diferentes possuem frequências diferentes)

• Pode funcionar em fibras mono e multimodo

19

Page 20: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

Multiplexação

• Pode ser: – Centralizada – Um equipamento específico faz a multiplexação

– Distribuída – Várias fontes de sinais encontram-se conectadas ao meio físico compartilhado (vários acessos)

20

Page 21: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

FDMA

• Acesso múltiplo por divisão de frequência

• Diversos dispositivos estão usando o meio de comunicação, subdividindo a freqüência disponível

21

Page 22: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

Espalhamento de frequência

• Uso de spread spectrum

• FHSS (Frequency Hopping Spread Spectrum) – Divide a banda utilizada em vários canais; Envia os sinais durante um

tempo X por um canal e salta sucessivamente para outros canais de maneira aleatória ou ordenada

– Receptor deve conhecer a sequência de saltos

• DSSS (Direct Sequence Spread Spectrum) – Utiliza uma sequência binária para modular a frequência do sinal

– Receptor deve conhecer a sequência binária

22

Page 23: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

Comutação

• A comutação é o processo de interligar dois ou mais pontos entre si. No caso de telefones, as centrais telefônicas comutam (interligam) dois terminais por meio de um sistema automático, seja ele eletromecânico ou eletrônico.

O termo comutação surgiu com o desenvolvimento das Redes Públicas de Telefonia e significa alocação de recursos da rede (meios de transmissão, etc...) para a comunicação entre dois equipamentos conectados àquela rede. A comutação pode ser por circuitos, mensagens ou pacotes.

Page 24: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

Comutação

Comutação é a forma como serão alocados os recursos p/ transmissão na rede

Comutação de circuitos Pressupõe existência de caminho físico dedicado

Iniciada quando necessário e finalizada quando a comunicação estiver concluída

Semelhante a circuito telefônico

Comutação de pacotes Não há estabelecimento de caminho dedicado

Compartilhamento dos recursos comuns

Mensagem é transmitida nó a nó

Utiliza circuitos virtuais ○ Diferente de Comutação por circuitos

Page 25: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

Comutação por Circuitos

Possui 3 fases Estabelecimento da conexão

Transferência da informação

Desconexão

Vantagens Garantia de recursos

Disputa pelo acesso somente na fase de conexão

Não há processamento nos nós intermediários

Controles nas extremidades

Desvantagens Desperdício de banda nos períodos ociosos

Recuperação de erros fim a fim

Probabilidade de bloqueio (circuitos ocupados)

Page 26: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

Comutação por Circuitos

Chaveamento por divisão espacial (Space Division Switching) Cada nó fecha um circuito físico entre entrada e saída

Chaveamento por divisão de frequência (Frequency Division Switching) Cada nó chaveia de um canal em um meio físico disponível

O circuito formado pelos nós é uma sequência de canais de frequência

Chaveamento por divisão de tempo (Time D.S.) Cada nó chaveia de um canal de uma linha de entrada para um canal

de uma linha de saída

Circuito formado é uma sequência de canais TDM em linhas síncronas

Page 27: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

Comutação por Pacotes

• Não existe fases de estabelecimento de chamada e nem desconexão

• Cada mensagem possui um cabeçalho com informações necessárias ao seu encaminhamento – Usa conceito de store-and-forward

• Melhor utilização estatística dos recursos

Page 28: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

Comutação por Pacotes

• Vantagens – Maior aproveitamento dos links

– Uso otimizado do meio

• Desvantagens – Aumento do tempo de transferência das mensagens

– Não garante taxa de transmissão

• Comutação por mensagens – Mesmo princípio dos pacotes, mas com blocos de dados maiores

Page 29: Capítulo 6 e 8   comutação e multiplexação (3º unidade)

Circuitos x Pacotes

Característica Com. por circuito

Com. por pacotes

Circuito físico dedicado Sim Não

Largura de banda Fixo Variável

Desperdício de banda? Sim Não

Armazenamento nos nós Sim Não

Requer conexão prévia Sim Não

Congestionamento Início da chamada

Em cada pacote