20
Page 1 Subashini De Silva Center for Accelerator Science Old Dominion University CAVITY II – RF-DIPOLE CAVITY TEST RESULTS LHC – CC-13, CERN December 9-11, 2013

CAVITY II – RF-DIPOLE CAVITY TEST RESULTS

  • Upload
    early

  • View
    53

  • Download
    2

Embed Size (px)

DESCRIPTION

LHC – CC-13, CERN. December 9-11, 2013. CAVITY II – RF-DIPOLE CAVITY TEST RESULTS. Proof–of–Principle RF–Dipole Design. 34 cm. 53 cm. B Field. E Field. Proof–of–Principle Cavity Fabrication. Proof-of-Principle cavity fabricated at Niowave Inc. Cavity thickness – 3 mm. Teflon Bead. - PowerPoint PPT Presentation

Citation preview

Page 1: CAVITY II –  RF-DIPOLE CAVITY TEST RESULTS

Page 1

Subashini De Silva

Center for Accelerator ScienceOld Dominion University

CAVITY II – RF-DIPOLE CAVITY

TEST RESULTS

LHC – CC-13, CERN December 9-11, 2013

Page 2: CAVITY II –  RF-DIPOLE CAVITY TEST RESULTS

Page 2

Proof–of–Principle RF–Dipole Design

Parameters Value Units

Frequency 400 MHz

Deflecting Voltage (VT*) 0.375 MV

Peak Electric Field (Ep*) 4.02 MV/m

Peak Magnetic Field (Bp*) 7.06 mT

Bp*/Ep

* 1.76 mT/(MV/m)

Stored Energy (U*) 0.195 J

[R/Q]T 287.0 Ω

Geometrical Factor (G) 140.9 Ω

RTRS 4.0×104 Ω2

At ET* = 1 MV/m

34 cm

53 cm

E Field B Field

Page 3: CAVITY II –  RF-DIPOLE CAVITY TEST RESULTS

Page 3

Proof–of–Principle Cavity Fabrication• Proof-of-Principle cavity fabricated at Niowave Inc.• Cavity thickness – 3 mm

-100.0

0.0

100.0

200.0

300.0

400.0

500.0

-0.5 -0.3 -0.1 0.1 0.3 0.5

0E

2 /U

[m

-3]

z [m]

MeasurementSimulation

-100.0

0.0

100.0

200.0

300.0

400.0

500.0

-0.5 -0.3 -0.1 0.1 0.3 0.5

0E

2 /U

-μ 0

H2 /

2U [

m-3

]

z [m]

MeasurementSimulation

Teflon Bead Al Bead• Bead pull measurements of on axis electric and magnetic field components

Page 4: CAVITY II –  RF-DIPOLE CAVITY TEST RESULTS

Page 4

Proof–of–Principle Cavity Surface Treatment• Surface treatment and rf testing done at

Jefferson Lab

• Procedure:– Bulk BCP

• Average removal – 85 μm• Planned total removal – 120 μm• Reduced etch rate from 2.7-2.8 μm /min to 1.8 μm/min due

acid mixture contamination with glycol

– Heat treatment – At 6000 C for 10 hours– Light BCP – ~10 μm– High Pressure Rinse – 3 passes

• Cavity assembly and leak check in clean room

Page 5: CAVITY II –  RF-DIPOLE CAVITY TEST RESULTS

Page 5

Multipacting in Proof–of–Principle Design• Multipacting analysis using Tack3P in SLAC – ACE3P suite

• A multipacting barrier was observed in the first 2 K test at very low fields

• Increasing the power processed the cavity and no multipacting was observed in the following 4.2 K and 2 K tests

Expected multipacting levels at very low VT of low orders with low impact energies

Page 6: CAVITY II –  RF-DIPOLE CAVITY TEST RESULTS

Page 6

P-o-P Cavity – 4.2 K and 2.0 K Test Results• Design goal can be achieved

with three cavities

• Multipacting levels observed below 2.5 MV and processed easily

• Achieved fields at 2.0 K:– ET = 18.6 MV/m

– VT = 7.0 MV

– EP = 75 MV/m

– BP = 131 mT

• RF performance was limited at 7.0 MV due to high field emission

• At 2.0 K with Rs = 11.3 nΩ (Rres = 10 nΩ)– Expected Q0 = 1.25×1010

– Measured Q0 = 4.0×109

• Total design requirement – 13.4 MV• Design requirement per cavity – 3.4 MV

1.0î 109

1.0î 1010

0.0 1.5 3.0 4.5 6.0 7.5

Rad

iati

on [

mR

/hr]

Q0

VT (MV)

Q0 2.0 K Q0 4.2 K

Rad 2.0 K Rad 4.2 K

1.0î 108

1.0î 109

1.0î 1010 1.0î 103

1.0î 102

1.0î 101

1.0

1.0î 10-1

1.0î 10-2

1.0î 10-3

0.0 5.0 10.0 15.0 20.0R

adia

tion

[m

R/h

r]

Q0

ET (MV/m)

Q0 2.0 K Q0 4.2 K

Rad 2.0 K Rad 4.2 K

1.0î 109

1.0î 1010 1.0î 103

1.0î 102

1.0î 101

1.0

1.0î 10-1

1.0î 10-2

0.0 35.3 70.6 105.9 141.2

Rad

iati

on [

mR

/hr]

Q0

BP (mT)

Q0 2.0 K Q0 4.2 K

Rad 2.0 K Rad 4.2 K

1.0î 109

1.0î 1010 1.0î 103

1.0î 102

1.0î 101

1.0

1.0î 10-1

1.0î 10-2

0.0 35.3 70.6 105.9 141.2

Rad

iati

on [

mR

/hr]

Q0

BP (mT)

Q0 2.0 K Q0 4.2 K

Rad 2.0 K Rad 4.2 K

1.0î 109

1.0î 1010 1.0î 103

1.0î 102

1.0î 101

1.0

1.0î 10-1

1.0î 10-2

0.0 20.1 40.2 60.3 80.4

Rad

iati

on [

mR

/hr]

Q0

EP (MV/m)

Q0 2.0 K Q0 4.2 K

Rad 2.0 K Rad 4.2 K

1.0î 109

1.0î 1010 1.0î 103

1.0î 102

1.0î 101

1.0

1.0î 10-1

1.0î 10-2

0.0 20.1 40.2 60.3 80.4

Rad

iati

on [

mR

/hr]

Q0

EP (MV/m)

Q0 2.0 K Q0 4.2 K

Rad 2.0 K Rad 4.2 K

1.0î 109

1.0î 1010

0.0 1.5 3.0 4.5 6.0 7.5

Rad

iati

on [

mR

/hr]

Q0

VT (MV)

Q0 2.0 K Q0 4.2 K

Rad 2.0 K Rad 4.2 K

1.0î 108

1.0î 109

1.0î 1010 1.0î 103

1.0î 102

1.0î 101

1.0

1.0î 10-1

1.0î 10-2

1.0î 10-3

0.0 5.0 10.0 15.0 20.0

Rad

iati

on [

mR

/hr]

Q0

ET (MV/m)

Q0 2.0 K Q0 4.2 K

Rad 2.0 K Rad 4.2 K

Quench

Limited by rf power

Multipacting

3.4 5.0

Page 7: CAVITY II –  RF-DIPOLE CAVITY TEST RESULTS

Page 7

P-o-P Cavity Test Results

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

10.0

0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0

Δf

[kH

z]

Et2 [MV/m]2

2.0 K 4.2 K

kL = - 121.94 Hz/(MV/m)2

Simulated kL–

117.3 Hz/(MV/m)2

• For a Rres = 10 nΩ– At 2.0 K RS = 11.3 nΩ, Q0 = 1.25 ×1010

– At 4.2 K RS = 81.3 nΩ, Q0 = 1.8 ×109

• Measured Q0 at 2.0 K = 4.0×109

• Q0 due to power losses at the beam port stainless steel blank flanges 3.8×109

Surface Resistance

df /dP = - 483.0 Hz/torr

-0.45

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0 200 400 600 800 1000

Δf

[MH

z]

Pressure [torr]

Measured Simulated

df /dP = - 407.9 Hz/torr

Pressure Sensitivity Lorentz Detuning

Rres = 34 nΩ

10

100

0.2 0.3 0.4 0.5 0.6 0.7

RS

[nΩ

]

1/T [K-1]

Measurements BCS Fit

42.6 10 18.67[n ] exp 33.9

[K] [K]sRT T

Magnetic field and surface field on the beam port

Page 8: CAVITY II –  RF-DIPOLE CAVITY TEST RESULTS

Page 8

499 MHz RF-Dipole Cavity

Surface Processing Procedure• Bulk BCP of ~150 μm• Average removal

– 1st treatment: 108 μm– 2nd treatment: 200 μm

• Heat Treatment H2 degassing at 6000C – 10 hours

24 cm

44 cm

RF Properties – 499 MHz Cavity

Aperture Diameter (d)

40.0 mm

Nearest HOM 777.0 MHz

Ep* 2.86 MV/m

Bp* 4.38 mT

[R/Q]T 982.5 Ω

Geometrical Factor (G)

105.9 Ω

RTRS 1.0×105 Ω2

At ET* = 1 MV/m

• Light BCP – Removal of 10 μm (2nd time: 20 μm) after heat treatment

• High pressure rinsing in 2 passes

• Cavity Assembly – with fixed coupling

Page 9: CAVITY II –  RF-DIPOLE CAVITY TEST RESULTS

Page 9

499 MHz – 4.2 K and 2.0 K Test Results• Multipacting was easily

processed during the first rf test at 4.2 K rf test

• No multipacting levels were observed in the reprocessed cavity

• Hard quench observed at 4.2 MV

• Achieved fields at 2.0 K– ET = 14 MV/m

– VT = 4.2 MV

– EP = 40 MV/m

– BP = 61.3 mT

1.0î 108

1.0î 109

1.0î 1010

1.0î 1011 1.0î 103

1.0î 102

1.0î 101

1.0

1.0î 10-1

1.0î 10-2

1.0î 10-3

0.0 5.0 10.0 15.0

Rad

iati

on [

mR

/hr]

Q0

ET (MV/m)

Q0 4.2 K - Test 1 Q0 2.0 K - Test 1Q0 4.2 K - Test 2 Q0 2.0 K - Test 2Rad 2.0 K Rad 4.2 K

1.0î 108

1.0î 109

1.0î 1010

1.0î 1011 1.0î 103

1.0î 102

1.0î 101

1.0

1.0î 10-1

1.0î 10-2

1.0î 10-3

0.0 5.0 10.0 15.0

Rad

iati

on [

mR

/hr]

Q0

ET (MV/m)

Q0 4.2 K - Test 1 Q0 2.0 K - Test 1Q0 4.2 K - Test 2 Q0 2.0 K - Test 2Rad 2.0 K Rad 4.2 K

1.0î 109

1.0î 1010

1.0î 1011

0.0 1.5 3.0 4.5

Rad

iati

on [

mR

/hr]

Q0

VT (MV)

Q0 4.2 K - Test 1 Q0 2.0 K - Test 1Q0 4.2 K - Test 2 Q0 2.0 K - Test 2Rad 2.0 K Rad 4.2 K

1.0î 109

1.0î 1010

1.0î 1011 1.0î 103

1.0î 102

1.0î 101

1.0

1.0î 10-1

1.0î 10-2

0.0 21.9 43.8 65.7

Rad

iati

on [

mR

/hr]

Q0

BP (mT)

Q0 4.2 K - Test 1 Q0 2.0 K - Test 1Q0 4.2 K - Test 2 Q0 2.0 K - Test 2Rad 2.0 K Rad 4.2 K

1.0î 109

1.0î 1010

1.0î 1011 1.0î 103

1.0î 102

1.0î 101

1.0

1.0î 10-1

1.0î 10-2

0.0 21.9 43.8 65.7

Rad

iati

on [

mR

/hr]

Q0

BP (mT)

Q0 4.2 K - Test 1 Q0 2.0 K - Test 1Q0 4.2 K - Test 2 Q0 2.0 K - Test 2Rad 2.0 K Rad 4.2 K

1.0î 109

1.0î 1010

1.0î 1011

0.0 1.5 3.0 4.5

Rad

iati

on [

mR

/hr]

Q0

VT (MV)

Q0 4.2 K - Test 1 Q0 2.0 K - Test 1Q0 4.2 K - Test 2 Q0 2.0 K - Test 2Rad 2.0 K Rad 4.2 K

1.0î 109

1.0î 1010

1.0î 1011 1.0î 103

1.0î 102

1.0î 101

1.0

1.0î 10-1

1.0î 10-2

0.0 14.3 28.6 42.9R

adia

tion

[m

R/h

r]

Q0

EP (MV/m)

Q0 4.2 K - Test 1 Q0 2.0 K - Test 1Q0 4.2 K - Test 2 Q0 2.0 K - Test 2Rad 2.0 K Rad 4.2 K

1.0î 109

1.0î 1010

1.0î 1011 1.0î 103

1.0î 102

1.0î 101

1.0

1.0î 10-1

1.0î 10-2

0.0 14.3 28.6 42.9

Rad

iati

on [

mR

/hr]

Q0

EP (MV/m)

Q0 4.2 K - Test 1 Q0 2.0 K - Test 1Q0 4.2 K - Test 2 Q0 2.0 K - Test 2Rad 2.0 K Rad 4.2 K

Quench

Page 10: CAVITY II –  RF-DIPOLE CAVITY TEST RESULTS

Page 10

499 MHz – Surface Resistance

• Measured Q0

– 1st Test: 1.6×1010

– 2nd Test: 8.1×109

• Reduced Q0 at 2.0 K with surface reprocessing– 1st bulk BCP removal: 108 μm– 2nd bulk BCP removal: 200 μm

Rres = 5.5 nΩ

1

10

100

0.2 0.3 0.4 0.5 0.6 0.7 0.8

RS

[nΩ

]

1/T [1/K]

Measurements BCS Fit

42.6 10 18.12[n ] exp 5.53

[K] [K]sRT T

• Q0 dropped with the increase in residual surface resistance

• Residual resistance– 1st Test: 5.5 nΩ– 2nd Test: 9.0 nΩ

42.6 10 18.12[n ] exp 8.97

[K] [K]sRT T

Page 11: CAVITY II –  RF-DIPOLE CAVITY TEST RESULTS

Page 11

Prototype RF–Dipole Design

54 cm

28.1 cm

Parameters Prototype P-o-P Units

Frequency 400.79 400 MHz

Deflecting Voltage (VT*) 0.375 0.375 MV

Peak Electric Field (Ep*) 3.65 4.02 MV/m

Peak Magnetic Field (Bp*) 6.22 7.06 mT

Bp*/Ep

* 1.71 1.76 mT/(MV/m)

Stored Energy (U*) 0.13 0.195 J

[R/Q]T 427.4 287.0 Ω

Geometrical Factor (G) 106.7 140.9 Ω

RTRS 4.6×105 4.0×104 Ω2

At ET* = 1 MV/m

• Electromagnetic mode is the same• Prototype design has improved rf-

properties

B FieldE Field

Page 12: CAVITY II –  RF-DIPOLE CAVITY TEST RESULTS

Page 12

Prototype Design – FPC and Pick Up Ports

Pick Up Port Options

(1)

Fundamental Power Coupler

• Outer conductor = 62 mm

• Inner conductor = 27 mm

• Qext = 1.0×106

• All penetrations to the He tank will be from top

• Magnetic coupling Field enhancement at the port

• 75 Ω inner conductor

• Outer conductor = 36 mm• Inner conductor = 27 mm• To achieve 1.0 W at 3.4 MV• Qext = ~3.0×1010

(2)

• Electric coupling No field enhancement

• 50 Ω inner conductor

• Port losses at the SS flanges on the beam pipes

• Beam port 1 (shorter): 1.1 mW• Beam port 2 (longer): 0.3 μW

• Is not an issue on assembled cavity in the cryomodule

Page 13: CAVITY II –  RF-DIPOLE CAVITY TEST RESULTS

Page 13

Prototype Design – HOM Damping• Analysis of HOM damping – Zenghai Li

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

0 500 1000 1500 2000

R/Q

)

Frequency (MHz)

Ex, Hy Ez Ey, Hx

• Horizontal HOM Coupler– Ridged waveguide coupler – Couple to both horizontal dipole and

accelerating HOM modes– Operating mode below cutoff – naturally

reject operating mode – Groove reduces multipacting levels at the

waveguide

• Vertical HOM coupler– Selective WG-stub-coaxial coupler,

does not couple to operating mode - no filter needed

– Damps both vertical HOM and accelerating HOM modes

– Modified V-HOM coupler meets impedance threshold requirements

Horizontal HOM Waveguide

Vertical HOM WG-Coax Coupler

Page 14: CAVITY II –  RF-DIPOLE CAVITY TEST RESULTS

Page 14

Prototype Design – HOM Damping• Current design specifications per cavity

– Longitudinal impedance threshold – 0.2 MΩ– Transverse impedance threshold – 0.125 MΩ

• Vertical and horizontal HOM couplers optimized to damp high Q modes at 1.265 and 1.479 GHz

Page 15: CAVITY II –  RF-DIPOLE CAVITY TEST RESULTS

Page 15

Prototype Design – Field Non-Uniformity

(A) (B)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 2 4 6 8 10 12 14 16 18 20

δVT

/ V

T

Offset (mm)

Design (A) in xDesign (B) in xDesign (A) in yDesign (B) in y

Voltage deviation at 20 mm– Horizontal: 5.0% 0.2%– Vertical: 5.5% 2.4%

-0.05

-0.03

-0.01

0.01

0.03

0.05

0.0 5.0 10.0 15.0 20.0

δVT/ V

T

Offset [mm]

Proof of Principle - x

Proof of Principle - y

Prototype - x

Prototype - y

• Curvature around beam aperture to– Reduce field non-uniformity– Suppress higher order multipole

components

 

Full Cavity with

Couplers

Units

VZ 0.0 0.0 0.0 0.46 kV

VT 1.0 MV

b3 300 410 100 37.4 mT/m

b4 0.0 0.0 0.0 -1.8 mT/m2

b5 -4.6×104 -4.1×104 -2.2×104 -1.9×105 mT/m3

Higher Order Multipole Components

• Multipole component b3 is reduced below requirements

• Any specifications for other higher order multipole components?

Page 16: CAVITY II –  RF-DIPOLE CAVITY TEST RESULTS

Page 16

Prototype Design – Multipole Analysis

Pitch 5°

• (A) Yaw (rotation about y-axis) of one pole. • (B) Pitch (rotation about x-axis) of one pole.• (C) Roll (rotation about z-axis) of one pole.• (D) Horizontal displacement of one pole. • (E) Vertical displacement of one pole. • (F) Blending radius at the outer corner of one pole. • (G) Blending radius of the feather-like structure

near the beam line of one pole. • (H) Aperture radius in one pole.

• Strength of the multipole components is mainly determined by the aperture region of the poles near the beamline.

• Initial analysis focused on individual imperfections or departures from the ideal cavity poles due to fabrication or welding errors (no deformations due to tuning processes considered).

Shift of electrical center observed

• Effect of cavity imperfections on multipole components – R. Olave

* Small individual imperfections have negligible effects on the multipole components, but may shift the electrical center and operating frequency.

Page 17: CAVITY II –  RF-DIPOLE CAVITY TEST RESULTS

Page 17

Prototype Design – Multipole AnalysisThe largest effect on the multipole components observed is produced by the roll of a pole

Roll 5°

Imperfection

-6 -4 -2 0 2 4 6

Fre

qu

ency

(M

Hz)

390

392

394

396

398

400

402

404

yaw, degreespitch, degreesroll, degreesHorizontal pole displacement, mmVertical pole displacement, mm

The largest frequency shift observed is produced by the horizontal displacement of a pole

So far there are no individual imperfections that would make the cavity non-compliant with the multipole component requirements for the LHC system.

Studies of the effects of individual imperfections due to fabrication and welding of the cavity + couplers are underway.

(A) Yaw(B) Pitch(C) Roll

Page 18: CAVITY II –  RF-DIPOLE CAVITY TEST RESULTS

Page 18

Prototype Cavity CryomoduleCryomodule design for rf-dipole cavity

Room Temp Cavity• Mechanical analysis

• Prototype cavity

fabrication by Niowave Inc.

Cryomodule Design• He tank• Cryostat

Tom Nicol – FermilabStiffening

ribs

Ofelia Capatina – CERN

Jim Henry – JLab

Page 19: CAVITY II –  RF-DIPOLE CAVITY TEST RESULTS

Page 19

Current Status and Future PlansProof-of-Principle Cavity

• First cryogenic tests of proof-of-principle cavity is completed• Cavity performance reached higher gradients and is capable of achieving

design specifications• Achieved a total transverse deflection of 7 MV CW (twice the design voltage)• Multipacting conditions were processed easily and did not reoccur• Retesting the cavity on improving Q0 Further testing at CERN is on the plan

Prototype Cavity• Electromagnetic design is complete including multipacting levels, HOM

damping, reduced multipole components– Multipole analysis on design sensitivities shows that cavity design is extremely robust against

mechanical imperfections – Higher order mode damping meets current impedance threshold requirements

• Mechanical model study for SPS test and SM18 test cryostat stress requirements are ongoing

• Several approaches of He tank design has been studied Converging the ideas into a single design

Page 20: CAVITY II –  RF-DIPOLE CAVITY TEST RESULTS

Page 20

Acknowledgments

• ODU – Jean Delayen, HyeKyoung Park, Rocio Olave, Chris Hopper, Alex Castilla, Kevin Mitchell

• JLab – Peter Kneisel, Tom Powers, Kirk Davis, Joe Preble, Tony Reilly

• SLAC – Zenghai Li

• Niowave – Terry Grimm, Dmitry Gorelov, Chase Boulware• Fermilab – Tom Nicol• CERN – Rama Calaga, Ofelia Capatina