66
Cell suspension cultures

Cell suspension cultures - unina.it¬nionofcellculture(A"cell"suspension"culture"can"be"defined"in"aprac2cal"way"has" an"homogenous"suspension"of"dividing"cells"easily"to"take"up"

Embed Size (px)

Citation preview

Cell suspension cultures

Defini&on  of  cell  culture    A  cell  suspension  culture  can  be  defined  in  a  prac2cal  way  has  an  homogenous  suspension  of  dividing  cells  easily  to  take  up  

some  aliquot  only  by  a  glass-­‐pipe=e    

 A  cell  suspension  culture  consists  of  cell  aggregates  dispersed    and  growing  in  moving  liquid  media    

Cell suspension culture uses !   Understanding    of  biosynthe2c  pathway    

!   Mutant  selec2on    

!   Secondary  metabolite  produc2on  

!   Use  of  suspension  cultures  in  plant  propaga2on.  

Establishment  steps  for  cell  suspension  culture    

1.  Choice   of   the   explants   and   induc2on   to   cell  division      

2.  Inoculum  in  a  liquid  culture  medium.  

3.  Subculture  of  cell  suspension  culture    

!   it   usually   started   by  placing   an   inoculum   of  

friable  callus   in  a   liquid  

medium  or,  

!   by  placing  an  explant  in  

liquid  culture    

Starting a cell suspension culture

Leaf  sec&ons  floated  in  liquid  culture  medium    

Leaf   sec2ons   of   Chenopodium   rubrum   floated   on  Murashige   and  

Skoog   (1962)   medium   in   the   light,   show   rapid   growth   and   cell  

division  in  the  mesophyll,  and  aNer  4  days  on  a  rotary  shaker  they  

can  be  disintegrated  completely  to  release  a  great  number  of  cells  

into  suspension  (Geile  and  Wagner,  1980).  

Disadvantages to use explants floated in liquid culture medium

1.  High  probability  for  contamina2on  

2.  No   forma2on   of   callus   due   to   a   low   gaseous   exchange  

between  explants  and  liquid  medium      

Cell  suspension  culture  from  friable  callus  

Cell   suspension   culture   is   normally   ini2ated   by   transferring  pieces  of  undifferen2ated  and  friable  calli  to  a  liquid  medium.  

Obtaining friable callus. 1)  Choice  of  explant  2)  Iden2fica2on  of  a  suitable  growth  medium  

Establishment  steps  for  cell  suspension  culture    

1.  Choice   of   the   explant   and   induc2on   to   cell  division      

2.  Inocolum  in  a  liquid  culture  medium.  

3.  Subculturing  

Callus  as  inoculum  in  liquid  culture  medium  

!   Callus:  

!   is  separated  from  the  parent  explant  and  transferred  to  a  

fresh  medium  to  build  up  reasonable  amount  of  callus  2ssue.    

!   is  transferred  to  fresh  medium  every  4-­‐6  weeks.  

!   is  an  essen2al    step  to  avoid  cell  aging  that  is  visible    as  

reduc2on  of  growing  and  dark  spot.  

Causes  of  explant  aging    

I.  Nutri2ve  element  declining  

II.  Water   loss   by   evapora2on,   therefore     modifica2on   of  

nutri2ve  compound  concentra2on  

III.  Build  up  of  compounds  products    from  cell  that  can  have  

an  inhibi2on  of  cell  growth  or  induce  apoptosis    

Callus  produc&on  from  zygote  embryos  of  Croton  bonplandianum.  

1.  10  days  old    embryo  cultyre.;  2.  One  month  culture,  see  callus  from  root  (cr)  and  form  endopserm  (ce);  3.  Healthy  callus  

Size  of  callus  as  inocolum  in  a  liquid  culture  medium  

 A  friable  callus  with  cell   in  ac2vely  division  of  about  5  mm  of  diamter  is  transferred  in  a  flask   (120   ml)   containing   30   ml   of   the  suitable  liquid  medium.  

Compact  callus      

Callus   compact   can   be   an   alterna2ve   to  friable  callus.  

Transfer   it   with   part   of   explant   in   the  liquid  culture  medium  and  aNer  a  period  variable   from  7-­‐10  days   collect   cells   and  small   clumps  by  a  glass  pipe=e.  Transfer  it  in  fresh  medium.    

Media  composi&on    

•  A   wide   variety   of   explant   and   media   composi2on   has   been  

used  :  Heller,  B5  Gamborg  and    MS  

•  To   these   media   are   added,   vitamins,   inositol,   sucrose,   and  

auxin  (2,4D  at  ∼  1-­‐5  µM  concentra2ons  for  cell  to  divide    

Culture  vessels  •  Wide-­‐mounthed  Erlemeyer  flasks  

are  widely  used  as  culture  vessels.  

•  The  flasks  are  normally  sealed  with  aluminium  foil.    

•  Co=on   wool   plugs   may   be   used   for   sealing   flasks   during  autoclaving   but   not   for   culturing   cells.   They   are   a   common  source  of  contamina2on  on  flasks  that  are  sibng  on  a  shaker  for  several  weeks.      

•  Flasks closure must maintain sterility, allow gas exchange and reduce evaporation.

Orbital  shaker  •  Pladorm  shaker  are  widely  used   for   the   ini2a2on  and  serial  propaga2on  of  plant  cell  suspension  culture.  

•  They  should  have  a  variable  speed  control    (30-­‐150  rpm)  and    the  stroke  should  be  in  the  range  of  4-­‐8  com  orbital  mo2on.  

•  The   shaker   should   be   kept   in   the   air-­‐condi2oned   room  wit  good  temperature  control    

 

Agita&on  of  medium  serves  two  purposes.  

1.  It  exerts  a  mild  pressure  on  cell  aggregates,  breaking  them  

into  smaller  clumps  and  single  cells.  

2.  It  maintains  uniform  distribu2on  of  cell  and  cell  clumps   in  

the  medium.  Movement  of  the  medium  also  provides  good  

gaseous  exchange  between  the  culture  medium  and  air.  

 

Fine  cell  suspension  culture  

!  In   an   ideal   cell   suspension   culture   there   are   single   isodiametric  cells  and  few  clumps  of  20-­‐100  cells.  

!     Mostly   of   cell   suspension   culture   is   made   up   by   an  heterogeneous   cell   popula2on   either   by   size   than   by   specific  density.  

Cell  suspension  culture  completely  isolated  have  yet  be  obtained      

!  Because   the   walls   of   plant   cells   have   a   natural   tendency   to  adhere,   it   is   not   possible   to   obtain   suspensions   that   consist  only  of  dispersed  single  cells.  

!  Some   progress   has   been   made   in   selec2ng   cell   lines   with  increased   cell   separa2on,   but   cultures   of   completely   isolated  cells  have  yet  to  be  obtained.  

Cell  propor&on  and  size  

•  The   propor2on   and   size   of   small   cell   aggregates   varies  

according   to   plant   variety   and   the   medium   in   which   the  

culture  is  grown.    

•  As  cells   tend   to  divide  more   frequently   in  aggregates   than   in  

isola2on,  the  size  of  cell  clusters  increases  during  the  phase  of  

rapid  cell  division.    

Methods  for  obtaining  a  well-­‐dispersed  suspension  culture    

By  :  De-­‐Long  flasks   Sieving   Siringe   Adding  in  the  

medium  cellualse  and  pec2nase    

Cell  size    

Mesh  150  x  150   µm  

Use  of  cell  density  for    obtaining    a  fine  cell  suspension  culture.  

Cell  can  contain:  vacuole,  starch  and  other  

Therefore  cell  can  be  separated  on  own  density    by  a  

centrifuga2on.  

   

Discon&nuous  gradient  in  an  appropriate  solu&on      

 Ficoll  is  largely  used  as  solute  due  to  this  features  :  

!     can  be  sterilized  by  autoclave    

!     has  got  low  osmomolarity  

!     at  high  concentra2on  (10-­‐20%)  has  low  viscosity  

 

Type  of  hormone  influence    degree  of  cell  dispersion    

The  degree  of  cell  dispersion  in  suspension  cultures  is  par2cularly  influenced   by   the   concentra2on   of   growth   regulators   in   the  culture  medium.  

 

Auxinic   growth   regulators:   increase   the   specific   ac2vity     of   enzymes,   which   bring     about   the   dissolu2on   of   the    middle  lamella  of  plant  cell    walls  (Torrey  and  Reinert,    1961).    

Effects  of  PGRs  on  cell  suspension  aggregates    

•  Auxin  at  rela2vely  high  concentra2on  and  a   low  concentra2on  of   a   cytokin   in   a   liquid   culture   medium   usually   increase   cell  

dispersion  (Narayanaswamy,  1977).    

•  Use  of  high  auxin  levels  to  obtain  maximum  cell  dispersion  will  

ensure  that  the  cultured  cells  remain  undifferen2ated.  

Establishment  steps  for  cell  suspension  culture    

1.  Choice  of  the  explant  and  induc2on  to  cell  division      

2.  Inocolum  in  a  liquid  culture  medium.  

3.  Subculturing  of  cell  suspension  culture    

Subculturing  

 Cell   suspension  culture  must  be   frequently  and  on   regular  bases  transfer  in  a  fresh  medium.  

The  lag  period  is  usually  between  one  or  two  weeks.  

The   ra2o   of   dilu2on   (cell   vs   medium)     is   experimentally  determined-­‐  

 As  general  rule    

     1:  4  aNer  one  week  

     1:10  aNer  two  weeks    

Is  a  cell  suspension  culture  not  sterile  ?    

•  The   sterility   of   plant   cell   suspension   can   be   monitored   by  

several  parameters:  

–  change  in  colour  of  solu2on  

–  change  in  pH  

–  smell    

–  interface  analysis  

–  use  of  microscope  

Establishment of cell culture

The accurate, fast, and reliable determination of cell growth is of

critical importance in plant cell and tissue culture

However,  the  measurement  of  growth  parameters  in  the  different  types  of  cultures,  and  concomitantly  the  use  of  various  containers  along  with  the  heterogenity  in  cell  morphology,  introduce  diverse  problems  that  must  be  

addressed  by  using  a  specific  methodology  for  each  case  callus  and  cell  suspension  cultures  represent  two  of  the  most  

common  in  vitro  systems  

Callus  Cultures  

The   most   common     growth   parameters   used   for   callus  

cultures    include;  

 fresh  weight,    

 dry  weight,    

 and  growth  index.  

Dry-Weight Determination (Callus)

It  can  be  es2mated  by  drying  the  2ssue  at  60°C  in  a  convec2on  oven,  un2l  of  constant  weight  (usually  16  h).    

1.  Take  a  sample  of  the  fresh  2ssue,  weigh  it  on  a  pre-­‐weighed  

square  of  aluminum  foil,  and  evaporate  the  water  contained  

in  the  2ssue  in  the  pre-­‐heated  oven  at  60°C  for  12  h.  

2.  Allow  samples   to   cool  down   in  a  dessicator   containing   silica  

gel  for  15–20  min  and  then  register  the  sample’s  weight.  

Dry-Weight Determination (Callus) 3.  Put   the   2ssue   sample   back   into   the   oven   and   take   a   new  

weight   register   aNer   2   h.   If   no   varia2ons   are   detected,  samples   have   reached   constant   weight.   If   varia2ons   higher  than   10%   regarding   the   previous   register   are   observed,  return  samples  to  the  oven  for  another  2-­‐h  period.  

4.  Alterna2vely,   dry   weight   can   be   obtained   from   lyophilized  2ssues.   Once   harvested,   fresh   2ssues   should   be   weighed,  deposited  in  lyophilizer  flasks,  and  frozen  at  –20°C  for  at  least  12  h.  

5.  Flasks  with  frozen  2ssues  are  then  connected  to  the  vacuum  line  for  24  h  and  weight  is  registered  

Monitoring cell suspension culture.

Cell  vitality  

Cell  Growth  

There  are  several  methods  for  evalua&ng  growth  kine&cs  in  plant  cell  

cultures    Selected  examples  include:      fresh  cell  weight,    

 dry  cell  weight,      se=led  cell  volume,  

 packed  cell  volume,  

 cell  coun2ng,    

 culture  op2cal  density,  

   residual  electrical    conduc2vity,  

   pH    measurements  

 

 

Correla&ons  among  features  

1.  In   cultures   originated   from   different   plant   species,   se=led  volume,  packed  cell  volume,  as  well  as  fresh  weight,  all  show  a  very  good  linear  correla2on  with  dry  weight  data.    Thus,  any  of  

these  es2ma2ons  can  be  used  for  measuring  cell  growth.  

2.  The   measurement   of   cell   concentra2on   by   cell   coun2ng   and  turbidity   (op2cal   density)   has   also   shown   a   reasonably   good  

correla2on  with  the  dry-­‐cell  weight  parameter.  

Growth  of  suspension  cultures  is  commonly  evaluated  as  the  

• se=led  cell  volume  (SCV),    

• packed  cell  volume  (PCV),    

• fresh  cell  weight  (FCW),      

• dry  cell  weight  (DCW).    

•  Indirect   evalua2ons   include   pH   measurements   and   medium  

residual  conduc2vity  (mmhos).    

Finally,  parameters  describing  growth  efficiency,  such  as  specific  

growth   rate   (μ),   doubling   2me   (dt),   and   growth   index,   can   be  

determined  

SeTled  Cell  Volume  (SCV)  and  Packed  Cell  Volume  (PCV)  

 Both   parameters   allow   the   quick   es2ma2on   of   culture   growth,  while  maintaining  sterile  condi2ons.    

These  measurements  are  useful  for  monitoring  growth  in  the  same  flasks  along  a  culture  cycle,  because  suspensions  may  be  returned  to  prior  culture  condi2ons.    

 

Care  must  be  taken  to  maintain  sterile  condi2ons.  

 

SeTled  Cell  Volume  (SCV)  and  Packed  Cell  Volume  (PCV)  

 Volume   es2ma2on   may   not   be   an   accurate   way   of   monitoring  growth,   given   its  dependence  on   cell  morphology   (cell   and   clump  size,  cell  density,  and  other).  

SCV   is   determined   by   allowing   a   cell   suspension   to   sediment   in  graduated   tubes.   It   is   reported   as   the   percentage   of   the   total  volume  of  suspension  occupied  by  the  cell  mass.    

The   PCV   is   determined   in   a   similar   way,   aNer   it   has   been  compacted  by  centrifuga2on.  

 

SeTled  cell  volume  (SCV)  

1.   Pour   the   cell   suspension   in   a   graduated   cylinder   of   adequate  

volume.  

2.   Allow   the   suspension   to   se=le   for   30   min   and   record   the   cell  

volume.  

3.   Take   a   second   reading   30   min   later.   If   the   varia2on   between  

readings   is   higher   than   5%,   record   a   third   measurement   aNer  

another  30-­‐min  wait  period.  

4.   The   volume   frac2on   of   the   suspension   occupied   by   the   cells   is  

determined  as  the  SCV.  

PCV  can  be  determined  by  centrifuging  10  mL  of  the  

culture  in  a  15-­‐mL  graduated  conical  centrifuge  tube  at  

200g  for  5  min  

SeTled  cell  volume  (SCV)  

Fresh  Cell  Weight  and  Dry  Cell  Weight  

•  Fresh  and  dry  cell  weight  represent  more  precise  measurements  of  cell  growth  than  the  sole  culture  volume.    

•  However,   both   require   the   manipula2on   of   samples   in   non  

sterile  condi2ons.    

•  Fresh  weight  es2ma2on  involves  less  2me  than  that  required  for  

dry  weight,  but  it  may  not  reflect  a  real  measurement  of  biomass  

gain,  par2cularly  at  the  end  of  the  culture  period,  when  most  of  

the  culture  growth  is  because  of  water  uptake.  

Protocol  for  FW  and  DW  

•  Collect   the   cell   mass   by   filtra2on,   using   a   Büchner   funnel  

under  vacuum.  

•  Wash   the   cell   package   with   about   3   mL   dis2lled   water   and  

retain  under  vacuum  for  a  fixed  2me  period  (e.g.,  30  s).    

•  Weigh   immediately   to   reduce   varia2ons   caused   by   water  

evapora2on.  

•  Fresh  and  dry  weights  are  determined  as  described  earlier  for  

callus  2ssue.  

Culture  Cell  Density    In  order  to  obtain  a  reliable  value  of  the  number  of  cells  in  a  

suspension  culture,  clusters  should  be  first  disaggregated  

This   can   be   accomplished   by   incuba2ng   the   suspension  with   an  8%  chromium  trioxide  solu2on,  or  with  hydroly2c  enzymes,  such  as  cellulase  and  pec2nase.    The   chromium   trioxide   method   is   quicker   and   less   complicated  than   the   use   of   enzymes;   however,   it   hinders   the   es2ma2on   of  cell  viability  in  the  same  sample.    

Because   a   careful   use   of   enzymes   maintains   cells   viable,   the  assessment  of  the  number  of   living  cells  by  the  exclusion  of  vital  stains  can  be  performed  in  the  same  sample.  

 

Cell cluster disaggregation by chromium and hydrolytic enzymes 1)  Take   1   mL   of   the   cell   suspension   and   add   2   mL   of   8%  

chromium  trioxide  (CrO3).  

2)  Incubate  the  mixture  for  15  min  at  70°C.  

3)  Vortex  the  mixture  vigorously  for  15  min  

A.  Take   1  mL   of   the   cell   suspension   and  mix   it  with   0.5  mL   of  10%  cellulase  and  0.5  mL  5%  pec2nase.  

B.  Incubate  30  min  at  25°C  with  rotatory  agita2on  (100  rpm)    

Cell  coun&ng  

Although   complicated   and   2me   consuming,   cell   coun2ng  

represents  the  best  way  to  assess  culture  growth  in  suspension  

cultures.    

Nevertheless,   it   oNen   shows   a   good   correla2on   with   other  

parameters,  such  as  electric  conduc2vity.    

Cell   density   is   obtained   by   direct   coun2ng   of   cells   under   the  

microscope,  using  a  cell   coun2ng  chamber,   such  as   the  Sedgewick  

raNer   cell   (Gra2culates   Limited,   Tonbridge   England)   or   the  

Newbauer   chamber   (Sigma-­‐Aldrich,   St.   Louis,MO).   Such   devices  

hold  a  fixed  volume  of  the  suspension  over  a  defined  area.  

The   base   of   the   chamber   is   divided   in   squares,   frequently  

containing  a  1  mm3  (1  μL)  volume.    

By  observing  the  suspension  with  a  low  magnifica2on  objec2ve,  

cells  contained  in  such  a  volume  are  iden2fied  and  counted.  

Cell  coun&ng  

• Fill   the   coun2ng   cell   chamber   with   the   mixture,   posi2on  carefully   the   cover   glass   on   top   of   the   chamber,   to   avoid   the  forma2on  of  bubbles.  

• Observe  under  the  microscope  with  the  ×10  objec2ve  to  locate  the  squared  field.  

• Count   all   the   cells   contained   in   10   squares.   Add   the   values   of  the  10  squares  (do  not  obtain  the  average).    

• This  number  represents  the  number  of  cells  in  10  μL,  so  mul2ply  by  100  to  determine  the  cell  number  per  milliliter.  

• Depending  on  the  culture’s  cell  density,  further  dilu2on  may  be  required,  which  should  be  considered  in  the  calcula2on.  

Cell  coun&ng  

Electric  conduc&vity  of  culture  medium  decreases  inversely  to  biomass  gain  

This  is  a  consequence  of  ion  uptake  by  cells.    

The  monitoring  of  this  decrease  to  assess  cell  growth  offers  several  advantages  over  other  methods,  such  as:    

1)  con2nuous  and  in  situ  or  on-­‐line  monitoring  of  cell  growth;    

2)  no  sampling  or  wet  chemical  analysis  is  required;  

3)  it  is  economical  and  efficient;    

4)  it  provides  an  accurate,  reliable,  and  reproducible  measurement  of  plant  cell  growth  rate;  and    

5)  it  is  independent  of  cell  aggrega2on,  growth  morphology,  and  apparent  viscosity  

Parameter  of  growth  efficiency  Fresh   and   dry   weight   are   measurements   of   2ssue’s   absolute  biomass  at  a  given  sampling    2me.      

Growth   index   (GI)   is   a   rela2ve   es2ma2on   of   such   capacity   as   it  correlates   the   biomass   data   at   the   sampling   2me   to   that   of   the  ini2al  condi2on.  

It   is   calculated   as   the   ra2o   of   the   accumulated   and   the   ini2al  biomass.   The   accumulated  biomass   corresponds   to   the  difference  between  the  final  and  the  ini2al  masses.  

GI=  (WF-­‐WO)/WO  

Where  GI  represents  growth  index,  and  WF  and  W0,  represent  the  final  and  ini2al  masses,  respec2vely  (either  as  fresh  or  dry  weight).  

 

The  specific  growth  rate  (μ)  refers  to  the  steepness  of  such  a  curve,  and  it   is  defined  as   the   rate  of   increase  of  biomass  of  a   cell  popula2on  per  unit  of  biomass  concentra2on.  

It   can  be   calculated   in   batch   cultures,   since  during   a   defined  period  of  2me,  the  rate  of  increase  in  biomass  per  unit  of  biomass  concentra2on  is  constant  and  measurable.    

This  period  of  2me  occurs  between  the  lag  and  sta2onary  phases.  During  this   period,   the   increase   in   the   cell   popula2on   fits   a   straight-­‐line  equa2on  

  Ln  X=µt+  ln  x0  µ=(lnx-­‐lnx0)/t  

 

Where xo is the initial biomass (or cell density), x is the biomass (or cell density) at time t, and μ is the specific growth rate.

Specific Growth Rate

Measurement of Cell Viability in In Vitro Cultures

•  The   accurate   assessment   of   the   number   of   viable   cells   in   a  popula2on   is   very   important   to   prevent   the   inclusion   of   low  viable  or  dead  cells  in  the  calcula2ons  of  results  per  cell  or  on  a  fresh   weight   basis   or   to   indicate   the   maximal   a=ainable   cell  density  in  produc2on  processes.  

Viable Cell A  cell  is  considered  viable  if  it  has  the  ability  to  grow  and  develop    

Viability  assays  are  based  on  either  the  physical  proper2es  of  viable  cells,   such  as  membrane   integrity  or  cytoplasmic  streaming,  or  on  their  metabolic   ac2vity,   such   as   reduc2on   of   tetrazolium   salts   or  hydrolysis  of  fluorogenic  susbtrates.      

•  To assess cell membrane integrity, dyes such as Evans blue, methylene blue, Trypan blue, neutral red and phenosaphranin have been used.

•  These compounds leak through the ruptured membranes and stain the contents of dead cells and then, are accounted for via microscopic observation or spectrometric estimation.

Assesment  of  cell  viability    

•  To   assess   cell   membrane   integrity,   dyes   such   as   Evans   blue,  methylene  blue,  Trypan  blue,  neutral   red  and  phenosaphranin    have  been  used.    

•  These   compounds   leak   through   the   ruptured  membranes   and  stain  the  contents  of  dead  cells  and  then,  are  accounted  for  via  microscopic  observa2on  or  spectrometric  es2ma2on.  

Other  methods  rely  on  the  measurement  of  the  ac&vity  of  some  

enzymes  REDUCTASE  

MTT(3-­‐[4,5-­‐dimethylthiazol-­‐2yl]-­‐2,5-­‐diphenyl  tetrazolium  bromide)  and    

TTC   (2,3,5-­‐   triphenyl   tetrazolium   chloride),    accept   electrons   from   the   electron   transport  chain  of  the  mitochondria;    

as  a  result,  these  molecules  are  converted  to  insoluble  formazan  within  viable  cells  with  fully  ac2ve  mitochondria.  

 

Esterase !   intracellular  esterases  hydrolyze  a  fluorogenic    

substrate  (fluorescein  diacetate),  that  can  pass  

through   the   cell  membrane,   whereupon   they  

cleave   off   the   diacetate   group   producing   the  

highly  fluorescent  product  fluorescein.    

!   Fluorescein   will   accumulate   in   cells,   which  

possess   intact   membranes,   so   the   green  

fluorescence   can   be   used   as   a  marker   of   cell  

viability  

MTT/TTC  1.  Wash  asep2cally  cell  suspension  samples  (1  mL)  with  50  mM  

phosphate  buffer,  pH  7.5.  Repeat  twice  

2.  Resuspend  the  cells  in  1  mL  of  the  same  buffer.  

3.  Add  MTT  or  TTC  to  a  final  concentra2on  of  1.25  or  2.5  mM,  respec2vely.  

4.  Incubate  samples  for  8  h  in  the  dark  at  25°C.  

5.  Solubilize   formazan   salts   with   1.5   mL   50%   methanol,  containing  1%  SDS,  at  60°C  for  a  period  of  30  min.  

6.  Centrifuge  at  1875g  for  5  min  and  recover  the  supernatant.  

7.   Repeat  steps  5  and  6.  Pool  the  supernatants.  8.   Quan2fy  absorbance  at  570  nm  for  MTT  and  485  nm  for  TTC  

MTT assay in cells and protoplasts.

(a)  Pink  coloured  cells  (viables).  (b)    Cell  of  purple  colour  

(viable).    

(c)    Colourless  cell  (non-­‐viable).    

(d  Pink  and  red  coloured  

protoplasts  (viable).    

(e)    Protoplast  with  red  

cytoplasm  (viable).  

(f)    Protoplast  with  purple  

cytoplasm  (viable).    

(g)    Control  of  non-­‐viable  cells  

dead  with  FAA.  

TTC  EXAMPLE    

Evans  Blue  Assay  1.  Add  Evans  Blue  (EB)  stock  solu2on  to  cell  suspension  

samples  (1  mL)  to  a  final  concentra2on  of  0.025%  (v/

v).  

2.  Incubate  for  15  min  at  room  temperature.  

3.  Wash   extensively   with   dis2lled   water   to   remove  excess  and  unbound  dye.  

4.  Solubilize   dye   bound   to   dead   cells   in   50%   (v/v)  methanol   with   1%   (w/v)   SDS   at   60°C   for   30   min.  Repeat  twice  and  pool  the  supernatants.  

5.  Centrifuge  at  1875g  for  15  min.  

6.  Dilute  the  supernatant  to  a  final  volume  of  7  ml  

7.  Quan2fy  absorbance  at  600  nm  

Cells and protoplasts stained with Evans blue.

 (a)  Non-­‐stained  cells  (viable).  (b)   Viable   protoplast   surrounded  by  blue  cellular  aggregates  (c)  Cell  with  blue  cytoplasm.    (d)   Control   of   Non-­‐viable   cells  dead  with  FAA.  

FDA  Assay  1.  Mix  cell  samples  (1  mL)  with  10  μL  of  FDA  stock  solu2on.  

2.  Incubate  for  15  min  at  room  temperature  in  the  dark.  

3.  Adjust  the  volume  to  4  mL  with  dis2lled  water.  

4.  Centrifuge  at  1875g  for  5  min.  Resuspend  the  pellet   in  1  mL  50  mM  phosphate  buffer,  pH  7.5.  

5.  Freeze   quickly   in   liquid   nitrogen.   Thaw   and   dilute   samples   to   3  mL  with  phosphate  buffer.  

6.  Homogenize  with  a  Brinkman  polytron  at  high  speed  for  10  s.  

7.  Centrifuge  at  1875g  for  20  min.  

8.  Dilute  a  100  μL  sample  of  the  supernatant  to  a  final  volume  of  2  mL.  

9.  Determine  fluorescence  at  516  nm,  using  a  492  nm  excita2on  beam    

Microscopic  Assay  1.  Stain  cell  samples  with  FDA  by  mixing  the  samples  (1  mL)  with  10  

μL  of  the  stock  solu2on.  

2.  Incubate  for  15  min  at  room  temperature  in  the  dark.  

3.  Wash  with  50  mM  phosphate  buffer,  pH  7.5.  

4.  Centrifuge  at  1875g  for  5  min.  

5.  Resuspend  in  phosphate  buffer  (1  mL).  

6.  Counterstain  with  EB,   following  steps  1–5  but  using  10  μL  of   the  EB  stocksolu2on.  

7.  Determine  the  number  of  blue  dead  cells  under  a  bright  field  and  yellow-­‐green   fluorescent   viable   cells   under   ultraviolet   light  (excita2on:   BP   450-­‐490   nm   and   emission:   LP   520   nm)   in   an  Axioplan   microscope   in   10   randomized   fields   in   Sedgewick  chamber.