Cfd Modelling of TBR 2

Embed Size (px)

Citation preview

  • 7/31/2019 Cfd Modelling of TBR 2

    1/52

    CFD MODELING OF TRICKLE BEDREACTORS: Hydro-processing Reactor

    Prashant R. Gunjal, Amit Arora and

    Vivek V. RanadeIndustrial Flow Modeling Group

    National Chemical Laboratory

    Pune 411008

    Email: [email protected]

    mailto:[email protected]:[email protected]
  • 7/31/2019 Cfd Modelling of TBR 2

    2/52

    CFD Modeling of Trickle Bed Reactors

    OUTLINE

    Trickle Bed Reactors

    Applications/ flow regimes Experiments

    CFD Modeling of Trickle Bed Reactors Inter-phase momentum exchange/ capillary terms

    Estimation of fraction of liquid suspended in gas phase

    Simulating Hydro-processing Reactor Reaction kinetics/ other sub-models Influence of reactor scale

    Concluding Remarks

  • 7/31/2019 Cfd Modelling of TBR 2

    3/52

    CFD Modeling of Trickle Bed Reactors

    TRICKLE BED REACTORS

    Wide Applications

    Hydro-de-sulfurization Hydro-cracking/ hydro-treating

    Hydrogenation/ oxidation

    Waste water treatment

    Key Characteristics Close to plug flow/ Low liquid hold-up

    Suitable for slow reactions

    Poor heat transfer/ possibility of mal-distribution

    Difficult scale-up

  • 7/31/2019 Cfd Modelling of TBR 2

    4/52

    CFD Modeling of Trickle Bed Reactors

    TRICKLE BED REACTORS

    Gas & Liquid Flow through Void Space

    = 26-48 %

    GasLiquid

  • 7/31/2019 Cfd Modelling of TBR 2

    5/52

    CFD Modeling of Trickle Bed Reactors

    FLUID DYNAMICS OF TBR

    Characterizationof Packed Bed

    Wetting of SolidSurface by

    Liquid

    Flow Regimes &Global FlowCharacteristics

    Mal-distribution,Channeling &Mixing

    , P, L, ,RTD

  • 7/31/2019 Cfd Modelling of TBR 2

    6/52

    CFD Modeling of Trickle Bed Reactors

    FLOW REGIMES

  • 7/31/2019 Cfd Modelling of TBR 2

    7/52

    CFD Modeling of Trickle Bed Reactors

    EXPERIMENTS AT NCL

    Hydrodynamics

    Pressure Drop

    Liquid Hold-up

    Conductivity Probes

    Residence Time Distribution

    Liquid Distribution at Inlet Uniform

    Non-uniform

    Experimental Parameters Bed Diameter: 0.1 & 0.2 m

    Particle Diameter: 3 & 6 mm

    Liquid Velocity: < 24 mm/ s

    Gas Velocity: < 0.50 m/ s

    Tracer : NaCl

    Data

    Acquisition

    From CompressorLiquid Tank

    Column with

    3mm or 6mm

    Glass Beads

    SeparatorConductivity

    Probe

    101

    PressureIndicator

    Pump

  • 7/31/2019 Cfd Modelling of TBR 2

    8/52

    CFD Modeling of Trickle Bed Reactors

    TYPICAL PRESSURE DROP DATA

    0

    5

    10

    15

    20

    25

    30

    35

    0 10 20 30

    Liquid Flow Rate, Kg/m 2s

    Pressuregradie

    nt,KPa/m

    Trickle f low regime

    Pulse flow regime

  • 7/31/2019 Cfd Modelling of TBR 2

    9/52

    CFD Modeling of Trickle Bed Reactors

    PUBLISHED EXPERIMENTAL DATA

    0

    0.2

    0.4

    0.6

    0.81

    1.2

    1.4

    1.6

    1.8

    2

    0 5 10 15 20 25

    Liquid Velocity VL, (Kg/m2s)

    Sup

    erficialGasV

    elocityVg,(m

    /s)

    L= ?

    Trickle Flow

    1

    3

    1. Szady and Sundersan (1991)

    2. Rao et. al (1983)

    3. Specchia and Baldi (1977)

    Pulse Flow

    Spray Flow

    Bubbly Flow

    L=L

    L=?

    L L

    2

  • 7/31/2019 Cfd Modelling of TBR 2

    10/52

    CFD Modeling of Trickle Bed Reactors

    MODELING OF MACROSCOPIC FLOW

    Bed Porosity: Scale of Scrutiny

    Bed diameter/ length: overall

    Intermediate scale: Gaussian distribution

    Smaller than particle diameter: Bi-modal distribution

    Approach Used:

    Experimentally measured or estimated radial variation ofaxially averaged bed porosity

    Specify porosity by drawing a sample assuming Gaussiandistribution with specified variance

  • 7/31/2019 Cfd Modelling of TBR 2

    11/52

    CFD Modeling of Trickle Bed Reactors

    CHARACTERIZATION OF PACKED BED

    Radial Variation of Porosity: Mueller (1991)

    ( )

    ( )

    ( )

    FunctionBesselorderzeroisJandr/Dr

    D/d0.724-0.304b

    D/d13.0for9.864D/d

    2.932-7.383a

    13.0D/d2.61for

    3.156D/d

    12.98-8.243a

    )e(ar)J(1r

    th

    o

    *

    P

    P

    P

    P

    P

    br*

    oBB

    =

    =

    =

    =

    +=

  • 7/31/2019 Cfd Modelling of TBR 2

    12/52

    CFD Modeling of Trickle Bed Reactors

    CHARACTERIZATION OF PACKED BED

    Muellers Correlation

    Three data sets from literature Our experiments

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0 0.2 0.4 0.6 0.8 1

    Dimensionless Radius

    Porosity

    D=0.194m, dp=3mm

    D=0.194m, dp=6mm

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0 0.2 0.4 0.6 0.8 1

    Dimensionless Radius

    Porosity

    Szady and Sundersan (1991)

    Rao et.al. (1983)

    Spacchia and Baldi (1977)

  • 7/31/2019 Cfd Modelling of TBR 2

    13/52

    CFD Modeling of Trickle Bed Reactors

    VARIATION OF BED POROSITY

    Selection of appropriate value is not straight forward: RTD may help

    r/R

    0.70

    0.56 With std dev=0

    With std dev=5%

    With std dev=10%

  • 7/31/2019 Cfd Modelling of TBR 2

    14/52

    CFD Modeling of Trickle Bed Reactors

    CFD MODEL

    Multi-fluid Model (Eulerian-Eulerian)

    Continuity Equation

    0=+

    KKK

    KK Ut

    Momentum Balance Equation

    ( ) ( )RkRKKKK

    KKKKK

    KKK

    UUFgU

    PUUt

    U

    ++

    +=+

    ,

    )()(

  • 7/31/2019 Cfd Modelling of TBR 2

    15/52

    CFD Modeling of Trickle Bed Reactors

    CFD MODEL

    Inter-phase Coupling Terms (Attou & Ferschneider, 2000)

    ( )

    +

    =333.0

    2

    667.0

    22

    2

    1

    )1(

    )1(

    )1(

    )1(

    G

    L

    pG

    GLGP

    G

    L

    pG

    GGGL

    d

    UUE

    d

    EF

    +

    =333.0

    2

    667.0

    22

    2

    1

    )1(

    )1(

    )1(

    )1(

    G

    S

    pG

    GGP

    G

    S

    pG

    GGGS

    d

    UE

    d

    EF

    +=

    pL

    SGP

    pL

    sLLS

    d

    UE

    d

    EF

    2

    22

    2

    1

  • 7/31/2019 Cfd Modelling of TBR 2

    16/52

    CFD Modeling of Trickle Bed Reactors

    CFD MODEL

    Capillary Terms

    Attou and Ferschneider (2000)

    =

    21

    112

    ddPP

    LG

    =L

    G

    PG

    LG Fd

    PP

    5416.0

    1

    12

    333.0

    ( )

    +

    =

    L

    GG

    G

    ss

    G

    /

    G

    s

    p

    LG

    F

    z

    z

    d

    .

    z

    P

    z

    P2

    32

    11

    1

    1

    4165

    3

    2

  • 7/31/2019 Cfd Modelling of TBR 2

    17/52

    CFD Modeling of Trickle Bed Reactors

    CFD MODEL

    Capillary Terms

    Extent of Wetting, f (Jiang et al., 2002)

    Scalar Transport

    iimiKKiKKKiKK SCDCU

    t

    C+=+

    )( .

    cLG PfPP )1( =

    025.01.881

  • 7/31/2019 Cfd Modelling of TBR 2

    18/52

    CFD Modeling of Trickle Bed Reactors

    SIMULATED RESULTS

    0

    5

    10

    15

    20

    25

    3035

    40

    45

    0 0.02 0.04 0.06 0.08 0.1Velocity M agnitude, m/ sec

    Non-prewetted Bed

    Prewetted B ed

    0

    5

    10

    15

    20

    25

    30

    35

    0 0.1 0.2 0.3Liquid Holdup

    Non-prewetted Bed

    Prewetted Bed

    Pre-wetted Un-wetted

    VL= 6 mm/ s, VG=0.22 m/ s, D=0.114 m, dP= 3 mm, =5%

    ContoursofL

    iquidHold-up

    Distributions within the bed

  • 7/31/2019 Cfd Modelling of TBR 2

    19/52

    CFD Modeling of Trickle Bed Reactors

    SIMULATED RESULTS

    Column Diameter = 0.114 m Particle Diameter = 3 mm, VG=0.22 m/ s

  • 7/31/2019 Cfd Modelling of TBR 2

    20/52

    CFD Modeling of Trickle Bed Reactors

    SIMULATED RESULTS

    VG= 0.22 m /s, D = 0.114 m VG= 0.22 m /s, D = 0.194 m

  • 7/31/2019 Cfd Modelling of TBR 2

    21/52

    CFD Modeling of Trickle Bed Reactors

    GAS-LIQUID FLOW IN TBR

    Estimation of Frictional Pressure Drop & Fraction ofLiquid Supported by Gas

    Simulate at two values of g (9.7, 9.9 m/s2)

    21

    1

    2

    2

    1

    gg

    L

    Pg

    L

    Pg

    L

    Pf

    =

    ( )21L12

    Lgg

    L

    P

    L

    P

    =

    Fraction of Liquid Hold-upSupported by Gas Phase < 1

    Solid

    Liquid

    Gas

    ( )

    LL

    L

    f

    =

    Q

    gL

    P

    L

    PL

    GLGL

  • 7/31/2019 Cfd Modelling of TBR 2

    22/52

    CFD Modeling of Trickle Bed Reactors

    SIMULATED RESULTS

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0.60

    0.00 0.20 0.40 0.60 0.80 1.00

    Liquid Flow Rate x10-1

    , kg/m2s

    LiquidSaturation

    and

    L

    Holub et. al. (1993) -Experimental data

    Szady and Sundersan (1991)-Exp. Data

    CFD Results

    Supported Liquid Saturation

    Calibrate Model

    Parameters from P

    Can Predict Total andSupported LiquidVolume Fraction

    0

    2

    4

    6

    8

    10

    12

    14

    0.00 0.20 0.40 0.60 0.80 1.00

    Liquid Flow Rate x10-1, Kg/m2s

    PressureGradient

    KPa/m

    Saez and Corbonell (1985)-Exp. dataSzady and Sundersan (1991)-Increase in liquidSzady and Sundersan (1991)-decrease in liquidCFD Simulations w ithout Capillary ForceCFD Simulations

    Operating conditions:VG=0.22m/s, D/dp =55, dp=3mm, Std. Dev.=5%, E1=215, E2=1.75

  • 7/31/2019 Cfd Modelling of TBR 2

    23/52

    CFD Modeling of Trickle Bed Reactors

    SIMULATED RESULTS

    0

    10

    20

    30

    40

    50

    0 0.2 0.4 0.6 0.8 1

    Gas Flow Rate, (Kg/m2s)

    PressureDrop,

    (KPa/m)

    CFD ResultsExperimental Data

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0 0.2 0.4 0.6 0.8 1Gas Mass Velocity, kg/m2s

    LiquidSaturationand

    L

    Liquid Saturation- CFD ResultsSupported Liquid SaturationLiquid Saturation- Exp. Data

    Data of Spachio & Baldi (1977)

    As gas velocity increases,

    more & more liquid issupported by gas

    Operating conditions: VL=2.8x10-3 m/s, dp=3mm, D/dp=30, Std. Dev.=5%, E1=500, E2=3

  • 7/31/2019 Cfd Modelling of TBR 2

    24/52

    CFD Modeling of Trickle Bed Reactors

    SIMULATED RESULTS

    0

    0.04

    0.08

    0.12

    0.16

    0.2

    0 2 4 6 8

    Gas mass velocity, Kg/m2s

    LiquidSaturationa

    nd

    L

    Liquid Saturation- CFD ResultsSupported Liquid SaturationLiquid Saturation Exp. Data

    0

    40

    80

    120

    160

    200

    0 2 4 6 8

    Gas Mass Velocity, (kg/m2s)

    PressureDrop,

    (KPa/m) Experimental Data

    CFD Results Data of Rao et al. (1983)

    As gas velocity increases,

    more & more liquid issupported by gas

    Operating conditions:VL=1x10-3m/s, D/dp =15.4, dp=3mm, Std. Dev.=5%, E1=215, E2=3.4

  • 7/31/2019 Cfd Modelling of TBR 2

    25/52

    CFD Modeling of Trickle Bed Reactors

    RESIDENCE TIME DISTRIBUTION

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0 20 40 60 80 100 120

    Time, (sec)

    E(t),sec

    -1

    Pre-wetted Bed

    Non Pre-wett ed Bed

    Simulation Results

    1

    1

    1

    Ex erimental Results2

    2

    2

    Operating conditions: VL=2.06x10-3m/s VG=0.22m/s, D/dp =18, dp=6mm, Std. Dev.=5%, E1=180, E2=1.75

  • 7/31/2019 Cfd Modelling of TBR 2

    26/52

    CFD Modeling of Trickle Bed Reactors

    MODELING OF HYDRO-PROCESSING REACTOR

    Reaction and Kinetics (Chowdhury et al. 2002)

    Hydro-desulfurisation (HDS)

    SH,LAd

    6.1S,L

    56.0H,L

    HDS

    2

    2

    cK1

    cckr

    +=SHArH2SAr 22 ++

    De-aromatisation of Mono-, Di- and Poly- Aromatics

    NaphMono_MonoMonoMono CkCkr +=NapthenesH3ArMono 2 +

    MonoDi_DiDiDi CkCkr +=ArMonoH2ArDi 2 +

    DiPoly_PolyPolyPoly CkCkr +=ArDiHArTri 2 +

  • 7/31/2019 Cfd Modelling of TBR 2

    27/52

    CFD Modeling of Trickle Bed Reactors

    SIMPLIFICATIONS/ ASSUMPTIONS

    Pressure drop is insignificant compared to the operating

    pressure

    Trickle bed reactor is operated isothermally (efficient heat

    transfer)

    Ideal gas law is applicable

    Liquid phase reactants are non-volatile (negligible vapor

    pressure) Gas-liquid mass transfer is the limiting resistance.

    The catalyst particles are completely wetted

  • 7/31/2019 Cfd Modelling of TBR 2

    28/52

    CFD Modeling of Trickle Bed Reactors

    MODEL EQUATIONS

    Mass Balance of Species i

    Source Terms for Gas Phase

    Source Terms for Liquid Phase

    ( ) ( ) kikkikmikkikkkkikkk

    SCDCUt

    C

    ,,,.,

    ,

    +=+

    = Lii

    Gi

    GLGLii CH

    C

    aKS

    =

    =+

    =

    nrj

    1j

    ijB rLii

    GiGLGLii CH

    C

    aKS

    =

    =

    =nrj

    1j

    ijB riS

  • 7/31/2019 Cfd Modelling of TBR 2

    29/52

    CFD Modeling of Trickle Bed Reactors

    MODEL EQUATIONS

    Mass Transfer Coefficient (From Goto & Smith, 1975)

    Solubility of Hydrogen/ H2S (Korsten et al. 1996)

    2/1

    1

    2

    = L

    iL

    L

    L

    LL

    i

    L

    L

    i

    DG

    Dak

    Li

    NiH

    .=

    220

    4

    2

    320

    210H

    1

    .aTa

    T

    aTaa2 ++++=

    ).008470.03670.3exp(2

    TSH =835783.0a

    1094593.1a

    1007539.3a

    1042947.0a

    559729.0a

    4

    63

    32

    3

    1

    0

    =

    =

    ==

    =

    : molar gas volumeN

  • 7/31/2019 Cfd Modelling of TBR 2

    30/52

    CFD Modeling of Trickle Bed Reactors

    CASE STUDIES

    Gas and Liquid Superficial Velocities Increase with

    Scale Wetting gets Better with Scale

    Parameters Laboratory Scale Reactor

    (Chowdhury et al. 2002)

    Commercial Scale Reactor

    (Bhaskar et al. 2004)

    Reactor Diameter, mBed Length

    Particle Diameter, mBed Porosity

    LHSV, h-1Operating Pressure, MpaOperating Temperature, K

    Initial H2S Conc., v/v %

    0.0190.5 m0.00240.50

    1-520-28

    573-6930.5-8

    3.816 m

    0.00150.36

    1-520-80

    573-6930.5-8

  • 7/31/2019 Cfd Modelling of TBR 2

    31/52

    CFD Modeling of Trickle Bed Reactors

    KINETICS/ OIL COMPOSITION

    From Chowdhury et al. (2002)

    AdKKinetic Constants Values

    , m3/kmol 50000

    K, Dimensionless 2.5 X 1012 exp(-19384/T)

    k*mono, m3/kg.s 6.04 X 102 exp(-12414/T)

    k*Di, m

    3

    /kg.s 8.5 X 10

    2

    exp(-12140/T)k*poly, m3/kg.s 2.66 X 105 exp(-15170/T)

    Component Percentage

    Ar-S % 1.67

    Poly-Ar % 2.59

    Di-Ar % 8.77

    Mono-Ar % 17.96

    Naphthenes % 19.25

  • 7/31/2019 Cfd Modelling of TBR 2

    32/52

    CFD Modeling of Trickle Bed Reactors

    SIMULATED RESULTS-1

    Temperature Initial Concentration of H2S

    0

    25

    50

    75

    100

    573 583 593 603 613 623 633 643 653

    Temp, K

    Con

    version,

    Ar-S%

    Varying Porosity

    Uniform Porosity

    Ar-S Exp

    0

    30

    60

    90

    0 2 4 6 8

    Initial H2S Conc Gas Phase ( %, V/V)

    Conversion,x

    (P=4 MPa, LHSV=2.0 h-1, QGNTP/QL=200 m3/m3, TR=320

    oC, yH2S=1.4% )Symbols denote experimental data of Chowdhury et al. (2002)

  • 7/31/2019 Cfd Modelling of TBR 2

    33/52

    CFD Modeling of Trickle Bed Reactors

    SIMULATED RESULTS-2

    (P=4 MPa, LHSV=2.0 h-1, QGNTP/QL=200 m3/m3, yH2S=1.4%)

    Symbols denote experimental data of Chowdhury et al. (2002)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    573 593 613 633 653

    Temperature, K

    Conversion,

    Ar-P

    totaltotal

    poly

    0

    10

    20

    30

    40

    50

    60

    573 593 613 633 653

    Temperature, K

    C

    onversion,

    %

    Ar-D

    Ar-M

    Ar-Di-Expt

    Ar-Mono-Exp

  • 7/31/2019 Cfd Modelling of TBR 2

    34/52

    CFD Modeling of Trickle Bed Reactors

    SIMULATED RESULTS-3

    0

    10

    20

    30

    40

    50

    60

    2 2.4 2.8 3.2 3.6 4

    LHSV, h-1

    Conversion,

    %

    Total-Ar

    Ar-Poly

    Ar-DiAr-Mono

    (P=4 MPa, TR=320 oC, QGNTP/QL=200 m3/m3, yH2S=1.4%, filled symbols

    are for experimental data of Chowdhury et al., 2002)

  • 7/31/2019 Cfd Modelling of TBR 2

    35/52

    CFD Modeling of Trickle Bed Reactors

    INFLUENCE OF REACTOR SCALE

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    0 0.2 0.4 0.6 0.8 1

    Dimensionless Radius

    Dim

    ensionlessSolidHold-up

    0

    5

    10

    15

    20

    25

    30

    35

    DimensionlessLocalAxialVelocity

    Solid hold-up

    Local Axial Velocity

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    0 0.2 0.4 0.6 0.8 1

    Dimensionless Radius

    DimensionlessSolidHold-up

    0

    1

    2

    3

    4

    5

    6

    7

    DimensionlessLocalAxialVelocity

    Solid hold-up

    Local Axial Velocity

    Industrial (LHSV=2)Laboratory (LHSV=3)

    (P=4 MPa, TR=320oC, QGNTP/QL=300 m

    3/m3)

  • 7/31/2019 Cfd Modelling of TBR 2

    36/52

    CFD Modeling of Trickle Bed Reactors

    INFLUENCE OF REACTOR SCALE

    25

    50

    75

    100

    573 593 613 633 653

    Temperature, K

    Conversion,

    %Lab-scale Reactor

    Commercial Reactor

    0

    2000

    4000

    6000

    8000

    10000

    12000

    573 593 613 633 653

    Temperature, K

    Ou

    tletConc.

    Ar-S,ppm

    Lab Scale Reactor

    Commercial Reactor

    (Plab & com=4 & 4.4 MPa, LHSVlab=2.0 h-1, QGNTP/QL=200 m

    3/m3, yH2S=1.4%)

  • 7/31/2019 Cfd Modelling of TBR 2

    37/52

    CFD Modeling of Trickle Bed Reactors

    INFLUENCE OF REACTOR SCALE

    -20

    0

    20

    40

    60

    80

    100

    573 593 613 633 653

    Temperature, K

    Conversion,

    %

    Poly-Ar

    TotalPoly-Ar-Commercial

    Total-Commercial

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    2 2.5 3 3.5 4

    LHSV, h-1

    Conversion,

    %

    Ar-S-Lab Scale

    Ar-S-Commercial

    (Plab & com=4 & 4.4 MPa, LHSVlab & com=2.0 & 3.0 h-1,

    (QGNTP/QL)lab & com= 200 & 300 m3/m3, yH2S=1.4%)

    (Plab & com=4 & 4.4 MPa, Temperature= 593 K,(QGNTP/QL)lab & com= 200 & 300 m

    3/m3, yH2S=1.4%)

  • 7/31/2019 Cfd Modelling of TBR 2

    38/52

    CFD Modeling of Trickle Bed Reactors

    INFLUENCE OF REACTOR SCALE

    0

    20

    40

    60

    80

    100

    120

    2 3 4 5 6 7 8

    Pressure, MPa

    Conversion,

    Poly-Ar

    Di-Ar

    Mono-Ar

    Total

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    2 2.5 3 3.5 4

    LHSV, h-1

    Conversion,

    %

    Poly-Ar

    Di-Ar

    Mono-Ar

    Total

    (QGNTP/QL)lab & com= 200 & 300 m3/m3 T=593 K

    LHSVlab & com=2.0 & 3.0 h-1 ,yH2S=1.4%

    Plab & com=4 & 4.4 Mpa, T=593 K yH2S=1.4%(QGNTP/QL)lab & com= 200 & 300 m

    3/m3

    Continuous lines: commercial; Dotted lines: laboratory scale

  • 7/31/2019 Cfd Modelling of TBR 2

    39/52

    CFD Modeling of Trickle Bed Reactors

    CONCLUDING REMARKS

    Macroscopic CFD Model Reasonably Simulates Gas-liquid Flow in Trickle Beds

    Liquid hold-up

    Residence time distribution

    May be used to estimate fraction of suspended liquid

    Further Work is Needed for Understanding Wetting/Hysteresis to Make Further Progress

    Despite Limitations, CFD Models can be Used toUnderstand Key Issues in Reactor EngineeringIncluding Scale-up & Scale-down

  • 7/31/2019 Cfd Modelling of TBR 2

    40/52

    CFD Modeling of Trickle Bed Reactors

  • 7/31/2019 Cfd Modelling of TBR 2

    41/52

    CFD Modeling of Trickle Bed Reactors

    MODELING OF MESO-SCALE FLOWS

    Single Phase Flow through Packed Bed

    Unit cell approach

    Simple cubic, FCC, rhombohedral ..

    Inertial flow structures, pressure drop, heat transfer

    Interaction of Liquid Drop/ Film with Solid Surface

    Regimes of interaction

    Dynamic contact angle/ surface characteristics

    VOF simulations

    Insight into capillary forces???

  • 7/31/2019 Cfd Modelling of TBR 2

    42/52

    CFD Modeling of Trickle Bed Reactors

    SINGLE PHASE FLOW

    Single Phase Flow through Packed Bed

    Periodic Flow

    Wall

    Wall

    Periodic Flow

    Wall

    Operating Parameters Cell Length 28mm, 3mm Fluid Water Particle Reynolds Number 12-6000

  • 7/31/2019 Cfd Modelling of TBR 2

    43/52

    CFD Modeling of Trickle Bed Reactors

    SINGLE PHASE FLOW

    Experiments:

    Suekane et al.AIChE J., 49, 1

    Simulations

    0

    5

    0

    4.5

  • 7/31/2019 Cfd Modelling of TBR 2

    44/52

    CFD Modeling of Trickle Bed Reactors

    SINGLE PHASE FLOW

    0

    1

    2

    3

    -1 -0.5 0 0.5 1

    x/r

    Vz/Vm

    ean

    Experimental

    Simulation-28mm

    Simulation-3mm

    -1

    0

    1

    2

    3

    4

    -1 -0.5 0 0.5 1

    x/r

    Vz/Vm

    ean

    Experimental

    Simulation-28mm

    Simulation-3mm

    -1

    0

    1

    2

    3

    4

    5

    -1 -0.5 0 0.5 1x/r

    Vz/Vm

    ean

    Experimental

    Simulation-28mm

    Simulation-3mm

    -1

    0

    1

    2

    3

    4

    5

    -1 -0.5 0 0.5 1x/r

    Vz/V

    mean

    Experimental

    Simulation-28mm

    Simulation-3mm

  • 7/31/2019 Cfd Modelling of TBR 2

    45/52

    CFD Modeling of Trickle Bed Reactors

    SINGLE PHASE FLOW

    E

    S

    Vz=8.66mm

    /s

    Max arrow

    length :

    A=0.26 mm/s

    B=0.29 mm/s

    C=0.44 mm/s

    A: z/r=0.14 (experimental) B: z/r=0.28 (experimental) C: z/r=0.42 (experimental)A: z/r=0.14 (experimental) B: z/r=0.28 (experimental) C: z/r=0.42 (experimental)A: z/r=0.14 (experimental)A: z/r=0.14 (experimental) B: z/r=0.28 (experimental)B: z/r=0.28 (experimental) C: z/r=0.42 (experimental)C: z/r=0.42 (experimental)

  • 7/31/2019 Cfd Modelling of TBR 2

    46/52

    CFD Modeling of Trickle Bed Reactors

    SINGLE PHASE FLOW

    Inertial Flow Structures were Captured Accurately byCFD Models

    Velocity Distribution in Unit Cells Resembles that in aPacked Bed

    Ergun Parameters may be Obtained through Unit CellApproach for Semi-structured Packed Bed

    Unit Cell Approach may be Extended to SimulateTwo Phase Flows to Understand Wetting

  • 7/31/2019 Cfd Modelling of TBR 2

    47/52

    CFD Modeling of Trickle Bed Reactors

    LIQUID SPREADING ON SOLID SURFACES

    Computer

    CCD Camera

    Monitor

    Light Diffuser

    Light

    Drop Flow Over Pellet

    Drop Rest on Flat Plate

    8.79mm

    1mm

    10.4mm

  • 7/31/2019 Cfd Modelling of TBR 2

    48/52

    CFD Modeling of Trickle Bed Reactors

    DROP IMPACT ON SOLID SURFACE

  • 7/31/2019 Cfd Modelling of TBR 2

    49/52

    CFD Modeling of Trickle Bed Reactors

    DROP IMPACT ON SOLID SURFACE

  • 7/31/2019 Cfd Modelling of TBR 2

    50/52

    CFD Modeling of Trickle Bed Reactors

    FLAT SURFACE

    (f)

    (c)

    (d)

    (e)

    (b)

    (a)

    t=0ms

    t=16ms

    t=20ms

    t=36ms

    t=48ms

    t=240ms

    t=0ms

    t=10ms

    t=210mst=25ms

    t=45ms

    t=45ms

  • 7/31/2019 Cfd Modelling of TBR 2

    51/52

    CFD Modeling of Trickle Bed Reactors

    DYNAMICS OF DROP IMPACT

    MODELS FOR INTERPHASE COUPLING?

  • 7/31/2019 Cfd Modelling of TBR 2

    52/52

    CFD Modeling of Trickle Bed Reactors

    MODELS FOR INTERPHASE COUPLING?

    Wall Shear Stress onSolid Surface, red~100 Pa

    Drop Shape at 12 ms

    ShearStrain onGas-liquidInterface