57
Ch6 Representation Signals by Using Continuous-Time Complex Exponentials: The Laplace Transform 用用用用用用用用用用用用用用用 用用用用用用用 (:)

Ch6.1 引言( Introduction )

Embed Size (px)

DESCRIPTION

Ch6 Representation Signals by Using Continuous-Time Complex Exponentials: The Laplace Transform (用连续时间复指数信号表示信号:拉普拉斯变换). Ch6.1 引言( Introduction ). (一)使用拉普拉斯变换分析信号 The Laplace Transform (拉普拉斯变换) Properties of Laplace Transform (拉普拉斯变换的性质) Inversion of the Laplace Transform (拉普拉斯反变换) - PowerPoint PPT Presentation

Citation preview

Page 1: Ch6.1   引言( Introduction )

Ch6 Representation Signals by Using Continuous-Time Complex Exponentials: The Laplace Transform(用连续时间复指数信号表示信号:拉普拉斯变换)

Page 2: Ch6.1   引言( Introduction )

Ch6.1 引言( Introduction)

(一)使用拉普拉斯变换分析信号•The Laplace Transform (拉普拉斯变换)

•Properties of Laplace Transform (拉普拉斯变换的性质)

•Inversion of the Laplace Transform (拉普拉斯反变换)

(二)使用拉普拉斯变换分析系统•Solving Differential Equations With Initial Conditions (系统响应求解)•The Transfer Function (系统函数)

Page 3: Ch6.1   引言( Introduction )

s

1

x(t)=etu(t) >0的傅里叶变换?

将 将 xx(( tt ) 乘以衰减因子 ) 乘以衰减因子ee --tt

ttxtxF ttt dee)(]e)([ j

ttt dee )j(0

0

)( de tts js令

不存在 !

From Fourier transform to Laplace transform从傅里叶变换到拉普拉斯变换

Page 4: Ch6.1   引言( Introduction )

推广到一般情况

令 s= +j

ttxtxF ttt dee)(]e)([ j

ttx tde)( )j(

)(de)( sXttx st

ttxsX stde)()(

定义:定义:

对 x(t)e-t求傅里叶反变换可得

ssXtx stde)(πj2

1)(

j

j

拉普拉斯正变换拉普拉斯正变换

拉普拉斯反变换

From Fourier transform to Laplace transform 从傅里叶变换到拉普拉斯变换

Page 5: Ch6.1   引言( Introduction )

The Laplace transform applies to more general signals than the Fourier transform does. ( a ) Signal for which the Fourier transform does not exist. ( b ) Attenuating factor associated with Laplace transform. ( c ) The modified signal x( t) e-t is absolutely integrable for > 1.

Page 6: Ch6.1   引言( Introduction )

Real and imaginary parts of the complex exponential est, where s = + j.

Page 7: Ch6.1   引言( Introduction )

Ch6.2 the Laplace Transform(拉普拉斯变换)

• Definitions (定义)• Regions of Convergence (收敛域)• S plane ( S平面)• Zeros and Poles (零极点)

Page 8: Ch6.1   引言( Introduction )

j

jd)(

πj2

1)(

sesXtx st

Bilateral Laplace TransformBilateral Laplace Transform(双边拉普拉斯变换)(双边拉普拉斯变换)

dtetxsX st)()(

)]([)( txLsX

)()( sXtx L

符号表示:符号表示:)]([)( 1 sXLtx

信号信号 xx(( tt))可分解成复指数可分解成复指数 eestst的加权叠加的加权叠加 ,,权重正比于权重正比于 X( s ) 。

Page 9: Ch6.1   引言( Introduction )

收敛域收敛域 : : 双边双边拉普拉斯变换拉普拉斯变换存在的条件

tetx td|)(|

对任意信号 x( t) ,若满足上式,则 x( t)应满足

0e)(lim

t

ttx

Regions of Convergence ((双边拉普拉斯变换的收敛域)

Regions of Convergence ( ROC) :使上式成立的所有 值。

Page 10: Ch6.1   引言( Introduction )

Regions of Convergence(收敛域)收敛域)

X ( s )不存在

j

0

S平面

右半平面左半平面

Ex: x ( t ) = et u( t ) 的傅里叶变换?拉氏变换?

X ( s )存在

Page 11: Ch6.1   引言( Introduction )

)()()()( 21 tuetxtuetx atat 和

)]([)]([ 1 tueLtxL t

s

1Re( s) >-a

)]([)]([ 2 tueLtxL t

s

1 Re( s) < -a

不同的信号,虽然具有相同形式的拉氏变换,但收敛域不同。

Page 12: Ch6.1   引言( Introduction )

The ROC for x( t ) = eatu( t ) is depicted by the shaded region. A pole is located at s = a.

Page 13: Ch6.1   引言( Introduction )

The ROC for y( t ) = –eatu –( t ) is depicted by the shaded region. A pole is located at s = a.

Page 14: Ch6.1   引言( Introduction )

拉普拉斯变换与傅里叶变换的关系拉普拉斯变换与傅里叶变换的关系

11))当收敛域包含当收敛域包含 jj 轴轴时时,拉普拉斯变换和傅里叶变换均存在。 j)()j( ssXX

22))当收敛域不包含当收敛域不包含 jj 轴轴时时,拉普拉斯变换存在而傅里叶变换均不存在。

Page 15: Ch6.1   引言( Introduction )

011

1

011

1)(asasas

bsbsbsbsH

nn

n

mm

mm

)())((

)())((

21

21

n

mm ssssss

rsrsrsb

polesZeros

Zeros and Poles(零极点))

Page 16: Ch6.1   引言( Introduction )

b=[1];a=[1 3];

Splane( b,a) ;

w=linspace( 0,5,256) ;

subplot( 2,1,1) ;

splane( b,a) ;

h=freqs( b,a,w) ;

subplot( 2,1,2) ;

plot( w,abs( h)) ;

MATLAB code:

Page 17: Ch6.1   引言( Introduction )

Ch6.3 The Unilateral Laplace Transform(单边拉普拉斯)

Definitions:

dtetxsXtxL st

0

)()()]([

Page 18: Ch6.1   引言( Introduction )

)Re(1

)(e ss

tu Lt

)Re( 1

)(e ss

tu Lt

0)Re( j

1 )(e

0

j 0

ss

tu Lt

0)Re( j

1 )(e

0

j 0

ss

tu Lt

基本信号的拉普拉斯变换

Page 19: Ch6.1   引言( Introduction )

0)Re( )( cos20

2

0

ss

stut L

-Re(s) 1 )( Lt

0)Re( )( sin20

20

0

ss

tut L

-Re(s) )()( nLn st

基本信号的拉普拉斯变换

Page 20: Ch6.1   引言( Introduction )

0)Re( 1

)( ss

tu L

0Re(s) 1

)(2

s

ttu L

0Re(s) !

)(1

n

Ln

s

ntut

Re(s) )(

1 )(e

2stut Lt

基本信号的拉普拉斯变换

Page 21: Ch6.1   引言( Introduction )

020

20

00 Re(s)

)( )( cose 0

s

stut Lt

020

20

00 Re(s)

)(s )(sine 0

Lt ttu

0Re(s) )(

)(cos22

02

20

2

0

s

sttut L

0Re(s) )(

2 )(sin

220

20

0

s

sttut L

基本信号的拉普拉斯变换

Page 22: Ch6.1   引言( Introduction )

Ch6.4 properties of Laplace Transform(单边拉普拉斯的性质)

1. 1. LinearityLinearity(线性特性)(线性特性)

)()()()( 2121 sbXsaXtbxtax uL

0)/(1

)( aasXa

atx uL

2. scaling 2. scaling (展缩特性)(展缩特性)

Page 23: Ch6.1   引言( Introduction )

if )()()( sXtutx uL

)()()( 000 sXettuttx stLu then

3. Time Shift3. Time Shift(时移特性)(时移特性)

44. . s-domain shift(指数加权性质 ---s域位移)

)()(e 00 ssXtx uLts

20

2)(

s

s)](cos[ 0 tuteL t Ex:

Page 24: Ch6.1   引言( Introduction )

)()()(*)( sYsXtxtx uL

5. convolution5. convolution(卷积特性)(卷积特性)

13)1)(3(

1)(

s

B

s

A

sssY

3)3)((

sssYA

3

1

0)(

sssYB

3

1

)()1(3

1)( 3 tuety t

Example: Find the unitial Laplace transform of y(t)=etu(t)etu(t)

Page 25: Ch6.1   引言( Introduction )

6. Differentiation in the S-domain ( S域微分特性)

s

sttx uL

d

)(dX)(

)1

()]([sds

dttuL

)1

()]([2

2

sds

dtutL

)]([ tutL n1

!ns

n

2

1

s

3

2

s

)]([ tuetL tn 1)(

! ns

n

Ex:Ex:

Page 26: Ch6.1   引言( Introduction )

)0()(d

)(d xssXt

tx L

证明:证明:

0de

d

)(d

d

)(dt

t

tx

t

txL st

tstxtx stst d)e)((e)(0

0

0

de)()0( ttxsx st )0()( xssX

7. Differentiation in the time-domainDifferentiation in the time-domain ((时域微分特时域微分特性)性)

)0(')0()(d

)(d 22

2 xsxsXs

t

tx L

)0(...)0(')0()(d

)(d 121 nnnnn

n

xxsxssXst

tx

Page 27: Ch6.1   引言( Introduction )

s

x

s

sXx uL

t )0()(d)(

1

d)()0(01

xx

8. Integration Property Integration Property(积分特性)(积分特性)

])()([0

dutrLt

s

tuL )]([2

1

s

Where,

Ex:

Page 28: Ch6.1   引言( Introduction )

)()()( limlim0

ssFftfst

9. Initial- and Final-Value Theorems(初值定理和终值定理)

)()0()( limlim0

ssFftfst

Page 29: Ch6.1   引言( Introduction )

部分分式法求部分分式法求拉普拉斯反变换反变换 ::由由 XX(s)(s)求求 xx((tt))

011

1

011

1)(asasasa

bsbsbsbsX

NN

NN

MM

MM

)(

)(2210 sA

sDscscscc NM

NM

)(

)()()()()()( 1)(''

2'

10 sA

sDLtctctctctx NM

NM 所以

当当 MMNN时存在时存在 真分式

1)( Lt由于 st L)(' NMLNM st )()(

Ch6.5 Inversion of Unilateral Laplase transform (拉普拉斯反变换)

Page 30: Ch6.1   引言( Introduction )

NisA

sDdsA

idsii ,,2,1)(

)()(

)()eee()( 21210 tuAAAtx td

Ntdtd N

设设

其中其中 ::

N

N

ds

A

ds

A

ds

A

sA

sD

2

2

1

1

)(

)(

(1) A(s)=0有有 NN个单极点个单极点

)(

)()( 1

0 sA

sDLtx 利用部分分式法:利用部分分式法:

Inversion by Partial-Fraction ExpansionInversion by Partial-Fraction Expansion (部分分式法求(部分分式法求拉普拉斯反变换)反变换)

Nddds ,,, 21

Page 31: Ch6.1   引言( Introduction )

Ex: Find the inverse Laplase transform ofFind the inverse Laplase transform of

sss

ssX

34

2)(

23

SolutionSolution::

)3)(1(

2

34

2)(

23

sss

s

sss

ssX

31321

s

k

s

k

s

k

3

2

)3)(1(

2)()( 001

ss ss

ssXsk

2

1

)3(

2)()1( 112

ss ss

ssXsk

6

1

)1(

2)()3( 333

ss ss

ssXsk

)(e6

1)(e

2

1)(

3

2)( 3 tutututx tt

num=[1 2]; den=[1 4 3 0];[r,p]=residue(num,den)r = -1/6 -1/2 2/3 p = -3 -1 0

Page 32: Ch6.1   引言( Introduction )

Nds

sD

sA

sD

)(

)(

)(

)(

NN

ds

A

ds

A

ds

A

)()( 221

NisA

sDds

siNA ds

NiN

iN

i ,,2,1])(

)()[(

d

d

)!(

1

Inversion by Partial-Fraction ExpansionInversion by Partial-Fraction Expansion (部分分式法求(部分分式法求拉普拉斯反变换)反变换)

)(e)1

t()(

1

210 tuN

AtAAtx dt

NN

)()!1()(

1

tuei

tA

ds

A dti

iLi

i

i

其中其中 ::

则则 ::

dddds N 21(2) A(s)=0有有 NN重极点重极点

Page 33: Ch6.1   引言( Introduction )

3)1(

2)(

ss

ssX

Solution:Solution: 3)1(

2)(

ss

ssX

34

2321

)1()1()1()(

s

k

s

k

s

k

s

ksX

2)1(

2)( 0301

ss s

sssXk

32

)()1( 113

4

ss s

ssXsk

2)2

(d

)()1(d1

'1

3

3

ss s

s

s

sXsk

2)2

(2

1

d

)()1(d

2

11

''12

32

2

ss s

s

s

sXsk

)()e2

3e2e22( 2 tutt tttLu

[r,p]=residue( [1 -2],[1 3 3 1 0]) ;r =2 2 3 -2 p = -1 -1 -1 0

Ex: Ex: Find the inverse Laplase transform ofFind the inverse Laplase transform of

X(s)有 1个

3阶重极点

Page 34: Ch6.1   引言( Introduction )

24

42)(

2

3

ss

sssX

Solution:Solution: X( s)为有理假分式,将 X( s)化为有理真分式

24

12204)(

2

ss

sssX

]24

1220[)(4)()(

21'

ss

sLtttx

)(e6.0)(e6.20)(4)()( 45.045.4' tututttx tt

[r,p,k]=residue( [1 0 2 -4],[1 4 -2])

Ex: Ex: Find the inverse Laplase transform ofFind the inverse Laplase transform of

Page 35: Ch6.1   引言( Introduction )

(3) A(s)=0有复极点有复极点

2221

)()(

)(

s

BsB

sA

sD则

Inversion by Partial-Fraction ExpansionInversion by Partial-Fraction Expansion (部分分式法求(部分分式法求拉普拉斯反变换)反变换)

)()()(

)( 21

js

A

js

A

sA

sD

222

221

)()(

)(

s

c

s

sc

js

若 x0(t)为实信号,则 A1与 A2 为共轭以保证 为实系数。

)(

)(

sA

sD

21

2

11

BBc

Bc令

)()sin(e)()cos(e)( 210 tutctutctx tt

Page 36: Ch6.1   引言( Introduction )

SolutionSolution::

)4(

1)()3(

2

2

ss

esX

s

)4(3

1)()2(

22

sssX2

2

)4(

8)()1(

s

ssX

2)4(

881)(

s

ssX

4)4(1 2

21

s

k

s

k

24)88()()4( 142

1 ss ssxsk

8)88()()4(d

d '4

22 ssxs

sk s

)(e24)(e8)()( 44 tututttx tt

2

2

)4(

8)()1(

s

ssX

Ex: Ex: Find the inverse Laplase transform ofFind the inverse Laplase transform of

Page 37: Ch6.1   引言( Introduction )

令 s2=q,

)4(3

1)()2(

22

sssX

)4(3

1)(

qqsX则 )

)4((

3

1 21

q

k

q

k

4

1

)4(

101

qqq

qk

4

1

)4(

1)4( 42

qqq

qk

))4(4

1

4

1(

3

1)(

22

sssX于是

)()2sin2

1(

12

1)( tutttx

)4(

1)()3(

2

2

ss

esX

s

)4(3

1)()2(

22

sssX2

2

)4(

8)()1(

s

ssX

Ex: Ex: Find the inverse Laplase transform ofFind the inverse Laplase transform of

SolutionSolution::

Page 38: Ch6.1   引言( Introduction )

的反变换先用部分分式求)4(

1)(

21

sssX

的反变换再利用时移特性求)4(

)(2

2

2

ss

esX

s

)4(

1)()3(

2

2

ss

esX

s

4)4(

1)(

2321

21

s

ksk

s

k

sssX

04

1

4

1321 kkk

)()2cos1(4

1)(1 tuttx )2()]2(2cos1[

4

1)(2 tuttx

k2, k3用待定系数法求

)4(

1)()3(

2

2

ss

esX

s

)4(3

1)()2(

22

sssX2

2

)4(

8)()1(

s

ssX

Ex: Ex: Find the inverse Laplase transform ofFind the inverse Laplase transform of

SolutionSolution::

Page 39: Ch6.1   引言( Introduction )

时域差分方程 时域响应y( t)

S域响应Y( s)

拉氏变换拉氏反变换

解微分方程

解代数方程S域代数方程

Ch6.6 Solving Diffrential Equations with Initial Conditions(利用拉普拉斯变换分析系统响应)

Page 40: Ch6.1   引言( Introduction )

Solving Diffrential Equations with Initial Conditions(利用拉普拉斯变换分析系统响应)

)(d

)(d

d

)(d)(

d

)(d

d

)(d212

2

0212

2

txbt

txb

t

txbtya

t

tya

t

ty

已知 x ( t), y( 0), y' ( 0 ) ,求 y( t)。

11)) 经拉氏变换拉氏变换将域微分方程变换为域代数方程

22)) 求解 s域代数方程,求出 Yzi( s) , Yzs

( s)33)) 拉氏反变换拉氏反变换,求出响应的时域表示式

求解步骤:求解步骤:

Page 41: Ch6.1   引言( Introduction )

Solving Diffrential Equations with Initial Conditions(利用拉普拉斯变换分析系统响应)

)]0(')0()([ 2 ysysYs

)()0()0(')0(

)(21

221

20

212

1 sXasas

bsbsb

asas

yaysysY

)()()( 212

0 sXbssXbsXsb

)}()({1 sYsYL zizs )()()( tytyty zizs

Yzi( s) Yzs( s)

y"( t) a1y'( t)

a2y ( t)

)()(')(" 210 txbtxbtxb

)]0()([1 yssYa )(2 sYa

Page 42: Ch6.1   引言( Introduction )

Ex: Use the unilateral Laplace transform to determine the output of a system Ex: Use the unilateral Laplace transform to determine the output of a system represented by the differential equationrepresented by the differential equation

y''( t ) + 5y'( t ) + 6y( t ) = 2x '( t ) + 8x( t) in response to input x( t ) = e-tu( t) .Assume that the initial

conditions on the system are y( 0-) =3 and y'( 0-) =2.

SolutionSolution:: Using the differential property and taking the unilateral Using the differential property and taking the unilateral Laplace transform of both sides of the differential equation, we Laplace transform of both sides of the differential equation, we obtain obtain ((对微分方程取拉氏变换拉氏变换可得)

)(8)(2)(6)]0()([5)0()(2 sXssXsYyssYsysYs

)65(

)0(')0()5()(

65

82)(

22

ss

yyssX

ss

ssY

)()( sYsY zizs

3

8

2

11

65

173)(

2

ssss

ssYzi

0,e8e11)}({)( 321 tsYLty ttzizi

Page 43: Ch6.1   引言( Introduction )

Solution:

)()ee4e3()}({)( 321 tusYLty tttzszs

1

1

)3)(2(

82

1

1

65

82)(

2

sss

s

sss

ssYzs

0,e7e7e3)()()( 32 ttytyty tttzizs

)3(

1

2

4

1

3

sss

Ex: Use the unilateral Laplace transform to determine the output of a system Ex: Use the unilateral Laplace transform to determine the output of a system represented by the differential equationrepresented by the differential equation

y''( t ) + 5y'( t ) + 6y( t ) = 2x '( t ) + 8x( t) in response to input x( t ) = e-tu( t) .Assume that the initial

conditions on the system are y( 0-) =3 and y'( 0-) =2.

Page 44: Ch6.1   引言( Introduction )

时域时域 复频域复频域

tcc

LL

RR

iC

t

dt

tiLt

tRit

d)(1

)(

)(d)(

)()( )()( sRIsV RR

)0()()( LLL LissLIsV

)0(1

)(1

)( ccc VC

sIsC

sV

Laplace Transform Circuit ModelsLaplace Transform Circuit Models(电路的(电路的 SS域模域模型)型) ::

Ch6.7 Laplace Transform Methods in Circuit Analysis(利用拉普拉斯变换分析电路)

Page 45: Ch6.1   引言( Introduction )

Laplace Transform Circuit ModelsLaplace Transform Circuit Models(电路的(电路的 SS域模型)域模型)

R、 L、 C串联形式的 S域模型R

IR(s )

V R(s )

sL )0( LLi

IL(s )

V L(s)

sC

1)0(

1 cv

s

IC(s )

V C(s )

Page 46: Ch6.1   引言( Introduction )

Ex: Ex: Use the Laplace transform circuit models to determing the voltage Use the Laplace transform circuit models to determing the voltage vc(t) in the

circuit for an applied voltage EU(t). The voltage across the capacitor vc(0-)= -E.R

C

v C(t)i(t)E u (t)

R

s

E)(sI

V C(s )

1 /sC

E /s

SolutionSolution::建立电路的 s域模型,由 s域模型写回路方程

s

E

s

EsI

sCR )()

1(

求出回路电流)

1(

2)(

sCRs

EsI

s

E

sC

sIsVC

)()( )

121

(

RCss

E

0),e21()(1

tEtvt

RCc

电容电压为

Page 47: Ch6.1   引言( Introduction )

Ch6.11 The Transfer Function(系统函数函数)

系统函数系统函数 ::系统在零状态条件下,输出的拉氏变换式系统在零状态条件下,输出的拉氏变换式与输入的拉式变换式之比,记为与输入的拉式变换式之比,记为 HH((ss))。。

h(t)H(s)

x(t) yzs(t)=x(t)*h(t)

X(s) Yzs(s)=X(s)H(s)

)(

)(

)]([

)]([)(

sX

sY

txL

tyLsH zszs

Page 48: Ch6.1   引言( Introduction )

The Transfer function and Differential Equation(系统函数与微分方程)函数与微分方程)

Ex: Find the transfer function of the LTI system descriped Ex: Find the transfer function of the LTI system descriped by the differential equationby the differential equation

107

12

)(

)()(

2

ss

s

sX

sYsH

)()12()(]107[ 2 sXssYss

y''(t) + 7y'(t) +10y(t) = 2x '(t) + x(t)

Page 49: Ch6.1   引言( Introduction )

Causality and Stability(因果性与稳定性)与稳定性)

The relationship between the locations of poles and the impulse response in a causal system. ( a ) A pole in the left half of the s-plane corresponds to an exponentially decaying impulse response. ( b ) A pole in the right half of the s-plane corresponds to an exponentially increasing impulse response. The system is unstable in this case.

Page 50: Ch6.1   引言( Introduction )

Causality and Stability(因果性与稳定性)与稳定性)

The relationship between the locations of poles and the impulse response in a stable system. ( a ) A pole in the left half of the s-plane corresponds to a right-sided impulse response. ( b ) A pole in the right half of the s-plane corresponds to an left-sided impulse response. In this case, the system is noncausal.

Page 51: Ch6.1   引言( Introduction )

Causality and Stability(因果性与稳定性)与稳定性)

A system that is both stable and causal must have a transfer function with all of its poles in the left half of the s-plane, as shown here.

Page 52: Ch6.1   引言( Introduction )

Causality and Stability(因果性与稳定性)与稳定性)

因果系统因果系统在 s域有界输入有界输出( BIBOBIBO)的充要条件是系统函数 H( s)的全部极点极点 位于的左半左半 ss平面平面。

连续时间 LTILTI系统系统 BIBOBIBO稳定稳定的充分必要条件是

Sh d)(

Page 53: Ch6.1   引言( Introduction )

Ex: A Ex: A causal system has the transfer functionsystem has the transfer function

Solution Solution ::

2

1

3

2)(

sssH

极点 s= -3,在 s左半平面 ;

极点 s= 2 , 在 s右半平面。

)(th )(e)(e2 23 tutu tt

The system is not stable(不稳定)。

Find the impulse response. Is the system stable?

Page 54: Ch6.1   引言( Introduction )

Ch6.13 Determing the Frequency Response from Poles and Zeros(由零极点确定系统频率响应)

j

j)()j( ssHH

)()j()j( jeHH

当收敛域包含 j 轴时,则系统频响特性频响特性 ::

幅频响应 相频响应

Page 55: Ch6.1   引言( Introduction )

Determing the Frequency Response from Poles and Zeros(由零极点确定系统频率响应)

对于零极增益表示的系统函数

当系统稳定时,令 s=j,则得

n

ii

m

jj

p

z

KH

1

1

)j(

)j(

)j(

n

ii

m

jj

ps

zs

KsH

1

1

)(

)(

)(

Page 56: Ch6.1   引言( Introduction )

复数复数 aa和和 bb及及 aabb的向量表示的向量表示

j

0

a

b

a-b

j

0

a

b

|a-b|

系统函数的向量表示系统函数的向量表示

j

0

ip

jzj

i

jiD

jN

j

jj Nz j

e)j(

iii Dp je)j(

Determing the Frequency Response from Poles and Zeros(由零极点确定系统频率响应)

Page 57: Ch6.1   引言( Introduction )

EX: Sketch the magnitude response and phase EX: Sketch the magnitude response and phase

response of the LTI systemresponse of the LTI system1

1)(

ssH

SolutionSolution::

1j

1)()j( j

ssHH

-1

jaj

j1

)1(0

D1

Db

0 5 10

0.2

0.4

0.6

0.8

1)j( H

1

5 10

-90o

0

)j(

11

)j(0

0

DH 00)j( 00

2

11)j(

11

D

H 451arctan0)j( 11

01

)j(

DH 900)j( 0