44
Chapter 19 Tornadoes

Chapter(19( · Chapter(19(Tornadoes(Tornado(• Violently(rotang(column(of(air(thatextends(from(the(base(of(athunderstorm(to(the(ground(Tornado(Stas4cs

Embed Size (px)

Citation preview

Chapter  19  

Tornadoes  

Tornado  

•  Violently  rota4ng  column  of  air  that  extends  from  the  base  of  a  thunderstorm  to  the  ground  

Tornado  Sta4s4cs  

•  Over  (100,  1000,  10000)  tornadoes  reported  in  the  U.S.  every  year  

•  Average  of  56  deaths  occur  and  815  injuries  •  Es4mated  $87.4  million  in  damages  occurs  each  year  

•  In  the  most  recent  several  years  alone,  this  amount  has  exceed  $1  billion  

•  What  percentage  of  all  tornadoes  worldwide  occur  in  the  U.S.?  

Tornado  Occurrencs  

•  Primarily  form  under  Supercells  •  Can  also  form  in  squall  lines,  end  of  bow  echoes,  land-­‐falling  hurricanes,  ordinary  thunderstorms  

•  What  are  they  typically  called  when  they  form  under  ordinary  thunderstorms?  

Tornadoes  

•  Typically  range  from  150  feet  to  0.5  miles  wide  and  have  wind  speeds  that  range  from  65  mph  to  over  200  mph  

•  Can  exceed  1  mile  in  diameter  •  What  is  the  current  record-­‐holder  for  width?  •  What  was  the  previous  one?  

Tornado  Life  Cycle  

•  Most  are  short-­‐lived  (<10  minutes)  •  Long-­‐lived  ones  undergo  a  5-­‐stage  life  cycle  •  First  stage  is  the  development  of  a  funnel  cloud  and/or  rota4ng  dust  swirl  on  the  ground  

•  Second  stage  (organizing  stage)  is  the  funnel  cloud  making  contact  with  the  ground  and  increasing  in  intensity  

Tornado  Life  Cycle  

•  Third  Stage  (mature)  intensity  of  the  vortex  peaks  –  rota4on  is  strongest  and  tornado  is  typically  at  it’s  widest  point  and  most  ver4cally  erect  

•   Fourth  Stage  (shrinking)  Vortex  begins  to  4lt  over  more  and  the  tornado  begins  to  shrink  

•  Fi_h  Stage  (decay)  Also  known  as  the  rope-­‐out  stage  

Supercell  Tornadoes  

•  Supercells  rotate  because  of  a  process  known  as  vortex  4l4ng.    

•  What  leads  to  vortex  4l4ng?  

Ver4cal  Wind  Shear  

•  What  is  ver4cal  wind  shear?  

•  Ver4cal  Wind  Shear  in  the  0-­‐6km  layer  (also  known  as  the  surface-­‐500mb  shear)  most  commonly  used  to  determine  supercell  probability  

Ver4cal  Wind  Shear  

•  0  –  1  or  0  –  3  km  shear  is  used  to  determine  tornadic  vs  non-­‐tornadic  environments  

Vortex  Til4ng  

Tornado  Development  

•  Supercell  and  mesocyclone  rota4on  origins  are  well-­‐understood.  

•  Tornado  forma4on  is  not  •  Key  Process  is  vortex  stretching,  what  is  this  and  how  does  it  occur?  

•  Why  don’t  we  have  a  good  understanding  of  how  tornadoes  form?  

Theorized  Tornadogenesis  Process  

•  Believed  to  occur  in  3-­‐steps  •  1st  step  is  development  of  a  mid-­‐level  rota4on  (mesocyclone)  

•  2nd  step  is  development  of  low-­‐level  rota4on    (low-­‐level  meso,  associated  with  wall  cloud  development)  

•  3rd  step  is  rota4on  at  the  ground  

Step  1  

•  What  causes  the  mid-­‐level  rota4on  to  form?  

Step  2  

•  What  causes  the  2nd  step  to  occur?  

Step  3  

•  Three  proposed  mechanisms  for  tornado  produc4on  – Bodom  up  process  – Top  down  process  – Vortex  breakdown  

Bodom  Up  Process  

•  Occurs  when  the  RFD  moves  under  the  mesocyclone  

•  Believed  to  be  the  most  common  •  RFD  causes  air  to  rotate  horizontally  at  the  surface,  which  gets  4lted  up  by  the  updra_  as  it  moves  under  the  mesocyclone  

•  Can  produce  columns  of  cyclonic  and  an4-­‐cyclonic  rota4on  

Bodom  Up  Process  

Bodom  Up  Process  

•  An4-­‐cyclonic  tornadoes  can  form  in  instances  where  the  primary  tornado  is  large  and  violent  

•  Vortex  stretching  of  the  cyclonic  por4on  can  o_en  lead  to  tornadogenesis  

•  The  tornadic  poten4al  of  the  surface-­‐based  air  rota4on  arriving  at  the  ground  depends  cri4cally  on  the  air’s  temperature  –  why?  What  dictates  what  the  air  temperature  will  be?  

Top  Down  Process  

•  “Dynamic  Pipe  Effect”  •  Occurs  when  the  mid-­‐level  mesocyclone  begins  to  stretch  

•  What  two  forces  are  ac4ng  on  this  region?  

•  What  keeps  them  in  balance?  

Top  Down  Process  

•  Air  moving  upward  in  the  mesocyclone  must  con4nually  be  replaced  by  air  below  

•  Air  constricts  as  it  reaches  the  entry  point  •  If  this  air  is  also  rota4ng,  it  too  will  constrict  to  balance  the  forces,  which  lowers  the  “pipe”  un4l  it  reaches  the  surface  

Top  Down  Process  

Vortex  Breakdown  

•  Based  on  data  collected  from  VORTEX  •  Occurs  when  a  central  downdra_  develops  in  the  center  of  the  mesocyclone    

•  Downdra_  is  a  result  of  such  extreme  low  pressures  in  the  center  of  the  mesocyclone  that  air  is  forced  to  descend  towards  the  low  pressure  

Vortex  Breakdown  

•  Tornado  occurs  when  the  central  downdra_  inside  the  mesocyclone  merges  with  the  rota4ng  air  in  the  outer  part  of  the  surface  mesocyclone  

•  Only  one  storm/tornado  thus  far  has  shown  this  behavior  

•  What  is  the  downdra_  called  that  occurs  in  the  vicinity  of  the  mesocyclone?  

Vortex  Breakdown  

Tornado  Dura4on  

•  Lifecycle  typically  concludes  when  the  RFD  wraps  around  the  tornado  circula4on  

•  Longer-­‐lived  tornadoes  have  warmer  RFD’s  •  Strong  oujlow  winds  from  the  thunderstorm,  in  addi4on  to  the  storms  movement,  eventually  displace  the  near-­‐surface  por4on  of  the  tornadic  circula4on  away  from  cloud-­‐base  –  why  does  this  occur?  what  happens  to  the  tornado  at  this  point?  

Tornado  Families  

•  Refers  to  tornadoes  that  developed  from  the  same  parent  storm  –  what  are  these  types  of  storms  called?  

•  Some4mes  more  than  one  tornado  can  be  on  the  ground  at  the  same  4me  and  in  some  rare  instances,  older  tornadoes  may  merge  with  new,  developing  tornadoes  

Non-­‐Supercell  Tornadoes  

•  O_en  referred  to  as  Non-­‐supercell  tornadoes,  landspouts,  waterspouts,  mesovor4ces  or  gustnadoes  

•  Most  typical  name  is  landspout  

Landspouts  

•  Appear  visually  similar  to  waterspouts  •  Short-­‐lived,  not  as  intense  as  supercell  tornadoes  

•  Form  from  thunderstorms  lacking  obvious  signs  of    mid-­‐level  rota4on  

Landspout  Thunderstorms  

•  Triggered  along  advancing  fronts  or  gust  fronts  

•  Waterspouts  are  theorized  to  form  in  storms  that  form  in  the  same  manner  over  the  water  

Landspout  Tornadoes  

Fujita  Scale  

•  Originally  designed  to  be  a  damage  scale  es4mate  of  tornadic  wind  speeds  

•  Had  several  drawbacks,  what  were  they?  

EF-­‐Scale  

•  Came  into  use  in  2007  •  What  EF-­‐5  tornado  was  the  first  ranked  by  this  scale?  

EF-­‐F  Scale  Comparison  

Tornado  Detec4on  

•  Spoders  •  Radar  

Radar  

•  Detec4on  includes    – RFD  – Debris  ball  – Hook  echo  – Mesocyclone  signature  – Tornado  vortex  signature  

RFD  detec4on  

•  Contains  precipita4on  that  wraps  around  the  “echo-­‐free”  updra_  

•  Typically  responsible  for  the  hook  appearance  in  radar  reflec4vity  fields  

Hook  Echo  

Debris  Ball  

•  Theorized  to  be  a  result  of  debris  being  lo_ed  by  a  tornado  

•  New  science  is  dispu4ng  this  

Debris  Ball  

Mesocyclone  Signature  

Tornado  Vortex  Signature  

•  “TVS”  •  Indicated  on  radar  by  the  beam  (gate)  of  the  radar  that  has  drama4cally  higher  winds  than  the  beams  (gates)  around  it  

Tornado  Forecas4ng  

•  CAPE  –  Measure  of  how  unstable  an  updra_  is  •  Storm-­‐Rela4ve    Helicity  (SRH)  –  measure  of  horizontal  rota4on  in  the  lower  atmosphere  rela4ve  to  the  mo4on  of  the  thunderstorm  

•  Energy-­‐Helicity  Index  (EHI)  –  combines  CAPE  and  SRH  (=  CAPE  x  SRH  /  160000)  

Tornadoes  and  Climate  Change  

•  How  might  Tornadoes  be  affected  by  climate  change?