26
Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) • Introduction • RCM • Cross-Metathesis • ROMP

Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP

Embed Size (px)

Citation preview

Page 1: Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP

Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP)

• Introduction• RCM• Cross-Metathesis• ROMP

Page 2: Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP
Page 3: Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP

History of RCM

Page 4: Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP

From the point of view of organic synthesis, the first noteworthy, but largely ignored, example of a ring closing diene metathesis reaction appeared in 1980:

History of RCM

O

O

20 mol% WClO4 + 24 mol% Cp2TiCl2

21O

O

12%

Tsuji, J.THL 1980, 21, 2955

Page 5: Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP

Important Technical Applications

Phillips triolefin process

+ +

Shell higher olefin process

+10-20

2-7

9-13

[Mo]

[cat]

SHOPR

R

R

Page 6: Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP

Important Technical Applications

Norsorex process

n[W]

ROMP

n

Hüls-Vestenamer process

[cat]n

n

ROMP

Page 7: Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP

Molybdenum-Based Olefin Metathesis

MoO2Cl2(THF)2 + ArNH(TMS)2

lutidineTMSClDME

Mo(NAr)2Cl2(DME)RCH2MgCl2

Mo(NAr)2(CH2R)2

TfOHDME Mo(NAr)(CH2R)(OTf)2(DME) LiOR'2

Mo(NAr)(CH2R)(OR')2 R: C(Me)2PhR': OC(Me)2CF3

Schrock, JACS 1990, 112, 3875

Page 8: Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP

Molybdenum-Based Ring-Closing Olefin Metathesis

O

P h

M o

N

O

O

F3

C

F3

C

C F3

F3

C

P h

A (5 mol%)

O

P h

93%

Page 9: Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP

Molybdenum-Based Ring-Closing Olefin Metathesis

Xu, Z.; Johannes, C. W.; Salman, S. S.; Hoveyda, A. H. J. Am. Chem. Soc. 1996, 118, 10926.

A (25 mol%)

60%

HN

O

OTBMS

HN

O

OTBMS

>98% Z

Page 10: Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP

Ruthenium-Based Olefin Metathesis

The synthesis of ruthenium vinylcarbene complexes allowed the development of well-defined, late transition metal, low oxidation state complexes that catalyze olefin metathesis. Ruthenium carbene complexes are significantly easier to make and handle than the Schrock molybdenum complex.In addition to the metathesis of strained cyclic and exocyclic olefins, the remarkable functional group tolerance (alcohols, aldehydes, carboxylic acids) and stability toward air, water, and acid has made this class of compounds particularly attractive for practical applications (Grubbs, R. H.; Miller, S. J.; Fu, G. C. Acc. Chem. Res. 1995, 28, 446).

Page 11: Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP

Ruthenium-Based Olefin Metathesis: Mechanism

Dias, E. L.; Nguyen, S. T.; Grubbs, R. H. J. Am. Chem. Soc. 1997, 119, 3887.

Page 12: Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP

Ruthenium-Based Olefin Metathesis: Mechanism

Mechanistically, the major pathway (>95%) was found to involve phosphine dissociation from the metal center, such that a minor associative pathway in which both phosphines remain bound can be considered to operate only at higher phosphine concentrations. The formation of the 14-electron metallacyclobutane intermediate is the rate-determining step. The rate and catalyst activity are directly proportional to (a) K1, the equilibrium constant for olefin binding, (b) K2, the equilibrium constant for phosphine dissociation, (c) k3, the rate constant for metallacyclobutane formation from the monophosphine olefin complex I2.

Page 13: Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP

Ruthenium-Based Olefin Metathesis: Applications

N NH

N

N

H

OH

N

NCO2EtOPh

H CO2Me

N

NO

H CH2OBDPS

O

O

N

N

HCH2OBDPS

OO

O

N

NOPh

HCO2Me

O N

NOPh

HCO2Me

O

Manzamine A

B, 1equiv. rt, 5 days

30%

Pandit, THL 1994, 35, 3191

Martin, THL 1994, 35,691

A, benzene50°C, 63%

(Z only)

Page 14: Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP

Cross-Metathesis

Challenges for successful cross-metathesis include:

control of olefin geometry

suppression of homodimer formation

extending functional group compatibility

OO

CO2Me

MoNAr

RF6ORF6O

H

CMe2Ph

A

CN

OO

CO2Me

CN5 mol% 92% yield

exclusively Z

Page 15: Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP

Cross-Metathesis

Chatterjee, A. K.; Morgan, J. P.; Scholl, M.; Grubbs, R. H., "Synthesis of functionalized olefins by cross and ring-closing metathesis." J. Am. Chem. Soc. 2000, 122, 3783.

TBSO OMe

O

Ru

PCy3

ClCl

NN

Ru

PCy3

ClCl

NN

AcO

H

O

AcO CHO

TBSO OMe

O

5 mol%

(2 equiv)

CH2Cl2, 45 °C,

91%; 4.5:1 E:Z

5 mol%

(0.5 equiv)

CH2Cl2, 45 °C,

92%; 20:1 E:Z

Page 16: Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP

Cross-Metathesis: Applications

Wipf, P.; Spencer, S. R. "Asymmetric total syntheses of tuberostemonine, didehydrotuberostemonine, and 13-epituberostemonine." J. Am. Chem. Soc. 2005, 127, 225-235.

H

H

NHO

CO2Me

NH2

HOCO2H

NOCbz

H

H

CO2Me

Tuberostemonine

Tyrosine

HH

H

N

O

O

O O

H

82

Page 17: Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP

Cross-Metathesis: Applications

O OH

HO

O

N

H

H

Br OO

O

NCO2Me

O

H

H

Ph

NCO2Me

H

HO

N N

Ru

MesMes

PhPCy3

ClCl

O

O OO

N

H

HTBSO

NCO2Me

H

HO

N

H

HTBSO N

O

OMe

O

H

ON

H

HHO H

CH2Cl2; 92%

THF, -78 °C; 81%

1. PhSH, TEA2. (Ph3P)3RhCl, H2

3. DBU, THF; 76%

1. NaBH4, CeCl3; 75%2. TBS-Cl, Im.; 79%

3. MeONHMe•HCl, Me2AlCl; 94%

, LiDBB1. L-Selectride2. TsOH, MeOH

75%

Page 18: Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP

Cross-Metathesis: Applications

O

H

ON

H

HHO H

N

OH

O

O OH

H

H

N N

Ru

MesMes

PhPCy3

ClCl

NHTr

O

Me2N

N

H

O OH

H

H

HN

OH

O

O OH

H

NN

Mes

Mes

Ru

OCl

Cli-Pr

N,N-Dimethyl-acetamide

dimethyl acetal

xylenes; 79%

CH2Cl2; H2C=CH2;then Pd/C, H2, MeOH; 80%

1. PhSeCl, MeCN/H2O, 0 °C; 67%2. AIBN, allyltriphenyltin, 95 °C; 70%

3. LDA•HMPA, THF; MeI 76%

toluene; 85%

27 steps/1.1% yieldfrom Cbz-tyrosine

HH

H

N

O

O

O O

HTuberostemonine!

Page 19: Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP

ROMP

Ru

Cy3P

PhCl

NN

Cl

(2)

Ru ca ta lys t 2

ROMP Polymer

M CHR RCH CHR'+M

R' R

R

M CHR'

RCH CHR

Page 20: Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP

ROMP

Page 21: Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP

• A way of making polymers from cyclic olfins

• Condition for prepare living polymers a. monomer is highly strained (irreversible) b. R2 is slow c. organometallic intermediates in the polymerization reaction are stable

• Advantages of ROMP a. very narrow molecular weight distribution can be obtained: Mw/Mn approaching 1.0 b. living ROMP catalyst can tolerate a range of functionalities: most catalysts are destroyed in other types of living polymerization reactions c. new materials can be prepared under controlled

design conditions

Living Ring Opening Metathesis Polymerization (ROMP)

Brief history

• Calderon (1967) : the discovery WCl6/EtAlCl2/EtOH “olefin metathesis” • Grubbs (1986): the first report of living ROMP of a

cyclic olefin• Richard R. Schrock (1980’s): molybdenum &

tungsten catalystsLiving Polymerizations • Absence of chain termination and chain transfer reaction provides polymers whose molecular weights are precisely predicted and controlled by stoichiometry of polymerization

Mn = (g monomer) / (moles of initiator)

• Polydispersity will decrease with increasing molecular weight

• Synthesis of macromonomers that retain the reactive chain ends when all the monomer has been consumed

Page 22: Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP

ROMP

Wakamatsu, H.; Blechert, S. "A new highly efficient ruthenium metathesis catalyst." Angew. Chem. Int. Ed. 2002, 41, 2403-2405

Page 23: Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP

ROMP

Page 24: Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP

Why Carbene Ligands?

The nucleophilic carbenes are ‘phosphine-mimics’ and yet they are much more. They reside at the upper end of the Tolman electronic and steric parameter scales. From solution calorimetric studies, it became clear that nucleophilic carbenes (most of them) are better donors than the best donor phosphines.

Page 25: Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP

Why Carbene Ligands?

Page 26: Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP

Don’t Miss….

Thursday, March 03, 20052:30 PM, Chevron Science Center 12 B

Professor Paul Hanson University of Kansas

Metathesis Enabled Combinatorial Chemistry for Drug Discovery