50
S1 Chrysaorenes: Assembling Coronoid Hydrocarbons via the Fold-in Synthesis by Marcin Majewski, Tadeusz Lis, Joanna Cybińska, and Marcin Stępień* Supporting Information Table of contents Experimental details.................................................................................................. page S2 Synthetic procedures ................................................................................................ page S4 Additional schemes .................................................................................................page S10 Additional figures ....................................................................................................page S14 Additional tables .....................................................................................................page S28 1 H and 13 C NMR spectra ..........................................................................................page S34 Mass spectra ...........................................................................................................page S45 References...............................................................................................................page S50 Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Chrysaorenes: Assembling Coronoid Hydrocarbons …Chrysaorenes: Assembling Coronoid Hydrocarbons via the Fold-in Synthesis by Marcin Majewski, Tadeusz Lis, Joanna Cybińska, and Marcin

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

S1

Chrysaorenes Assembling Coronoid Hydrocarbons via the Fold-in Synthesis

by Marcin Majewski Tadeusz Lis Joanna Cybińska and Marcin Stępień

Supporting Information

Table of contents

Experimental details page S2

Synthetic procedures page S4

Additional schemes page S10

Additional figures page S14

Additional tables page S28

1H and 13C NMR spectra page S34

Mass spectra page S45

References page S50

Electronic Supplementary Material (ESI) for ChemCommThis journal is copy The Royal Society of Chemistry 2015

S2

Experimental

General Tetrahydrofuran toluene and NN-dimethylformamide were dried using a commercial

solvent purification system Dichloromethane was distilled from calcium hydride when used as a

reaction solvent All other solvents and reagents were used as received Compounds S11 S22 S33 and

S44 were prepared according to literature procedures 1H NMR spectra were recorded on high-field

spectrometers (1H frequency 50013 or 60013 MHz) equipped with broadband inverse gradient

probeheads Spectra were referenced to the residual solvent signals (chloroform-d 724 ppm) 13C

NMR spectra were recorded with 1H broadband decoupling and referenced to solvent signals

(13CDCl3 770 ppm) High resolution mass spectra were recorded using APCI or ESI ionization in the

positive mode

Computational methods Density functional theory (DFT) calculations were performed using

Gaussian 095 DFT geometry optimizations were carried out in unconstrained C1 symmetry using

molecular mechanics or semiempirical models as starting geometries X-ray geometries were used as

initial models for 3-Et and 4-Et DFT geometries were refined to meet standard convergence criteria

and the existence of a local minimum was verified by a normal mode frequency calculation DFT

calculations were performed using the hybrid functional B3LYP6ndash8 and the 6-31G(dp) basis set

Solvation effects were modeled using the IEFPCM formalism9 with standard solvent

parameterizations chloroform (1H and 13C NMR for 1ndash4-Et) dichloromethane (TD-DFT for 1ndash4-Et)

and NN-dimethylformamide (thermochemistry of the Yamamoto coupling) 1H and 13C shieldings

were calculated using the GIAO approach and referenced to the absolute TMS shieldings calculated

at the same level of theory (317454 ppm for 1H and 1920973 ppm for 13C) NICS scans were

performed with gas-phase calculated GIAO shieldings Electronic transitions were calculated by

means of time-dependent DFT (TD-DFT) All TD-DFT calculations were performed at the CAM-

B3LYP6-311+G(dp)6-31G(dp) level of theory10 using dichloromethane solvation

X-ray crystallography X-ray quality crystals were grown by slow diffusion of methanol into a toluene

solution of 3 same method was used to get crystals of 4 Diffraction measurements were performed

on a к-geometry Ruby PX diffractometer (ω scans) with graphite-monochromatized Mo Kα radiation

The data for 3 and 4 were collected at 100 K and 80 K respectively corrected for Lorenz and

polarization effects Data collection cell refinement data reduction and analysis were carried out

with the Xcalibur PX software CRYSALIS CCD and CRYSALIS RED respectively (Oxford Diffraction Ltd

Abignon England 2009) An analytical absorption correction was applied for the data of 3 and 4 with

use of CRYSALIS RED Both structures were solved by direct methods with the SHELXS-97 program

and refined using SHELXL-9711 with anisotropic thermal parameters for non-H atoms In the final

refinement cycles all H atoms were treated as riding atoms in geometrically optimized positions

CCDC 1407282 and 1407283 contain the supplementary crystallographic data for this paper These

data can be obtained free of charge from the Cambridge Crystallographic Data Centre via

wwwccdccamacukdata_requestcif

Photoluminescence Photoluminescence excitation (PLE) spectra as well as decay kinetics (DEC) were

taken with the FSL980-sm Fluorescence Spectrometer from Edinburgh Instruments Ltd A 450 W

Xenon arc lamp (PL and PLE) and a Super Continuum Fianium laser were used as excitation sources

Emission spectra were corrected for the recording system efficiency and excitation spectra were

corrected for the incident light intensity The quantum yield measurements were performed by using

an Edinburgh Instruments integrating sphere equipped with a small elliptical mirror and a baffle plate

for beam steering and shielding against directly detected light For the measurement the integrating

S3

sphere replaces the standard sample holder inside the sample chamber Calculations of quantum

yields were made using the software provided by Edinburgh Instruments

S4

Synthesis

NN-(36-dibromo-99-diethyl-9H-fluorene-27-diyl)diacetamide (S5) In a 500 mL round-bottomed

flask equipped with a stirring bar compound S4 (215 g 639 mmol) was dissolved in dry NN-

dimethylformamide (250 mL) under nitrogen atmosphere The solution was kept under dark and

bromine (819 mL 160 mmol) was added dropwise The mixture was stirred under nitrogen for 20

hours After that water (1 L) was added and a yellow-brown precipitate was formed The mixture was

filtered under reduced pressure and the precipitate was dried in vacuo The resulting product did not

require further purification (170 g 864) 1H NMR (600 MHz chloroform-d 300 K) δ 837 s 2H) δ

773 (s 2H) δ 770 (s 2H) δ 225 (s 6H) δ 200 (q 4H 3J = 73 Hz) δ 031 (t 6H 3J = 73 Hz) 13C NMR

(151 MHz chloroform-d 300 K) δ 16816 15080 13698 13466 12631 12294 11636 11172

5682 3273 3235 2978 2515 846 836 HRMS (ESI+) mz [M + H]+ Calcd for C21H23Br2N2O2

4930133 Found 4930121

36-dibromo-99-diethyl-9H-fluorene-27-diamine (S6) To a 2000 mL round-bottomed flask

equipped with a reflux condenser and a stirring bar compound S5 (316 g 639 mmol) was dissolved

in methanol (1000 mL) Potassium hydroxide (574 g 1020 mmol) was added to the mixture under

nitrogen The mixture was heated to 90 degC and stirred for 18 hours The solvent was removed on a

rotary evaporator and the product in the form of red-brown crystals was formed and used without

further purification (260 g 991 ) 1H NMR (600 MHz chloroform-d 300 K) δ 753 (s 2H) δ 665 (s

2H) δ 406 (s 4H) δ 185 (q 4H 3J = 74 Hz) δ 031 (t 6H 3J = 74 Hz) 13C NMR (151 MHz

chloroform-d 300 K) δ 14995 14229 13340 12261 11041 10811 5575 3304 842 HRMS

(ESI+) mz [M + H]+ Calcd for C17H19Br2N2 4089910 Found 4089913

36-dibromo-99-diethyl-27-diiodo-9H-fluorene (S7) In a round-bottomed flask equipped with a

magnetic stirring bar compound S6 (260 g 634 mmol) was suspended in a 10 water solution of

sulfuric acid The suspension was cooled to room temperature and further cooled to 0 degC in an ice

bath Aqueous solution of sodium nitrite (175 g 254 mmol in 90 mL of water) was added dropwise

to the suspension and stirred for 45 min To the solution potassium iodide (10523 g 634 mmol)

dissolved in 90 mL of water was added slowly The resulting solution was allowed to reach room

temperature and was stirred for 1 hour Aqueous solution of sodium sulphite (1 L) was added and the

mixture was extracted with dichloromethane The organic layers were combined dried with

anhydrous sodium sulphate filtered and the solvent was removed on a rotary evaporator The crude

product was purified by column chromatography (silicagel dichloromethane) The first fraction was

S5

collected and concentrated on a rotary evaporator to yield yellow-brown crystals (25 g 624 ) 1H

NMR (600 MHz chloroform-d 300 K) δ 789 (s 2H) δ 777 (s 2H) δ 193 (q 4H 3J = 74 Hz) δ 031

(t 6H 3J = 74 Hz) 13C NMR (151 MHz chloroform-d 300 K) δ 15026 13472 12830 12409

10045 5622 3231 886

36-dibromo-99-diethyl-9H-fluorene-27-dicarbaldehyde (S8) In a 500 mL round-bottomed flask

equipped with a stirring bar and septum compound S7 (118 g 187 mmol) was dissolved in dry

tetrahydrofuran (300 mL) under nitrogen atmosphere The solution was cooled in an acetone‒liquid

nitrogen bath to ‒78 degC and a solution of isopropylmagnesium chloride (1961 mL 392 mmol 2 M

solution in tetrahydrofuran) was added dropwise After stirring for 15 minutes dry NN-

dimethylformamide (578 mL 747 mmol) was added and the solution was allowed to reach room

temperature and was stirred for an additional hour Aqueous solution of ammonium chloride was

added and the reaction mixture was extracted with dichloromethane The organic layers were

combined dried over anhydrous sodium sulphate filtered and the solvent was removed on a rotary

evaporator The crude product was purified by column chromatography (silicagel

dichloromethane‒hexanes = 21) The third fraction was collected and concentrated on a rotary

evaporator to give orange crystals (538 g 661 ) 1H NMR (600 MHz chloroform-d 300 K) δ 1043

(s 2H) δ 799 (s 2H) δ 790 (s 2H) δ 207 (q 4H 3J = 74 Hz) δ 027 (t 6H 3J = 74 Hz) 13C NMR (151

MHz chloroform-d 300 K) δ 19181 15112 14573 13326 12654 12633 12423 5690 3211

841 HRMS (APCI) mz [M + H]+ Calcd for C19H17Br2O2 4349590 Found 4349595

(36-dibromo-99-diethyl-9H-fluorene-27-diyl)dimethanol (S9) In a 50 mL round-bottomed flask

equipped with a magnetic stirring bar compound S8 (500 mg 12 mmol) and sodium borohydride

(130 mg 34 mmol) were suspended in dry tetrahydrofuran (25 mL) The mixture was stirred in room

temperature overnight after which a yellow precipitate was formed Water (30 mL) was added and

then the mixture was extracted with dichloromethane Combined organic extracts were dried with

anhydrous sodium sulphate and filtered Solvents were removed on a rotary evaporator yielding an

orange-brown crystals (482 mg 955 ) The product was used without further purification 1H NMR

(600 MHz chloroform-d 300 K) δ 780 (s 2H) δ 742 (s 2H) δ 481 (d 4H J = 64 Hz) δ 200 (q 4H 3J = 73 Hz) δ 027 (t 6H 3J = 73 Hz) 13C NMR (151 MHz chloroform-d 300 K) δ 14978 14121

13878 12411 12330 12104 6545 5637 3245 848 HRMS (APCI) mz [M ]+ Calcd for

C19H20Br2O2 4379825 Found 4379771

S6

36-dibromo-27-bis(chloromethyl)-99-diethyl-9H-fluorene (S10) In a 50 mL round-bottomed flask

equipped with a magnetic stirring bar compound S9 (500 mg 11 mmol) was dissolved in freshly

distilled dichloromethane (15 mL) to which catalytic amounts of NN-dimethylformamide (25 microL)

were added With continuous stirring thionyl chloride (181 microL 25 mmol) was added to the reaction

mixture After one hour of stirring the solvent and excess of thionyl chloride were removed on a

rotary evaporator yielding a brown crystals (520 mg 960 ) The product was used without further

purification 1H NMR (600 MHz chloroform-d 300 K) δ 786 (s 2H) δ 741 (s 2H) δ 476 (s 4H) δ

200 (q 4H 3J = 73 Hz) δ 030 (t 6H 3J = 73 Hz) 13C NMR (151 MHz chloroform-d 300 K) δ 15018

14175 13596 12532 12476 12293 5640 4667 3236 848 HRMS (APCI) mz [M ]+ Calcd for

C19H18Br2Cl2 4739147 Found 4739290

36-dibromo-2-chloromethyl-7-triphenylphosphine-99-diethyl-9H-fluorene (S11) In a 50 mL

pressure tube equipped with a magnetic stirring bar compound S10 (550 mg 12 mmol) and

triphenylphosphine (907 mg 346 mmol) were dissolved in dry toluene (25 mL) The reaction mixture

was sealed heated at 120 degC and stirred for 12 hours after which time a yellow precipitate was

formed The reaction mixture was cooled to room temperature diluted with dichloromethane and

the solvents were removed on a rotary evaporator The precipitate was washed with hexane and

dried yielding yellow-white crystals (1035 g 895 ) 1H NMR (600 MHz chloroform-d 300 K) δ

776 (t 6H 3J = 726 Hz) δ 769 (m 12H) δ 760 (m 12H) δ 759 (s 2H) δ 727 (s 2H) δ 580 (d 4H 3J = 144 Hz) δ 140 (q 4H 3J = 72 Hz) δ -018 (t 6H 3J = 72 Hz) 13C NMR (151 MHz chloroform-d

300 K) δ 15027 14124 13511 13435 13018 12799 12698 12572 12438 11771 11715

5616 3147 842 HRMS (ESI+) mz [M2+] Calcd for C55H48Br2P2 4640793 Found 4640799

S7

(33rsquo3rsquorsquo66rsquo6rsquorsquo-hexabromo-99rsquo9rsquorsquo9rsquorsquorsquo9rsquorsquorsquorsquo9rsquorsquorsquorsquorsquo-hexaethyl)[222]-(27)-fluorenophanetriene (3-Et)

To a 250 mL three-necked round-bottomed flask equipped with a reflux condenser septum and

syringe pump adapter were placed zinc powder (2250 mg 344 mmol) and copper(I) iodide (210 mg

11 mmol) The apparatus was filled with nitrogen and oxygen-free tetrahydrofuran (130 mL) was

introduced through a syringe Titanium tetrachloride (189 mL 172 mmol) was added dropwise the

septum was replaced with a glass stopper and the reaction mixture was heated and stirred under

reflux for 3 hours Subsequently a solution of compound S8 (100 mg 023 mmol) in oxygen-free

tetrahydrofuran (50 mL) was added to the reaction mixture using a syringe pump in 3 hours and the

mixture was stirred under reflux for another 12 hours After that time it was cooled down to room

temperature Aqueous ammonia (5 150 mL) was added and the mixture was stirred for 1 hour

Extraction with dichloromethane followed by drying the combined organic layers over anhydrous

sodium sulphate and removing the solvents on a rotary evaporator gave a yellow-green solid It was

purified using column chromatography (silicagel dichloromethanehexane = 110) yielding pale

green crystals (16 mg 173 ) 1H NMR (500 MHz chloroform-d 300 K) δ 763 (s 6H) δ 688 (s 6H)

δ 687 (s 6H) δ 135 (q 12H 3J = 74 Hz) δ 011 (t 18H 3J = 74 Hz) 13C NMR (600 MHz chloroform-

d 300 K) δ 14959 14018 13662 13243 12527 12364 12206 5478 3106 872 HRMS

(APCI+) mz [M ]+ Calcd for C57H48Br6 12058851 Found 12059023

(33rsquo3rsquorsquo3rsquorsquorsquo66rsquo6rsquorsquo6rsquorsquorsquo-octabromo-99rsquo9rsquorsquo9rsquorsquorsquo9rsquorsquorsquorsquo9rsquorsquorsquorsquorsquo9rsquorsquorsquorsquorsquorsquo9rsquorsquorsquorsquorsquorsquorsquo-octaethyl)[2222]-(27)-

fluorenephanetetraene (4-Et) In a 100 mL round-bottomed flask compound S8 (79 mg 018 mmol)

and compound S11 (200 mg 019 mmol) were dissolved in freshly distilled oxygen free

dichloromethane (80 mL) Aqueous sodium hydroxide (50 620 microL) was added dropwise to the

solution using a syringe During the addition the mixture was kept under a nitrogen atmosphere and

protected from light After the addition the solution was stirred for 1 hour After that time the

mixture was diluted with water and extracted with dichloromethane Combined extracts were dried

over anhydrous sodium sulphate filtered and the solvent was removed on a rotary evaporator

The crude material was purified using column chromatography (silicagel dichloromethanehexanes =

16) yielding pale green crystals (35 mg 239 ) 1H NMR (500 MHz chloroform-d 300 K) δ 782 (s

S8

8H) δ 701 (s 8H) δ 677 (s 8H) δ 142 (q 16H 3J = 74 Hz) δ 002 (t 24H 3J = 74 Hz) 13C NMR (151

MHz chloroform-d 300 K) δ 14963 14055 13618 13080 12483 12426 12301 5555 3130

855 HRMS (APCI+) mz [M ]+ Calcd for C76H64Br8 16078490 Found 16078971

[3]chrysaorene (1-Et) In a 50 mL Schlenk flask equipped with a magnetic stirring bar compound 3-Et

(22 mg 181 micromol) was placed and the vessel was capped with a septum The atmosphere within the

flask was then changed a few times to nitrogen after which bis(15-cyclooctadiene)nickel(0) (45 mg

016 mmol) and 22rsquo-bibyridyl (26 mg 016 mmol) were added in a glove-box Dry NN-

dimethylformamide (7 mL) was then added to the vessel in a constant flow of nitrogen and the

mixture was sealed with a glass stopper After subsequent changing of the atmosphere to nitrogen

one more time the reaction mixture was heated to 85 degrees and stirred for 18 hours It was then

cooled down to room temperature diluted with water and extracted with dichloromethane The

combined organic extracts were dried over anhydrous sodium sulphate filtered and the solvents

were removed on a rotary evaporator The crude mixture was filtered through a short silica plug to

remove the solid impurities Subsequent purification by column chromatography (silicagel

dichloromethanehexane = 16) gave the product in a form of pale yellow solid (65 mg 489 ) 1H

NMR (600 MHz chloroform-d 300 K) δ 927 (s 6H) δ 763 (s 6H) δ 761 (s 6H) δ 231 (q 6H 3J =

74 Hz) δ 209 (q 6H 3J = 73 Hz) δ 119 (t 9H 3J = 74 Hz) δ -041 (t 9H 3J = 73 Hz) 13C NMR (151

MHz chloroform-d 300 K) δ 14951 14179 13156 13094 12637 12319 11713 5940 3549

2980 1009 826 HRMS (APCI+) mz [M + H]+ Calcd for C57H49 7333829 Found 7333834 UV-vis

(dichloromethane 295 K) [nm] ( in M-1cm-1) 250 (761middot104) 281 (644middot104) 309 (427middot104) 316

(441middot104) 330 (342middot104) 348 (358middot104) 373 (148middot104) 396 (184middot104)

S9

[4]chrysaorene (2-Et) In a 25 mL Schlenk flask equipped with a magnetic stirring bar compound 4-Et

(15 mg 93 micromol) was placed and the vessel was capped with a septum The atmosphere within the

flask was then changed a few times to nitrogen after which bis(15-cyclooctadiene)nickel(0) (31 mg

1110 micromol) and 22rsquo-bibyridyl (17 mg 1110 micromol) were added in a glove-box Dry NN-

dimethylformamide (5 mL) was then added to the vessel in a constant flow of nitrogen and the

mixture was sealed with a glass stopper After subsequent changing of the atmosphere to nitrogen

one more time the reaction mixture was heated to 85 degrees and stirred for 18 hours It was then

cooled down to room temperature diluted with water and extracted with dichloromethane The

combined organic extracts were dried over anhydrous sodium sulphate filtered and the solvents

were removed on a rotary evaporator The crude mixture was filtered through a short silica plug to

remove the solid impurities Subsequent purification by column chromatography (silicagel

dichloromethanehexane = 16) gave the product in a form of pale yellow solid (4 mg 441 ) 1H

NMR (500 MHz chloroform-d 300 K) δ 970 (s 8H) δ 791 (s 8H) δ 784 (s 8H) δ 230 (q 16H 3J =

74 Hz) δ 042 (t 24H 3J = 74 Hz) 13C NMR (151 MHz chloroform-d 300 K) δ 14910 14122

13244 13084 12728 12308 11442 5430 3440 839 HRMS (APCI+) mz [M + H]+ Calcd for

C76H65 97751 Found 97753 UV-vis (dichloromethane 295 K) [nm] ( in M-1cm-1) 265 (244middot104)

296 (133middot104) 313 (167middot104) 319 (169middot104) 341 (206middot104) 366 (115middot104) 384 (126middot104) 398

(699middot103)

S10

Scheme S1 Synthesis of compounds S1-4-Et Reagents and conditions a) fuming HNO3 (20 equiv)

AcOH b) N2H4 (4 equiv) PdC (002 equiv) EtOH c) Ac2O (30 equiv) AcOH d) Br2 (25 equiv) DMF

e) KOH (16 equiv) MeOH f) 1 H2SO4H2O 2 NaNO2 (4 equiv) 3 KI (10 equiv)H2O g) 1 i-PrMgCl

(21 equiv)THF 2 DMF (4 equiv) h) NaBH4 (3 equiv) THF i) SOCl2 (22 equiv) DCM DMF j) PPh3

(3 equiv) toluene k) TiCl4 (75 equiv) CuI (48 equiv) Zn (150 equiv) THF l) NaOHaq (65 equiv)

DCM

S11

Scheme S2 1H and 13C chemical shifts of 3-Et and 4-Et (full assignment based on data obtained from

COSY ROESY HSQC and HMBC experiments)

S12

Scheme S3 1H and 13C chemical shifts of 1-Et and 2-Et (full assignment based on data obtained from

COSY ROESY HSQC and HMBC experiments)

S13

Scheme S4 Macrocyclic conjugation pathways in 1 and 2 [28]- [32]- [36]- and [40]annulene

pathways in 2 are constructed by inclusion of outer parts of phenanthrene units as shown for 1

S14

Figure S1 Molecular structure of 3-Et (co-crystalizing solvent dichloromethane also visible)

S15

Figure S2 Molecular structure of 4-Et (co-crystalizing solvent toluene also visible)

S16

Figure S3 Correlation between 1H NMR chemical shifts of 3-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S4 Correlation between 13C NMR chemical shifts of 3-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09915x + 02767Rsup2 = 0997

-1

1

3

5

7

-1 1 3 5 7

δexptl(1H)

δcalcd(1H)

y = 09557x + 5237Rsup2 = 0987

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S17

Figure S5 Correlation between 1H NMR chemical shifts of 4-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S6 Correlation between 13C NMR chemical shifts of 4-Et derived from experiment 151 MHz

chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09944x + 01523Rsup2 = 09985

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09686x + 37185Rsup2 = 09891

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S18

Figure S7 Correlation between 1H NMR chemical shifts of 1-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S8 Correlation between 13C NMR chemical shifts of 1-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10159x + 00411Rsup2 = 09994

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09457x + 42108

Rsup2 = 09986

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S19

Figure S9 Correlation between 1H NMR chemical shifts of 2-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S10 Correlation between 13C NMR chemical shifts of 2-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10166x + 0055

Rsup2 = 09994

0

2

4

6

8

10

0 2 4 6 8 10

δexptl(1H)

δcalcd(1H)

y = 09469x + 42433Rsup2 = 09992

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S20

10 20 30 40 50 60 70 80 90 100

1E-3

001

01

1

Log

Norm

lized

In

ten

sity

tns

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 958665E-6

Adj R-Square 099971

Value Standard Error

Normalized1

y0 8E-4 0

A1 808283 001427

t1 392706 000265

k 025464 1719E-4

tau 272203 000184

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 11007E-5

Adj R-Square 099971

Value Standard Error

Normalized1

y0 749513E-4 669951E-5

A1 279424 000238

t1 801384 000459

k 012478 714923E-5

tau 555477 000318

Figure S11 Decay traces of the emissions monitored at 437 nm (1-Et) and 447 nm (2-Et) under 395

nm excitation (Super Continuum Fianium Laser)

S21

Figure S12 Quantum yield determinations for 1-Et (top) and 2-Et (bottom)

S22

Figure S13 Chromaticity diagrams for 1-Et (x = 016 y = 009 and u = 017 v = 022) and 2-Et

(x = 015 y = 01 and u = 015 v = 023)

S23

Figure S14 KohnndashSham frontier orbitals calculated for 1-Et (left) and 2-Et (right) at the

PCM(DCM)B3LYP6-311+G(dp)6-31G(dp) level of theory

S24

Figure S15 Comparison of DFT-optimized geometries of 2-Et (blue) and 5-Et (red B3LYP6-31G(dp)

gas phase)

S25

Figure S16 NICS(1) scans for 2-Et 6-Et and phenanthrene Nuclear shieldings were evaluated 1 Aring

above the ring plane using GIAO-B3LYP6-31G(dp)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

-5 0 5 10 15

2-Et

6-Et

phenanthrene

benzenecentroid

chrysaorenecentroid

NICS(1)

scan coordinate

S26

Figure S17 DFT-optimized structure of 3-Et (B3LYP6-31G(dp))

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S2

Experimental

General Tetrahydrofuran toluene and NN-dimethylformamide were dried using a commercial

solvent purification system Dichloromethane was distilled from calcium hydride when used as a

reaction solvent All other solvents and reagents were used as received Compounds S11 S22 S33 and

S44 were prepared according to literature procedures 1H NMR spectra were recorded on high-field

spectrometers (1H frequency 50013 or 60013 MHz) equipped with broadband inverse gradient

probeheads Spectra were referenced to the residual solvent signals (chloroform-d 724 ppm) 13C

NMR spectra were recorded with 1H broadband decoupling and referenced to solvent signals

(13CDCl3 770 ppm) High resolution mass spectra were recorded using APCI or ESI ionization in the

positive mode

Computational methods Density functional theory (DFT) calculations were performed using

Gaussian 095 DFT geometry optimizations were carried out in unconstrained C1 symmetry using

molecular mechanics or semiempirical models as starting geometries X-ray geometries were used as

initial models for 3-Et and 4-Et DFT geometries were refined to meet standard convergence criteria

and the existence of a local minimum was verified by a normal mode frequency calculation DFT

calculations were performed using the hybrid functional B3LYP6ndash8 and the 6-31G(dp) basis set

Solvation effects were modeled using the IEFPCM formalism9 with standard solvent

parameterizations chloroform (1H and 13C NMR for 1ndash4-Et) dichloromethane (TD-DFT for 1ndash4-Et)

and NN-dimethylformamide (thermochemistry of the Yamamoto coupling) 1H and 13C shieldings

were calculated using the GIAO approach and referenced to the absolute TMS shieldings calculated

at the same level of theory (317454 ppm for 1H and 1920973 ppm for 13C) NICS scans were

performed with gas-phase calculated GIAO shieldings Electronic transitions were calculated by

means of time-dependent DFT (TD-DFT) All TD-DFT calculations were performed at the CAM-

B3LYP6-311+G(dp)6-31G(dp) level of theory10 using dichloromethane solvation

X-ray crystallography X-ray quality crystals were grown by slow diffusion of methanol into a toluene

solution of 3 same method was used to get crystals of 4 Diffraction measurements were performed

on a к-geometry Ruby PX diffractometer (ω scans) with graphite-monochromatized Mo Kα radiation

The data for 3 and 4 were collected at 100 K and 80 K respectively corrected for Lorenz and

polarization effects Data collection cell refinement data reduction and analysis were carried out

with the Xcalibur PX software CRYSALIS CCD and CRYSALIS RED respectively (Oxford Diffraction Ltd

Abignon England 2009) An analytical absorption correction was applied for the data of 3 and 4 with

use of CRYSALIS RED Both structures were solved by direct methods with the SHELXS-97 program

and refined using SHELXL-9711 with anisotropic thermal parameters for non-H atoms In the final

refinement cycles all H atoms were treated as riding atoms in geometrically optimized positions

CCDC 1407282 and 1407283 contain the supplementary crystallographic data for this paper These

data can be obtained free of charge from the Cambridge Crystallographic Data Centre via

wwwccdccamacukdata_requestcif

Photoluminescence Photoluminescence excitation (PLE) spectra as well as decay kinetics (DEC) were

taken with the FSL980-sm Fluorescence Spectrometer from Edinburgh Instruments Ltd A 450 W

Xenon arc lamp (PL and PLE) and a Super Continuum Fianium laser were used as excitation sources

Emission spectra were corrected for the recording system efficiency and excitation spectra were

corrected for the incident light intensity The quantum yield measurements were performed by using

an Edinburgh Instruments integrating sphere equipped with a small elliptical mirror and a baffle plate

for beam steering and shielding against directly detected light For the measurement the integrating

S3

sphere replaces the standard sample holder inside the sample chamber Calculations of quantum

yields were made using the software provided by Edinburgh Instruments

S4

Synthesis

NN-(36-dibromo-99-diethyl-9H-fluorene-27-diyl)diacetamide (S5) In a 500 mL round-bottomed

flask equipped with a stirring bar compound S4 (215 g 639 mmol) was dissolved in dry NN-

dimethylformamide (250 mL) under nitrogen atmosphere The solution was kept under dark and

bromine (819 mL 160 mmol) was added dropwise The mixture was stirred under nitrogen for 20

hours After that water (1 L) was added and a yellow-brown precipitate was formed The mixture was

filtered under reduced pressure and the precipitate was dried in vacuo The resulting product did not

require further purification (170 g 864) 1H NMR (600 MHz chloroform-d 300 K) δ 837 s 2H) δ

773 (s 2H) δ 770 (s 2H) δ 225 (s 6H) δ 200 (q 4H 3J = 73 Hz) δ 031 (t 6H 3J = 73 Hz) 13C NMR

(151 MHz chloroform-d 300 K) δ 16816 15080 13698 13466 12631 12294 11636 11172

5682 3273 3235 2978 2515 846 836 HRMS (ESI+) mz [M + H]+ Calcd for C21H23Br2N2O2

4930133 Found 4930121

36-dibromo-99-diethyl-9H-fluorene-27-diamine (S6) To a 2000 mL round-bottomed flask

equipped with a reflux condenser and a stirring bar compound S5 (316 g 639 mmol) was dissolved

in methanol (1000 mL) Potassium hydroxide (574 g 1020 mmol) was added to the mixture under

nitrogen The mixture was heated to 90 degC and stirred for 18 hours The solvent was removed on a

rotary evaporator and the product in the form of red-brown crystals was formed and used without

further purification (260 g 991 ) 1H NMR (600 MHz chloroform-d 300 K) δ 753 (s 2H) δ 665 (s

2H) δ 406 (s 4H) δ 185 (q 4H 3J = 74 Hz) δ 031 (t 6H 3J = 74 Hz) 13C NMR (151 MHz

chloroform-d 300 K) δ 14995 14229 13340 12261 11041 10811 5575 3304 842 HRMS

(ESI+) mz [M + H]+ Calcd for C17H19Br2N2 4089910 Found 4089913

36-dibromo-99-diethyl-27-diiodo-9H-fluorene (S7) In a round-bottomed flask equipped with a

magnetic stirring bar compound S6 (260 g 634 mmol) was suspended in a 10 water solution of

sulfuric acid The suspension was cooled to room temperature and further cooled to 0 degC in an ice

bath Aqueous solution of sodium nitrite (175 g 254 mmol in 90 mL of water) was added dropwise

to the suspension and stirred for 45 min To the solution potassium iodide (10523 g 634 mmol)

dissolved in 90 mL of water was added slowly The resulting solution was allowed to reach room

temperature and was stirred for 1 hour Aqueous solution of sodium sulphite (1 L) was added and the

mixture was extracted with dichloromethane The organic layers were combined dried with

anhydrous sodium sulphate filtered and the solvent was removed on a rotary evaporator The crude

product was purified by column chromatography (silicagel dichloromethane) The first fraction was

S5

collected and concentrated on a rotary evaporator to yield yellow-brown crystals (25 g 624 ) 1H

NMR (600 MHz chloroform-d 300 K) δ 789 (s 2H) δ 777 (s 2H) δ 193 (q 4H 3J = 74 Hz) δ 031

(t 6H 3J = 74 Hz) 13C NMR (151 MHz chloroform-d 300 K) δ 15026 13472 12830 12409

10045 5622 3231 886

36-dibromo-99-diethyl-9H-fluorene-27-dicarbaldehyde (S8) In a 500 mL round-bottomed flask

equipped with a stirring bar and septum compound S7 (118 g 187 mmol) was dissolved in dry

tetrahydrofuran (300 mL) under nitrogen atmosphere The solution was cooled in an acetone‒liquid

nitrogen bath to ‒78 degC and a solution of isopropylmagnesium chloride (1961 mL 392 mmol 2 M

solution in tetrahydrofuran) was added dropwise After stirring for 15 minutes dry NN-

dimethylformamide (578 mL 747 mmol) was added and the solution was allowed to reach room

temperature and was stirred for an additional hour Aqueous solution of ammonium chloride was

added and the reaction mixture was extracted with dichloromethane The organic layers were

combined dried over anhydrous sodium sulphate filtered and the solvent was removed on a rotary

evaporator The crude product was purified by column chromatography (silicagel

dichloromethane‒hexanes = 21) The third fraction was collected and concentrated on a rotary

evaporator to give orange crystals (538 g 661 ) 1H NMR (600 MHz chloroform-d 300 K) δ 1043

(s 2H) δ 799 (s 2H) δ 790 (s 2H) δ 207 (q 4H 3J = 74 Hz) δ 027 (t 6H 3J = 74 Hz) 13C NMR (151

MHz chloroform-d 300 K) δ 19181 15112 14573 13326 12654 12633 12423 5690 3211

841 HRMS (APCI) mz [M + H]+ Calcd for C19H17Br2O2 4349590 Found 4349595

(36-dibromo-99-diethyl-9H-fluorene-27-diyl)dimethanol (S9) In a 50 mL round-bottomed flask

equipped with a magnetic stirring bar compound S8 (500 mg 12 mmol) and sodium borohydride

(130 mg 34 mmol) were suspended in dry tetrahydrofuran (25 mL) The mixture was stirred in room

temperature overnight after which a yellow precipitate was formed Water (30 mL) was added and

then the mixture was extracted with dichloromethane Combined organic extracts were dried with

anhydrous sodium sulphate and filtered Solvents were removed on a rotary evaporator yielding an

orange-brown crystals (482 mg 955 ) The product was used without further purification 1H NMR

(600 MHz chloroform-d 300 K) δ 780 (s 2H) δ 742 (s 2H) δ 481 (d 4H J = 64 Hz) δ 200 (q 4H 3J = 73 Hz) δ 027 (t 6H 3J = 73 Hz) 13C NMR (151 MHz chloroform-d 300 K) δ 14978 14121

13878 12411 12330 12104 6545 5637 3245 848 HRMS (APCI) mz [M ]+ Calcd for

C19H20Br2O2 4379825 Found 4379771

S6

36-dibromo-27-bis(chloromethyl)-99-diethyl-9H-fluorene (S10) In a 50 mL round-bottomed flask

equipped with a magnetic stirring bar compound S9 (500 mg 11 mmol) was dissolved in freshly

distilled dichloromethane (15 mL) to which catalytic amounts of NN-dimethylformamide (25 microL)

were added With continuous stirring thionyl chloride (181 microL 25 mmol) was added to the reaction

mixture After one hour of stirring the solvent and excess of thionyl chloride were removed on a

rotary evaporator yielding a brown crystals (520 mg 960 ) The product was used without further

purification 1H NMR (600 MHz chloroform-d 300 K) δ 786 (s 2H) δ 741 (s 2H) δ 476 (s 4H) δ

200 (q 4H 3J = 73 Hz) δ 030 (t 6H 3J = 73 Hz) 13C NMR (151 MHz chloroform-d 300 K) δ 15018

14175 13596 12532 12476 12293 5640 4667 3236 848 HRMS (APCI) mz [M ]+ Calcd for

C19H18Br2Cl2 4739147 Found 4739290

36-dibromo-2-chloromethyl-7-triphenylphosphine-99-diethyl-9H-fluorene (S11) In a 50 mL

pressure tube equipped with a magnetic stirring bar compound S10 (550 mg 12 mmol) and

triphenylphosphine (907 mg 346 mmol) were dissolved in dry toluene (25 mL) The reaction mixture

was sealed heated at 120 degC and stirred for 12 hours after which time a yellow precipitate was

formed The reaction mixture was cooled to room temperature diluted with dichloromethane and

the solvents were removed on a rotary evaporator The precipitate was washed with hexane and

dried yielding yellow-white crystals (1035 g 895 ) 1H NMR (600 MHz chloroform-d 300 K) δ

776 (t 6H 3J = 726 Hz) δ 769 (m 12H) δ 760 (m 12H) δ 759 (s 2H) δ 727 (s 2H) δ 580 (d 4H 3J = 144 Hz) δ 140 (q 4H 3J = 72 Hz) δ -018 (t 6H 3J = 72 Hz) 13C NMR (151 MHz chloroform-d

300 K) δ 15027 14124 13511 13435 13018 12799 12698 12572 12438 11771 11715

5616 3147 842 HRMS (ESI+) mz [M2+] Calcd for C55H48Br2P2 4640793 Found 4640799

S7

(33rsquo3rsquorsquo66rsquo6rsquorsquo-hexabromo-99rsquo9rsquorsquo9rsquorsquorsquo9rsquorsquorsquorsquo9rsquorsquorsquorsquorsquo-hexaethyl)[222]-(27)-fluorenophanetriene (3-Et)

To a 250 mL three-necked round-bottomed flask equipped with a reflux condenser septum and

syringe pump adapter were placed zinc powder (2250 mg 344 mmol) and copper(I) iodide (210 mg

11 mmol) The apparatus was filled with nitrogen and oxygen-free tetrahydrofuran (130 mL) was

introduced through a syringe Titanium tetrachloride (189 mL 172 mmol) was added dropwise the

septum was replaced with a glass stopper and the reaction mixture was heated and stirred under

reflux for 3 hours Subsequently a solution of compound S8 (100 mg 023 mmol) in oxygen-free

tetrahydrofuran (50 mL) was added to the reaction mixture using a syringe pump in 3 hours and the

mixture was stirred under reflux for another 12 hours After that time it was cooled down to room

temperature Aqueous ammonia (5 150 mL) was added and the mixture was stirred for 1 hour

Extraction with dichloromethane followed by drying the combined organic layers over anhydrous

sodium sulphate and removing the solvents on a rotary evaporator gave a yellow-green solid It was

purified using column chromatography (silicagel dichloromethanehexane = 110) yielding pale

green crystals (16 mg 173 ) 1H NMR (500 MHz chloroform-d 300 K) δ 763 (s 6H) δ 688 (s 6H)

δ 687 (s 6H) δ 135 (q 12H 3J = 74 Hz) δ 011 (t 18H 3J = 74 Hz) 13C NMR (600 MHz chloroform-

d 300 K) δ 14959 14018 13662 13243 12527 12364 12206 5478 3106 872 HRMS

(APCI+) mz [M ]+ Calcd for C57H48Br6 12058851 Found 12059023

(33rsquo3rsquorsquo3rsquorsquorsquo66rsquo6rsquorsquo6rsquorsquorsquo-octabromo-99rsquo9rsquorsquo9rsquorsquorsquo9rsquorsquorsquorsquo9rsquorsquorsquorsquorsquo9rsquorsquorsquorsquorsquorsquo9rsquorsquorsquorsquorsquorsquorsquo-octaethyl)[2222]-(27)-

fluorenephanetetraene (4-Et) In a 100 mL round-bottomed flask compound S8 (79 mg 018 mmol)

and compound S11 (200 mg 019 mmol) were dissolved in freshly distilled oxygen free

dichloromethane (80 mL) Aqueous sodium hydroxide (50 620 microL) was added dropwise to the

solution using a syringe During the addition the mixture was kept under a nitrogen atmosphere and

protected from light After the addition the solution was stirred for 1 hour After that time the

mixture was diluted with water and extracted with dichloromethane Combined extracts were dried

over anhydrous sodium sulphate filtered and the solvent was removed on a rotary evaporator

The crude material was purified using column chromatography (silicagel dichloromethanehexanes =

16) yielding pale green crystals (35 mg 239 ) 1H NMR (500 MHz chloroform-d 300 K) δ 782 (s

S8

8H) δ 701 (s 8H) δ 677 (s 8H) δ 142 (q 16H 3J = 74 Hz) δ 002 (t 24H 3J = 74 Hz) 13C NMR (151

MHz chloroform-d 300 K) δ 14963 14055 13618 13080 12483 12426 12301 5555 3130

855 HRMS (APCI+) mz [M ]+ Calcd for C76H64Br8 16078490 Found 16078971

[3]chrysaorene (1-Et) In a 50 mL Schlenk flask equipped with a magnetic stirring bar compound 3-Et

(22 mg 181 micromol) was placed and the vessel was capped with a septum The atmosphere within the

flask was then changed a few times to nitrogen after which bis(15-cyclooctadiene)nickel(0) (45 mg

016 mmol) and 22rsquo-bibyridyl (26 mg 016 mmol) were added in a glove-box Dry NN-

dimethylformamide (7 mL) was then added to the vessel in a constant flow of nitrogen and the

mixture was sealed with a glass stopper After subsequent changing of the atmosphere to nitrogen

one more time the reaction mixture was heated to 85 degrees and stirred for 18 hours It was then

cooled down to room temperature diluted with water and extracted with dichloromethane The

combined organic extracts were dried over anhydrous sodium sulphate filtered and the solvents

were removed on a rotary evaporator The crude mixture was filtered through a short silica plug to

remove the solid impurities Subsequent purification by column chromatography (silicagel

dichloromethanehexane = 16) gave the product in a form of pale yellow solid (65 mg 489 ) 1H

NMR (600 MHz chloroform-d 300 K) δ 927 (s 6H) δ 763 (s 6H) δ 761 (s 6H) δ 231 (q 6H 3J =

74 Hz) δ 209 (q 6H 3J = 73 Hz) δ 119 (t 9H 3J = 74 Hz) δ -041 (t 9H 3J = 73 Hz) 13C NMR (151

MHz chloroform-d 300 K) δ 14951 14179 13156 13094 12637 12319 11713 5940 3549

2980 1009 826 HRMS (APCI+) mz [M + H]+ Calcd for C57H49 7333829 Found 7333834 UV-vis

(dichloromethane 295 K) [nm] ( in M-1cm-1) 250 (761middot104) 281 (644middot104) 309 (427middot104) 316

(441middot104) 330 (342middot104) 348 (358middot104) 373 (148middot104) 396 (184middot104)

S9

[4]chrysaorene (2-Et) In a 25 mL Schlenk flask equipped with a magnetic stirring bar compound 4-Et

(15 mg 93 micromol) was placed and the vessel was capped with a septum The atmosphere within the

flask was then changed a few times to nitrogen after which bis(15-cyclooctadiene)nickel(0) (31 mg

1110 micromol) and 22rsquo-bibyridyl (17 mg 1110 micromol) were added in a glove-box Dry NN-

dimethylformamide (5 mL) was then added to the vessel in a constant flow of nitrogen and the

mixture was sealed with a glass stopper After subsequent changing of the atmosphere to nitrogen

one more time the reaction mixture was heated to 85 degrees and stirred for 18 hours It was then

cooled down to room temperature diluted with water and extracted with dichloromethane The

combined organic extracts were dried over anhydrous sodium sulphate filtered and the solvents

were removed on a rotary evaporator The crude mixture was filtered through a short silica plug to

remove the solid impurities Subsequent purification by column chromatography (silicagel

dichloromethanehexane = 16) gave the product in a form of pale yellow solid (4 mg 441 ) 1H

NMR (500 MHz chloroform-d 300 K) δ 970 (s 8H) δ 791 (s 8H) δ 784 (s 8H) δ 230 (q 16H 3J =

74 Hz) δ 042 (t 24H 3J = 74 Hz) 13C NMR (151 MHz chloroform-d 300 K) δ 14910 14122

13244 13084 12728 12308 11442 5430 3440 839 HRMS (APCI+) mz [M + H]+ Calcd for

C76H65 97751 Found 97753 UV-vis (dichloromethane 295 K) [nm] ( in M-1cm-1) 265 (244middot104)

296 (133middot104) 313 (167middot104) 319 (169middot104) 341 (206middot104) 366 (115middot104) 384 (126middot104) 398

(699middot103)

S10

Scheme S1 Synthesis of compounds S1-4-Et Reagents and conditions a) fuming HNO3 (20 equiv)

AcOH b) N2H4 (4 equiv) PdC (002 equiv) EtOH c) Ac2O (30 equiv) AcOH d) Br2 (25 equiv) DMF

e) KOH (16 equiv) MeOH f) 1 H2SO4H2O 2 NaNO2 (4 equiv) 3 KI (10 equiv)H2O g) 1 i-PrMgCl

(21 equiv)THF 2 DMF (4 equiv) h) NaBH4 (3 equiv) THF i) SOCl2 (22 equiv) DCM DMF j) PPh3

(3 equiv) toluene k) TiCl4 (75 equiv) CuI (48 equiv) Zn (150 equiv) THF l) NaOHaq (65 equiv)

DCM

S11

Scheme S2 1H and 13C chemical shifts of 3-Et and 4-Et (full assignment based on data obtained from

COSY ROESY HSQC and HMBC experiments)

S12

Scheme S3 1H and 13C chemical shifts of 1-Et and 2-Et (full assignment based on data obtained from

COSY ROESY HSQC and HMBC experiments)

S13

Scheme S4 Macrocyclic conjugation pathways in 1 and 2 [28]- [32]- [36]- and [40]annulene

pathways in 2 are constructed by inclusion of outer parts of phenanthrene units as shown for 1

S14

Figure S1 Molecular structure of 3-Et (co-crystalizing solvent dichloromethane also visible)

S15

Figure S2 Molecular structure of 4-Et (co-crystalizing solvent toluene also visible)

S16

Figure S3 Correlation between 1H NMR chemical shifts of 3-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S4 Correlation between 13C NMR chemical shifts of 3-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09915x + 02767Rsup2 = 0997

-1

1

3

5

7

-1 1 3 5 7

δexptl(1H)

δcalcd(1H)

y = 09557x + 5237Rsup2 = 0987

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S17

Figure S5 Correlation between 1H NMR chemical shifts of 4-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S6 Correlation between 13C NMR chemical shifts of 4-Et derived from experiment 151 MHz

chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09944x + 01523Rsup2 = 09985

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09686x + 37185Rsup2 = 09891

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S18

Figure S7 Correlation between 1H NMR chemical shifts of 1-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S8 Correlation between 13C NMR chemical shifts of 1-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10159x + 00411Rsup2 = 09994

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09457x + 42108

Rsup2 = 09986

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S19

Figure S9 Correlation between 1H NMR chemical shifts of 2-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S10 Correlation between 13C NMR chemical shifts of 2-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10166x + 0055

Rsup2 = 09994

0

2

4

6

8

10

0 2 4 6 8 10

δexptl(1H)

δcalcd(1H)

y = 09469x + 42433Rsup2 = 09992

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S20

10 20 30 40 50 60 70 80 90 100

1E-3

001

01

1

Log

Norm

lized

In

ten

sity

tns

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 958665E-6

Adj R-Square 099971

Value Standard Error

Normalized1

y0 8E-4 0

A1 808283 001427

t1 392706 000265

k 025464 1719E-4

tau 272203 000184

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 11007E-5

Adj R-Square 099971

Value Standard Error

Normalized1

y0 749513E-4 669951E-5

A1 279424 000238

t1 801384 000459

k 012478 714923E-5

tau 555477 000318

Figure S11 Decay traces of the emissions monitored at 437 nm (1-Et) and 447 nm (2-Et) under 395

nm excitation (Super Continuum Fianium Laser)

S21

Figure S12 Quantum yield determinations for 1-Et (top) and 2-Et (bottom)

S22

Figure S13 Chromaticity diagrams for 1-Et (x = 016 y = 009 and u = 017 v = 022) and 2-Et

(x = 015 y = 01 and u = 015 v = 023)

S23

Figure S14 KohnndashSham frontier orbitals calculated for 1-Et (left) and 2-Et (right) at the

PCM(DCM)B3LYP6-311+G(dp)6-31G(dp) level of theory

S24

Figure S15 Comparison of DFT-optimized geometries of 2-Et (blue) and 5-Et (red B3LYP6-31G(dp)

gas phase)

S25

Figure S16 NICS(1) scans for 2-Et 6-Et and phenanthrene Nuclear shieldings were evaluated 1 Aring

above the ring plane using GIAO-B3LYP6-31G(dp)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

-5 0 5 10 15

2-Et

6-Et

phenanthrene

benzenecentroid

chrysaorenecentroid

NICS(1)

scan coordinate

S26

Figure S17 DFT-optimized structure of 3-Et (B3LYP6-31G(dp))

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S3

sphere replaces the standard sample holder inside the sample chamber Calculations of quantum

yields were made using the software provided by Edinburgh Instruments

S4

Synthesis

NN-(36-dibromo-99-diethyl-9H-fluorene-27-diyl)diacetamide (S5) In a 500 mL round-bottomed

flask equipped with a stirring bar compound S4 (215 g 639 mmol) was dissolved in dry NN-

dimethylformamide (250 mL) under nitrogen atmosphere The solution was kept under dark and

bromine (819 mL 160 mmol) was added dropwise The mixture was stirred under nitrogen for 20

hours After that water (1 L) was added and a yellow-brown precipitate was formed The mixture was

filtered under reduced pressure and the precipitate was dried in vacuo The resulting product did not

require further purification (170 g 864) 1H NMR (600 MHz chloroform-d 300 K) δ 837 s 2H) δ

773 (s 2H) δ 770 (s 2H) δ 225 (s 6H) δ 200 (q 4H 3J = 73 Hz) δ 031 (t 6H 3J = 73 Hz) 13C NMR

(151 MHz chloroform-d 300 K) δ 16816 15080 13698 13466 12631 12294 11636 11172

5682 3273 3235 2978 2515 846 836 HRMS (ESI+) mz [M + H]+ Calcd for C21H23Br2N2O2

4930133 Found 4930121

36-dibromo-99-diethyl-9H-fluorene-27-diamine (S6) To a 2000 mL round-bottomed flask

equipped with a reflux condenser and a stirring bar compound S5 (316 g 639 mmol) was dissolved

in methanol (1000 mL) Potassium hydroxide (574 g 1020 mmol) was added to the mixture under

nitrogen The mixture was heated to 90 degC and stirred for 18 hours The solvent was removed on a

rotary evaporator and the product in the form of red-brown crystals was formed and used without

further purification (260 g 991 ) 1H NMR (600 MHz chloroform-d 300 K) δ 753 (s 2H) δ 665 (s

2H) δ 406 (s 4H) δ 185 (q 4H 3J = 74 Hz) δ 031 (t 6H 3J = 74 Hz) 13C NMR (151 MHz

chloroform-d 300 K) δ 14995 14229 13340 12261 11041 10811 5575 3304 842 HRMS

(ESI+) mz [M + H]+ Calcd for C17H19Br2N2 4089910 Found 4089913

36-dibromo-99-diethyl-27-diiodo-9H-fluorene (S7) In a round-bottomed flask equipped with a

magnetic stirring bar compound S6 (260 g 634 mmol) was suspended in a 10 water solution of

sulfuric acid The suspension was cooled to room temperature and further cooled to 0 degC in an ice

bath Aqueous solution of sodium nitrite (175 g 254 mmol in 90 mL of water) was added dropwise

to the suspension and stirred for 45 min To the solution potassium iodide (10523 g 634 mmol)

dissolved in 90 mL of water was added slowly The resulting solution was allowed to reach room

temperature and was stirred for 1 hour Aqueous solution of sodium sulphite (1 L) was added and the

mixture was extracted with dichloromethane The organic layers were combined dried with

anhydrous sodium sulphate filtered and the solvent was removed on a rotary evaporator The crude

product was purified by column chromatography (silicagel dichloromethane) The first fraction was

S5

collected and concentrated on a rotary evaporator to yield yellow-brown crystals (25 g 624 ) 1H

NMR (600 MHz chloroform-d 300 K) δ 789 (s 2H) δ 777 (s 2H) δ 193 (q 4H 3J = 74 Hz) δ 031

(t 6H 3J = 74 Hz) 13C NMR (151 MHz chloroform-d 300 K) δ 15026 13472 12830 12409

10045 5622 3231 886

36-dibromo-99-diethyl-9H-fluorene-27-dicarbaldehyde (S8) In a 500 mL round-bottomed flask

equipped with a stirring bar and septum compound S7 (118 g 187 mmol) was dissolved in dry

tetrahydrofuran (300 mL) under nitrogen atmosphere The solution was cooled in an acetone‒liquid

nitrogen bath to ‒78 degC and a solution of isopropylmagnesium chloride (1961 mL 392 mmol 2 M

solution in tetrahydrofuran) was added dropwise After stirring for 15 minutes dry NN-

dimethylformamide (578 mL 747 mmol) was added and the solution was allowed to reach room

temperature and was stirred for an additional hour Aqueous solution of ammonium chloride was

added and the reaction mixture was extracted with dichloromethane The organic layers were

combined dried over anhydrous sodium sulphate filtered and the solvent was removed on a rotary

evaporator The crude product was purified by column chromatography (silicagel

dichloromethane‒hexanes = 21) The third fraction was collected and concentrated on a rotary

evaporator to give orange crystals (538 g 661 ) 1H NMR (600 MHz chloroform-d 300 K) δ 1043

(s 2H) δ 799 (s 2H) δ 790 (s 2H) δ 207 (q 4H 3J = 74 Hz) δ 027 (t 6H 3J = 74 Hz) 13C NMR (151

MHz chloroform-d 300 K) δ 19181 15112 14573 13326 12654 12633 12423 5690 3211

841 HRMS (APCI) mz [M + H]+ Calcd for C19H17Br2O2 4349590 Found 4349595

(36-dibromo-99-diethyl-9H-fluorene-27-diyl)dimethanol (S9) In a 50 mL round-bottomed flask

equipped with a magnetic stirring bar compound S8 (500 mg 12 mmol) and sodium borohydride

(130 mg 34 mmol) were suspended in dry tetrahydrofuran (25 mL) The mixture was stirred in room

temperature overnight after which a yellow precipitate was formed Water (30 mL) was added and

then the mixture was extracted with dichloromethane Combined organic extracts were dried with

anhydrous sodium sulphate and filtered Solvents were removed on a rotary evaporator yielding an

orange-brown crystals (482 mg 955 ) The product was used without further purification 1H NMR

(600 MHz chloroform-d 300 K) δ 780 (s 2H) δ 742 (s 2H) δ 481 (d 4H J = 64 Hz) δ 200 (q 4H 3J = 73 Hz) δ 027 (t 6H 3J = 73 Hz) 13C NMR (151 MHz chloroform-d 300 K) δ 14978 14121

13878 12411 12330 12104 6545 5637 3245 848 HRMS (APCI) mz [M ]+ Calcd for

C19H20Br2O2 4379825 Found 4379771

S6

36-dibromo-27-bis(chloromethyl)-99-diethyl-9H-fluorene (S10) In a 50 mL round-bottomed flask

equipped with a magnetic stirring bar compound S9 (500 mg 11 mmol) was dissolved in freshly

distilled dichloromethane (15 mL) to which catalytic amounts of NN-dimethylformamide (25 microL)

were added With continuous stirring thionyl chloride (181 microL 25 mmol) was added to the reaction

mixture After one hour of stirring the solvent and excess of thionyl chloride were removed on a

rotary evaporator yielding a brown crystals (520 mg 960 ) The product was used without further

purification 1H NMR (600 MHz chloroform-d 300 K) δ 786 (s 2H) δ 741 (s 2H) δ 476 (s 4H) δ

200 (q 4H 3J = 73 Hz) δ 030 (t 6H 3J = 73 Hz) 13C NMR (151 MHz chloroform-d 300 K) δ 15018

14175 13596 12532 12476 12293 5640 4667 3236 848 HRMS (APCI) mz [M ]+ Calcd for

C19H18Br2Cl2 4739147 Found 4739290

36-dibromo-2-chloromethyl-7-triphenylphosphine-99-diethyl-9H-fluorene (S11) In a 50 mL

pressure tube equipped with a magnetic stirring bar compound S10 (550 mg 12 mmol) and

triphenylphosphine (907 mg 346 mmol) were dissolved in dry toluene (25 mL) The reaction mixture

was sealed heated at 120 degC and stirred for 12 hours after which time a yellow precipitate was

formed The reaction mixture was cooled to room temperature diluted with dichloromethane and

the solvents were removed on a rotary evaporator The precipitate was washed with hexane and

dried yielding yellow-white crystals (1035 g 895 ) 1H NMR (600 MHz chloroform-d 300 K) δ

776 (t 6H 3J = 726 Hz) δ 769 (m 12H) δ 760 (m 12H) δ 759 (s 2H) δ 727 (s 2H) δ 580 (d 4H 3J = 144 Hz) δ 140 (q 4H 3J = 72 Hz) δ -018 (t 6H 3J = 72 Hz) 13C NMR (151 MHz chloroform-d

300 K) δ 15027 14124 13511 13435 13018 12799 12698 12572 12438 11771 11715

5616 3147 842 HRMS (ESI+) mz [M2+] Calcd for C55H48Br2P2 4640793 Found 4640799

S7

(33rsquo3rsquorsquo66rsquo6rsquorsquo-hexabromo-99rsquo9rsquorsquo9rsquorsquorsquo9rsquorsquorsquorsquo9rsquorsquorsquorsquorsquo-hexaethyl)[222]-(27)-fluorenophanetriene (3-Et)

To a 250 mL three-necked round-bottomed flask equipped with a reflux condenser septum and

syringe pump adapter were placed zinc powder (2250 mg 344 mmol) and copper(I) iodide (210 mg

11 mmol) The apparatus was filled with nitrogen and oxygen-free tetrahydrofuran (130 mL) was

introduced through a syringe Titanium tetrachloride (189 mL 172 mmol) was added dropwise the

septum was replaced with a glass stopper and the reaction mixture was heated and stirred under

reflux for 3 hours Subsequently a solution of compound S8 (100 mg 023 mmol) in oxygen-free

tetrahydrofuran (50 mL) was added to the reaction mixture using a syringe pump in 3 hours and the

mixture was stirred under reflux for another 12 hours After that time it was cooled down to room

temperature Aqueous ammonia (5 150 mL) was added and the mixture was stirred for 1 hour

Extraction with dichloromethane followed by drying the combined organic layers over anhydrous

sodium sulphate and removing the solvents on a rotary evaporator gave a yellow-green solid It was

purified using column chromatography (silicagel dichloromethanehexane = 110) yielding pale

green crystals (16 mg 173 ) 1H NMR (500 MHz chloroform-d 300 K) δ 763 (s 6H) δ 688 (s 6H)

δ 687 (s 6H) δ 135 (q 12H 3J = 74 Hz) δ 011 (t 18H 3J = 74 Hz) 13C NMR (600 MHz chloroform-

d 300 K) δ 14959 14018 13662 13243 12527 12364 12206 5478 3106 872 HRMS

(APCI+) mz [M ]+ Calcd for C57H48Br6 12058851 Found 12059023

(33rsquo3rsquorsquo3rsquorsquorsquo66rsquo6rsquorsquo6rsquorsquorsquo-octabromo-99rsquo9rsquorsquo9rsquorsquorsquo9rsquorsquorsquorsquo9rsquorsquorsquorsquorsquo9rsquorsquorsquorsquorsquorsquo9rsquorsquorsquorsquorsquorsquorsquo-octaethyl)[2222]-(27)-

fluorenephanetetraene (4-Et) In a 100 mL round-bottomed flask compound S8 (79 mg 018 mmol)

and compound S11 (200 mg 019 mmol) were dissolved in freshly distilled oxygen free

dichloromethane (80 mL) Aqueous sodium hydroxide (50 620 microL) was added dropwise to the

solution using a syringe During the addition the mixture was kept under a nitrogen atmosphere and

protected from light After the addition the solution was stirred for 1 hour After that time the

mixture was diluted with water and extracted with dichloromethane Combined extracts were dried

over anhydrous sodium sulphate filtered and the solvent was removed on a rotary evaporator

The crude material was purified using column chromatography (silicagel dichloromethanehexanes =

16) yielding pale green crystals (35 mg 239 ) 1H NMR (500 MHz chloroform-d 300 K) δ 782 (s

S8

8H) δ 701 (s 8H) δ 677 (s 8H) δ 142 (q 16H 3J = 74 Hz) δ 002 (t 24H 3J = 74 Hz) 13C NMR (151

MHz chloroform-d 300 K) δ 14963 14055 13618 13080 12483 12426 12301 5555 3130

855 HRMS (APCI+) mz [M ]+ Calcd for C76H64Br8 16078490 Found 16078971

[3]chrysaorene (1-Et) In a 50 mL Schlenk flask equipped with a magnetic stirring bar compound 3-Et

(22 mg 181 micromol) was placed and the vessel was capped with a septum The atmosphere within the

flask was then changed a few times to nitrogen after which bis(15-cyclooctadiene)nickel(0) (45 mg

016 mmol) and 22rsquo-bibyridyl (26 mg 016 mmol) were added in a glove-box Dry NN-

dimethylformamide (7 mL) was then added to the vessel in a constant flow of nitrogen and the

mixture was sealed with a glass stopper After subsequent changing of the atmosphere to nitrogen

one more time the reaction mixture was heated to 85 degrees and stirred for 18 hours It was then

cooled down to room temperature diluted with water and extracted with dichloromethane The

combined organic extracts were dried over anhydrous sodium sulphate filtered and the solvents

were removed on a rotary evaporator The crude mixture was filtered through a short silica plug to

remove the solid impurities Subsequent purification by column chromatography (silicagel

dichloromethanehexane = 16) gave the product in a form of pale yellow solid (65 mg 489 ) 1H

NMR (600 MHz chloroform-d 300 K) δ 927 (s 6H) δ 763 (s 6H) δ 761 (s 6H) δ 231 (q 6H 3J =

74 Hz) δ 209 (q 6H 3J = 73 Hz) δ 119 (t 9H 3J = 74 Hz) δ -041 (t 9H 3J = 73 Hz) 13C NMR (151

MHz chloroform-d 300 K) δ 14951 14179 13156 13094 12637 12319 11713 5940 3549

2980 1009 826 HRMS (APCI+) mz [M + H]+ Calcd for C57H49 7333829 Found 7333834 UV-vis

(dichloromethane 295 K) [nm] ( in M-1cm-1) 250 (761middot104) 281 (644middot104) 309 (427middot104) 316

(441middot104) 330 (342middot104) 348 (358middot104) 373 (148middot104) 396 (184middot104)

S9

[4]chrysaorene (2-Et) In a 25 mL Schlenk flask equipped with a magnetic stirring bar compound 4-Et

(15 mg 93 micromol) was placed and the vessel was capped with a septum The atmosphere within the

flask was then changed a few times to nitrogen after which bis(15-cyclooctadiene)nickel(0) (31 mg

1110 micromol) and 22rsquo-bibyridyl (17 mg 1110 micromol) were added in a glove-box Dry NN-

dimethylformamide (5 mL) was then added to the vessel in a constant flow of nitrogen and the

mixture was sealed with a glass stopper After subsequent changing of the atmosphere to nitrogen

one more time the reaction mixture was heated to 85 degrees and stirred for 18 hours It was then

cooled down to room temperature diluted with water and extracted with dichloromethane The

combined organic extracts were dried over anhydrous sodium sulphate filtered and the solvents

were removed on a rotary evaporator The crude mixture was filtered through a short silica plug to

remove the solid impurities Subsequent purification by column chromatography (silicagel

dichloromethanehexane = 16) gave the product in a form of pale yellow solid (4 mg 441 ) 1H

NMR (500 MHz chloroform-d 300 K) δ 970 (s 8H) δ 791 (s 8H) δ 784 (s 8H) δ 230 (q 16H 3J =

74 Hz) δ 042 (t 24H 3J = 74 Hz) 13C NMR (151 MHz chloroform-d 300 K) δ 14910 14122

13244 13084 12728 12308 11442 5430 3440 839 HRMS (APCI+) mz [M + H]+ Calcd for

C76H65 97751 Found 97753 UV-vis (dichloromethane 295 K) [nm] ( in M-1cm-1) 265 (244middot104)

296 (133middot104) 313 (167middot104) 319 (169middot104) 341 (206middot104) 366 (115middot104) 384 (126middot104) 398

(699middot103)

S10

Scheme S1 Synthesis of compounds S1-4-Et Reagents and conditions a) fuming HNO3 (20 equiv)

AcOH b) N2H4 (4 equiv) PdC (002 equiv) EtOH c) Ac2O (30 equiv) AcOH d) Br2 (25 equiv) DMF

e) KOH (16 equiv) MeOH f) 1 H2SO4H2O 2 NaNO2 (4 equiv) 3 KI (10 equiv)H2O g) 1 i-PrMgCl

(21 equiv)THF 2 DMF (4 equiv) h) NaBH4 (3 equiv) THF i) SOCl2 (22 equiv) DCM DMF j) PPh3

(3 equiv) toluene k) TiCl4 (75 equiv) CuI (48 equiv) Zn (150 equiv) THF l) NaOHaq (65 equiv)

DCM

S11

Scheme S2 1H and 13C chemical shifts of 3-Et and 4-Et (full assignment based on data obtained from

COSY ROESY HSQC and HMBC experiments)

S12

Scheme S3 1H and 13C chemical shifts of 1-Et and 2-Et (full assignment based on data obtained from

COSY ROESY HSQC and HMBC experiments)

S13

Scheme S4 Macrocyclic conjugation pathways in 1 and 2 [28]- [32]- [36]- and [40]annulene

pathways in 2 are constructed by inclusion of outer parts of phenanthrene units as shown for 1

S14

Figure S1 Molecular structure of 3-Et (co-crystalizing solvent dichloromethane also visible)

S15

Figure S2 Molecular structure of 4-Et (co-crystalizing solvent toluene also visible)

S16

Figure S3 Correlation between 1H NMR chemical shifts of 3-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S4 Correlation between 13C NMR chemical shifts of 3-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09915x + 02767Rsup2 = 0997

-1

1

3

5

7

-1 1 3 5 7

δexptl(1H)

δcalcd(1H)

y = 09557x + 5237Rsup2 = 0987

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S17

Figure S5 Correlation between 1H NMR chemical shifts of 4-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S6 Correlation between 13C NMR chemical shifts of 4-Et derived from experiment 151 MHz

chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09944x + 01523Rsup2 = 09985

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09686x + 37185Rsup2 = 09891

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S18

Figure S7 Correlation between 1H NMR chemical shifts of 1-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S8 Correlation between 13C NMR chemical shifts of 1-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10159x + 00411Rsup2 = 09994

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09457x + 42108

Rsup2 = 09986

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S19

Figure S9 Correlation between 1H NMR chemical shifts of 2-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S10 Correlation between 13C NMR chemical shifts of 2-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10166x + 0055

Rsup2 = 09994

0

2

4

6

8

10

0 2 4 6 8 10

δexptl(1H)

δcalcd(1H)

y = 09469x + 42433Rsup2 = 09992

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S20

10 20 30 40 50 60 70 80 90 100

1E-3

001

01

1

Log

Norm

lized

In

ten

sity

tns

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 958665E-6

Adj R-Square 099971

Value Standard Error

Normalized1

y0 8E-4 0

A1 808283 001427

t1 392706 000265

k 025464 1719E-4

tau 272203 000184

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 11007E-5

Adj R-Square 099971

Value Standard Error

Normalized1

y0 749513E-4 669951E-5

A1 279424 000238

t1 801384 000459

k 012478 714923E-5

tau 555477 000318

Figure S11 Decay traces of the emissions monitored at 437 nm (1-Et) and 447 nm (2-Et) under 395

nm excitation (Super Continuum Fianium Laser)

S21

Figure S12 Quantum yield determinations for 1-Et (top) and 2-Et (bottom)

S22

Figure S13 Chromaticity diagrams for 1-Et (x = 016 y = 009 and u = 017 v = 022) and 2-Et

(x = 015 y = 01 and u = 015 v = 023)

S23

Figure S14 KohnndashSham frontier orbitals calculated for 1-Et (left) and 2-Et (right) at the

PCM(DCM)B3LYP6-311+G(dp)6-31G(dp) level of theory

S24

Figure S15 Comparison of DFT-optimized geometries of 2-Et (blue) and 5-Et (red B3LYP6-31G(dp)

gas phase)

S25

Figure S16 NICS(1) scans for 2-Et 6-Et and phenanthrene Nuclear shieldings were evaluated 1 Aring

above the ring plane using GIAO-B3LYP6-31G(dp)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

-5 0 5 10 15

2-Et

6-Et

phenanthrene

benzenecentroid

chrysaorenecentroid

NICS(1)

scan coordinate

S26

Figure S17 DFT-optimized structure of 3-Et (B3LYP6-31G(dp))

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S4

Synthesis

NN-(36-dibromo-99-diethyl-9H-fluorene-27-diyl)diacetamide (S5) In a 500 mL round-bottomed

flask equipped with a stirring bar compound S4 (215 g 639 mmol) was dissolved in dry NN-

dimethylformamide (250 mL) under nitrogen atmosphere The solution was kept under dark and

bromine (819 mL 160 mmol) was added dropwise The mixture was stirred under nitrogen for 20

hours After that water (1 L) was added and a yellow-brown precipitate was formed The mixture was

filtered under reduced pressure and the precipitate was dried in vacuo The resulting product did not

require further purification (170 g 864) 1H NMR (600 MHz chloroform-d 300 K) δ 837 s 2H) δ

773 (s 2H) δ 770 (s 2H) δ 225 (s 6H) δ 200 (q 4H 3J = 73 Hz) δ 031 (t 6H 3J = 73 Hz) 13C NMR

(151 MHz chloroform-d 300 K) δ 16816 15080 13698 13466 12631 12294 11636 11172

5682 3273 3235 2978 2515 846 836 HRMS (ESI+) mz [M + H]+ Calcd for C21H23Br2N2O2

4930133 Found 4930121

36-dibromo-99-diethyl-9H-fluorene-27-diamine (S6) To a 2000 mL round-bottomed flask

equipped with a reflux condenser and a stirring bar compound S5 (316 g 639 mmol) was dissolved

in methanol (1000 mL) Potassium hydroxide (574 g 1020 mmol) was added to the mixture under

nitrogen The mixture was heated to 90 degC and stirred for 18 hours The solvent was removed on a

rotary evaporator and the product in the form of red-brown crystals was formed and used without

further purification (260 g 991 ) 1H NMR (600 MHz chloroform-d 300 K) δ 753 (s 2H) δ 665 (s

2H) δ 406 (s 4H) δ 185 (q 4H 3J = 74 Hz) δ 031 (t 6H 3J = 74 Hz) 13C NMR (151 MHz

chloroform-d 300 K) δ 14995 14229 13340 12261 11041 10811 5575 3304 842 HRMS

(ESI+) mz [M + H]+ Calcd for C17H19Br2N2 4089910 Found 4089913

36-dibromo-99-diethyl-27-diiodo-9H-fluorene (S7) In a round-bottomed flask equipped with a

magnetic stirring bar compound S6 (260 g 634 mmol) was suspended in a 10 water solution of

sulfuric acid The suspension was cooled to room temperature and further cooled to 0 degC in an ice

bath Aqueous solution of sodium nitrite (175 g 254 mmol in 90 mL of water) was added dropwise

to the suspension and stirred for 45 min To the solution potassium iodide (10523 g 634 mmol)

dissolved in 90 mL of water was added slowly The resulting solution was allowed to reach room

temperature and was stirred for 1 hour Aqueous solution of sodium sulphite (1 L) was added and the

mixture was extracted with dichloromethane The organic layers were combined dried with

anhydrous sodium sulphate filtered and the solvent was removed on a rotary evaporator The crude

product was purified by column chromatography (silicagel dichloromethane) The first fraction was

S5

collected and concentrated on a rotary evaporator to yield yellow-brown crystals (25 g 624 ) 1H

NMR (600 MHz chloroform-d 300 K) δ 789 (s 2H) δ 777 (s 2H) δ 193 (q 4H 3J = 74 Hz) δ 031

(t 6H 3J = 74 Hz) 13C NMR (151 MHz chloroform-d 300 K) δ 15026 13472 12830 12409

10045 5622 3231 886

36-dibromo-99-diethyl-9H-fluorene-27-dicarbaldehyde (S8) In a 500 mL round-bottomed flask

equipped with a stirring bar and septum compound S7 (118 g 187 mmol) was dissolved in dry

tetrahydrofuran (300 mL) under nitrogen atmosphere The solution was cooled in an acetone‒liquid

nitrogen bath to ‒78 degC and a solution of isopropylmagnesium chloride (1961 mL 392 mmol 2 M

solution in tetrahydrofuran) was added dropwise After stirring for 15 minutes dry NN-

dimethylformamide (578 mL 747 mmol) was added and the solution was allowed to reach room

temperature and was stirred for an additional hour Aqueous solution of ammonium chloride was

added and the reaction mixture was extracted with dichloromethane The organic layers were

combined dried over anhydrous sodium sulphate filtered and the solvent was removed on a rotary

evaporator The crude product was purified by column chromatography (silicagel

dichloromethane‒hexanes = 21) The third fraction was collected and concentrated on a rotary

evaporator to give orange crystals (538 g 661 ) 1H NMR (600 MHz chloroform-d 300 K) δ 1043

(s 2H) δ 799 (s 2H) δ 790 (s 2H) δ 207 (q 4H 3J = 74 Hz) δ 027 (t 6H 3J = 74 Hz) 13C NMR (151

MHz chloroform-d 300 K) δ 19181 15112 14573 13326 12654 12633 12423 5690 3211

841 HRMS (APCI) mz [M + H]+ Calcd for C19H17Br2O2 4349590 Found 4349595

(36-dibromo-99-diethyl-9H-fluorene-27-diyl)dimethanol (S9) In a 50 mL round-bottomed flask

equipped with a magnetic stirring bar compound S8 (500 mg 12 mmol) and sodium borohydride

(130 mg 34 mmol) were suspended in dry tetrahydrofuran (25 mL) The mixture was stirred in room

temperature overnight after which a yellow precipitate was formed Water (30 mL) was added and

then the mixture was extracted with dichloromethane Combined organic extracts were dried with

anhydrous sodium sulphate and filtered Solvents were removed on a rotary evaporator yielding an

orange-brown crystals (482 mg 955 ) The product was used without further purification 1H NMR

(600 MHz chloroform-d 300 K) δ 780 (s 2H) δ 742 (s 2H) δ 481 (d 4H J = 64 Hz) δ 200 (q 4H 3J = 73 Hz) δ 027 (t 6H 3J = 73 Hz) 13C NMR (151 MHz chloroform-d 300 K) δ 14978 14121

13878 12411 12330 12104 6545 5637 3245 848 HRMS (APCI) mz [M ]+ Calcd for

C19H20Br2O2 4379825 Found 4379771

S6

36-dibromo-27-bis(chloromethyl)-99-diethyl-9H-fluorene (S10) In a 50 mL round-bottomed flask

equipped with a magnetic stirring bar compound S9 (500 mg 11 mmol) was dissolved in freshly

distilled dichloromethane (15 mL) to which catalytic amounts of NN-dimethylformamide (25 microL)

were added With continuous stirring thionyl chloride (181 microL 25 mmol) was added to the reaction

mixture After one hour of stirring the solvent and excess of thionyl chloride were removed on a

rotary evaporator yielding a brown crystals (520 mg 960 ) The product was used without further

purification 1H NMR (600 MHz chloroform-d 300 K) δ 786 (s 2H) δ 741 (s 2H) δ 476 (s 4H) δ

200 (q 4H 3J = 73 Hz) δ 030 (t 6H 3J = 73 Hz) 13C NMR (151 MHz chloroform-d 300 K) δ 15018

14175 13596 12532 12476 12293 5640 4667 3236 848 HRMS (APCI) mz [M ]+ Calcd for

C19H18Br2Cl2 4739147 Found 4739290

36-dibromo-2-chloromethyl-7-triphenylphosphine-99-diethyl-9H-fluorene (S11) In a 50 mL

pressure tube equipped with a magnetic stirring bar compound S10 (550 mg 12 mmol) and

triphenylphosphine (907 mg 346 mmol) were dissolved in dry toluene (25 mL) The reaction mixture

was sealed heated at 120 degC and stirred for 12 hours after which time a yellow precipitate was

formed The reaction mixture was cooled to room temperature diluted with dichloromethane and

the solvents were removed on a rotary evaporator The precipitate was washed with hexane and

dried yielding yellow-white crystals (1035 g 895 ) 1H NMR (600 MHz chloroform-d 300 K) δ

776 (t 6H 3J = 726 Hz) δ 769 (m 12H) δ 760 (m 12H) δ 759 (s 2H) δ 727 (s 2H) δ 580 (d 4H 3J = 144 Hz) δ 140 (q 4H 3J = 72 Hz) δ -018 (t 6H 3J = 72 Hz) 13C NMR (151 MHz chloroform-d

300 K) δ 15027 14124 13511 13435 13018 12799 12698 12572 12438 11771 11715

5616 3147 842 HRMS (ESI+) mz [M2+] Calcd for C55H48Br2P2 4640793 Found 4640799

S7

(33rsquo3rsquorsquo66rsquo6rsquorsquo-hexabromo-99rsquo9rsquorsquo9rsquorsquorsquo9rsquorsquorsquorsquo9rsquorsquorsquorsquorsquo-hexaethyl)[222]-(27)-fluorenophanetriene (3-Et)

To a 250 mL three-necked round-bottomed flask equipped with a reflux condenser septum and

syringe pump adapter were placed zinc powder (2250 mg 344 mmol) and copper(I) iodide (210 mg

11 mmol) The apparatus was filled with nitrogen and oxygen-free tetrahydrofuran (130 mL) was

introduced through a syringe Titanium tetrachloride (189 mL 172 mmol) was added dropwise the

septum was replaced with a glass stopper and the reaction mixture was heated and stirred under

reflux for 3 hours Subsequently a solution of compound S8 (100 mg 023 mmol) in oxygen-free

tetrahydrofuran (50 mL) was added to the reaction mixture using a syringe pump in 3 hours and the

mixture was stirred under reflux for another 12 hours After that time it was cooled down to room

temperature Aqueous ammonia (5 150 mL) was added and the mixture was stirred for 1 hour

Extraction with dichloromethane followed by drying the combined organic layers over anhydrous

sodium sulphate and removing the solvents on a rotary evaporator gave a yellow-green solid It was

purified using column chromatography (silicagel dichloromethanehexane = 110) yielding pale

green crystals (16 mg 173 ) 1H NMR (500 MHz chloroform-d 300 K) δ 763 (s 6H) δ 688 (s 6H)

δ 687 (s 6H) δ 135 (q 12H 3J = 74 Hz) δ 011 (t 18H 3J = 74 Hz) 13C NMR (600 MHz chloroform-

d 300 K) δ 14959 14018 13662 13243 12527 12364 12206 5478 3106 872 HRMS

(APCI+) mz [M ]+ Calcd for C57H48Br6 12058851 Found 12059023

(33rsquo3rsquorsquo3rsquorsquorsquo66rsquo6rsquorsquo6rsquorsquorsquo-octabromo-99rsquo9rsquorsquo9rsquorsquorsquo9rsquorsquorsquorsquo9rsquorsquorsquorsquorsquo9rsquorsquorsquorsquorsquorsquo9rsquorsquorsquorsquorsquorsquorsquo-octaethyl)[2222]-(27)-

fluorenephanetetraene (4-Et) In a 100 mL round-bottomed flask compound S8 (79 mg 018 mmol)

and compound S11 (200 mg 019 mmol) were dissolved in freshly distilled oxygen free

dichloromethane (80 mL) Aqueous sodium hydroxide (50 620 microL) was added dropwise to the

solution using a syringe During the addition the mixture was kept under a nitrogen atmosphere and

protected from light After the addition the solution was stirred for 1 hour After that time the

mixture was diluted with water and extracted with dichloromethane Combined extracts were dried

over anhydrous sodium sulphate filtered and the solvent was removed on a rotary evaporator

The crude material was purified using column chromatography (silicagel dichloromethanehexanes =

16) yielding pale green crystals (35 mg 239 ) 1H NMR (500 MHz chloroform-d 300 K) δ 782 (s

S8

8H) δ 701 (s 8H) δ 677 (s 8H) δ 142 (q 16H 3J = 74 Hz) δ 002 (t 24H 3J = 74 Hz) 13C NMR (151

MHz chloroform-d 300 K) δ 14963 14055 13618 13080 12483 12426 12301 5555 3130

855 HRMS (APCI+) mz [M ]+ Calcd for C76H64Br8 16078490 Found 16078971

[3]chrysaorene (1-Et) In a 50 mL Schlenk flask equipped with a magnetic stirring bar compound 3-Et

(22 mg 181 micromol) was placed and the vessel was capped with a septum The atmosphere within the

flask was then changed a few times to nitrogen after which bis(15-cyclooctadiene)nickel(0) (45 mg

016 mmol) and 22rsquo-bibyridyl (26 mg 016 mmol) were added in a glove-box Dry NN-

dimethylformamide (7 mL) was then added to the vessel in a constant flow of nitrogen and the

mixture was sealed with a glass stopper After subsequent changing of the atmosphere to nitrogen

one more time the reaction mixture was heated to 85 degrees and stirred for 18 hours It was then

cooled down to room temperature diluted with water and extracted with dichloromethane The

combined organic extracts were dried over anhydrous sodium sulphate filtered and the solvents

were removed on a rotary evaporator The crude mixture was filtered through a short silica plug to

remove the solid impurities Subsequent purification by column chromatography (silicagel

dichloromethanehexane = 16) gave the product in a form of pale yellow solid (65 mg 489 ) 1H

NMR (600 MHz chloroform-d 300 K) δ 927 (s 6H) δ 763 (s 6H) δ 761 (s 6H) δ 231 (q 6H 3J =

74 Hz) δ 209 (q 6H 3J = 73 Hz) δ 119 (t 9H 3J = 74 Hz) δ -041 (t 9H 3J = 73 Hz) 13C NMR (151

MHz chloroform-d 300 K) δ 14951 14179 13156 13094 12637 12319 11713 5940 3549

2980 1009 826 HRMS (APCI+) mz [M + H]+ Calcd for C57H49 7333829 Found 7333834 UV-vis

(dichloromethane 295 K) [nm] ( in M-1cm-1) 250 (761middot104) 281 (644middot104) 309 (427middot104) 316

(441middot104) 330 (342middot104) 348 (358middot104) 373 (148middot104) 396 (184middot104)

S9

[4]chrysaorene (2-Et) In a 25 mL Schlenk flask equipped with a magnetic stirring bar compound 4-Et

(15 mg 93 micromol) was placed and the vessel was capped with a septum The atmosphere within the

flask was then changed a few times to nitrogen after which bis(15-cyclooctadiene)nickel(0) (31 mg

1110 micromol) and 22rsquo-bibyridyl (17 mg 1110 micromol) were added in a glove-box Dry NN-

dimethylformamide (5 mL) was then added to the vessel in a constant flow of nitrogen and the

mixture was sealed with a glass stopper After subsequent changing of the atmosphere to nitrogen

one more time the reaction mixture was heated to 85 degrees and stirred for 18 hours It was then

cooled down to room temperature diluted with water and extracted with dichloromethane The

combined organic extracts were dried over anhydrous sodium sulphate filtered and the solvents

were removed on a rotary evaporator The crude mixture was filtered through a short silica plug to

remove the solid impurities Subsequent purification by column chromatography (silicagel

dichloromethanehexane = 16) gave the product in a form of pale yellow solid (4 mg 441 ) 1H

NMR (500 MHz chloroform-d 300 K) δ 970 (s 8H) δ 791 (s 8H) δ 784 (s 8H) δ 230 (q 16H 3J =

74 Hz) δ 042 (t 24H 3J = 74 Hz) 13C NMR (151 MHz chloroform-d 300 K) δ 14910 14122

13244 13084 12728 12308 11442 5430 3440 839 HRMS (APCI+) mz [M + H]+ Calcd for

C76H65 97751 Found 97753 UV-vis (dichloromethane 295 K) [nm] ( in M-1cm-1) 265 (244middot104)

296 (133middot104) 313 (167middot104) 319 (169middot104) 341 (206middot104) 366 (115middot104) 384 (126middot104) 398

(699middot103)

S10

Scheme S1 Synthesis of compounds S1-4-Et Reagents and conditions a) fuming HNO3 (20 equiv)

AcOH b) N2H4 (4 equiv) PdC (002 equiv) EtOH c) Ac2O (30 equiv) AcOH d) Br2 (25 equiv) DMF

e) KOH (16 equiv) MeOH f) 1 H2SO4H2O 2 NaNO2 (4 equiv) 3 KI (10 equiv)H2O g) 1 i-PrMgCl

(21 equiv)THF 2 DMF (4 equiv) h) NaBH4 (3 equiv) THF i) SOCl2 (22 equiv) DCM DMF j) PPh3

(3 equiv) toluene k) TiCl4 (75 equiv) CuI (48 equiv) Zn (150 equiv) THF l) NaOHaq (65 equiv)

DCM

S11

Scheme S2 1H and 13C chemical shifts of 3-Et and 4-Et (full assignment based on data obtained from

COSY ROESY HSQC and HMBC experiments)

S12

Scheme S3 1H and 13C chemical shifts of 1-Et and 2-Et (full assignment based on data obtained from

COSY ROESY HSQC and HMBC experiments)

S13

Scheme S4 Macrocyclic conjugation pathways in 1 and 2 [28]- [32]- [36]- and [40]annulene

pathways in 2 are constructed by inclusion of outer parts of phenanthrene units as shown for 1

S14

Figure S1 Molecular structure of 3-Et (co-crystalizing solvent dichloromethane also visible)

S15

Figure S2 Molecular structure of 4-Et (co-crystalizing solvent toluene also visible)

S16

Figure S3 Correlation between 1H NMR chemical shifts of 3-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S4 Correlation between 13C NMR chemical shifts of 3-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09915x + 02767Rsup2 = 0997

-1

1

3

5

7

-1 1 3 5 7

δexptl(1H)

δcalcd(1H)

y = 09557x + 5237Rsup2 = 0987

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S17

Figure S5 Correlation between 1H NMR chemical shifts of 4-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S6 Correlation between 13C NMR chemical shifts of 4-Et derived from experiment 151 MHz

chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09944x + 01523Rsup2 = 09985

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09686x + 37185Rsup2 = 09891

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S18

Figure S7 Correlation between 1H NMR chemical shifts of 1-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S8 Correlation between 13C NMR chemical shifts of 1-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10159x + 00411Rsup2 = 09994

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09457x + 42108

Rsup2 = 09986

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S19

Figure S9 Correlation between 1H NMR chemical shifts of 2-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S10 Correlation between 13C NMR chemical shifts of 2-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10166x + 0055

Rsup2 = 09994

0

2

4

6

8

10

0 2 4 6 8 10

δexptl(1H)

δcalcd(1H)

y = 09469x + 42433Rsup2 = 09992

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S20

10 20 30 40 50 60 70 80 90 100

1E-3

001

01

1

Log

Norm

lized

In

ten

sity

tns

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 958665E-6

Adj R-Square 099971

Value Standard Error

Normalized1

y0 8E-4 0

A1 808283 001427

t1 392706 000265

k 025464 1719E-4

tau 272203 000184

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 11007E-5

Adj R-Square 099971

Value Standard Error

Normalized1

y0 749513E-4 669951E-5

A1 279424 000238

t1 801384 000459

k 012478 714923E-5

tau 555477 000318

Figure S11 Decay traces of the emissions monitored at 437 nm (1-Et) and 447 nm (2-Et) under 395

nm excitation (Super Continuum Fianium Laser)

S21

Figure S12 Quantum yield determinations for 1-Et (top) and 2-Et (bottom)

S22

Figure S13 Chromaticity diagrams for 1-Et (x = 016 y = 009 and u = 017 v = 022) and 2-Et

(x = 015 y = 01 and u = 015 v = 023)

S23

Figure S14 KohnndashSham frontier orbitals calculated for 1-Et (left) and 2-Et (right) at the

PCM(DCM)B3LYP6-311+G(dp)6-31G(dp) level of theory

S24

Figure S15 Comparison of DFT-optimized geometries of 2-Et (blue) and 5-Et (red B3LYP6-31G(dp)

gas phase)

S25

Figure S16 NICS(1) scans for 2-Et 6-Et and phenanthrene Nuclear shieldings were evaluated 1 Aring

above the ring plane using GIAO-B3LYP6-31G(dp)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

-5 0 5 10 15

2-Et

6-Et

phenanthrene

benzenecentroid

chrysaorenecentroid

NICS(1)

scan coordinate

S26

Figure S17 DFT-optimized structure of 3-Et (B3LYP6-31G(dp))

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S5

collected and concentrated on a rotary evaporator to yield yellow-brown crystals (25 g 624 ) 1H

NMR (600 MHz chloroform-d 300 K) δ 789 (s 2H) δ 777 (s 2H) δ 193 (q 4H 3J = 74 Hz) δ 031

(t 6H 3J = 74 Hz) 13C NMR (151 MHz chloroform-d 300 K) δ 15026 13472 12830 12409

10045 5622 3231 886

36-dibromo-99-diethyl-9H-fluorene-27-dicarbaldehyde (S8) In a 500 mL round-bottomed flask

equipped with a stirring bar and septum compound S7 (118 g 187 mmol) was dissolved in dry

tetrahydrofuran (300 mL) under nitrogen atmosphere The solution was cooled in an acetone‒liquid

nitrogen bath to ‒78 degC and a solution of isopropylmagnesium chloride (1961 mL 392 mmol 2 M

solution in tetrahydrofuran) was added dropwise After stirring for 15 minutes dry NN-

dimethylformamide (578 mL 747 mmol) was added and the solution was allowed to reach room

temperature and was stirred for an additional hour Aqueous solution of ammonium chloride was

added and the reaction mixture was extracted with dichloromethane The organic layers were

combined dried over anhydrous sodium sulphate filtered and the solvent was removed on a rotary

evaporator The crude product was purified by column chromatography (silicagel

dichloromethane‒hexanes = 21) The third fraction was collected and concentrated on a rotary

evaporator to give orange crystals (538 g 661 ) 1H NMR (600 MHz chloroform-d 300 K) δ 1043

(s 2H) δ 799 (s 2H) δ 790 (s 2H) δ 207 (q 4H 3J = 74 Hz) δ 027 (t 6H 3J = 74 Hz) 13C NMR (151

MHz chloroform-d 300 K) δ 19181 15112 14573 13326 12654 12633 12423 5690 3211

841 HRMS (APCI) mz [M + H]+ Calcd for C19H17Br2O2 4349590 Found 4349595

(36-dibromo-99-diethyl-9H-fluorene-27-diyl)dimethanol (S9) In a 50 mL round-bottomed flask

equipped with a magnetic stirring bar compound S8 (500 mg 12 mmol) and sodium borohydride

(130 mg 34 mmol) were suspended in dry tetrahydrofuran (25 mL) The mixture was stirred in room

temperature overnight after which a yellow precipitate was formed Water (30 mL) was added and

then the mixture was extracted with dichloromethane Combined organic extracts were dried with

anhydrous sodium sulphate and filtered Solvents were removed on a rotary evaporator yielding an

orange-brown crystals (482 mg 955 ) The product was used without further purification 1H NMR

(600 MHz chloroform-d 300 K) δ 780 (s 2H) δ 742 (s 2H) δ 481 (d 4H J = 64 Hz) δ 200 (q 4H 3J = 73 Hz) δ 027 (t 6H 3J = 73 Hz) 13C NMR (151 MHz chloroform-d 300 K) δ 14978 14121

13878 12411 12330 12104 6545 5637 3245 848 HRMS (APCI) mz [M ]+ Calcd for

C19H20Br2O2 4379825 Found 4379771

S6

36-dibromo-27-bis(chloromethyl)-99-diethyl-9H-fluorene (S10) In a 50 mL round-bottomed flask

equipped with a magnetic stirring bar compound S9 (500 mg 11 mmol) was dissolved in freshly

distilled dichloromethane (15 mL) to which catalytic amounts of NN-dimethylformamide (25 microL)

were added With continuous stirring thionyl chloride (181 microL 25 mmol) was added to the reaction

mixture After one hour of stirring the solvent and excess of thionyl chloride were removed on a

rotary evaporator yielding a brown crystals (520 mg 960 ) The product was used without further

purification 1H NMR (600 MHz chloroform-d 300 K) δ 786 (s 2H) δ 741 (s 2H) δ 476 (s 4H) δ

200 (q 4H 3J = 73 Hz) δ 030 (t 6H 3J = 73 Hz) 13C NMR (151 MHz chloroform-d 300 K) δ 15018

14175 13596 12532 12476 12293 5640 4667 3236 848 HRMS (APCI) mz [M ]+ Calcd for

C19H18Br2Cl2 4739147 Found 4739290

36-dibromo-2-chloromethyl-7-triphenylphosphine-99-diethyl-9H-fluorene (S11) In a 50 mL

pressure tube equipped with a magnetic stirring bar compound S10 (550 mg 12 mmol) and

triphenylphosphine (907 mg 346 mmol) were dissolved in dry toluene (25 mL) The reaction mixture

was sealed heated at 120 degC and stirred for 12 hours after which time a yellow precipitate was

formed The reaction mixture was cooled to room temperature diluted with dichloromethane and

the solvents were removed on a rotary evaporator The precipitate was washed with hexane and

dried yielding yellow-white crystals (1035 g 895 ) 1H NMR (600 MHz chloroform-d 300 K) δ

776 (t 6H 3J = 726 Hz) δ 769 (m 12H) δ 760 (m 12H) δ 759 (s 2H) δ 727 (s 2H) δ 580 (d 4H 3J = 144 Hz) δ 140 (q 4H 3J = 72 Hz) δ -018 (t 6H 3J = 72 Hz) 13C NMR (151 MHz chloroform-d

300 K) δ 15027 14124 13511 13435 13018 12799 12698 12572 12438 11771 11715

5616 3147 842 HRMS (ESI+) mz [M2+] Calcd for C55H48Br2P2 4640793 Found 4640799

S7

(33rsquo3rsquorsquo66rsquo6rsquorsquo-hexabromo-99rsquo9rsquorsquo9rsquorsquorsquo9rsquorsquorsquorsquo9rsquorsquorsquorsquorsquo-hexaethyl)[222]-(27)-fluorenophanetriene (3-Et)

To a 250 mL three-necked round-bottomed flask equipped with a reflux condenser septum and

syringe pump adapter were placed zinc powder (2250 mg 344 mmol) and copper(I) iodide (210 mg

11 mmol) The apparatus was filled with nitrogen and oxygen-free tetrahydrofuran (130 mL) was

introduced through a syringe Titanium tetrachloride (189 mL 172 mmol) was added dropwise the

septum was replaced with a glass stopper and the reaction mixture was heated and stirred under

reflux for 3 hours Subsequently a solution of compound S8 (100 mg 023 mmol) in oxygen-free

tetrahydrofuran (50 mL) was added to the reaction mixture using a syringe pump in 3 hours and the

mixture was stirred under reflux for another 12 hours After that time it was cooled down to room

temperature Aqueous ammonia (5 150 mL) was added and the mixture was stirred for 1 hour

Extraction with dichloromethane followed by drying the combined organic layers over anhydrous

sodium sulphate and removing the solvents on a rotary evaporator gave a yellow-green solid It was

purified using column chromatography (silicagel dichloromethanehexane = 110) yielding pale

green crystals (16 mg 173 ) 1H NMR (500 MHz chloroform-d 300 K) δ 763 (s 6H) δ 688 (s 6H)

δ 687 (s 6H) δ 135 (q 12H 3J = 74 Hz) δ 011 (t 18H 3J = 74 Hz) 13C NMR (600 MHz chloroform-

d 300 K) δ 14959 14018 13662 13243 12527 12364 12206 5478 3106 872 HRMS

(APCI+) mz [M ]+ Calcd for C57H48Br6 12058851 Found 12059023

(33rsquo3rsquorsquo3rsquorsquorsquo66rsquo6rsquorsquo6rsquorsquorsquo-octabromo-99rsquo9rsquorsquo9rsquorsquorsquo9rsquorsquorsquorsquo9rsquorsquorsquorsquorsquo9rsquorsquorsquorsquorsquorsquo9rsquorsquorsquorsquorsquorsquorsquo-octaethyl)[2222]-(27)-

fluorenephanetetraene (4-Et) In a 100 mL round-bottomed flask compound S8 (79 mg 018 mmol)

and compound S11 (200 mg 019 mmol) were dissolved in freshly distilled oxygen free

dichloromethane (80 mL) Aqueous sodium hydroxide (50 620 microL) was added dropwise to the

solution using a syringe During the addition the mixture was kept under a nitrogen atmosphere and

protected from light After the addition the solution was stirred for 1 hour After that time the

mixture was diluted with water and extracted with dichloromethane Combined extracts were dried

over anhydrous sodium sulphate filtered and the solvent was removed on a rotary evaporator

The crude material was purified using column chromatography (silicagel dichloromethanehexanes =

16) yielding pale green crystals (35 mg 239 ) 1H NMR (500 MHz chloroform-d 300 K) δ 782 (s

S8

8H) δ 701 (s 8H) δ 677 (s 8H) δ 142 (q 16H 3J = 74 Hz) δ 002 (t 24H 3J = 74 Hz) 13C NMR (151

MHz chloroform-d 300 K) δ 14963 14055 13618 13080 12483 12426 12301 5555 3130

855 HRMS (APCI+) mz [M ]+ Calcd for C76H64Br8 16078490 Found 16078971

[3]chrysaorene (1-Et) In a 50 mL Schlenk flask equipped with a magnetic stirring bar compound 3-Et

(22 mg 181 micromol) was placed and the vessel was capped with a septum The atmosphere within the

flask was then changed a few times to nitrogen after which bis(15-cyclooctadiene)nickel(0) (45 mg

016 mmol) and 22rsquo-bibyridyl (26 mg 016 mmol) were added in a glove-box Dry NN-

dimethylformamide (7 mL) was then added to the vessel in a constant flow of nitrogen and the

mixture was sealed with a glass stopper After subsequent changing of the atmosphere to nitrogen

one more time the reaction mixture was heated to 85 degrees and stirred for 18 hours It was then

cooled down to room temperature diluted with water and extracted with dichloromethane The

combined organic extracts were dried over anhydrous sodium sulphate filtered and the solvents

were removed on a rotary evaporator The crude mixture was filtered through a short silica plug to

remove the solid impurities Subsequent purification by column chromatography (silicagel

dichloromethanehexane = 16) gave the product in a form of pale yellow solid (65 mg 489 ) 1H

NMR (600 MHz chloroform-d 300 K) δ 927 (s 6H) δ 763 (s 6H) δ 761 (s 6H) δ 231 (q 6H 3J =

74 Hz) δ 209 (q 6H 3J = 73 Hz) δ 119 (t 9H 3J = 74 Hz) δ -041 (t 9H 3J = 73 Hz) 13C NMR (151

MHz chloroform-d 300 K) δ 14951 14179 13156 13094 12637 12319 11713 5940 3549

2980 1009 826 HRMS (APCI+) mz [M + H]+ Calcd for C57H49 7333829 Found 7333834 UV-vis

(dichloromethane 295 K) [nm] ( in M-1cm-1) 250 (761middot104) 281 (644middot104) 309 (427middot104) 316

(441middot104) 330 (342middot104) 348 (358middot104) 373 (148middot104) 396 (184middot104)

S9

[4]chrysaorene (2-Et) In a 25 mL Schlenk flask equipped with a magnetic stirring bar compound 4-Et

(15 mg 93 micromol) was placed and the vessel was capped with a septum The atmosphere within the

flask was then changed a few times to nitrogen after which bis(15-cyclooctadiene)nickel(0) (31 mg

1110 micromol) and 22rsquo-bibyridyl (17 mg 1110 micromol) were added in a glove-box Dry NN-

dimethylformamide (5 mL) was then added to the vessel in a constant flow of nitrogen and the

mixture was sealed with a glass stopper After subsequent changing of the atmosphere to nitrogen

one more time the reaction mixture was heated to 85 degrees and stirred for 18 hours It was then

cooled down to room temperature diluted with water and extracted with dichloromethane The

combined organic extracts were dried over anhydrous sodium sulphate filtered and the solvents

were removed on a rotary evaporator The crude mixture was filtered through a short silica plug to

remove the solid impurities Subsequent purification by column chromatography (silicagel

dichloromethanehexane = 16) gave the product in a form of pale yellow solid (4 mg 441 ) 1H

NMR (500 MHz chloroform-d 300 K) δ 970 (s 8H) δ 791 (s 8H) δ 784 (s 8H) δ 230 (q 16H 3J =

74 Hz) δ 042 (t 24H 3J = 74 Hz) 13C NMR (151 MHz chloroform-d 300 K) δ 14910 14122

13244 13084 12728 12308 11442 5430 3440 839 HRMS (APCI+) mz [M + H]+ Calcd for

C76H65 97751 Found 97753 UV-vis (dichloromethane 295 K) [nm] ( in M-1cm-1) 265 (244middot104)

296 (133middot104) 313 (167middot104) 319 (169middot104) 341 (206middot104) 366 (115middot104) 384 (126middot104) 398

(699middot103)

S10

Scheme S1 Synthesis of compounds S1-4-Et Reagents and conditions a) fuming HNO3 (20 equiv)

AcOH b) N2H4 (4 equiv) PdC (002 equiv) EtOH c) Ac2O (30 equiv) AcOH d) Br2 (25 equiv) DMF

e) KOH (16 equiv) MeOH f) 1 H2SO4H2O 2 NaNO2 (4 equiv) 3 KI (10 equiv)H2O g) 1 i-PrMgCl

(21 equiv)THF 2 DMF (4 equiv) h) NaBH4 (3 equiv) THF i) SOCl2 (22 equiv) DCM DMF j) PPh3

(3 equiv) toluene k) TiCl4 (75 equiv) CuI (48 equiv) Zn (150 equiv) THF l) NaOHaq (65 equiv)

DCM

S11

Scheme S2 1H and 13C chemical shifts of 3-Et and 4-Et (full assignment based on data obtained from

COSY ROESY HSQC and HMBC experiments)

S12

Scheme S3 1H and 13C chemical shifts of 1-Et and 2-Et (full assignment based on data obtained from

COSY ROESY HSQC and HMBC experiments)

S13

Scheme S4 Macrocyclic conjugation pathways in 1 and 2 [28]- [32]- [36]- and [40]annulene

pathways in 2 are constructed by inclusion of outer parts of phenanthrene units as shown for 1

S14

Figure S1 Molecular structure of 3-Et (co-crystalizing solvent dichloromethane also visible)

S15

Figure S2 Molecular structure of 4-Et (co-crystalizing solvent toluene also visible)

S16

Figure S3 Correlation between 1H NMR chemical shifts of 3-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S4 Correlation between 13C NMR chemical shifts of 3-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09915x + 02767Rsup2 = 0997

-1

1

3

5

7

-1 1 3 5 7

δexptl(1H)

δcalcd(1H)

y = 09557x + 5237Rsup2 = 0987

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S17

Figure S5 Correlation between 1H NMR chemical shifts of 4-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S6 Correlation between 13C NMR chemical shifts of 4-Et derived from experiment 151 MHz

chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09944x + 01523Rsup2 = 09985

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09686x + 37185Rsup2 = 09891

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S18

Figure S7 Correlation between 1H NMR chemical shifts of 1-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S8 Correlation between 13C NMR chemical shifts of 1-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10159x + 00411Rsup2 = 09994

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09457x + 42108

Rsup2 = 09986

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S19

Figure S9 Correlation between 1H NMR chemical shifts of 2-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S10 Correlation between 13C NMR chemical shifts of 2-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10166x + 0055

Rsup2 = 09994

0

2

4

6

8

10

0 2 4 6 8 10

δexptl(1H)

δcalcd(1H)

y = 09469x + 42433Rsup2 = 09992

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S20

10 20 30 40 50 60 70 80 90 100

1E-3

001

01

1

Log

Norm

lized

In

ten

sity

tns

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 958665E-6

Adj R-Square 099971

Value Standard Error

Normalized1

y0 8E-4 0

A1 808283 001427

t1 392706 000265

k 025464 1719E-4

tau 272203 000184

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 11007E-5

Adj R-Square 099971

Value Standard Error

Normalized1

y0 749513E-4 669951E-5

A1 279424 000238

t1 801384 000459

k 012478 714923E-5

tau 555477 000318

Figure S11 Decay traces of the emissions monitored at 437 nm (1-Et) and 447 nm (2-Et) under 395

nm excitation (Super Continuum Fianium Laser)

S21

Figure S12 Quantum yield determinations for 1-Et (top) and 2-Et (bottom)

S22

Figure S13 Chromaticity diagrams for 1-Et (x = 016 y = 009 and u = 017 v = 022) and 2-Et

(x = 015 y = 01 and u = 015 v = 023)

S23

Figure S14 KohnndashSham frontier orbitals calculated for 1-Et (left) and 2-Et (right) at the

PCM(DCM)B3LYP6-311+G(dp)6-31G(dp) level of theory

S24

Figure S15 Comparison of DFT-optimized geometries of 2-Et (blue) and 5-Et (red B3LYP6-31G(dp)

gas phase)

S25

Figure S16 NICS(1) scans for 2-Et 6-Et and phenanthrene Nuclear shieldings were evaluated 1 Aring

above the ring plane using GIAO-B3LYP6-31G(dp)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

-5 0 5 10 15

2-Et

6-Et

phenanthrene

benzenecentroid

chrysaorenecentroid

NICS(1)

scan coordinate

S26

Figure S17 DFT-optimized structure of 3-Et (B3LYP6-31G(dp))

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S6

36-dibromo-27-bis(chloromethyl)-99-diethyl-9H-fluorene (S10) In a 50 mL round-bottomed flask

equipped with a magnetic stirring bar compound S9 (500 mg 11 mmol) was dissolved in freshly

distilled dichloromethane (15 mL) to which catalytic amounts of NN-dimethylformamide (25 microL)

were added With continuous stirring thionyl chloride (181 microL 25 mmol) was added to the reaction

mixture After one hour of stirring the solvent and excess of thionyl chloride were removed on a

rotary evaporator yielding a brown crystals (520 mg 960 ) The product was used without further

purification 1H NMR (600 MHz chloroform-d 300 K) δ 786 (s 2H) δ 741 (s 2H) δ 476 (s 4H) δ

200 (q 4H 3J = 73 Hz) δ 030 (t 6H 3J = 73 Hz) 13C NMR (151 MHz chloroform-d 300 K) δ 15018

14175 13596 12532 12476 12293 5640 4667 3236 848 HRMS (APCI) mz [M ]+ Calcd for

C19H18Br2Cl2 4739147 Found 4739290

36-dibromo-2-chloromethyl-7-triphenylphosphine-99-diethyl-9H-fluorene (S11) In a 50 mL

pressure tube equipped with a magnetic stirring bar compound S10 (550 mg 12 mmol) and

triphenylphosphine (907 mg 346 mmol) were dissolved in dry toluene (25 mL) The reaction mixture

was sealed heated at 120 degC and stirred for 12 hours after which time a yellow precipitate was

formed The reaction mixture was cooled to room temperature diluted with dichloromethane and

the solvents were removed on a rotary evaporator The precipitate was washed with hexane and

dried yielding yellow-white crystals (1035 g 895 ) 1H NMR (600 MHz chloroform-d 300 K) δ

776 (t 6H 3J = 726 Hz) δ 769 (m 12H) δ 760 (m 12H) δ 759 (s 2H) δ 727 (s 2H) δ 580 (d 4H 3J = 144 Hz) δ 140 (q 4H 3J = 72 Hz) δ -018 (t 6H 3J = 72 Hz) 13C NMR (151 MHz chloroform-d

300 K) δ 15027 14124 13511 13435 13018 12799 12698 12572 12438 11771 11715

5616 3147 842 HRMS (ESI+) mz [M2+] Calcd for C55H48Br2P2 4640793 Found 4640799

S7

(33rsquo3rsquorsquo66rsquo6rsquorsquo-hexabromo-99rsquo9rsquorsquo9rsquorsquorsquo9rsquorsquorsquorsquo9rsquorsquorsquorsquorsquo-hexaethyl)[222]-(27)-fluorenophanetriene (3-Et)

To a 250 mL three-necked round-bottomed flask equipped with a reflux condenser septum and

syringe pump adapter were placed zinc powder (2250 mg 344 mmol) and copper(I) iodide (210 mg

11 mmol) The apparatus was filled with nitrogen and oxygen-free tetrahydrofuran (130 mL) was

introduced through a syringe Titanium tetrachloride (189 mL 172 mmol) was added dropwise the

septum was replaced with a glass stopper and the reaction mixture was heated and stirred under

reflux for 3 hours Subsequently a solution of compound S8 (100 mg 023 mmol) in oxygen-free

tetrahydrofuran (50 mL) was added to the reaction mixture using a syringe pump in 3 hours and the

mixture was stirred under reflux for another 12 hours After that time it was cooled down to room

temperature Aqueous ammonia (5 150 mL) was added and the mixture was stirred for 1 hour

Extraction with dichloromethane followed by drying the combined organic layers over anhydrous

sodium sulphate and removing the solvents on a rotary evaporator gave a yellow-green solid It was

purified using column chromatography (silicagel dichloromethanehexane = 110) yielding pale

green crystals (16 mg 173 ) 1H NMR (500 MHz chloroform-d 300 K) δ 763 (s 6H) δ 688 (s 6H)

δ 687 (s 6H) δ 135 (q 12H 3J = 74 Hz) δ 011 (t 18H 3J = 74 Hz) 13C NMR (600 MHz chloroform-

d 300 K) δ 14959 14018 13662 13243 12527 12364 12206 5478 3106 872 HRMS

(APCI+) mz [M ]+ Calcd for C57H48Br6 12058851 Found 12059023

(33rsquo3rsquorsquo3rsquorsquorsquo66rsquo6rsquorsquo6rsquorsquorsquo-octabromo-99rsquo9rsquorsquo9rsquorsquorsquo9rsquorsquorsquorsquo9rsquorsquorsquorsquorsquo9rsquorsquorsquorsquorsquorsquo9rsquorsquorsquorsquorsquorsquorsquo-octaethyl)[2222]-(27)-

fluorenephanetetraene (4-Et) In a 100 mL round-bottomed flask compound S8 (79 mg 018 mmol)

and compound S11 (200 mg 019 mmol) were dissolved in freshly distilled oxygen free

dichloromethane (80 mL) Aqueous sodium hydroxide (50 620 microL) was added dropwise to the

solution using a syringe During the addition the mixture was kept under a nitrogen atmosphere and

protected from light After the addition the solution was stirred for 1 hour After that time the

mixture was diluted with water and extracted with dichloromethane Combined extracts were dried

over anhydrous sodium sulphate filtered and the solvent was removed on a rotary evaporator

The crude material was purified using column chromatography (silicagel dichloromethanehexanes =

16) yielding pale green crystals (35 mg 239 ) 1H NMR (500 MHz chloroform-d 300 K) δ 782 (s

S8

8H) δ 701 (s 8H) δ 677 (s 8H) δ 142 (q 16H 3J = 74 Hz) δ 002 (t 24H 3J = 74 Hz) 13C NMR (151

MHz chloroform-d 300 K) δ 14963 14055 13618 13080 12483 12426 12301 5555 3130

855 HRMS (APCI+) mz [M ]+ Calcd for C76H64Br8 16078490 Found 16078971

[3]chrysaorene (1-Et) In a 50 mL Schlenk flask equipped with a magnetic stirring bar compound 3-Et

(22 mg 181 micromol) was placed and the vessel was capped with a septum The atmosphere within the

flask was then changed a few times to nitrogen after which bis(15-cyclooctadiene)nickel(0) (45 mg

016 mmol) and 22rsquo-bibyridyl (26 mg 016 mmol) were added in a glove-box Dry NN-

dimethylformamide (7 mL) was then added to the vessel in a constant flow of nitrogen and the

mixture was sealed with a glass stopper After subsequent changing of the atmosphere to nitrogen

one more time the reaction mixture was heated to 85 degrees and stirred for 18 hours It was then

cooled down to room temperature diluted with water and extracted with dichloromethane The

combined organic extracts were dried over anhydrous sodium sulphate filtered and the solvents

were removed on a rotary evaporator The crude mixture was filtered through a short silica plug to

remove the solid impurities Subsequent purification by column chromatography (silicagel

dichloromethanehexane = 16) gave the product in a form of pale yellow solid (65 mg 489 ) 1H

NMR (600 MHz chloroform-d 300 K) δ 927 (s 6H) δ 763 (s 6H) δ 761 (s 6H) δ 231 (q 6H 3J =

74 Hz) δ 209 (q 6H 3J = 73 Hz) δ 119 (t 9H 3J = 74 Hz) δ -041 (t 9H 3J = 73 Hz) 13C NMR (151

MHz chloroform-d 300 K) δ 14951 14179 13156 13094 12637 12319 11713 5940 3549

2980 1009 826 HRMS (APCI+) mz [M + H]+ Calcd for C57H49 7333829 Found 7333834 UV-vis

(dichloromethane 295 K) [nm] ( in M-1cm-1) 250 (761middot104) 281 (644middot104) 309 (427middot104) 316

(441middot104) 330 (342middot104) 348 (358middot104) 373 (148middot104) 396 (184middot104)

S9

[4]chrysaorene (2-Et) In a 25 mL Schlenk flask equipped with a magnetic stirring bar compound 4-Et

(15 mg 93 micromol) was placed and the vessel was capped with a septum The atmosphere within the

flask was then changed a few times to nitrogen after which bis(15-cyclooctadiene)nickel(0) (31 mg

1110 micromol) and 22rsquo-bibyridyl (17 mg 1110 micromol) were added in a glove-box Dry NN-

dimethylformamide (5 mL) was then added to the vessel in a constant flow of nitrogen and the

mixture was sealed with a glass stopper After subsequent changing of the atmosphere to nitrogen

one more time the reaction mixture was heated to 85 degrees and stirred for 18 hours It was then

cooled down to room temperature diluted with water and extracted with dichloromethane The

combined organic extracts were dried over anhydrous sodium sulphate filtered and the solvents

were removed on a rotary evaporator The crude mixture was filtered through a short silica plug to

remove the solid impurities Subsequent purification by column chromatography (silicagel

dichloromethanehexane = 16) gave the product in a form of pale yellow solid (4 mg 441 ) 1H

NMR (500 MHz chloroform-d 300 K) δ 970 (s 8H) δ 791 (s 8H) δ 784 (s 8H) δ 230 (q 16H 3J =

74 Hz) δ 042 (t 24H 3J = 74 Hz) 13C NMR (151 MHz chloroform-d 300 K) δ 14910 14122

13244 13084 12728 12308 11442 5430 3440 839 HRMS (APCI+) mz [M + H]+ Calcd for

C76H65 97751 Found 97753 UV-vis (dichloromethane 295 K) [nm] ( in M-1cm-1) 265 (244middot104)

296 (133middot104) 313 (167middot104) 319 (169middot104) 341 (206middot104) 366 (115middot104) 384 (126middot104) 398

(699middot103)

S10

Scheme S1 Synthesis of compounds S1-4-Et Reagents and conditions a) fuming HNO3 (20 equiv)

AcOH b) N2H4 (4 equiv) PdC (002 equiv) EtOH c) Ac2O (30 equiv) AcOH d) Br2 (25 equiv) DMF

e) KOH (16 equiv) MeOH f) 1 H2SO4H2O 2 NaNO2 (4 equiv) 3 KI (10 equiv)H2O g) 1 i-PrMgCl

(21 equiv)THF 2 DMF (4 equiv) h) NaBH4 (3 equiv) THF i) SOCl2 (22 equiv) DCM DMF j) PPh3

(3 equiv) toluene k) TiCl4 (75 equiv) CuI (48 equiv) Zn (150 equiv) THF l) NaOHaq (65 equiv)

DCM

S11

Scheme S2 1H and 13C chemical shifts of 3-Et and 4-Et (full assignment based on data obtained from

COSY ROESY HSQC and HMBC experiments)

S12

Scheme S3 1H and 13C chemical shifts of 1-Et and 2-Et (full assignment based on data obtained from

COSY ROESY HSQC and HMBC experiments)

S13

Scheme S4 Macrocyclic conjugation pathways in 1 and 2 [28]- [32]- [36]- and [40]annulene

pathways in 2 are constructed by inclusion of outer parts of phenanthrene units as shown for 1

S14

Figure S1 Molecular structure of 3-Et (co-crystalizing solvent dichloromethane also visible)

S15

Figure S2 Molecular structure of 4-Et (co-crystalizing solvent toluene also visible)

S16

Figure S3 Correlation between 1H NMR chemical shifts of 3-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S4 Correlation between 13C NMR chemical shifts of 3-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09915x + 02767Rsup2 = 0997

-1

1

3

5

7

-1 1 3 5 7

δexptl(1H)

δcalcd(1H)

y = 09557x + 5237Rsup2 = 0987

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S17

Figure S5 Correlation between 1H NMR chemical shifts of 4-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S6 Correlation between 13C NMR chemical shifts of 4-Et derived from experiment 151 MHz

chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09944x + 01523Rsup2 = 09985

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09686x + 37185Rsup2 = 09891

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S18

Figure S7 Correlation between 1H NMR chemical shifts of 1-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S8 Correlation between 13C NMR chemical shifts of 1-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10159x + 00411Rsup2 = 09994

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09457x + 42108

Rsup2 = 09986

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S19

Figure S9 Correlation between 1H NMR chemical shifts of 2-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S10 Correlation between 13C NMR chemical shifts of 2-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10166x + 0055

Rsup2 = 09994

0

2

4

6

8

10

0 2 4 6 8 10

δexptl(1H)

δcalcd(1H)

y = 09469x + 42433Rsup2 = 09992

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S20

10 20 30 40 50 60 70 80 90 100

1E-3

001

01

1

Log

Norm

lized

In

ten

sity

tns

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 958665E-6

Adj R-Square 099971

Value Standard Error

Normalized1

y0 8E-4 0

A1 808283 001427

t1 392706 000265

k 025464 1719E-4

tau 272203 000184

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 11007E-5

Adj R-Square 099971

Value Standard Error

Normalized1

y0 749513E-4 669951E-5

A1 279424 000238

t1 801384 000459

k 012478 714923E-5

tau 555477 000318

Figure S11 Decay traces of the emissions monitored at 437 nm (1-Et) and 447 nm (2-Et) under 395

nm excitation (Super Continuum Fianium Laser)

S21

Figure S12 Quantum yield determinations for 1-Et (top) and 2-Et (bottom)

S22

Figure S13 Chromaticity diagrams for 1-Et (x = 016 y = 009 and u = 017 v = 022) and 2-Et

(x = 015 y = 01 and u = 015 v = 023)

S23

Figure S14 KohnndashSham frontier orbitals calculated for 1-Et (left) and 2-Et (right) at the

PCM(DCM)B3LYP6-311+G(dp)6-31G(dp) level of theory

S24

Figure S15 Comparison of DFT-optimized geometries of 2-Et (blue) and 5-Et (red B3LYP6-31G(dp)

gas phase)

S25

Figure S16 NICS(1) scans for 2-Et 6-Et and phenanthrene Nuclear shieldings were evaluated 1 Aring

above the ring plane using GIAO-B3LYP6-31G(dp)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

-5 0 5 10 15

2-Et

6-Et

phenanthrene

benzenecentroid

chrysaorenecentroid

NICS(1)

scan coordinate

S26

Figure S17 DFT-optimized structure of 3-Et (B3LYP6-31G(dp))

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S7

(33rsquo3rsquorsquo66rsquo6rsquorsquo-hexabromo-99rsquo9rsquorsquo9rsquorsquorsquo9rsquorsquorsquorsquo9rsquorsquorsquorsquorsquo-hexaethyl)[222]-(27)-fluorenophanetriene (3-Et)

To a 250 mL three-necked round-bottomed flask equipped with a reflux condenser septum and

syringe pump adapter were placed zinc powder (2250 mg 344 mmol) and copper(I) iodide (210 mg

11 mmol) The apparatus was filled with nitrogen and oxygen-free tetrahydrofuran (130 mL) was

introduced through a syringe Titanium tetrachloride (189 mL 172 mmol) was added dropwise the

septum was replaced with a glass stopper and the reaction mixture was heated and stirred under

reflux for 3 hours Subsequently a solution of compound S8 (100 mg 023 mmol) in oxygen-free

tetrahydrofuran (50 mL) was added to the reaction mixture using a syringe pump in 3 hours and the

mixture was stirred under reflux for another 12 hours After that time it was cooled down to room

temperature Aqueous ammonia (5 150 mL) was added and the mixture was stirred for 1 hour

Extraction with dichloromethane followed by drying the combined organic layers over anhydrous

sodium sulphate and removing the solvents on a rotary evaporator gave a yellow-green solid It was

purified using column chromatography (silicagel dichloromethanehexane = 110) yielding pale

green crystals (16 mg 173 ) 1H NMR (500 MHz chloroform-d 300 K) δ 763 (s 6H) δ 688 (s 6H)

δ 687 (s 6H) δ 135 (q 12H 3J = 74 Hz) δ 011 (t 18H 3J = 74 Hz) 13C NMR (600 MHz chloroform-

d 300 K) δ 14959 14018 13662 13243 12527 12364 12206 5478 3106 872 HRMS

(APCI+) mz [M ]+ Calcd for C57H48Br6 12058851 Found 12059023

(33rsquo3rsquorsquo3rsquorsquorsquo66rsquo6rsquorsquo6rsquorsquorsquo-octabromo-99rsquo9rsquorsquo9rsquorsquorsquo9rsquorsquorsquorsquo9rsquorsquorsquorsquorsquo9rsquorsquorsquorsquorsquorsquo9rsquorsquorsquorsquorsquorsquorsquo-octaethyl)[2222]-(27)-

fluorenephanetetraene (4-Et) In a 100 mL round-bottomed flask compound S8 (79 mg 018 mmol)

and compound S11 (200 mg 019 mmol) were dissolved in freshly distilled oxygen free

dichloromethane (80 mL) Aqueous sodium hydroxide (50 620 microL) was added dropwise to the

solution using a syringe During the addition the mixture was kept under a nitrogen atmosphere and

protected from light After the addition the solution was stirred for 1 hour After that time the

mixture was diluted with water and extracted with dichloromethane Combined extracts were dried

over anhydrous sodium sulphate filtered and the solvent was removed on a rotary evaporator

The crude material was purified using column chromatography (silicagel dichloromethanehexanes =

16) yielding pale green crystals (35 mg 239 ) 1H NMR (500 MHz chloroform-d 300 K) δ 782 (s

S8

8H) δ 701 (s 8H) δ 677 (s 8H) δ 142 (q 16H 3J = 74 Hz) δ 002 (t 24H 3J = 74 Hz) 13C NMR (151

MHz chloroform-d 300 K) δ 14963 14055 13618 13080 12483 12426 12301 5555 3130

855 HRMS (APCI+) mz [M ]+ Calcd for C76H64Br8 16078490 Found 16078971

[3]chrysaorene (1-Et) In a 50 mL Schlenk flask equipped with a magnetic stirring bar compound 3-Et

(22 mg 181 micromol) was placed and the vessel was capped with a septum The atmosphere within the

flask was then changed a few times to nitrogen after which bis(15-cyclooctadiene)nickel(0) (45 mg

016 mmol) and 22rsquo-bibyridyl (26 mg 016 mmol) were added in a glove-box Dry NN-

dimethylformamide (7 mL) was then added to the vessel in a constant flow of nitrogen and the

mixture was sealed with a glass stopper After subsequent changing of the atmosphere to nitrogen

one more time the reaction mixture was heated to 85 degrees and stirred for 18 hours It was then

cooled down to room temperature diluted with water and extracted with dichloromethane The

combined organic extracts were dried over anhydrous sodium sulphate filtered and the solvents

were removed on a rotary evaporator The crude mixture was filtered through a short silica plug to

remove the solid impurities Subsequent purification by column chromatography (silicagel

dichloromethanehexane = 16) gave the product in a form of pale yellow solid (65 mg 489 ) 1H

NMR (600 MHz chloroform-d 300 K) δ 927 (s 6H) δ 763 (s 6H) δ 761 (s 6H) δ 231 (q 6H 3J =

74 Hz) δ 209 (q 6H 3J = 73 Hz) δ 119 (t 9H 3J = 74 Hz) δ -041 (t 9H 3J = 73 Hz) 13C NMR (151

MHz chloroform-d 300 K) δ 14951 14179 13156 13094 12637 12319 11713 5940 3549

2980 1009 826 HRMS (APCI+) mz [M + H]+ Calcd for C57H49 7333829 Found 7333834 UV-vis

(dichloromethane 295 K) [nm] ( in M-1cm-1) 250 (761middot104) 281 (644middot104) 309 (427middot104) 316

(441middot104) 330 (342middot104) 348 (358middot104) 373 (148middot104) 396 (184middot104)

S9

[4]chrysaorene (2-Et) In a 25 mL Schlenk flask equipped with a magnetic stirring bar compound 4-Et

(15 mg 93 micromol) was placed and the vessel was capped with a septum The atmosphere within the

flask was then changed a few times to nitrogen after which bis(15-cyclooctadiene)nickel(0) (31 mg

1110 micromol) and 22rsquo-bibyridyl (17 mg 1110 micromol) were added in a glove-box Dry NN-

dimethylformamide (5 mL) was then added to the vessel in a constant flow of nitrogen and the

mixture was sealed with a glass stopper After subsequent changing of the atmosphere to nitrogen

one more time the reaction mixture was heated to 85 degrees and stirred for 18 hours It was then

cooled down to room temperature diluted with water and extracted with dichloromethane The

combined organic extracts were dried over anhydrous sodium sulphate filtered and the solvents

were removed on a rotary evaporator The crude mixture was filtered through a short silica plug to

remove the solid impurities Subsequent purification by column chromatography (silicagel

dichloromethanehexane = 16) gave the product in a form of pale yellow solid (4 mg 441 ) 1H

NMR (500 MHz chloroform-d 300 K) δ 970 (s 8H) δ 791 (s 8H) δ 784 (s 8H) δ 230 (q 16H 3J =

74 Hz) δ 042 (t 24H 3J = 74 Hz) 13C NMR (151 MHz chloroform-d 300 K) δ 14910 14122

13244 13084 12728 12308 11442 5430 3440 839 HRMS (APCI+) mz [M + H]+ Calcd for

C76H65 97751 Found 97753 UV-vis (dichloromethane 295 K) [nm] ( in M-1cm-1) 265 (244middot104)

296 (133middot104) 313 (167middot104) 319 (169middot104) 341 (206middot104) 366 (115middot104) 384 (126middot104) 398

(699middot103)

S10

Scheme S1 Synthesis of compounds S1-4-Et Reagents and conditions a) fuming HNO3 (20 equiv)

AcOH b) N2H4 (4 equiv) PdC (002 equiv) EtOH c) Ac2O (30 equiv) AcOH d) Br2 (25 equiv) DMF

e) KOH (16 equiv) MeOH f) 1 H2SO4H2O 2 NaNO2 (4 equiv) 3 KI (10 equiv)H2O g) 1 i-PrMgCl

(21 equiv)THF 2 DMF (4 equiv) h) NaBH4 (3 equiv) THF i) SOCl2 (22 equiv) DCM DMF j) PPh3

(3 equiv) toluene k) TiCl4 (75 equiv) CuI (48 equiv) Zn (150 equiv) THF l) NaOHaq (65 equiv)

DCM

S11

Scheme S2 1H and 13C chemical shifts of 3-Et and 4-Et (full assignment based on data obtained from

COSY ROESY HSQC and HMBC experiments)

S12

Scheme S3 1H and 13C chemical shifts of 1-Et and 2-Et (full assignment based on data obtained from

COSY ROESY HSQC and HMBC experiments)

S13

Scheme S4 Macrocyclic conjugation pathways in 1 and 2 [28]- [32]- [36]- and [40]annulene

pathways in 2 are constructed by inclusion of outer parts of phenanthrene units as shown for 1

S14

Figure S1 Molecular structure of 3-Et (co-crystalizing solvent dichloromethane also visible)

S15

Figure S2 Molecular structure of 4-Et (co-crystalizing solvent toluene also visible)

S16

Figure S3 Correlation between 1H NMR chemical shifts of 3-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S4 Correlation between 13C NMR chemical shifts of 3-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09915x + 02767Rsup2 = 0997

-1

1

3

5

7

-1 1 3 5 7

δexptl(1H)

δcalcd(1H)

y = 09557x + 5237Rsup2 = 0987

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S17

Figure S5 Correlation between 1H NMR chemical shifts of 4-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S6 Correlation between 13C NMR chemical shifts of 4-Et derived from experiment 151 MHz

chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09944x + 01523Rsup2 = 09985

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09686x + 37185Rsup2 = 09891

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S18

Figure S7 Correlation between 1H NMR chemical shifts of 1-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S8 Correlation between 13C NMR chemical shifts of 1-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10159x + 00411Rsup2 = 09994

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09457x + 42108

Rsup2 = 09986

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S19

Figure S9 Correlation between 1H NMR chemical shifts of 2-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S10 Correlation between 13C NMR chemical shifts of 2-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10166x + 0055

Rsup2 = 09994

0

2

4

6

8

10

0 2 4 6 8 10

δexptl(1H)

δcalcd(1H)

y = 09469x + 42433Rsup2 = 09992

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S20

10 20 30 40 50 60 70 80 90 100

1E-3

001

01

1

Log

Norm

lized

In

ten

sity

tns

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 958665E-6

Adj R-Square 099971

Value Standard Error

Normalized1

y0 8E-4 0

A1 808283 001427

t1 392706 000265

k 025464 1719E-4

tau 272203 000184

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 11007E-5

Adj R-Square 099971

Value Standard Error

Normalized1

y0 749513E-4 669951E-5

A1 279424 000238

t1 801384 000459

k 012478 714923E-5

tau 555477 000318

Figure S11 Decay traces of the emissions monitored at 437 nm (1-Et) and 447 nm (2-Et) under 395

nm excitation (Super Continuum Fianium Laser)

S21

Figure S12 Quantum yield determinations for 1-Et (top) and 2-Et (bottom)

S22

Figure S13 Chromaticity diagrams for 1-Et (x = 016 y = 009 and u = 017 v = 022) and 2-Et

(x = 015 y = 01 and u = 015 v = 023)

S23

Figure S14 KohnndashSham frontier orbitals calculated for 1-Et (left) and 2-Et (right) at the

PCM(DCM)B3LYP6-311+G(dp)6-31G(dp) level of theory

S24

Figure S15 Comparison of DFT-optimized geometries of 2-Et (blue) and 5-Et (red B3LYP6-31G(dp)

gas phase)

S25

Figure S16 NICS(1) scans for 2-Et 6-Et and phenanthrene Nuclear shieldings were evaluated 1 Aring

above the ring plane using GIAO-B3LYP6-31G(dp)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

-5 0 5 10 15

2-Et

6-Et

phenanthrene

benzenecentroid

chrysaorenecentroid

NICS(1)

scan coordinate

S26

Figure S17 DFT-optimized structure of 3-Et (B3LYP6-31G(dp))

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S8

8H) δ 701 (s 8H) δ 677 (s 8H) δ 142 (q 16H 3J = 74 Hz) δ 002 (t 24H 3J = 74 Hz) 13C NMR (151

MHz chloroform-d 300 K) δ 14963 14055 13618 13080 12483 12426 12301 5555 3130

855 HRMS (APCI+) mz [M ]+ Calcd for C76H64Br8 16078490 Found 16078971

[3]chrysaorene (1-Et) In a 50 mL Schlenk flask equipped with a magnetic stirring bar compound 3-Et

(22 mg 181 micromol) was placed and the vessel was capped with a septum The atmosphere within the

flask was then changed a few times to nitrogen after which bis(15-cyclooctadiene)nickel(0) (45 mg

016 mmol) and 22rsquo-bibyridyl (26 mg 016 mmol) were added in a glove-box Dry NN-

dimethylformamide (7 mL) was then added to the vessel in a constant flow of nitrogen and the

mixture was sealed with a glass stopper After subsequent changing of the atmosphere to nitrogen

one more time the reaction mixture was heated to 85 degrees and stirred for 18 hours It was then

cooled down to room temperature diluted with water and extracted with dichloromethane The

combined organic extracts were dried over anhydrous sodium sulphate filtered and the solvents

were removed on a rotary evaporator The crude mixture was filtered through a short silica plug to

remove the solid impurities Subsequent purification by column chromatography (silicagel

dichloromethanehexane = 16) gave the product in a form of pale yellow solid (65 mg 489 ) 1H

NMR (600 MHz chloroform-d 300 K) δ 927 (s 6H) δ 763 (s 6H) δ 761 (s 6H) δ 231 (q 6H 3J =

74 Hz) δ 209 (q 6H 3J = 73 Hz) δ 119 (t 9H 3J = 74 Hz) δ -041 (t 9H 3J = 73 Hz) 13C NMR (151

MHz chloroform-d 300 K) δ 14951 14179 13156 13094 12637 12319 11713 5940 3549

2980 1009 826 HRMS (APCI+) mz [M + H]+ Calcd for C57H49 7333829 Found 7333834 UV-vis

(dichloromethane 295 K) [nm] ( in M-1cm-1) 250 (761middot104) 281 (644middot104) 309 (427middot104) 316

(441middot104) 330 (342middot104) 348 (358middot104) 373 (148middot104) 396 (184middot104)

S9

[4]chrysaorene (2-Et) In a 25 mL Schlenk flask equipped with a magnetic stirring bar compound 4-Et

(15 mg 93 micromol) was placed and the vessel was capped with a septum The atmosphere within the

flask was then changed a few times to nitrogen after which bis(15-cyclooctadiene)nickel(0) (31 mg

1110 micromol) and 22rsquo-bibyridyl (17 mg 1110 micromol) were added in a glove-box Dry NN-

dimethylformamide (5 mL) was then added to the vessel in a constant flow of nitrogen and the

mixture was sealed with a glass stopper After subsequent changing of the atmosphere to nitrogen

one more time the reaction mixture was heated to 85 degrees and stirred for 18 hours It was then

cooled down to room temperature diluted with water and extracted with dichloromethane The

combined organic extracts were dried over anhydrous sodium sulphate filtered and the solvents

were removed on a rotary evaporator The crude mixture was filtered through a short silica plug to

remove the solid impurities Subsequent purification by column chromatography (silicagel

dichloromethanehexane = 16) gave the product in a form of pale yellow solid (4 mg 441 ) 1H

NMR (500 MHz chloroform-d 300 K) δ 970 (s 8H) δ 791 (s 8H) δ 784 (s 8H) δ 230 (q 16H 3J =

74 Hz) δ 042 (t 24H 3J = 74 Hz) 13C NMR (151 MHz chloroform-d 300 K) δ 14910 14122

13244 13084 12728 12308 11442 5430 3440 839 HRMS (APCI+) mz [M + H]+ Calcd for

C76H65 97751 Found 97753 UV-vis (dichloromethane 295 K) [nm] ( in M-1cm-1) 265 (244middot104)

296 (133middot104) 313 (167middot104) 319 (169middot104) 341 (206middot104) 366 (115middot104) 384 (126middot104) 398

(699middot103)

S10

Scheme S1 Synthesis of compounds S1-4-Et Reagents and conditions a) fuming HNO3 (20 equiv)

AcOH b) N2H4 (4 equiv) PdC (002 equiv) EtOH c) Ac2O (30 equiv) AcOH d) Br2 (25 equiv) DMF

e) KOH (16 equiv) MeOH f) 1 H2SO4H2O 2 NaNO2 (4 equiv) 3 KI (10 equiv)H2O g) 1 i-PrMgCl

(21 equiv)THF 2 DMF (4 equiv) h) NaBH4 (3 equiv) THF i) SOCl2 (22 equiv) DCM DMF j) PPh3

(3 equiv) toluene k) TiCl4 (75 equiv) CuI (48 equiv) Zn (150 equiv) THF l) NaOHaq (65 equiv)

DCM

S11

Scheme S2 1H and 13C chemical shifts of 3-Et and 4-Et (full assignment based on data obtained from

COSY ROESY HSQC and HMBC experiments)

S12

Scheme S3 1H and 13C chemical shifts of 1-Et and 2-Et (full assignment based on data obtained from

COSY ROESY HSQC and HMBC experiments)

S13

Scheme S4 Macrocyclic conjugation pathways in 1 and 2 [28]- [32]- [36]- and [40]annulene

pathways in 2 are constructed by inclusion of outer parts of phenanthrene units as shown for 1

S14

Figure S1 Molecular structure of 3-Et (co-crystalizing solvent dichloromethane also visible)

S15

Figure S2 Molecular structure of 4-Et (co-crystalizing solvent toluene also visible)

S16

Figure S3 Correlation between 1H NMR chemical shifts of 3-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S4 Correlation between 13C NMR chemical shifts of 3-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09915x + 02767Rsup2 = 0997

-1

1

3

5

7

-1 1 3 5 7

δexptl(1H)

δcalcd(1H)

y = 09557x + 5237Rsup2 = 0987

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S17

Figure S5 Correlation between 1H NMR chemical shifts of 4-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S6 Correlation between 13C NMR chemical shifts of 4-Et derived from experiment 151 MHz

chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09944x + 01523Rsup2 = 09985

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09686x + 37185Rsup2 = 09891

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S18

Figure S7 Correlation between 1H NMR chemical shifts of 1-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S8 Correlation between 13C NMR chemical shifts of 1-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10159x + 00411Rsup2 = 09994

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09457x + 42108

Rsup2 = 09986

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S19

Figure S9 Correlation between 1H NMR chemical shifts of 2-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S10 Correlation between 13C NMR chemical shifts of 2-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10166x + 0055

Rsup2 = 09994

0

2

4

6

8

10

0 2 4 6 8 10

δexptl(1H)

δcalcd(1H)

y = 09469x + 42433Rsup2 = 09992

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S20

10 20 30 40 50 60 70 80 90 100

1E-3

001

01

1

Log

Norm

lized

In

ten

sity

tns

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 958665E-6

Adj R-Square 099971

Value Standard Error

Normalized1

y0 8E-4 0

A1 808283 001427

t1 392706 000265

k 025464 1719E-4

tau 272203 000184

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 11007E-5

Adj R-Square 099971

Value Standard Error

Normalized1

y0 749513E-4 669951E-5

A1 279424 000238

t1 801384 000459

k 012478 714923E-5

tau 555477 000318

Figure S11 Decay traces of the emissions monitored at 437 nm (1-Et) and 447 nm (2-Et) under 395

nm excitation (Super Continuum Fianium Laser)

S21

Figure S12 Quantum yield determinations for 1-Et (top) and 2-Et (bottom)

S22

Figure S13 Chromaticity diagrams for 1-Et (x = 016 y = 009 and u = 017 v = 022) and 2-Et

(x = 015 y = 01 and u = 015 v = 023)

S23

Figure S14 KohnndashSham frontier orbitals calculated for 1-Et (left) and 2-Et (right) at the

PCM(DCM)B3LYP6-311+G(dp)6-31G(dp) level of theory

S24

Figure S15 Comparison of DFT-optimized geometries of 2-Et (blue) and 5-Et (red B3LYP6-31G(dp)

gas phase)

S25

Figure S16 NICS(1) scans for 2-Et 6-Et and phenanthrene Nuclear shieldings were evaluated 1 Aring

above the ring plane using GIAO-B3LYP6-31G(dp)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

-5 0 5 10 15

2-Et

6-Et

phenanthrene

benzenecentroid

chrysaorenecentroid

NICS(1)

scan coordinate

S26

Figure S17 DFT-optimized structure of 3-Et (B3LYP6-31G(dp))

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S9

[4]chrysaorene (2-Et) In a 25 mL Schlenk flask equipped with a magnetic stirring bar compound 4-Et

(15 mg 93 micromol) was placed and the vessel was capped with a septum The atmosphere within the

flask was then changed a few times to nitrogen after which bis(15-cyclooctadiene)nickel(0) (31 mg

1110 micromol) and 22rsquo-bibyridyl (17 mg 1110 micromol) were added in a glove-box Dry NN-

dimethylformamide (5 mL) was then added to the vessel in a constant flow of nitrogen and the

mixture was sealed with a glass stopper After subsequent changing of the atmosphere to nitrogen

one more time the reaction mixture was heated to 85 degrees and stirred for 18 hours It was then

cooled down to room temperature diluted with water and extracted with dichloromethane The

combined organic extracts were dried over anhydrous sodium sulphate filtered and the solvents

were removed on a rotary evaporator The crude mixture was filtered through a short silica plug to

remove the solid impurities Subsequent purification by column chromatography (silicagel

dichloromethanehexane = 16) gave the product in a form of pale yellow solid (4 mg 441 ) 1H

NMR (500 MHz chloroform-d 300 K) δ 970 (s 8H) δ 791 (s 8H) δ 784 (s 8H) δ 230 (q 16H 3J =

74 Hz) δ 042 (t 24H 3J = 74 Hz) 13C NMR (151 MHz chloroform-d 300 K) δ 14910 14122

13244 13084 12728 12308 11442 5430 3440 839 HRMS (APCI+) mz [M + H]+ Calcd for

C76H65 97751 Found 97753 UV-vis (dichloromethane 295 K) [nm] ( in M-1cm-1) 265 (244middot104)

296 (133middot104) 313 (167middot104) 319 (169middot104) 341 (206middot104) 366 (115middot104) 384 (126middot104) 398

(699middot103)

S10

Scheme S1 Synthesis of compounds S1-4-Et Reagents and conditions a) fuming HNO3 (20 equiv)

AcOH b) N2H4 (4 equiv) PdC (002 equiv) EtOH c) Ac2O (30 equiv) AcOH d) Br2 (25 equiv) DMF

e) KOH (16 equiv) MeOH f) 1 H2SO4H2O 2 NaNO2 (4 equiv) 3 KI (10 equiv)H2O g) 1 i-PrMgCl

(21 equiv)THF 2 DMF (4 equiv) h) NaBH4 (3 equiv) THF i) SOCl2 (22 equiv) DCM DMF j) PPh3

(3 equiv) toluene k) TiCl4 (75 equiv) CuI (48 equiv) Zn (150 equiv) THF l) NaOHaq (65 equiv)

DCM

S11

Scheme S2 1H and 13C chemical shifts of 3-Et and 4-Et (full assignment based on data obtained from

COSY ROESY HSQC and HMBC experiments)

S12

Scheme S3 1H and 13C chemical shifts of 1-Et and 2-Et (full assignment based on data obtained from

COSY ROESY HSQC and HMBC experiments)

S13

Scheme S4 Macrocyclic conjugation pathways in 1 and 2 [28]- [32]- [36]- and [40]annulene

pathways in 2 are constructed by inclusion of outer parts of phenanthrene units as shown for 1

S14

Figure S1 Molecular structure of 3-Et (co-crystalizing solvent dichloromethane also visible)

S15

Figure S2 Molecular structure of 4-Et (co-crystalizing solvent toluene also visible)

S16

Figure S3 Correlation between 1H NMR chemical shifts of 3-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S4 Correlation between 13C NMR chemical shifts of 3-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09915x + 02767Rsup2 = 0997

-1

1

3

5

7

-1 1 3 5 7

δexptl(1H)

δcalcd(1H)

y = 09557x + 5237Rsup2 = 0987

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S17

Figure S5 Correlation between 1H NMR chemical shifts of 4-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S6 Correlation between 13C NMR chemical shifts of 4-Et derived from experiment 151 MHz

chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09944x + 01523Rsup2 = 09985

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09686x + 37185Rsup2 = 09891

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S18

Figure S7 Correlation between 1H NMR chemical shifts of 1-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S8 Correlation between 13C NMR chemical shifts of 1-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10159x + 00411Rsup2 = 09994

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09457x + 42108

Rsup2 = 09986

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S19

Figure S9 Correlation between 1H NMR chemical shifts of 2-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S10 Correlation between 13C NMR chemical shifts of 2-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10166x + 0055

Rsup2 = 09994

0

2

4

6

8

10

0 2 4 6 8 10

δexptl(1H)

δcalcd(1H)

y = 09469x + 42433Rsup2 = 09992

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S20

10 20 30 40 50 60 70 80 90 100

1E-3

001

01

1

Log

Norm

lized

In

ten

sity

tns

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 958665E-6

Adj R-Square 099971

Value Standard Error

Normalized1

y0 8E-4 0

A1 808283 001427

t1 392706 000265

k 025464 1719E-4

tau 272203 000184

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 11007E-5

Adj R-Square 099971

Value Standard Error

Normalized1

y0 749513E-4 669951E-5

A1 279424 000238

t1 801384 000459

k 012478 714923E-5

tau 555477 000318

Figure S11 Decay traces of the emissions monitored at 437 nm (1-Et) and 447 nm (2-Et) under 395

nm excitation (Super Continuum Fianium Laser)

S21

Figure S12 Quantum yield determinations for 1-Et (top) and 2-Et (bottom)

S22

Figure S13 Chromaticity diagrams for 1-Et (x = 016 y = 009 and u = 017 v = 022) and 2-Et

(x = 015 y = 01 and u = 015 v = 023)

S23

Figure S14 KohnndashSham frontier orbitals calculated for 1-Et (left) and 2-Et (right) at the

PCM(DCM)B3LYP6-311+G(dp)6-31G(dp) level of theory

S24

Figure S15 Comparison of DFT-optimized geometries of 2-Et (blue) and 5-Et (red B3LYP6-31G(dp)

gas phase)

S25

Figure S16 NICS(1) scans for 2-Et 6-Et and phenanthrene Nuclear shieldings were evaluated 1 Aring

above the ring plane using GIAO-B3LYP6-31G(dp)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

-5 0 5 10 15

2-Et

6-Et

phenanthrene

benzenecentroid

chrysaorenecentroid

NICS(1)

scan coordinate

S26

Figure S17 DFT-optimized structure of 3-Et (B3LYP6-31G(dp))

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S10

Scheme S1 Synthesis of compounds S1-4-Et Reagents and conditions a) fuming HNO3 (20 equiv)

AcOH b) N2H4 (4 equiv) PdC (002 equiv) EtOH c) Ac2O (30 equiv) AcOH d) Br2 (25 equiv) DMF

e) KOH (16 equiv) MeOH f) 1 H2SO4H2O 2 NaNO2 (4 equiv) 3 KI (10 equiv)H2O g) 1 i-PrMgCl

(21 equiv)THF 2 DMF (4 equiv) h) NaBH4 (3 equiv) THF i) SOCl2 (22 equiv) DCM DMF j) PPh3

(3 equiv) toluene k) TiCl4 (75 equiv) CuI (48 equiv) Zn (150 equiv) THF l) NaOHaq (65 equiv)

DCM

S11

Scheme S2 1H and 13C chemical shifts of 3-Et and 4-Et (full assignment based on data obtained from

COSY ROESY HSQC and HMBC experiments)

S12

Scheme S3 1H and 13C chemical shifts of 1-Et and 2-Et (full assignment based on data obtained from

COSY ROESY HSQC and HMBC experiments)

S13

Scheme S4 Macrocyclic conjugation pathways in 1 and 2 [28]- [32]- [36]- and [40]annulene

pathways in 2 are constructed by inclusion of outer parts of phenanthrene units as shown for 1

S14

Figure S1 Molecular structure of 3-Et (co-crystalizing solvent dichloromethane also visible)

S15

Figure S2 Molecular structure of 4-Et (co-crystalizing solvent toluene also visible)

S16

Figure S3 Correlation between 1H NMR chemical shifts of 3-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S4 Correlation between 13C NMR chemical shifts of 3-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09915x + 02767Rsup2 = 0997

-1

1

3

5

7

-1 1 3 5 7

δexptl(1H)

δcalcd(1H)

y = 09557x + 5237Rsup2 = 0987

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S17

Figure S5 Correlation between 1H NMR chemical shifts of 4-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S6 Correlation between 13C NMR chemical shifts of 4-Et derived from experiment 151 MHz

chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09944x + 01523Rsup2 = 09985

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09686x + 37185Rsup2 = 09891

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S18

Figure S7 Correlation between 1H NMR chemical shifts of 1-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S8 Correlation between 13C NMR chemical shifts of 1-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10159x + 00411Rsup2 = 09994

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09457x + 42108

Rsup2 = 09986

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S19

Figure S9 Correlation between 1H NMR chemical shifts of 2-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S10 Correlation between 13C NMR chemical shifts of 2-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10166x + 0055

Rsup2 = 09994

0

2

4

6

8

10

0 2 4 6 8 10

δexptl(1H)

δcalcd(1H)

y = 09469x + 42433Rsup2 = 09992

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S20

10 20 30 40 50 60 70 80 90 100

1E-3

001

01

1

Log

Norm

lized

In

ten

sity

tns

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 958665E-6

Adj R-Square 099971

Value Standard Error

Normalized1

y0 8E-4 0

A1 808283 001427

t1 392706 000265

k 025464 1719E-4

tau 272203 000184

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 11007E-5

Adj R-Square 099971

Value Standard Error

Normalized1

y0 749513E-4 669951E-5

A1 279424 000238

t1 801384 000459

k 012478 714923E-5

tau 555477 000318

Figure S11 Decay traces of the emissions monitored at 437 nm (1-Et) and 447 nm (2-Et) under 395

nm excitation (Super Continuum Fianium Laser)

S21

Figure S12 Quantum yield determinations for 1-Et (top) and 2-Et (bottom)

S22

Figure S13 Chromaticity diagrams for 1-Et (x = 016 y = 009 and u = 017 v = 022) and 2-Et

(x = 015 y = 01 and u = 015 v = 023)

S23

Figure S14 KohnndashSham frontier orbitals calculated for 1-Et (left) and 2-Et (right) at the

PCM(DCM)B3LYP6-311+G(dp)6-31G(dp) level of theory

S24

Figure S15 Comparison of DFT-optimized geometries of 2-Et (blue) and 5-Et (red B3LYP6-31G(dp)

gas phase)

S25

Figure S16 NICS(1) scans for 2-Et 6-Et and phenanthrene Nuclear shieldings were evaluated 1 Aring

above the ring plane using GIAO-B3LYP6-31G(dp)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

-5 0 5 10 15

2-Et

6-Et

phenanthrene

benzenecentroid

chrysaorenecentroid

NICS(1)

scan coordinate

S26

Figure S17 DFT-optimized structure of 3-Et (B3LYP6-31G(dp))

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S11

Scheme S2 1H and 13C chemical shifts of 3-Et and 4-Et (full assignment based on data obtained from

COSY ROESY HSQC and HMBC experiments)

S12

Scheme S3 1H and 13C chemical shifts of 1-Et and 2-Et (full assignment based on data obtained from

COSY ROESY HSQC and HMBC experiments)

S13

Scheme S4 Macrocyclic conjugation pathways in 1 and 2 [28]- [32]- [36]- and [40]annulene

pathways in 2 are constructed by inclusion of outer parts of phenanthrene units as shown for 1

S14

Figure S1 Molecular structure of 3-Et (co-crystalizing solvent dichloromethane also visible)

S15

Figure S2 Molecular structure of 4-Et (co-crystalizing solvent toluene also visible)

S16

Figure S3 Correlation between 1H NMR chemical shifts of 3-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S4 Correlation between 13C NMR chemical shifts of 3-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09915x + 02767Rsup2 = 0997

-1

1

3

5

7

-1 1 3 5 7

δexptl(1H)

δcalcd(1H)

y = 09557x + 5237Rsup2 = 0987

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S17

Figure S5 Correlation between 1H NMR chemical shifts of 4-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S6 Correlation between 13C NMR chemical shifts of 4-Et derived from experiment 151 MHz

chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09944x + 01523Rsup2 = 09985

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09686x + 37185Rsup2 = 09891

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S18

Figure S7 Correlation between 1H NMR chemical shifts of 1-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S8 Correlation between 13C NMR chemical shifts of 1-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10159x + 00411Rsup2 = 09994

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09457x + 42108

Rsup2 = 09986

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S19

Figure S9 Correlation between 1H NMR chemical shifts of 2-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S10 Correlation between 13C NMR chemical shifts of 2-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10166x + 0055

Rsup2 = 09994

0

2

4

6

8

10

0 2 4 6 8 10

δexptl(1H)

δcalcd(1H)

y = 09469x + 42433Rsup2 = 09992

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S20

10 20 30 40 50 60 70 80 90 100

1E-3

001

01

1

Log

Norm

lized

In

ten

sity

tns

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 958665E-6

Adj R-Square 099971

Value Standard Error

Normalized1

y0 8E-4 0

A1 808283 001427

t1 392706 000265

k 025464 1719E-4

tau 272203 000184

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 11007E-5

Adj R-Square 099971

Value Standard Error

Normalized1

y0 749513E-4 669951E-5

A1 279424 000238

t1 801384 000459

k 012478 714923E-5

tau 555477 000318

Figure S11 Decay traces of the emissions monitored at 437 nm (1-Et) and 447 nm (2-Et) under 395

nm excitation (Super Continuum Fianium Laser)

S21

Figure S12 Quantum yield determinations for 1-Et (top) and 2-Et (bottom)

S22

Figure S13 Chromaticity diagrams for 1-Et (x = 016 y = 009 and u = 017 v = 022) and 2-Et

(x = 015 y = 01 and u = 015 v = 023)

S23

Figure S14 KohnndashSham frontier orbitals calculated for 1-Et (left) and 2-Et (right) at the

PCM(DCM)B3LYP6-311+G(dp)6-31G(dp) level of theory

S24

Figure S15 Comparison of DFT-optimized geometries of 2-Et (blue) and 5-Et (red B3LYP6-31G(dp)

gas phase)

S25

Figure S16 NICS(1) scans for 2-Et 6-Et and phenanthrene Nuclear shieldings were evaluated 1 Aring

above the ring plane using GIAO-B3LYP6-31G(dp)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

-5 0 5 10 15

2-Et

6-Et

phenanthrene

benzenecentroid

chrysaorenecentroid

NICS(1)

scan coordinate

S26

Figure S17 DFT-optimized structure of 3-Et (B3LYP6-31G(dp))

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S12

Scheme S3 1H and 13C chemical shifts of 1-Et and 2-Et (full assignment based on data obtained from

COSY ROESY HSQC and HMBC experiments)

S13

Scheme S4 Macrocyclic conjugation pathways in 1 and 2 [28]- [32]- [36]- and [40]annulene

pathways in 2 are constructed by inclusion of outer parts of phenanthrene units as shown for 1

S14

Figure S1 Molecular structure of 3-Et (co-crystalizing solvent dichloromethane also visible)

S15

Figure S2 Molecular structure of 4-Et (co-crystalizing solvent toluene also visible)

S16

Figure S3 Correlation between 1H NMR chemical shifts of 3-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S4 Correlation between 13C NMR chemical shifts of 3-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09915x + 02767Rsup2 = 0997

-1

1

3

5

7

-1 1 3 5 7

δexptl(1H)

δcalcd(1H)

y = 09557x + 5237Rsup2 = 0987

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S17

Figure S5 Correlation between 1H NMR chemical shifts of 4-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S6 Correlation between 13C NMR chemical shifts of 4-Et derived from experiment 151 MHz

chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09944x + 01523Rsup2 = 09985

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09686x + 37185Rsup2 = 09891

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S18

Figure S7 Correlation between 1H NMR chemical shifts of 1-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S8 Correlation between 13C NMR chemical shifts of 1-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10159x + 00411Rsup2 = 09994

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09457x + 42108

Rsup2 = 09986

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S19

Figure S9 Correlation between 1H NMR chemical shifts of 2-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S10 Correlation between 13C NMR chemical shifts of 2-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10166x + 0055

Rsup2 = 09994

0

2

4

6

8

10

0 2 4 6 8 10

δexptl(1H)

δcalcd(1H)

y = 09469x + 42433Rsup2 = 09992

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S20

10 20 30 40 50 60 70 80 90 100

1E-3

001

01

1

Log

Norm

lized

In

ten

sity

tns

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 958665E-6

Adj R-Square 099971

Value Standard Error

Normalized1

y0 8E-4 0

A1 808283 001427

t1 392706 000265

k 025464 1719E-4

tau 272203 000184

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 11007E-5

Adj R-Square 099971

Value Standard Error

Normalized1

y0 749513E-4 669951E-5

A1 279424 000238

t1 801384 000459

k 012478 714923E-5

tau 555477 000318

Figure S11 Decay traces of the emissions monitored at 437 nm (1-Et) and 447 nm (2-Et) under 395

nm excitation (Super Continuum Fianium Laser)

S21

Figure S12 Quantum yield determinations for 1-Et (top) and 2-Et (bottom)

S22

Figure S13 Chromaticity diagrams for 1-Et (x = 016 y = 009 and u = 017 v = 022) and 2-Et

(x = 015 y = 01 and u = 015 v = 023)

S23

Figure S14 KohnndashSham frontier orbitals calculated for 1-Et (left) and 2-Et (right) at the

PCM(DCM)B3LYP6-311+G(dp)6-31G(dp) level of theory

S24

Figure S15 Comparison of DFT-optimized geometries of 2-Et (blue) and 5-Et (red B3LYP6-31G(dp)

gas phase)

S25

Figure S16 NICS(1) scans for 2-Et 6-Et and phenanthrene Nuclear shieldings were evaluated 1 Aring

above the ring plane using GIAO-B3LYP6-31G(dp)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

-5 0 5 10 15

2-Et

6-Et

phenanthrene

benzenecentroid

chrysaorenecentroid

NICS(1)

scan coordinate

S26

Figure S17 DFT-optimized structure of 3-Et (B3LYP6-31G(dp))

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S13

Scheme S4 Macrocyclic conjugation pathways in 1 and 2 [28]- [32]- [36]- and [40]annulene

pathways in 2 are constructed by inclusion of outer parts of phenanthrene units as shown for 1

S14

Figure S1 Molecular structure of 3-Et (co-crystalizing solvent dichloromethane also visible)

S15

Figure S2 Molecular structure of 4-Et (co-crystalizing solvent toluene also visible)

S16

Figure S3 Correlation between 1H NMR chemical shifts of 3-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S4 Correlation between 13C NMR chemical shifts of 3-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09915x + 02767Rsup2 = 0997

-1

1

3

5

7

-1 1 3 5 7

δexptl(1H)

δcalcd(1H)

y = 09557x + 5237Rsup2 = 0987

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S17

Figure S5 Correlation between 1H NMR chemical shifts of 4-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S6 Correlation between 13C NMR chemical shifts of 4-Et derived from experiment 151 MHz

chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09944x + 01523Rsup2 = 09985

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09686x + 37185Rsup2 = 09891

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S18

Figure S7 Correlation between 1H NMR chemical shifts of 1-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S8 Correlation between 13C NMR chemical shifts of 1-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10159x + 00411Rsup2 = 09994

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09457x + 42108

Rsup2 = 09986

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S19

Figure S9 Correlation between 1H NMR chemical shifts of 2-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S10 Correlation between 13C NMR chemical shifts of 2-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10166x + 0055

Rsup2 = 09994

0

2

4

6

8

10

0 2 4 6 8 10

δexptl(1H)

δcalcd(1H)

y = 09469x + 42433Rsup2 = 09992

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S20

10 20 30 40 50 60 70 80 90 100

1E-3

001

01

1

Log

Norm

lized

In

ten

sity

tns

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 958665E-6

Adj R-Square 099971

Value Standard Error

Normalized1

y0 8E-4 0

A1 808283 001427

t1 392706 000265

k 025464 1719E-4

tau 272203 000184

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 11007E-5

Adj R-Square 099971

Value Standard Error

Normalized1

y0 749513E-4 669951E-5

A1 279424 000238

t1 801384 000459

k 012478 714923E-5

tau 555477 000318

Figure S11 Decay traces of the emissions monitored at 437 nm (1-Et) and 447 nm (2-Et) under 395

nm excitation (Super Continuum Fianium Laser)

S21

Figure S12 Quantum yield determinations for 1-Et (top) and 2-Et (bottom)

S22

Figure S13 Chromaticity diagrams for 1-Et (x = 016 y = 009 and u = 017 v = 022) and 2-Et

(x = 015 y = 01 and u = 015 v = 023)

S23

Figure S14 KohnndashSham frontier orbitals calculated for 1-Et (left) and 2-Et (right) at the

PCM(DCM)B3LYP6-311+G(dp)6-31G(dp) level of theory

S24

Figure S15 Comparison of DFT-optimized geometries of 2-Et (blue) and 5-Et (red B3LYP6-31G(dp)

gas phase)

S25

Figure S16 NICS(1) scans for 2-Et 6-Et and phenanthrene Nuclear shieldings were evaluated 1 Aring

above the ring plane using GIAO-B3LYP6-31G(dp)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

-5 0 5 10 15

2-Et

6-Et

phenanthrene

benzenecentroid

chrysaorenecentroid

NICS(1)

scan coordinate

S26

Figure S17 DFT-optimized structure of 3-Et (B3LYP6-31G(dp))

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S14

Figure S1 Molecular structure of 3-Et (co-crystalizing solvent dichloromethane also visible)

S15

Figure S2 Molecular structure of 4-Et (co-crystalizing solvent toluene also visible)

S16

Figure S3 Correlation between 1H NMR chemical shifts of 3-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S4 Correlation between 13C NMR chemical shifts of 3-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09915x + 02767Rsup2 = 0997

-1

1

3

5

7

-1 1 3 5 7

δexptl(1H)

δcalcd(1H)

y = 09557x + 5237Rsup2 = 0987

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S17

Figure S5 Correlation between 1H NMR chemical shifts of 4-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S6 Correlation between 13C NMR chemical shifts of 4-Et derived from experiment 151 MHz

chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09944x + 01523Rsup2 = 09985

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09686x + 37185Rsup2 = 09891

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S18

Figure S7 Correlation between 1H NMR chemical shifts of 1-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S8 Correlation between 13C NMR chemical shifts of 1-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10159x + 00411Rsup2 = 09994

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09457x + 42108

Rsup2 = 09986

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S19

Figure S9 Correlation between 1H NMR chemical shifts of 2-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S10 Correlation between 13C NMR chemical shifts of 2-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10166x + 0055

Rsup2 = 09994

0

2

4

6

8

10

0 2 4 6 8 10

δexptl(1H)

δcalcd(1H)

y = 09469x + 42433Rsup2 = 09992

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S20

10 20 30 40 50 60 70 80 90 100

1E-3

001

01

1

Log

Norm

lized

In

ten

sity

tns

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 958665E-6

Adj R-Square 099971

Value Standard Error

Normalized1

y0 8E-4 0

A1 808283 001427

t1 392706 000265

k 025464 1719E-4

tau 272203 000184

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 11007E-5

Adj R-Square 099971

Value Standard Error

Normalized1

y0 749513E-4 669951E-5

A1 279424 000238

t1 801384 000459

k 012478 714923E-5

tau 555477 000318

Figure S11 Decay traces of the emissions monitored at 437 nm (1-Et) and 447 nm (2-Et) under 395

nm excitation (Super Continuum Fianium Laser)

S21

Figure S12 Quantum yield determinations for 1-Et (top) and 2-Et (bottom)

S22

Figure S13 Chromaticity diagrams for 1-Et (x = 016 y = 009 and u = 017 v = 022) and 2-Et

(x = 015 y = 01 and u = 015 v = 023)

S23

Figure S14 KohnndashSham frontier orbitals calculated for 1-Et (left) and 2-Et (right) at the

PCM(DCM)B3LYP6-311+G(dp)6-31G(dp) level of theory

S24

Figure S15 Comparison of DFT-optimized geometries of 2-Et (blue) and 5-Et (red B3LYP6-31G(dp)

gas phase)

S25

Figure S16 NICS(1) scans for 2-Et 6-Et and phenanthrene Nuclear shieldings were evaluated 1 Aring

above the ring plane using GIAO-B3LYP6-31G(dp)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

-5 0 5 10 15

2-Et

6-Et

phenanthrene

benzenecentroid

chrysaorenecentroid

NICS(1)

scan coordinate

S26

Figure S17 DFT-optimized structure of 3-Et (B3LYP6-31G(dp))

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S15

Figure S2 Molecular structure of 4-Et (co-crystalizing solvent toluene also visible)

S16

Figure S3 Correlation between 1H NMR chemical shifts of 3-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S4 Correlation between 13C NMR chemical shifts of 3-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09915x + 02767Rsup2 = 0997

-1

1

3

5

7

-1 1 3 5 7

δexptl(1H)

δcalcd(1H)

y = 09557x + 5237Rsup2 = 0987

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S17

Figure S5 Correlation between 1H NMR chemical shifts of 4-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S6 Correlation between 13C NMR chemical shifts of 4-Et derived from experiment 151 MHz

chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09944x + 01523Rsup2 = 09985

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09686x + 37185Rsup2 = 09891

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S18

Figure S7 Correlation between 1H NMR chemical shifts of 1-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S8 Correlation between 13C NMR chemical shifts of 1-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10159x + 00411Rsup2 = 09994

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09457x + 42108

Rsup2 = 09986

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S19

Figure S9 Correlation between 1H NMR chemical shifts of 2-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S10 Correlation between 13C NMR chemical shifts of 2-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10166x + 0055

Rsup2 = 09994

0

2

4

6

8

10

0 2 4 6 8 10

δexptl(1H)

δcalcd(1H)

y = 09469x + 42433Rsup2 = 09992

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S20

10 20 30 40 50 60 70 80 90 100

1E-3

001

01

1

Log

Norm

lized

In

ten

sity

tns

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 958665E-6

Adj R-Square 099971

Value Standard Error

Normalized1

y0 8E-4 0

A1 808283 001427

t1 392706 000265

k 025464 1719E-4

tau 272203 000184

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 11007E-5

Adj R-Square 099971

Value Standard Error

Normalized1

y0 749513E-4 669951E-5

A1 279424 000238

t1 801384 000459

k 012478 714923E-5

tau 555477 000318

Figure S11 Decay traces of the emissions monitored at 437 nm (1-Et) and 447 nm (2-Et) under 395

nm excitation (Super Continuum Fianium Laser)

S21

Figure S12 Quantum yield determinations for 1-Et (top) and 2-Et (bottom)

S22

Figure S13 Chromaticity diagrams for 1-Et (x = 016 y = 009 and u = 017 v = 022) and 2-Et

(x = 015 y = 01 and u = 015 v = 023)

S23

Figure S14 KohnndashSham frontier orbitals calculated for 1-Et (left) and 2-Et (right) at the

PCM(DCM)B3LYP6-311+G(dp)6-31G(dp) level of theory

S24

Figure S15 Comparison of DFT-optimized geometries of 2-Et (blue) and 5-Et (red B3LYP6-31G(dp)

gas phase)

S25

Figure S16 NICS(1) scans for 2-Et 6-Et and phenanthrene Nuclear shieldings were evaluated 1 Aring

above the ring plane using GIAO-B3LYP6-31G(dp)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

-5 0 5 10 15

2-Et

6-Et

phenanthrene

benzenecentroid

chrysaorenecentroid

NICS(1)

scan coordinate

S26

Figure S17 DFT-optimized structure of 3-Et (B3LYP6-31G(dp))

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S16

Figure S3 Correlation between 1H NMR chemical shifts of 3-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S4 Correlation between 13C NMR chemical shifts of 3-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09915x + 02767Rsup2 = 0997

-1

1

3

5

7

-1 1 3 5 7

δexptl(1H)

δcalcd(1H)

y = 09557x + 5237Rsup2 = 0987

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S17

Figure S5 Correlation between 1H NMR chemical shifts of 4-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S6 Correlation between 13C NMR chemical shifts of 4-Et derived from experiment 151 MHz

chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09944x + 01523Rsup2 = 09985

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09686x + 37185Rsup2 = 09891

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S18

Figure S7 Correlation between 1H NMR chemical shifts of 1-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S8 Correlation between 13C NMR chemical shifts of 1-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10159x + 00411Rsup2 = 09994

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09457x + 42108

Rsup2 = 09986

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S19

Figure S9 Correlation between 1H NMR chemical shifts of 2-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S10 Correlation between 13C NMR chemical shifts of 2-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10166x + 0055

Rsup2 = 09994

0

2

4

6

8

10

0 2 4 6 8 10

δexptl(1H)

δcalcd(1H)

y = 09469x + 42433Rsup2 = 09992

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S20

10 20 30 40 50 60 70 80 90 100

1E-3

001

01

1

Log

Norm

lized

In

ten

sity

tns

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 958665E-6

Adj R-Square 099971

Value Standard Error

Normalized1

y0 8E-4 0

A1 808283 001427

t1 392706 000265

k 025464 1719E-4

tau 272203 000184

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 11007E-5

Adj R-Square 099971

Value Standard Error

Normalized1

y0 749513E-4 669951E-5

A1 279424 000238

t1 801384 000459

k 012478 714923E-5

tau 555477 000318

Figure S11 Decay traces of the emissions monitored at 437 nm (1-Et) and 447 nm (2-Et) under 395

nm excitation (Super Continuum Fianium Laser)

S21

Figure S12 Quantum yield determinations for 1-Et (top) and 2-Et (bottom)

S22

Figure S13 Chromaticity diagrams for 1-Et (x = 016 y = 009 and u = 017 v = 022) and 2-Et

(x = 015 y = 01 and u = 015 v = 023)

S23

Figure S14 KohnndashSham frontier orbitals calculated for 1-Et (left) and 2-Et (right) at the

PCM(DCM)B3LYP6-311+G(dp)6-31G(dp) level of theory

S24

Figure S15 Comparison of DFT-optimized geometries of 2-Et (blue) and 5-Et (red B3LYP6-31G(dp)

gas phase)

S25

Figure S16 NICS(1) scans for 2-Et 6-Et and phenanthrene Nuclear shieldings were evaluated 1 Aring

above the ring plane using GIAO-B3LYP6-31G(dp)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

-5 0 5 10 15

2-Et

6-Et

phenanthrene

benzenecentroid

chrysaorenecentroid

NICS(1)

scan coordinate

S26

Figure S17 DFT-optimized structure of 3-Et (B3LYP6-31G(dp))

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S17

Figure S5 Correlation between 1H NMR chemical shifts of 4-Et derived from experiment (δexptl 500

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S6 Correlation between 13C NMR chemical shifts of 4-Et derived from experiment 151 MHz

chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data The calculated shift of carbon c

does not include the relativistic effect of the attached Br atom

y = 09944x + 01523Rsup2 = 09985

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09686x + 37185Rsup2 = 09891

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S18

Figure S7 Correlation between 1H NMR chemical shifts of 1-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S8 Correlation between 13C NMR chemical shifts of 1-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10159x + 00411Rsup2 = 09994

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09457x + 42108

Rsup2 = 09986

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S19

Figure S9 Correlation between 1H NMR chemical shifts of 2-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S10 Correlation between 13C NMR chemical shifts of 2-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10166x + 0055

Rsup2 = 09994

0

2

4

6

8

10

0 2 4 6 8 10

δexptl(1H)

δcalcd(1H)

y = 09469x + 42433Rsup2 = 09992

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S20

10 20 30 40 50 60 70 80 90 100

1E-3

001

01

1

Log

Norm

lized

In

ten

sity

tns

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 958665E-6

Adj R-Square 099971

Value Standard Error

Normalized1

y0 8E-4 0

A1 808283 001427

t1 392706 000265

k 025464 1719E-4

tau 272203 000184

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 11007E-5

Adj R-Square 099971

Value Standard Error

Normalized1

y0 749513E-4 669951E-5

A1 279424 000238

t1 801384 000459

k 012478 714923E-5

tau 555477 000318

Figure S11 Decay traces of the emissions monitored at 437 nm (1-Et) and 447 nm (2-Et) under 395

nm excitation (Super Continuum Fianium Laser)

S21

Figure S12 Quantum yield determinations for 1-Et (top) and 2-Et (bottom)

S22

Figure S13 Chromaticity diagrams for 1-Et (x = 016 y = 009 and u = 017 v = 022) and 2-Et

(x = 015 y = 01 and u = 015 v = 023)

S23

Figure S14 KohnndashSham frontier orbitals calculated for 1-Et (left) and 2-Et (right) at the

PCM(DCM)B3LYP6-311+G(dp)6-31G(dp) level of theory

S24

Figure S15 Comparison of DFT-optimized geometries of 2-Et (blue) and 5-Et (red B3LYP6-31G(dp)

gas phase)

S25

Figure S16 NICS(1) scans for 2-Et 6-Et and phenanthrene Nuclear shieldings were evaluated 1 Aring

above the ring plane using GIAO-B3LYP6-31G(dp)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

-5 0 5 10 15

2-Et

6-Et

phenanthrene

benzenecentroid

chrysaorenecentroid

NICS(1)

scan coordinate

S26

Figure S17 DFT-optimized structure of 3-Et (B3LYP6-31G(dp))

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S18

Figure S7 Correlation between 1H NMR chemical shifts of 1-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S8 Correlation between 13C NMR chemical shifts of 1-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10159x + 00411Rsup2 = 09994

-1

1

3

5

7

9

-1 1 3 5 7 9

δexptl(1H)

δcalcd(1H)

y = 09457x + 42108

Rsup2 = 09986

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S19

Figure S9 Correlation between 1H NMR chemical shifts of 2-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S10 Correlation between 13C NMR chemical shifts of 2-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10166x + 0055

Rsup2 = 09994

0

2

4

6

8

10

0 2 4 6 8 10

δexptl(1H)

δcalcd(1H)

y = 09469x + 42433Rsup2 = 09992

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S20

10 20 30 40 50 60 70 80 90 100

1E-3

001

01

1

Log

Norm

lized

In

ten

sity

tns

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 958665E-6

Adj R-Square 099971

Value Standard Error

Normalized1

y0 8E-4 0

A1 808283 001427

t1 392706 000265

k 025464 1719E-4

tau 272203 000184

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 11007E-5

Adj R-Square 099971

Value Standard Error

Normalized1

y0 749513E-4 669951E-5

A1 279424 000238

t1 801384 000459

k 012478 714923E-5

tau 555477 000318

Figure S11 Decay traces of the emissions monitored at 437 nm (1-Et) and 447 nm (2-Et) under 395

nm excitation (Super Continuum Fianium Laser)

S21

Figure S12 Quantum yield determinations for 1-Et (top) and 2-Et (bottom)

S22

Figure S13 Chromaticity diagrams for 1-Et (x = 016 y = 009 and u = 017 v = 022) and 2-Et

(x = 015 y = 01 and u = 015 v = 023)

S23

Figure S14 KohnndashSham frontier orbitals calculated for 1-Et (left) and 2-Et (right) at the

PCM(DCM)B3LYP6-311+G(dp)6-31G(dp) level of theory

S24

Figure S15 Comparison of DFT-optimized geometries of 2-Et (blue) and 5-Et (red B3LYP6-31G(dp)

gas phase)

S25

Figure S16 NICS(1) scans for 2-Et 6-Et and phenanthrene Nuclear shieldings were evaluated 1 Aring

above the ring plane using GIAO-B3LYP6-31G(dp)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

-5 0 5 10 15

2-Et

6-Et

phenanthrene

benzenecentroid

chrysaorenecentroid

NICS(1)

scan coordinate

S26

Figure S17 DFT-optimized structure of 3-Et (B3LYP6-31G(dp))

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S19

Figure S9 Correlation between 1H NMR chemical shifts of 2-Et derived from experiment (δexptl 600

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

Figure S10 Correlation between 13C NMR chemical shifts of 2-Et derived from experiment (δexptl 151

MHz chloroform-d 300 K) and theory (δcalcd GIAO-B3LYP6-31G(dp)PCM(CHCl3)) Signals in the

experimental spectrum were assigned on the basis of 2D NMR data

y = 10166x + 0055

Rsup2 = 09994

0

2

4

6

8

10

0 2 4 6 8 10

δexptl(1H)

δcalcd(1H)

y = 09469x + 42433Rsup2 = 09992

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

δexptl(13C)

δcalcd(13C)

S20

10 20 30 40 50 60 70 80 90 100

1E-3

001

01

1

Log

Norm

lized

In

ten

sity

tns

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 958665E-6

Adj R-Square 099971

Value Standard Error

Normalized1

y0 8E-4 0

A1 808283 001427

t1 392706 000265

k 025464 1719E-4

tau 272203 000184

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 11007E-5

Adj R-Square 099971

Value Standard Error

Normalized1

y0 749513E-4 669951E-5

A1 279424 000238

t1 801384 000459

k 012478 714923E-5

tau 555477 000318

Figure S11 Decay traces of the emissions monitored at 437 nm (1-Et) and 447 nm (2-Et) under 395

nm excitation (Super Continuum Fianium Laser)

S21

Figure S12 Quantum yield determinations for 1-Et (top) and 2-Et (bottom)

S22

Figure S13 Chromaticity diagrams for 1-Et (x = 016 y = 009 and u = 017 v = 022) and 2-Et

(x = 015 y = 01 and u = 015 v = 023)

S23

Figure S14 KohnndashSham frontier orbitals calculated for 1-Et (left) and 2-Et (right) at the

PCM(DCM)B3LYP6-311+G(dp)6-31G(dp) level of theory

S24

Figure S15 Comparison of DFT-optimized geometries of 2-Et (blue) and 5-Et (red B3LYP6-31G(dp)

gas phase)

S25

Figure S16 NICS(1) scans for 2-Et 6-Et and phenanthrene Nuclear shieldings were evaluated 1 Aring

above the ring plane using GIAO-B3LYP6-31G(dp)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

-5 0 5 10 15

2-Et

6-Et

phenanthrene

benzenecentroid

chrysaorenecentroid

NICS(1)

scan coordinate

S26

Figure S17 DFT-optimized structure of 3-Et (B3LYP6-31G(dp))

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S20

10 20 30 40 50 60 70 80 90 100

1E-3

001

01

1

Log

Norm

lized

In

ten

sity

tns

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 958665E-6

Adj R-Square 099971

Value Standard Error

Normalized1

y0 8E-4 0

A1 808283 001427

t1 392706 000265

k 025464 1719E-4

tau 272203 000184

Model ExpDec1

Equationy = A1exp(-xt1) + y0

Reduced Chi-Sqr 11007E-5

Adj R-Square 099971

Value Standard Error

Normalized1

y0 749513E-4 669951E-5

A1 279424 000238

t1 801384 000459

k 012478 714923E-5

tau 555477 000318

Figure S11 Decay traces of the emissions monitored at 437 nm (1-Et) and 447 nm (2-Et) under 395

nm excitation (Super Continuum Fianium Laser)

S21

Figure S12 Quantum yield determinations for 1-Et (top) and 2-Et (bottom)

S22

Figure S13 Chromaticity diagrams for 1-Et (x = 016 y = 009 and u = 017 v = 022) and 2-Et

(x = 015 y = 01 and u = 015 v = 023)

S23

Figure S14 KohnndashSham frontier orbitals calculated for 1-Et (left) and 2-Et (right) at the

PCM(DCM)B3LYP6-311+G(dp)6-31G(dp) level of theory

S24

Figure S15 Comparison of DFT-optimized geometries of 2-Et (blue) and 5-Et (red B3LYP6-31G(dp)

gas phase)

S25

Figure S16 NICS(1) scans for 2-Et 6-Et and phenanthrene Nuclear shieldings were evaluated 1 Aring

above the ring plane using GIAO-B3LYP6-31G(dp)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

-5 0 5 10 15

2-Et

6-Et

phenanthrene

benzenecentroid

chrysaorenecentroid

NICS(1)

scan coordinate

S26

Figure S17 DFT-optimized structure of 3-Et (B3LYP6-31G(dp))

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S21

Figure S12 Quantum yield determinations for 1-Et (top) and 2-Et (bottom)

S22

Figure S13 Chromaticity diagrams for 1-Et (x = 016 y = 009 and u = 017 v = 022) and 2-Et

(x = 015 y = 01 and u = 015 v = 023)

S23

Figure S14 KohnndashSham frontier orbitals calculated for 1-Et (left) and 2-Et (right) at the

PCM(DCM)B3LYP6-311+G(dp)6-31G(dp) level of theory

S24

Figure S15 Comparison of DFT-optimized geometries of 2-Et (blue) and 5-Et (red B3LYP6-31G(dp)

gas phase)

S25

Figure S16 NICS(1) scans for 2-Et 6-Et and phenanthrene Nuclear shieldings were evaluated 1 Aring

above the ring plane using GIAO-B3LYP6-31G(dp)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

-5 0 5 10 15

2-Et

6-Et

phenanthrene

benzenecentroid

chrysaorenecentroid

NICS(1)

scan coordinate

S26

Figure S17 DFT-optimized structure of 3-Et (B3LYP6-31G(dp))

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S22

Figure S13 Chromaticity diagrams for 1-Et (x = 016 y = 009 and u = 017 v = 022) and 2-Et

(x = 015 y = 01 and u = 015 v = 023)

S23

Figure S14 KohnndashSham frontier orbitals calculated for 1-Et (left) and 2-Et (right) at the

PCM(DCM)B3LYP6-311+G(dp)6-31G(dp) level of theory

S24

Figure S15 Comparison of DFT-optimized geometries of 2-Et (blue) and 5-Et (red B3LYP6-31G(dp)

gas phase)

S25

Figure S16 NICS(1) scans for 2-Et 6-Et and phenanthrene Nuclear shieldings were evaluated 1 Aring

above the ring plane using GIAO-B3LYP6-31G(dp)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

-5 0 5 10 15

2-Et

6-Et

phenanthrene

benzenecentroid

chrysaorenecentroid

NICS(1)

scan coordinate

S26

Figure S17 DFT-optimized structure of 3-Et (B3LYP6-31G(dp))

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S23

Figure S14 KohnndashSham frontier orbitals calculated for 1-Et (left) and 2-Et (right) at the

PCM(DCM)B3LYP6-311+G(dp)6-31G(dp) level of theory

S24

Figure S15 Comparison of DFT-optimized geometries of 2-Et (blue) and 5-Et (red B3LYP6-31G(dp)

gas phase)

S25

Figure S16 NICS(1) scans for 2-Et 6-Et and phenanthrene Nuclear shieldings were evaluated 1 Aring

above the ring plane using GIAO-B3LYP6-31G(dp)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

-5 0 5 10 15

2-Et

6-Et

phenanthrene

benzenecentroid

chrysaorenecentroid

NICS(1)

scan coordinate

S26

Figure S17 DFT-optimized structure of 3-Et (B3LYP6-31G(dp))

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S24

Figure S15 Comparison of DFT-optimized geometries of 2-Et (blue) and 5-Et (red B3LYP6-31G(dp)

gas phase)

S25

Figure S16 NICS(1) scans for 2-Et 6-Et and phenanthrene Nuclear shieldings were evaluated 1 Aring

above the ring plane using GIAO-B3LYP6-31G(dp)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

-5 0 5 10 15

2-Et

6-Et

phenanthrene

benzenecentroid

chrysaorenecentroid

NICS(1)

scan coordinate

S26

Figure S17 DFT-optimized structure of 3-Et (B3LYP6-31G(dp))

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S25

Figure S16 NICS(1) scans for 2-Et 6-Et and phenanthrene Nuclear shieldings were evaluated 1 Aring

above the ring plane using GIAO-B3LYP6-31G(dp)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

-5 0 5 10 15

2-Et

6-Et

phenanthrene

benzenecentroid

chrysaorenecentroid

NICS(1)

scan coordinate

S26

Figure S17 DFT-optimized structure of 3-Et (B3LYP6-31G(dp))

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S26

Figure S17 DFT-optimized structure of 3-Et (B3LYP6-31G(dp))

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S27

Figure S18 DFT-optimized structure of 4-Et (B3LYP6-31G(dp))

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S28

Table S1 Bond length variation between chrysaorenes and the reference system 5-Et[a]

group bond[b]

1-Et 2-Et 5-Et Δ(1-Et ndash 5-Et) Δ(2-Et ndash 5-Et)

rim

ah 1547 1520 1529 0018 ndash0009

ab 1385 1371 1375 0010 ndash0004

bc 1430 1414 1419 0011 ndash0005

cg 1438 1430 1433 0005 ndash0003

gg 1368 1357 1361 0007 ndash0004

mean 0010 ndash0005

hub

ff 1457 1478 1466 ndash0009 0012

ef 1376 1390 1384 ndash0008 0006

de 1406 1419 1414 ndash0008 0005

dd 1458 1465 1460 ndash0002 0005

mean ndash0007 0007

spoke

cd 1427 1432 1431 ndash0004 0001

fa 1416 1422 1421 ndash0005 0001

mean ndash0005 0001

[a] B3LYP6-31G(dp) geometries [b] Bond definitions

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S29

Table S2 Computational data for DFT-optimized structures

Structure[a] Functional Basis set Solvation Code[b] Energy[c] [au]

ZPV[d] [au]

lowest freq[e] [cmndash1]

ΔG[f] [au]

1-Et B3LYP 6-31G(dp) gas phase c3Etcont ndash2201155124 0879676 2950 ndash2200349383

B3LYP 6-31G(dp) chloroform c3EtCHCl3cont ndash2201161824 0879472 2952 ndash2200356244

CAM-B3LYP 6-31G(dp) DCM c3Et_S0_CAM ndash2199875261 0890989 2980 ndash2199057629

CAM-B3LYP 6-311+G(dp) DCM ndash2200318806

2-Et B3LYP 6-31G(dp) gas phase c4Et ndash2934960175 1173886 744 ndash2933880899

B3LYP 6-31G(dp) chloroform c4EtCHCl3 ndash2934969275 1173156 620 ndash2933891240

CAM-B3LYP 6-31G(dp) DCM c4Et_S0_CAM ndash2933255625 1188493 341 ndash2932162641

CAM-B3LYP 6-311+G(dp) DCM ndash2933843386

3-Et B3LYP 6-31G(dp) gas phase 3_Et_Xray ndash17631322441 0882496 760 ndash17630536224

B3LYP 6-31G(dp) chloroform 3_Et_XrayCHCl3 ndash17631330429 0881911 922 ndash17630544606

4-Et B3LYP 6-31G(dp) gas phase 4_Et_Xrayf ndash23508440909 1177296 382 ndash23507390923

B3LYP 6-31G(dp) chloroform 4_Et_XrayCHCl3 ndash23508450612 1176343 484 ndash23507401682

5-Et B3LYP 6-31G(dp) gas phase hd2 ndash1392444143 0594712 2031 ndash1391910343

6-Et B3LYP 6-31G(dp) gas phase hd3 ndash2126185352 0888216 1175 ndash2125377818

7 B3LYP 6-31G(dp) gas phase phen_Br2cont ndash5682927318 0195174 2053 ndash5682776848

8 B3LYP 6-31G(dp) gas phase phencont ndash539554443 0194558 9591 ndash539394736

[a] As defined in Scheme 2 [b] Data set name (Cartesian coordinates available as pdb files) [c] Electronic energy [d] Zero-point vibrational energy [e] Lowest vibrational

frequency [f] Gibbs free energy

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S30

Table S3 TD-DFT electronic transitions calculated for 1-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27684 3612 0000 Hndash1raquoLUMO (46) HOMOraquoL+1 (46)

2 30217 3309 0351 Hndash2raquoLUMO (14) Hndash1raquoL+1 (13) Hndash1raquoL+2 (33) HOMOraquoLUMO (13)

3 30219 3309 0351 Hndash2raquoL+1 (14) Hndash1raquoLUMO (13) HOMOraquoL+1 (13) HOMOraquoL+2 (34)

4 32329 3093 0001 Hndash4raquoLUMO (18) Hndash3raquoL+1 (19) Hndash1raquoL+3 (16) HOMOraquoL+4 (17)

5 32359 3090 0596 Hndash1raquoL+1 (23) HOMOraquoLUMO (23)

6 32360 3090 0596 Hndash1raquoLUMO (23) HOMOraquoL+1 (23)

7 34583 2892 0010 Hndash1raquoL+1 (42) HOMOraquoLUMO (41)

8 34753 2877 0000 Hndash2raquoL+2 (50) 9 35397 2825 0111 Hndash4raquoL+1 (13)

Hndash3raquoLUMO (13) HOMOraquoL+2 (31) HOMOraquoL+5 (13)

10 35398 2825 0112 Hndash4raquoLUMO (13) Hndash3raquoL+1 (13) Hndash1raquoL+2 (31) Hndash1raquoL+5 (13)

11 36832 2715 0828 Hndash3raquoL+2 (23) Hndash2raquoLUMO (41)

12 36835 2715 0830 Hndash4raquoL+2 (23) Hndash2raquoL+1 (41)

13 38597 2591 0000 Hndash6raquoL+2 (25) Hndash4raquoL+3 (14) Hndash3raquoL+4 (14)

14 39229 2549 0034 Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) HOMOraquoL+5 (37)

15 39231 2549 0033 Hndash4raquoLUMO (10) Hndash3raquoL+1 (10) Hndash1raquoL+5 (37)

16 39445 2535 0126 Hndash4raquoLUMO (26) Hndash3raquoL+1 (26) Hndash1raquoL+3 (16) HOMOraquoL+4 (16)

17 39755 2515 0450 Hndash6raquoL+4 (10) Hndash3raquoL+2 (17) Hndash3raquoL+5 (16)

18 39757 2515 0449 Hndash6raquoL+3 (10) Hndash4raquoL+2 (17) Hndash4raquoL+5 (16)

19 40414 2474 0000 Hndash4raquoL+1 (20) Hndash3raquoLUMO (20) Hndash2raquoL+5 (22)

20 41277 2423 0350 21 41279 2423 0349 22 41695 2398 0174 Hndash6raquoLUMO (44)

Hndash1raquoL+5 (17) 23 41697 2398 0170 Hndash6raquoL+1 (45)

HOMOraquoL+5 (17) 24 43470 2300 0203 Hndash5raquoLUMO (45) 25 43472 2300 0202 Hndash5raquoL+1 (45)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

26 43798 2283 0000 Hndash6raquoL+2 (10) Hndash4raquoL+1 (10) Hndash3raquoLUMO (10) Hndash2raquoL+2 (28)

27 44207 2262 0081 Hndash1raquoL+7 (26) HOMOraquoL+7 (25)

28 44210 2262 0081 Hndash1raquoL+7 (25) HOMOraquoL+7 (26)

29 44676 2238 0008 Hndash5raquoL+2 (56) 30 44681 2238 0340 Hndash5raquoLUMO (10)

Hndash2raquoL+3 (24) 31 44682 2238 0337 Hndash5raquoL+1 (10)

Hndash2raquoL+4 (23) 32 45379 2204 0144 Hndash6raquoLUMO (14)

Hndash3raquoL+2 (26) Hndash2raquoL+4 (11)

33 45386 2203 0142 Hndash6raquoL+1 (14) Hndash4raquoL+2 (26) Hndash2raquoL+3 (11)

34 45673 2189 0000 Hndash6raquoL+2 (30) Hndash6raquoL+5 (14)

35 46062 2171 0002 Hndash1raquoL+8 (11) Hndash1raquoL+11 (15) HOMOraquoL+9 (11) HOMOraquoL+12 (15)

36 46297 2160 0269 HOMOraquoL+6 (55) 37 46298 2160 0270 Hndash1raquoL+6 (55) 38 46720 2140 0000 Hndash6raquoL+2 (10)

Hndash2raquoL+5 (43) 39 47065 2125 0000 HOMOraquoL+10 (39)

HOMOraquoL+13 (17) 40 47068 2125 0000 Hndash1raquoL+10 (39)

Hndash1raquoL+13 (17) 41 47263 2116 0003 Hndash4raquoL+4 (25)

Hndash3raquoL+3 (32) 42 47264 2116 0003 Hndash4raquoL+3 (29)

Hndash3raquoL+4 (29) 43 47315 2113 0005 Hndash4raquoL+4 (37)

Hndash3raquoL+3 (30) 44 47506 2105 0018 Hndash5raquoL+5 (15)

Hndash1raquoL+16 (12) HOMOraquoL+17 (12)

45 47550 2103 0000 Hndash1raquoL+17 (12) HOMOraquoL+16 (12)

46 48006 2083 0079 Hndash5raquoL+3 (13) Hndash3raquoL+5 (25) Hndash2raquoL+4 (17)

47 48008 2083 0079 Hndash5raquoL+4 (13) Hndash4raquoL+5 (25) Hndash2raquoL+3 (17)

48 48231 2073 0000 Hndash2raquoL+7 (10) 49 48814 2049 0013 Hndash4raquoL+7 (10)

HOMOraquoL+13 (12) 50 48816 2048 0013 Hndash3raquoL+7 (10)

Hndash1raquoL+13 (12)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S31

Table S4 TD-DFT electronic transitions calculated for 2-Et

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

1 27464 3641 0000 Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoLUMO (67)

2 30357 3294 1476 Hndash2raquoLUMO (11) Hndash1raquoLUMO (29) HOMOraquoL+1 (31)

3 30357 3294 1476 Hndash2raquoLUMO (29) Hndash1raquoLUMO (11) HOMOraquoL+2 (31)

4 30778 3249 0000 Hndash3raquoLUMO (21) HOMOraquoL+3 (30)

5 32594 3068 0000 Hndash4raquoLUMO (29) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

6 32743 3054 0451 Hndash5raquoLUMO (15) Hndash1raquoL+3 (11) HOMOraquoL+4 (17)

7 32743 3054 0451 Hndash6raquoLUMO (15) Hndash2raquoL+3 (11) HOMOraquoL+5 (17)

8 34634 2887 0000 Hndash7raquoLUMO (15) Hndash4raquoL+3 (10) Hndash2raquoL+1 (18) Hndash1raquoL+2 (18)

9 35256 2836 0000 Hndash3raquoL+3 (35) 10 35733 2799 0134 Hndash2raquoLUMO (13)

Hndash1raquoL+3 (25) HOMOraquoL+2 (10)

11 35733 2799 0134 Hndash2raquoL+3 (25) Hndash1raquoLUMO (13) HOMOraquoL+1 (10)

12 36277 2757 0000 Hndash3raquoLUMO (30) HOMOraquoL+3 (36)

13 37002 2703 1295 Hndash3raquoL+1 (11) Hndash2raquoLUMO (14)

14 37002 2703 1295 Hndash3raquoL+2 (11) Hndash1raquoLUMO (14)

15 37160 2691 0000 HOMOraquoL+6 (30) 16 37559 2662 0000 Hndash2raquoL+1 (31)

Hndash1raquoL+2 (31) 17 39296 2545 0000 Hndash3raquoL+6 (10)

Hndash2raquoL+2 (10) Hndash1raquoL+1 (10) HOMOraquoLUMO (11)

18 39531 2530 0000 Hndash6raquoL+1 (20) Hndash5raquoL+2 (20) Hndash4raquoL+3 (12) Hndash4raquoL+6 (11)

19 39596 2526 0260 Hndash6raquoLUMO (12) Hndash5raquoLUMO (20) HOMOraquoL+4 (17)

20 39596 2526 0260 Hndash6raquoLUMO (20) Hndash5raquoLUMO (12) HOMOraquoL+5 (17)

21 40255 2484 0000 Hndash4raquoLUMO (34) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) HOMOraquoL+7 (16)

22 40779 2452 1425 Hndash5raquoL+6 (12) Hndash4raquoL+4 (11)

23 40779 2452 1425 Hndash6raquoL+6 (12) Hndash4raquoL+5 (11)

No Energy (cmndash1)

λ (nm)

f[a] Major excitations[b]

24 41247 2424 0000 Hndash6raquoL+5 (12) Hndash5raquoL+4 (12) Hndash4raquoL+3 (23) Hndash4raquoL+6 (10)

25 41333 2419 0000 Hndash2raquoL+4 (10) Hndash1raquoL+5 (10) HOMOraquoLUMO (14)

26 41833 2390 0000 Hndash8raquoLUMO (33) HOMOraquoL+6 (22)

27 41948 2384 0000 Hndash6raquoL+2 (21) Hndash5raquoL+1 (21) Hndash3raquoL+6 (13)

28 41950 2384 0049 Hndash1raquoL+3 (18) 29 41950 2384 0049 Hndash2raquoL+3 (18) 30 42959 2328 0315 Hndash1raquoL+7 (17) 31 42959 2328 0315 Hndash2raquoL+7 (17) 32 43157 2317 0000 Hndash3raquoLUMO (24)

Hndash2raquoL+2 (11) Hndash1raquoL+1 (11) HOMOraquoL+3 (14)

33 43630 2292 0000 Hndash2raquoL+4 (24) Hndash2raquoL+5 (10) Hndash1raquoL+4 (10) Hndash1raquoL+5 (24)

34 43830 2282 0000 HOMOraquoL+8 (67) 35 44243 2260 0259 Hndash1raquoL+3 (14) 36 44243 2260 0259 Hndash2raquoL+3 (14) 37 44386 2253 0000 Hndash7raquoLUMO (60) 38 44892 2228 0092 Hndash6raquoLUMO (10)

HOMOraquoL+4 (12) 39 44892 2228 0092 Hndash5raquoLUMO (10)

HOMOraquoL+5 (12) 40 45020 2221 0000 Hndash7raquoL+3 (21)

HOMOraquoL+7 (38) 41 45432 2201 0000 Hndash1raquoL+8 (29)

HOMOraquoL+10 (27) 42 45432 2201 0000 Hndash2raquoL+8 (29)

HOMOraquoL+11 (27) 43 45718 2187 0000 Hndash3raquoLUMO (10)

Hndash2raquoL+5 (15) Hndash1raquoL+4 (15) HOMOraquoL+6 (14)

44 45744 2186 0000 Hndash6raquoL+1 (27) Hndash5raquoL+2 (27) Hndash4raquoLUMO (27)

45 45988 2174 0077 Hndash10raquoLUMO (11) Hndash1raquoL+6 (25)

46 45988 2174 0077 Hndash9raquoLUMO (11) Hndash2raquoL+6 (25)

47 46161 2166 0000 Hndash3raquoL+3 (45) 48 46311 2159 0000 Hndash3raquoL+7 (13)

HOMOraquoL+9 (34) 49 46427 2154 0000 HOMOraquoL+12 (52)

HOMOraquoL+23 (11) 50 46916 2131 0194 Hndash7raquoL+1 (13)

Hndash7raquoL+2 (11)

[a] Oscillator strength [b] Contributions smaller than 10 are

not included H = HOMO L = LUMO Orbitals are numbered

consecutively regardless of possible degeneracies

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S32

Table S5 Crystal data and structure refinement for 3-EtmiddotCH2Cl2

Identification code mm01a

Empirical formula C57H48Br6CH2Cl2

Formula weight 129735

Temperature 100(2) K

Wavelength 071073 Aring

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13600(4) Aring = 10628(5)deg

b = 14111(5) Aring = 9405(4)deg

c = 16306(5) Aring = 11805(5)deg

Volume 2574(2) Aring

Z 2

Density (calculated) 1674 Mgm3

Absorption coefficient 4821 mm-1

F(000) 1284

Crystal size 037 x 014 x 003 mm3

Theta range for data collection 287 to 3059deg

Index ranges -19lt=hlt=17 -19lt=klt=19 -13lt=llt=23

Reflections collected 20444

Independent reflections 14059 [R(int) = 00424]

Completeness to theta = 2550deg 996

Absorption correction Analytical

Max and min transmission 0867 and 0381

Refinement method Full-matrix least-squares on F2

Data restraints parameters 14059 0 595

Goodness-of-fit on F2 1023

Final R indices [Igt2sigma(I)] R1 = 00597 wR2 = 00951

R indices (all data) R1 = 01047 wR2 = 01138

Largest diff peak and hole 090 and -097 e Aring-3

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S33

Table S6 Crystal data and structure refinement for 4-EtmiddotC7H8

Identification code dstem1

Empirical formula C76H64Br8C7H8

Formula weight 170869

Temperature 79(9) K

Wavelength 071073 Aring

Crystal system Orthorhombic

Space group P b c n

Unit cell dimensions a = 29202(12) Aring = 90deg

b = 17637(1) Aring = 90deg

c = 14745(8) Aring = 90deg

Volume 7594(1) Aring3

Z 4

Density (calculated) 1575 Mgm3

Absorption coefficient 4271 mm-1

F(000) 3600

Crystal size 053 x 044 x 038 mm3

Theta range for data collection 279 to 3074deg

Index ranges -41lt=hlt=34 -14lt=klt=25 -19lt=llt=20

Reflections collected 34296

Independent reflections 10861 [R(int) = 00362]

Completeness to theta = 2550deg 998

Absorption correction Analytical

Max and min transmission 0325 and 0231

Refinement method Full-matrix least-squares on F2

Data restraints parameters 10861 0 412

Goodness-of-fit on F2 1025

Final R indices [Igt2sigma(I)] R1 = 00496 wR2 = 01165

R indices (all data) R1 = 00837 wR2 = 01342

Largest diff peak and hole 2893 and -0701 eAring-3

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S34

Figure S19 1H NMR spectrum of S5 (chloroform-d 600 MHz 300 K there are some solubility problems)

Figure S20 13C NMR spectrum of S5 (chloroform-d 151 MHz 300 K there are some solubility problems)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

12

3

15

5

20

0

22

5

72

4 S

77

0

77

3

83

7

310

230

301

083

098

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

6

84

6

251

5

297

8

323

5327

3

568

2

770

1 S

1117

2

1163

6

1229

4

1263

1

1346

6

1369

8

1508

0

1681

6

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S35

Figure S21 1H NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

Figure S22 13C NMR spectrum of S6 (chloroform-d 600 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

03

1

08

2

12

4

15

3

18

5

40

7

66

5

72

4 S

75

3

308

205

201

105

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

330

4

557

5

770

0 S

1081

1

1104

1

1226

1

1334

0

1422

9

1499

5

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S36

Figure S23 1H NMR spectrum of S7 (chloroform-d 600 MHz 300 K)

Figure S24 13C NMR spectrum of S7 (chloroform-d 151 MHz 300 K)

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

1

19

3

24

0

72

4 S

77

7

78

9

300

207

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

6

323

1

562

2

770

2 S

1004

5

1240

9

1283

0

1347

2

1502

6

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S37

Figure S25 1H NMR spectrum of S8 (chloroform-d 600 MHz 300 K)

Figure S26 13C NMR spectrum of S8 (chloroform-d 151 MHz 300 K)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

02

7

20

7

72

4 S

79

1

79

9

104

3

304

205

104

100

097

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

1

321

1

569

0

770

1 S

1242

3

1263

3

1265

4

1332

6

1457

3

1511

2

1918

2

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S38

Figure S27 1H NMR spectrum of S9 (chloroform-d 600 MHz 300 K)

Figure S28 13C NMR spectrum of S9 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

02

7

15

0

15

3

20

1

48

1

72

4 S

74

2

78

1

305

297

205

103

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

8

324

5

563

7

654

5

770

4 S

1210

4

1233

0

1241

1

1387

8

1412

1

1497

8

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S39

Figure S29 1H NMR spectrum of S10 (chloroform-d 600 MHz 300 K)

Figure S30 13C NMR spectrum of S10 (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 ppm

03

0

15

2

20

0

47

7

72

4 S

74

1

78

6

303

207

203

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

9

323

6

466

7

564

0

770

7 S

1229

3

1247

6

1253

2

1359

6

1417

5

1501

8

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S40

Figure S31 1H NMR spectrum of S11 (chloroform-d 600 MHz 300 K)

Figure S32 13C NMR spectrum of S11 (chloroform-d 151 MHz 300 K)

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-01

8

14

0

25

1

58

0

72

4 S

72

7

75

976

0

76

9

77

6

301

207

199

100

108

605

607

309

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

84

2

311

6

314

7

561

6

770

1 S

1171

5

1177

1

1243

8

1257

21269

8

1279

9

1301

8

1343

5

1351

21412

4

1502

7

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S41

Figure S33 1H NMR spectrum of 3-Et (chloroform-d 500 MHz 300 K)

Figure S34 13C NMR spectrum of 3-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

01

1

08

6

13

5

15

1

21

5

68

7

68

8

72

4 S

76

3

304

202

102

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

87

2

297

1

310

6

547

8

770

1 S

1220

6

1236

4

1252

7

1324

3

1366

2

1401

8

1495

9

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S42

Figure S35 1H NMR spectrum of 4-Et (chloroform-d 500 MHz 300 K)

Figure S36 13C NMR spectrum of 4-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

00

2

08

7

14

2

15

3

67

7

70

1

72

4 S

78

2

304

207

098

096

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

85

5

313

0

555

5

770

0 S

1230

1

1242

61248

3

1308

0

1361

8

1405

5

1496

3

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S43

Figure S37 1H NMR spectrum of 1-Et (chloroform-d 600 MHz 300 K)

Figure S38 13C NMR spectrum of 1-Et (chloroform-d 151 MHz 300 K)

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 ppm

-04

1

11

9

15

1

20

9

23

1

72

4 S

76

1

76

3

92

7

148

154

101

104

101

101

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

82

6

100

9

298

0

354

9

594

0

770

0

1171

3

1231

9

1263

7

1309

4

1315

6

1417

9

1495

1

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S44

Figure S39 1H NMR spectrum of 2-Et (chloroform-d 500 MHz 300 K there are some solubility problems)

Figure S40 13C NMR spectrum of 2-Et (chloroform-d 151 MHz 300 K there are some solubility problems)

05101520253035404550556065707580859095 ppm

04

2

08

2

12

4

13

2

14

1

15

1

23

0

72

4 S

78

4

79

1

97

0

305

207

103

104

100

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

83

9

344

0

543

0

770

1 S

1144

2

1230

8

1272

8

1308

4

1324

4

1412

2

1491

0

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S45

Figure S41 High resolution mass spectrum of S5 (ESI+ top experimental bottom simulated)

Figure S42 High resolution mass spectrum of S6 (ESI+ top experimental bottom simulated)

4930133

4940168

4950110

4960144

4970086

4980122

MM Mm12_000002d +MS

4930121

4940154

4950102

4960134

4970081

4980113

MM Mm12_000002d C21H22Br2N2O2 M+nH 4930100

05

10

15

20

25

8x10

Intens

0

500

1000

1500

2000

491 492 493 494 495 496 497 498 499 mz

4085388

4089913

40965534099825

4109892

4119922

4129871

41399044143762 4146416

MM Mm13_000001d +MS

4089910

4099943

4109890

4119922

4129869

4139902

MM Mm13_000001d C17H18Br2N2 M+nH 4089900

05

10

15

20

7x10

Intens

0

500

1000

1500

2000

408 409 410 411 412 413 414 mz

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S46

Figure S43 High resolution mass spectrum of S8 (APCI+ top experimental bottom simulated)

Figure S44 High resolution mass spectrum of S9 (APCI+ top experimental bottom simulated)

4349595

4359630

4369580

4379615

4389564

+MS 06min 33

4349590

4359623

4369570

4379603

4389550

C19H16Br2O2 M+nH 434960

1

2

3

4

5

5x10

Intens

0

500

1000

1500

2000

434 435 436 437 438 439 mz

4379771

4389670

4399738

4409660

4419725

4429605

+MS 03min 17

4379825

4389858

4399805

4409838

4419784

4429817

C19H20Br2O2 M 4379800

02

04

06

08

10

12

5x10

Intens

0

500

1000

1500

2000

438 439 440 441 442 443 mz

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S47

Figure S45 High resolution mass spectrum of S10 (APCI+ top experimental bottom simulated)

Figure S46 High resolution mass spectrum of S11 (APCI+ top experimental bottom simulated)

4739290

4749220

4759252

4769225

4779232

4789245

4799238

4810399

4819735

+MS 02min 10

4739147

4749180

4759125

4769160

4779098

4789131

4799077

48091104819047

C19H18Br2Cl2 M 473920

2

4

6

4x10

Intens

0

500

1000

1500

2000

474 475 476 477 478 479 480 481 482 mz

4640799

4645815

4650787

4655801

4660775

4665789

4670804

MM Mm18_000002d +MS

4640794

4645810

4650787

4655800 4660775

4665790

4670807

MM Mm18_000002d C55H48Br2P2 M 928160

1

2

3

4

8x10

Intens

0

500

1000

1500

2000

4635 4640 4645 4650 4655 4660 4665 4670 4675 mz

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S48

Figure S47 High resolution mass spectrum of 3-Et (APCI+ top experimental bottom simulated)

Figure S48 High resolution mass spectrum of 4-Et (APCI+) top experimental bottom simulated)

1205902312069040

12078963

12088989

12098947

12108956 12118937

12128940

12138943

12148938

12158953

12168951

12178982

12188994

+MS 01min 8

1205885112068884

12078830

12088864

12098811

12108844

12118801

12128823

12138772

12148803

12158751

12168782

12178815

12188762

C57H48Br6 M 1205890

1

2

3

4x10

Intens

0

500

1000

1500

2000

1206 1208 1210 1212 1214 1216 1218 mz

16098954

16108932

16118882

16128844

16138820

16148810

16158804

16168795

16178794

16188779

16198797

16208784

16218822

16228836

1623890416249000 16259203

+MS 02min 14

1609844916108483

16118429

16128462

16138410

16148442

16158408

16168422

16178371

16188402

16198350

16208381

16218413

16228360

16238393

C76H64Br8 M 16078500

02

04

06

08

10

5x10

Intens

0

500

1000

1500

2000

2500

1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 mz

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S49

Figure S49 High resolution mass spectrum of 1-Et (APCI+ top experimental bottom simulated)

Figure S50 High resolution mass spectrum of 2-Et (APCI+ top experimental bottom simulated)

7333834

7343867

7353903

7363940 7374065

+MS 06min 35

7333829

7343862

7353896

7363929

C57H48 M+nH 7333800

05

10

15

20

5x10

Intens

0

500

1000

1500

2000

733 734 735 736 737 738 mz

9775294

9785336

9795377

9805409

9815431

+MS 05min 28

9775081

9785114

9795148

9805181

C76H64 M+nH 977510

1

2

3

4

5

6

4x10

Intens

0

500

1000

1500

2000

977 978 979 980 981 982 983 mz

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122

S50

References

(1) Ranger M Rondeau D Leclerc M Macromolecules 1997 30 (25) 7686ndash7691 (2) Li X Xiao Y Qian X Org Lett 2008 10 (13) 2885ndash2888 (3) Bavin P M G Org Synth 1960 40 5 (4) Guo L He S Jian T Lai Y Liu J Nargund R Sebhat I Ujjainwalla F Ye Z Young J

Acylated Spiropiperidine Derivatives as Melanocortin-4 Receptor Agonists WO2004089307 October 22 2004

(5) Frisch M J Trucks G W Schlegel H B Scuseria G E Robb M A Cheeseman J R Scalmani G Barone V Mennucci B Petersson G A Nakatsuji H Caricato M Li X Hratchian H P Izmaylov A F Bloino J Zheng G Sonnenberg J L Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Montgomery Jr J A Peralta J E Ogliaro F Bearpark M Heyd J J Brothers E Kudin K N Staroverov V N Kobayashi R Normand J Raghavachari K Rendell A Burant J C Iyengar S S Tomasi J Cossi M Rega N Millam J M Klene M Knox J E Cross J B Bakken V Adamo C Jaramillo J Gomperts R Stratmann R E Yazyev O Austin A J Cammi R Pomelli C Ochterski J W Martin R L Morokuma K Zakrzewski V G Voth G A Salvador P Dannenberg J J Dapprich S Daniels A D Farkas Ouml Foresman J B Ortiz J V Cioslowski J Fox D J Gaussian 09 Revision D01

(6) Becke A D Phys Rev A 1988 38 (6) 3098ndash3100 (7) Becke A D J Chem Phys 1993 98 (7) 5648ndash5652 (8) Lee C Yang W Parr R G Phys Rev B 1988 37 (2) 785ndash789 (9) Tomasi J Mennucci B Cammi R Chem Rev 2005 105 (8) 2999ndash3094 (10) Yanai T Tew D P Handy N C Chem Phys Lett 2004 393 (1ndash3) 51ndash57 (11) Sheldrick G M Acta Crystallogr A 2008 64 (1) 112ndash122