Cip Guidance Final 010512 Ag

Embed Size (px)

Citation preview

  • 8/22/2019 Cip Guidance Final 010512 Ag

    1/15

    Case Study: UK Drinks sector

    Clean-in-Place

    Clean-in-Place (CIP) is not a novel technology, yet it is often

    considered as such. There is significant opportunity within the

    drinks sector to improve CIP, offering water, cost and

    environmental savings. This document gives an overview of how

    this can be achieved.

  • 8/22/2019 Cip Guidance Final 010512 Ag

    2/15

    Clean-in-Place 2

    WRAPs vision is a world without waste,where resources are used sustainably.

    We work with businesses, individuals andcommunities to help them reap thebenefits of reducing waste, developingsustainable products and using resourcesin an efficient way.

    Find out more at www.wrap.org.uk

    Front cover photography: Beer production line

    While we have tried to make sure this [plan] is accurate, we cannot accept responsibility or be held legally responsible for any loss or damage arising out of or in

    connection with this information being inaccurate, incomplete or misleading. This material is copyrighted. You can copy it free of charge as long as the material is

    accurate and not used in a misleading context. You must identify the source of the material and acknowledge our copyright. You must not use material to endorse or

    suggest we have endorsed a commercial product or service. For more details please see our terms and conditions on our website at www.wrap.org.uk

    http://www.wrap.org.uk/http://www.wrap.org.uk/
  • 8/22/2019 Cip Guidance Final 010512 Ag

    3/15

    Clean-in-Place 3

    Contents

    Contents .................................................................................... 3Introduction............................................................................... 4Good process design for efficient cleaning........................................... 5CIP system configurations ................................................................. 6Optimising the CIP programme .......................................................... 8Real time cleaning verification .......................................................... 10Novel technologies .......................................................................... 11Conclusions .................................................................................... 14

  • 8/22/2019 Cip Guidance Final 010512 Ag

    4/15

    Clean-in-Place 4

    Introduction

    Modern food and beverage plants must deliver different, high quality

    products, often in diverse pack types and with short shelf lives, with

    maximised resource efficiency. The use of Clean in Place (CIP) for

    cleaning can help deliver swift product changeovers and verified hygiene

    standards.

    The Society of Dairy Technology defines CIP1 as:

    The cleaning of complete items of plant or pipeline circuits without

    dismantling or opening of the equipment and with little or no manual

    involvement on the part of the operator. The process involves the jettingor spraying of the surfaces or circulation of cleaning solutions under

    conditions of increased turbulence and flow velocity.

    Most companies understand that there are opportunities to save time,

    water, chemicals and energy use by optimising CIP but they factor a

    high level of contingency into their CIP programmes being conscious of

    the risks associated with failure. However there are areas where savings

    can be realised without compromising CIP, for example:

    process design; optimising the CIP programme; real time cleaning verification; and novel technologies.The purpose of CIP is to remove product-derived soil from process plant.

    This is achieved by exposing it to a detergent for the correct time at the

    correct temperature and concentration. A disinfectant stage may follow

    and this reduces microbiological contamination to a level at which it

    presents little risk2.

    Time, temperature and concentration must be correct at the soiled

    plant, not just at the CIP set and it is apparent that measuring these

    parameters remotely from the set can present some technical

    challenges1.

    A further important parameter to ensure effective CIP is mechanical

    action:

    1

    Cleaning-in-place, Dairy, Food and Beverage Operations. 3rd

    Edition. A.Y.Tamime ISBN-13:978-1-4051-5503-8

    2http://www.cdc.gov/biosafety/publications/bmbl5/BMBL5_appendixB.pdf

  • 8/22/2019 Cip Guidance Final 010512 Ag

    5/15

    Clean-in-Place 5

    In general, detergents will not remove any soil unless a certain amount

    of mechanical action is applied. This action may be applied in many

    different ways, including wiping, rubbing, brushing, flushing and high-

    pressure jets.3

    Good process design for efficient cleaning

    The images below show examples of good and bad design.

    Figure 1: Designs for efficient cleaning (source Envirowise GG154 1998)

    It is good practice to design equipment with fewer parts and no points

    that detergent cannot reach or where fluid accumulates; this will reduce

    cleaning time as well as save water, chemicals and energy.

    3Cleaning-in-place, Dairy, Food and Beverage Operations. 3rdEdition. A.Y.Tamime ISBN-13:978-1-4051-5503-8

  • 8/22/2019 Cip Guidance Final 010512 Ag

    6/15

    Clean-in-Place 6

    Figure 2: Good design (source Envirowise GG154 1998)

    Simple CIP systems can be retrofitted into existing plant, though this

    can be more costly and difficult than consideration at the plant design

    stage.

    CIP system configurations

    Simple systems use the vessel to be cleaned as a detergent reservoir

    whilst the most complex are multi-channel with tanks for detergent, pre

    and post rinses and sometimes disinfectant.

    With complexity comes ease of operation, repeatability and reduced

    running costs at the expense of higher installation charges and reduced

    flexibility in terms of their ability to adapt to plant or product changes.

  • 8/22/2019 Cip Guidance Final 010512 Ag

    7/15

    Clean-in-Place 7

    Figure 3: Multi channel, full recovery CIP (source: EN894 Envirowise)

    Whilst they will be more efficient than manual cleaning, automated CIP

    systems need to be designed and optimised to fully realise their

    potential advantages4.

    The table below shows a comparison of water and detergent use by

    various cleaning methods for a 3,000-litre vessel with identical cleaning

    parameters for each method. The figures demonstrate the increased

    resource efficiency from full re-use automated CIP.

    System Water (litres) Detergent (litres)

    Boil out system 6,500 45

    Total loss 3,000 30

    Single use 1,200 3

    Partial re-use 1,100 2

    Full re-use 600 2Figure 4: The effect of CIP configuration on water and chemical use, based on the cleaning of a 3,000-litre vessel

    (Source Suncombe Process and CIP Engineers 2008)

    Good design does not stop with the process, since good production

    planning and scheduling can reduce cleaning requirements during

    product changeovers thus minimising CIP requirements.

    4The Reference document on best available techniques in the food, drink andmilk industries, 2006. Institute for Prospective Technological Studies.

  • 8/22/2019 Cip Guidance Final 010512 Ag

    8/15

    Clean-in-Place 8

    Optimising the CIP programme

    Figure 5: CIP control point (source CS404 Envirowise)

    Clean-in Place; Dairy, Food and Beverage Operations5 recommends

    visual examination of stainless steel surfaces to check the efficacy of CIP

    and notes that the nature of any remaining soil can indicate the type of

    CIP problem:

    Hard deposits, like water scale and beerstone can indicate incorrectdetergent selection;

    Soft and bulky deposits indicate problems with the spray head; itmay be wrongly specified, blocked, under pressurized, damaged etc.;

    Transparent and gelatinous deposits (that are typically hard to seewithout close inspection) indicate incorrect temperature, pressure or

    strength of detergent;

    Scum, froth lines and high-tide marks show poor scavenging andtank flooding, inadequate pre-rinse, faulty pipe joints (that allow air

    to be sucked in) or too high detergent strength;

    Gritty or soft powdery deposits may be hard water scale or metalparticles from recent engineering work; and

    5Cleaning-in-place, Dairy, Food and Beverage Operations. 3rdEdition. A.Y.Tamime ISBN-13:978-1-4051-5503-8

  • 8/22/2019 Cip Guidance Final 010512 Ag

    9/15

    Clean-in-Place 9

    Water remaining indicates poor scavenging or venting, airlocks ordeformation of the bottom of the vessel, or a poor fall in lines.

    Diageo have investigated the optimisation of its CIP systems in a

    number of its sites, for example:

    The Leven packaging plant reported potential savings of 222,000litres of water per annum through more efficient CIP procedures for

    vessels and pipes between bottle runs

    6

    ; and The Nangor Road Baileys plant reduced CIP water usage by 5 million

    litres with water savings in the pasteuriser of 2.4 million litres per

    year and in the maltodextrin dissolver of 1.05 million litres per year7.

    Figure 6: Bottling line. Photo courtesy of the Scotch Whisky Association

    Coors Brewing Limited reports water consumption reduced by around

    20,000 m3per year through the replacement of simple total loss CIP

    sets by multi-channel recovery sets with programmable logic controllers

    (PLC)8. In addition:

    More accurate dosing and control have reduced the cost of a brightbeer tank clean from around 39 to 22, saving 42,000/year in

    chemical, water, effluent and electricity costs; and

    6http://www.scotch-whisky.org.uk/swa/files/CSWater.pdf7

    http://www.business2000.ie/pdf/pdf_11/diageo_11th_ed.pdf8CS457 Brewery taps into savings by working with water company A CaseStudy at Coors Brewers Limited, Envirowise 2006

    http://www.scotch-whisky.org.uk/swa/files/CSWater.pdfhttp://www.business2000.ie/pdf/pdf_11/diageo_11th_ed.pdfhttp://www.business2000.ie/pdf/pdf_11/diageo_11th_ed.pdfhttp://www.scotch-whisky.org.uk/swa/files/CSWater.pdf
  • 8/22/2019 Cip Guidance Final 010512 Ag

    10/15

    Clean-in-Place 10

    The cost of road tanker CIP operations has decreased from 35 to27, saving around 3,000/year. These savings alone recouped the

    cost of the improvements in 41 months.

    Real time cleaning verification

    The idea of monitoring the critical parameters of CIP (time,

    temperature, chemical concentration) and indicators of their

    effectiveness in removing soil (such as turbidity, surface cleanliness,

    flow etc.) in real time is attractive as adjustments could be made to the

    cycle to ensure its efficiency whilst it is in progress.

    The natural tendency to over-clean (wasting resources) in order to

    reduce the risk of CIP failure would be overcome.

    The Carbon Trust reports9 that the UK brewing sector could save 4,600

    tCO2 (or 1% of total brewery sector carbon) by implementing real time

    cleaning verification.

    Emerson Process Management reports10 the savings German brewer

    Schneider Weisse made from installing four electrode conductivity

    sensors in their process pipe work. Prior to installation pipes were

    cleaned 12 times a day with each clean including three water flushes of

    three-minute duration each. The new sensors enabled the exact point at

    which the CIP rinse water was replaced by in-specification beer to be

    identified and this resulted in the duration of each flush being reduced

    from three minutes to one minute. Overall this reduced flush time by 72

    minutes per day and water consumption by 10m3 per day.

    9

    Carbon Trust (CTG058). Industrial Energy Efficiency AcceleratorGuide tothe brewing sector, 2011.

    10www.processingtalk.com/news/eme/eme559.html

    http://www.processingtalk.com/news/eme/eme559.htmlhttp://www.processingtalk.com/news/eme/eme559.html
  • 8/22/2019 Cip Guidance Final 010512 Ag

    11/15

    Clean-in-Place 11

    Novel technologies

    The Carbon Trust estimate that 7,500 tCO2 (or 1.7% of total UK brewery

    sector carbon) could be saved through the implementation of novel CIP

    technologies and low temperature detergents11.

    Examples of novel technologies include:

    In 2009, GEA brewery systems12

    installed a combined vessel andpipe cleaning CIP system in the brewhouse of the Gutmann wheat

    beer brewery in Titting, Bavaria to replace the existing CIP and

    manually-controlled causticbrew. They report water savings of

    18%, caustic detergent savings of 30%, acid detergent savings of

    24% and a time saving of up to 30% with no detriment to product

    safety.

    Aeolus Technologies has developed a product recovery and CIPsystem that uses air instead of water as a cleaning agent13. The

    system uses a four-phase clearing, cleaning and drying process.

    Computer-controlled blowers supply finely filtered air into the pipes

    recovering 60-80% of the product inside. A turbulent flow is then

    created in the airstream and it removes most of the remaining

    product still adhering to the pipe work. A small amount of air or

    cleaning material is then introduced (2 10 litres/min) into the

    airflow to remove the remaining soil. Finally heated air is introduced

    to dry the internal pipe surfaces.

    In the OzoneCIP project a pilot-scale ozone CIP system wasconstructed to simulate conventional cleaning protocols based on the

    use of ozonated water. There was no difference found between the

    cleanliness and disinfection efficiencies of the two systems.

    However, the following savings were identified using the OzoneCIP

    system14:

    11Carbon Trust (CTG058). Industrial Energy Efficiency AcceleratorGuide tothe Brewing sector, 2011.

    12http://www.geabrewery.com/geabrewery/cmsresources.nsf/filenames/GEA%20BS%2003%202010%20Newsletter%20engl%20web.pdf/$file/GEA%20BS%2003%202010%20Newsletter%20engl%20web.pdf

    13

    http://www.aeolustech.co.uk/Envirolinkcasestudy.pdf14OzoneCIPOzone clean in place in food industries. Life05 env/e/000251.Best life environment projects.

    http://www.geabrewery.com/geabrewery/cmsresources.nsf/filenames/GEA%20BS%2003%202010%20Newsletter%20engl%20web.pdf/$file/GEA%20BS%2003%202010%20Newsletter%20engl%20web.pdfhttp://www.geabrewery.com/geabrewery/cmsresources.nsf/filenames/GEA%20BS%2003%202010%20Newsletter%20engl%20web.pdf/$file/GEA%20BS%2003%202010%20Newsletter%20engl%20web.pdfhttp://www.geabrewery.com/geabrewery/cmsresources.nsf/filenames/GEA%20BS%2003%202010%20Newsletter%20engl%20web.pdf/$file/GEA%20BS%2003%202010%20Newsletter%20engl%20web.pdfhttp://www.geabrewery.com/geabrewery/cmsresources.nsf/filenames/GEA%20BS%2003%202010%20Newsletter%20engl%20web.pdf/$file/GEA%20BS%2003%202010%20Newsletter%20engl%20web.pdfhttp://www.geabrewery.com/geabrewery/cmsresources.nsf/filenames/GEA%20BS%2003%202010%20Newsletter%20engl%20web.pdf/$file/GEA%20BS%2003%202010%20Newsletter%20engl%20web.pdfhttp://www.geabrewery.com/geabrewery/cmsresources.nsf/filenames/GEA%20BS%2003%202010%20Newsletter%20engl%20web.pdf/$file/GEA%20BS%2003%202010%20Newsletter%20engl%20web.pdfhttp://www.geabrewery.com/geabrewery/cmsresources.nsf/filenames/GEA%20BS%2003%202010%20Newsletter%20engl%20web.pdf/$file/GEA%20BS%2003%202010%20Newsletter%20engl%20web.pdf
  • 8/22/2019 Cip Guidance Final 010512 Ag

    12/15

    Clean-in-Place 12

    up to 50% water (and wastewater) saving per cleaning cycle(based on volume); and

    up to 50% reduction in organic load (g COD) in wastewater. The advantage of using ozone in CIP systems, compared to

    traditional disinfectants, is that it leaves no residues and is applied

    cold. This greatly reduces the volume of water necessary to rinse

    detergents from the plant and energy associated with heating the

    water. Radical Waters15 has developed a CIP system that uses

    electrochemically-activated water (ECA) instead of the usual

    detergent and disinfectant chemicals. A trial, and subsequent

    implementation, at the SABMiller Chamdor brewery in South Africa

    achieved savings of:

    water reduction 83%; time reduction 43%; energy reduction due to cleaning at ambient temperature 98%;

    and

    chemical cost reduction 99%. Low temperature detergents - The Innovation Center for U.S Dairies

    reports14 that emerging technology that allows for reduced

    temperature cleaning (such as catalyzed alkaline peroxide solutions)

    can reduce fuel demands and associated greenhouse gas emissions

    by an estimated 15%, use less rinse water, and produce a less

    alkaline effluent. Such systems, though not yet proven, are being

    explored in the UK beverage sector.

    Thonhauser GmbH has developed a CIP verification system that usesa coloured chemical to detect the organic contamination indicative ofan ineffective clean16.

    15http://www.radicalwaters.com/index.php/component/content/article/1-

    articles/80-pres16http://www.usdairy.com/Sustainability/CommitmentOld/Documents/ProjectSummaryCIP.pdf

    http://www.radicalwaters.com/index.php/component/content/article/1-articles/80-preshttp://www.radicalwaters.com/index.php/component/content/article/1-articles/80-preshttp://www.usdairy.com/Sustainability/CommitmentOld/Documents/ProjectSummaryCIP.pdfhttp://www.usdairy.com/Sustainability/CommitmentOld/Documents/ProjectSummaryCIP.pdfhttp://www.usdairy.com/Sustainability/CommitmentOld/Documents/ProjectSummaryCIP.pdfhttp://www.usdairy.com/Sustainability/CommitmentOld/Documents/ProjectSummaryCIP.pdfhttp://www.usdairy.com/Sustainability/CommitmentOld/Documents/ProjectSummaryCIP.pdfhttp://www.radicalwaters.com/index.php/component/content/article/1-articles/80-preshttp://www.radicalwaters.com/index.php/component/content/article/1-articles/80-pres
  • 8/22/2019 Cip Guidance Final 010512 Ag

    13/15

    Clean-in-Place 13

    In the example above, which compares an existing clean with a

    proposed clean, that has been optimised, a potential time saving of 53

    minutes is indicated, alongside water (and effluent) savings of 4,000

    litres per clean.

    Colour changes can be detected using varying degrees of automation

    depending on the level of real time control required.

  • 8/22/2019 Cip Guidance Final 010512 Ag

    14/15

    Clean-in-Place 14

    Conclusions

    Whilst companies do not need to embrace innovation or make significant

    capital investments to improve their CIP systems the principles are

    constantly challenged by innovation and potential benefits should be

    carefully considered. In addition, incremental changes can be made to

    existing systems in order to save water, chemical use, time, and energy

    by: Optimising process plant design; Optimising production scheduling to minimise changeovers; Manually remove product residues prior to CIP wet cleaning; Move from simple CIP sets to multiple tank systems with recovery; Raising awareness amongst staff regarding the cost and

    environmental impact of CIP;

    Minimising detergent loss to drain; Select detergents and disinfectants with lower environmental

    impacts;

    Using water-efficient spray devices; Consider novel and innovative approaches to CIP; and Carefully setting manufacturing programmes that reduce the need

    for frequent CIP.

  • 8/22/2019 Cip Guidance Final 010512 Ag

    15/15

    www.wrap.org.uk/retail