34
Sasha Alexandrov Loughborough University, United Kingdom Competing interactions and theories of cuprate superconductors Quantifying the electron-phonon Froehlich interaction Polaronic and bipolaronic superconductivity Evidence for Real-Space pairs in Hole Doped Cuprates Hc2 Specific heat anomaly Lorentz number Normal state diamagnetism Parameter-free fit of Tc Superconducting gap and pseudogap Conclusion Some recent publications: A. S. Alexandrov and J. T. Devreese, Advances in Polaron Physics (Springer, Berlin 2009). A. S. Alexandrov and A. M. Bratkovsky, Key pairing interaction in layered doped ionic insulators, Phys. Rev. Lett. 105 226408 (2010) A. S. Alexandrov and J. Beanland, Superconducting gap, normal state pseudogap and tunnelling spectra of bosonic and cuprate superconductors, Phys. Rev. Lett. 104, 026401 (2010) J. P. Hague, P. E. Kornilovitch, J. H. Samson, and A. S. Alexandrov, Superlight small bipolarons in the presence of a strong Coulomb repulsion, Phys. Rev. Lett. 98, 037002 (2007) A. S. Alexandrov, Normal state diamagnetism of charged bosons in cuprate superconductors, Phys. Rev. Lett. 96, 147003 (2006) Strong-coupling superconductivity beyond BCS and the key pairing interaction in cuprate superconductors CMMP2010

Competing interactions and theories of cuprate ...€¦ · Sasha Alexandrov Loughborough University, United Kingdom Competing interactions and theories of cuprate superconductors

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • Sasha Alexandrov

    Loughborough University, United Kingdom

    Competing interactions and theories of cuprate superconductors

    Quantifying the electron-phonon Froehlich interaction

    Polaronic and bipolaronic superconductivity

    Evidence for Real-Space pairs in Hole Doped CupratesHc2

    Specific heat anomaly

    Lorentz number

    Normal state diamagnetism

    Parameter-free fit of Tc

    Superconducting gap and pseudogap

    Conclusion

    Some recent publications:

    A. S. Alexandrov and J. T. Devreese, Advances in Polaron Physics (Springer, Berlin 2009).

    A. S. Alexandrov and A. M. Bratkovsky, Key pairing interaction in layered doped ionic insulators, Phys. Rev. Lett. 105 226408 (2010)

    A. S. Alexandrov and J. Beanland, Superconducting gap, normal state pseudogap and tunnelling spectra of bosonic and cuprate

    superconductors, Phys. Rev. Lett. 104, 026401 (2010)

    J. P. Hague, P. E. Kornilovitch, J. H. Samson, and A. S. Alexandrov, Superlight small bipolarons in the presence of a strong

    Coulomb repulsion, Phys. Rev. Lett. 98, 037002 (2007)

    A. S. Alexandrov, Normal state diamagnetism of charged bosons in cuprate superconductors, Phys. Rev. Lett. 96, 147003

    (2006)

    Strong-coupling superconductivity beyond BCS and the key pairing interaction in

    cuprate superconductors

    CMMP2010

  • Acknowledgment:

    Sasha Andreev

    Alex Bratkovsky

    Victor Kabanov

    Jozef Devreese

    Pavel Kornilovitch

    Peter Zhao

    Joanne Beanland

    Jim Hague

    Tom Hardy

    Chris Dent

    Kim Reynolds

    John Samson

    P.L.Kapitza Institute for Physical Problems

    Supported by EPSRC, Leverhulme Trust and the Royal Society (UK)

    Universiteit Antwerpen

    http://www.ua.ac.be/http://www.ua.ac.be/

  • Tc>100K?

    (1986)

    Theories of high-Tc

    Bardeen-Cooper-Schrieffer (BCS)

    Theory (1957) Bipolaron theory (1981,1983)

    e-ph interaction

    BCS excitonic

    BCS plasmonic

    BCS magnetic

    BCS kinetic e-e Coulomb repulsionResonating-valence-bond (RVB)

    theory (1987), Hubbard U-tJ

    Weak electron-pairing

    correlations

    Real space tightly bound 2e pairs

    Electron decays into a singlet charge e

    “holon” and spin-½ “spinon”

    2e, S=0,1

  • Low Fermi energy: pairing is individual

    2D electrons: EF=d ħ2c2 /(4ge2 l2H)

    Pairing is individual (i.e. real-space pairing) since

    EF 150 nm, so

    EF < 50 –100 meVin underdoped and even in optimally and

    some overdoped cuprates

  • Magneto-oscillations: low Fermi energy

    N. Doiron-Leyraud et al., Nature 447, 565 (2007).

    .

    Y Ba 2Cu 3 O6.5 Y Ba2 Cu4 O8

    E. A. Yelland et al., arXiv:0707.0057

    kF ≈ 1.3 nm -1,

    m* ≈ 2me

    l≈16 nm,

    kFl ≈20,

    Hc2(0)≈50 Tesla,

    Small electron FS pocket

    m*≈3me,

    EF≈ 30 meV < ħω (60 -80 meV)

    A. F. Bangura et al., arXiv:0707.4461.

    l≈9 nm

    kFl≈10

    C. Jaudet et al., arXiv:0711.3559

  • Ep=(e-1 - e0-1 )Sq2pe

    2/q2

    2 Ep>>J=4t2/U ≈0.15 eV

    ASA and A.M. Bratkovsky, Phys. Rev. Lett. 84 2043 (2000)

    DOS

    E

    m

    d-bandd-bandp-band

    Eopt

    Band structure and essential interactions in cuprates

    La2CuO4 : Ep=0.65 eV

    with e=5, and e0=30

    La2MnO3 : Ep=0.88 eV

    with e=3.9, and e0=16

    The chemical potential remains inside the charge-transfer gap at finite doping:I. Bozovic, G. Logvenov, M. A. J. Verhoeven, P. Caputo, E. Goldobin, and T. H. Geballe, Nature (London) 422, 873 (2003)

    Theory:

    LDA+U :V.I. Anisimov et al.

    J. Phys.: Condens. Matter 9, 767 (1997).

    Cluster diagonalisations:

    S.G. Ovchinnikov et al., Physica B359,

    1168 (2005)

    Site-slective experiments:M. Merz et al.

    Phys. Rev. Lett. 80, 5192 (1998).

  • Hubbard U and t-J “catastrophe”

    J. Phys. Soc. Jpn. 76, 113708 (2007)

    et al.

  • Weak-coupling Hubbard-Fröhlich model

    VMC result (T. M. Hardy, J. P. Hague, J. H. Samson, and ASA, PRB 79, 212501 (2009))

    84 electrons on 10x10 square lattice

  • Isotope effect on the supercarrier mass

    ASA, Phys. Rev. B46, 14932 (1992):

    m*, m** =mexp(g2), am*=d ln m*/dlnM=0.5 ln(m*/m)

    Connection with the isotope effect on Tc: a=-dlnTc/dlnM=am*[1-Z/(l-mc)],

    Z=m/m*

    Experiment:

    G. Zhao and D. E. Morris,

    Phys. Rev. B 51, 16487 (1995);

    G. Zhao, M.B. Hunt, H. Keller,

    and K.A. Muller,

    Nature 385, 236 (1997);

    R. Khasanov et al.,

    Phys. Rev. Lett. 92, 057602 (2004).

    Polaronic multi-band model:A. Bussmann-Holder, H. Keller, A.R. Bishop,

    A. Simon, R. Micnas, and K.A. Muller,

    Europhys. Lett. 72, 423 (2005).

    YBa2Cu3O7-δ

  • Electron-Phonon Interactions in Superconducting La1.84Sr0.16CuO4 Films

    Heejae Shim, P. Chaudhari, Gennady Logvenov, and Ivan Bozovic

    Phys. Rev. Lett. 101, 247004 (2008)

    Phonons in tunnelling spectra of cuprate superconductors

    also in :

    http://link.aip.org/link?prl/101/247004http://link.aip.org/link?prl/101/247004http://link.aip.org/link?prl/101/247004http://link.aip.org/link?prl/101/247004http://link.aip.org/link?prl/101/247004http://link.aip.org/link?prl/101/247004http://link.aip.org/link?prl/101/247004http://link.aip.org/link?prl/101/247004http://link.aip.org/link?prl/101/247004http://prola.aps.org/search/query

  • Phys. Rev. B77, 092508 (2008)

    Non-adiabatic first-principle results:

    Thomas Bauer and Claus Falter

    Phys. Rev. B 80, 094525 (2009)

  • Ultrafast pump/probe determination of electron-phonon coupling

    Phys. Rev. Lett (2010), in print

    λ ~ 0.5 or higher (LSCO)

  • Froehlich EPI is the key pairing interaction in layered doped ionic insulators

    A.S. A. and A. M. Bratkovsky,

    Phys. Rev. Lett. 105 (2010) 226408

  • Rsc=0,1,3,∞

    QMC polaron mass

    (Alexandrov& Kornilovitch, PRL 1999; Spencer et al. PRB

    2005)

    2D,ω=0.5t

    1D

  • Ground state of strongly-correlated electrons and phonons

    EF

    λ < 0.5,

    Fermi/BCS liquid

    εF

    D

    W=De-g2

    λ >0.5, v > 0

    Polaronic Fermi liquid

    (ASA, 1983)

    λ >1, v < 0,

    Bipolaronic Bose liquid

    ASA and Ranninger (1981)

    Ep

    Δ/2

    Breakdown of the Migdal-Eliashberg approximation at λ > 0.5

    since λћω/εF > 1 (ASA,1983)

    (λ=2Ep/D, εF=EFexp(-g2), g2~Ep/ћω)

  • (Bi)polaronic superconductivity in cuprates (ASA, 1987)

    λ > 0.5, λ – μc > 0

    Strong electron correlations help form small

    lattice polarons at even lower coupling with

    phonons [Fehske and Trugman (2008)

    Mishchenko and Nagaosa (2008)]

  • Bipolaron model of cuprates (Alexandrov (1987))

    Apex bipolaron (Alexandrov (1996),

    Catlow et al. (1991,1998))In-plane bipolarons (ASA & Mott (1993))

  • Superlight small bipolarons

    QMC results (Hague et al. PRL (2007))

    Anisotropic hexagonal lattice t ┴ =t/3:

    in-plane mass: mxy**=4.49mxy,

    out-of-plane mass: mz**=68.4/mz TBEC ≈ 300K for nb=0.1

  • Resistive upper critical field of Tl2Ba2CuO6 at low temperatures and high magnetic fields

    Mackenzie et al. (1993)

    BCS

  • V.F. Gantmakher, G.E. Tsydynzhapov, L.P. Kozeeva, and A.N. Lavrov, Zh. Eksp. Teor. Fiz. 88, 148 (1999) (also cond-mat/9903307)

    Resistive transition and upper critical field in underdoped YBa2Cu3O6+x single crystals

    rn > 300 m cm,

    for x < 0.5

    r (μ cm)

    Hc2 (T)

    A. Carrington, D.J.C. Walker,

    A. P. Mackenzie and J. R.Cooper,

    Phys. Rev. B 48, 13051 (1993)

  • Upper critical field of charged

    bosons:

    Hc2= Ho(t-1-t1/2)3/2

    ASA, ScD thesis MEPhI (1984);

    Phys. Rev. B48,10571 (1993)

    Upper critical field of unconventional superconductors

  • Contrasting Effects of Magnetic Field on Thermodynamic and Resistive Transitions

    ASA, W. H. Beere, V. V. Kabanov, and W. Y. Liang

    Phys. Rev. Lett. 79, 1551 (1997)

    http://prl.aps.org/abstract/PRL/v79/i8/p1551_1

  • Lorenz number: evidence for 2e

    prediction:

    L=0.15 Le , T=0ASA and N.F. Mott,

    Phys. Rev. Lett., 71, 1075

    (1993)

    Experimental Lorenz number in YBCO above Tc

    described by the bipolaron model

    theory:

    K.K. Lee, ASA, and W.Y. Liang,

    Phys. Rev. Lett, 90, 217001

    (2003)

    experiment:

    Y. Zhang et al., Phys. Rev. Lett.

    84, 2219 (2000)

  • Normal state diamagnetism

    Magnetization of charged bosons near and above Tc

    (τ=T/Tc -1

  • Normal state diamagnetism

    Diamagnetism of optimally doped Bi-2212 (symbols: torque magnetometry by

    Y. Wang, L. Li and N.P. Ong, Phys. Rev. B73, 024510 (2006))

    d = ln B/lnM for B→0

    ASA, Phys. Rev. Lett. 96, 147003 (2006)

  • Parameter-free fit of Tc (Alexandrov & Kabanov (1999))

    Tc=1.64(eRH/l4abl

    2c)

    1/3

    LSCO (squares),

    YBCZnO (circles)

    YBCO (triangles)

    HgBCO (diamonds)

  • Isotope effect on Tc (Alexandrov (1992))

  • c =By1/2exp(-T*/T) +c0

    RH = RH0(1+2A2np/nb)/(1+Anp/nb)

    2

    r= r0[T2/T1

    2+exp(-w/T)]/(1+Anp/nb)

    Normal state Hall effect, resistivity and susceptibility

    YBa2Cu3O7-d

    ASA, V.N. Zavaritsky, S. Dzhumanov,

    Phys. Rev. B 69, 052505 (2004)

    y=1-exp(-Tc/T)

  • La2-x SrxCuO4

    GTB valence band

    and impurity tails

    “Waterfall” effect Real-space image of impurity

    states

    ARPES of impurity band tails (Alexandrov & Reynolds, PRB (2007)

  • Nodal quasiparticle in pseudogapped colossal magnetoresistive manganites ,

    N. Mannella, W. Yang, X. J. Zhou, H. Zheng, J. F. Mitchell, J. Zaanen, T. P. Devereaux, N. Nagaosa, Z. Hussain, Z.-X. Shen,

    Nature 438, 474 - 478 (2005),

    A characteristic feature of the copper oxide high-temperature superconductors is the dichotomy between the electronic excitations

    along the nodal (diagonal) and antinodal (parallel to the Cu-O bonds) directions in momentum space, generally assumed to be

    linked to the "d-wave" symmetry of the superconducting state. Here we report experimental evidence that a very similar

    pseudogap state with a nodal-antinodal dichotomous character exists in a system that is markedly different from a

    superconductor: the ferromagnetic colossal magnetoresistive bilayer manganite La1.2Sr1.8Mn2O7. Our findings therefore cast doubt on the assumption that the nodal-antinodal dichotomy is hallmark of the superconductivity state.

    Nodal-antinodal dichotomy in ARPES

    )

    T. Yoshida et al., Phys. Rev. Lett.

    91, 027001 (2003)

    La2-xSrxCuO4La1.2Sr1.8Mn2O7

    http://lanl.arxiv.org/find/cond-mat/1/au:+Mannella_N/0/1/0/all/0/1http://lanl.arxiv.org/find/cond-mat/1/au:+Yang_W/0/1/0/all/0/1http://lanl.arxiv.org/find/cond-mat/1/au:+Zhou_X/0/1/0/all/0/1http://lanl.arxiv.org/find/cond-mat/1/au:+Zheng_H/0/1/0/all/0/1http://lanl.arxiv.org/find/cond-mat/1/au:+Mitchell_J/0/1/0/all/0/1http://lanl.arxiv.org/find/cond-mat/1/au:+Zaanen_J/0/1/0/all/0/1http://lanl.arxiv.org/find/cond-mat/1/au:+Devereaux_T/0/1/0/all/0/1http://lanl.arxiv.org/find/cond-mat/1/au:+Nagaosa_N/0/1/0/all/0/1http://lanl.arxiv.org/find/cond-mat/1/au:+Hussain_Z/0/1/0/all/0/1http://lanl.arxiv.org/find/cond-mat/1/au:+Shen_Z/0/1/0/all/0/1http://lanl.arxiv.org/find/cond-mat/1/au:+Shen_Z/0/1/0/all/0/1http://lanl.arxiv.org/find/cond-mat/1/au:+Shen_Z/0/1/0/all/0/1

  • Single Particle Hamiltonian:

    After Bogoliubov Transform:

    Where ,

    Bosonic Superconductor

    o

    BCS theory: chemical potential is within the band:

    Bosonic superconductor: chemical potential is

    negative and thus found outside the band.

    “A.S. Alexandrov and A.F. Andreev,

    Europhys Lett., 54 373 (2001)”

  • ASA and J. Beanland, PRL 104, 026401 (2010)

    Superconducting Gap, Normal State Pseudogap and Tunnelling Spectra

    Impurity band tail

    eVNS tunnelling

    Energy

    DOS

    Charge-transfer

    gap

    T. Kato et al., J. Phys. Soc. Jpn. 77 (2008) 054710

  • 5 4 3 2 1 0 1 2 3 4 5

    -5 -4 -3 -2 -1 0 1 2 3 4 5

    Σ σ (arb. units)

    0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    EeV/Γ

    -20 200mV

    current

    conductance

  • Conclusions:

    BCS-Migdal-Eliashberg theory breaks down at

    intermediate values of the electron-phonon

    coupling constant, λ≈ 0.5 (or less for strongly

    correlated electrons) .

    The highest Tc is reached in the crossover region

    from polaronic to bipolaronic superconductivity.

    In cuprate superconductors:

    electron-phonon (Fröhlich) interaction is the key

    pairing interaction

    pseudogap is half of the bipolaron binding energy

    supercarriers are (bi)polarons

    disorder is essential for understanding of ARPES,

    tunnelling, and normal state kinetics

    ASA (1983,1988)