Conc Handbook

Embed Size (px)

Citation preview

  • 8/19/2019 Conc Handbook

    1/106

    Biacore

    Concentration

    Analysis Handbook

    ®

  • 8/19/2019 Conc Handbook

    2/106

  • 8/19/2019 Conc Handbook

    3/106

    Biacore®®®®

    Concentration Analysis

    Handbook 

  • 8/19/2019 Conc Handbook

    4/106

     

    © 

  • 8/19/2019 Conc Handbook

    5/106

     _________________________________________________________________________Contents 

    Contents

    1. Introduction 1

    2. Terminology 5

     

    3. Assay formats 15

     

    4. Surface preparation principles 27

  • 8/19/2019 Conc Handbook

    6/106

    Contents _________________________________________________________________________

    5. Surface preparation in practice 37

     

    6. Regeneration 49

    7. Developing and running concentration assays 55

     

  • 8/19/2019 Conc Handbook

    7/106

     _________________________________________________________________________Contents 

     

    8. Measuring concentration in GxP environments73

     

         

    A. The SPR detection principle 79

    B. Using binding rates to measure concentration 83

  • 8/19/2019 Conc Handbook

    8/106

    Contents _________________________________________________________________________

  • 8/19/2019 Conc Handbook

    9/106

     ______________________________________________________________________ Introduction 

    1. 

    Introduction

    • 

    • 

    • 

    1.1  Principles of Biacore

    1.2 

    Biacore in concentration measurement

  • 8/19/2019 Conc Handbook

    10/106

    Introduction_______________________________________________________________________

    • 

    • 

    • 

    1.3 

    Why use Biacore?

  • 8/19/2019 Conc Handbook

    11/106

     ______________________________________________________________________ Introduction 

     

     

     

     

     

    1.4  Assay development overview

  • 8/19/2019 Conc Handbook

    12/106

    Introduction_______________________________________________________________________

  • 8/19/2019 Conc Handbook

    13/106

     ______________________________________________________________________ Terminology 

    2. 

    Terminology

     

     

     

    • 

    • 

     

    analyte

    ligand

    analyte

    ligand

    capturingmolecule

    Figure 2-1. Ligand, analyte and capturing molecule in relation to the sensor surface.

    •   

    2.1  Biacore terminology

  • 8/19/2019 Conc Handbook

    14/106

    Terminology ______________________________________________________________________

    • 

      

    • 

     

    • 

     

    • 

      

    Buffer Sample Buffer Regeneration Buffer

    Time

    Absoluteresponse (RU)

    Report points

    Relative

    response (RU)

    Figure 2-2. Schematic illustration of a sensorgram. The bars below the sensorgram curve indicate the solutions that pass over the sensor surface.

    • 

       

  • 8/19/2019 Conc Handbook

    15/106

     ______________________________________________________________________ Terminology 

    2.2.1  Specificity, selectivity and cross-reactivity 

       

         

         

     

       

     

    2.2  Performance criteria

  • 8/19/2019 Conc Handbook

    16/106

    Terminology ______________________________________________________________________

    100

    50

    0

    1   100

    Response/MW

    Concentration

    Compound A

    Compound B

    Figure 2-3. Cross-reactivity in a direct assay is determined from calibration 

    curves of molecular weight-corrected response against concentration. In this illustration, compound B shows 1% cross-reactivity with compound A.

    2.2.2   Accuracy 

         

      

    2.2.3   Precision 

    • 

  • 8/19/2019 Conc Handbook

    17/106

     ______________________________________________________________________ Terminology 

    • 

    • 

     

    ( )  ( )

     

    =−

    −∑

      ×=

           

       

  • 8/19/2019 Conc Handbook

    18/106

    Terminology ______________________________________________________________________

    Response

    Concentration

    CVresponse

    CVdose

    Figure 2-4. CV response  is an indication of the variability in the response for a 

    given analyte concentration. CV dose  is an indication of the variability in calculated concentration derived from a given set of measurements.

    2.2.4  

    Limit of detection (LOD)  × 

     

    2.2.5   Limits of quantitation (LOQ) 

  • 8/19/2019 Conc Handbook

    19/106

     ______________________________________________________________________ Terminology 

      

      

    ×  × 

    Response

    Concentration

    3xSD

    Limit ofdetection

    Limits ofquantitation

    acceptable precisionand accuracy

    Figure 2-5. Limits of detection and quantitation.

  • 8/19/2019 Conc Handbook

    20/106

    Terminology ______________________________________________________________________

    2.2.6   Linearity 

     

    2.2.7   Range 

       

    Response/MW

    Concentration

    0

    100%

    50%

    B50

    Response

    Concentration

    0

    100%

    50%

    IC50

    Figure 2-6. B 50  (direct assays, left panel) and IC 50  (inhibition assays, right panel) are the analyte concentration that gives 50% of the maximum response.

  • 8/19/2019 Conc Handbook

    21/106

     ______________________________________________________________________ Terminology 

    2.2.8   Robustness   

    2.2.9   Sensitivity 

    Response

    Concentration

    Sensitivity= slope

    Figure 2-7. Sensitivity is the response per unit analyte concentration, which is the slope of the calibration curve. The sensitivity varies over the range of the assay if the calibration curve is not linear.

  • 8/19/2019 Conc Handbook

    22/106

    Terminology ______________________________________________________________________

  • 8/19/2019 Conc Handbook

    23/106

     ____________________________________________________________________ Assay formats 

    3. 

    Assay formats

    • 

          

    • 

       

    •              

  • 8/19/2019 Conc Handbook

    24/106

    Assay formats_____________________________________________________________________

    analyte

    ligand

    competinganalyte

    Surface competition assay

    analyte

    ligand

    Direct binding assaywith enhancement

    enhancementmolecule

    1   2

    analyte

    ligand

    Direct binding assay

    analyte

    ligand

    detecting

    molecule

    Inhibition assay(solution competition)

    Figure 3-1. Schematic illustration of four different approaches to concentration measurement with Biacore.

    3.1.1  Single step direct measurement 

     

    3.1 

    Direct binding assays

  • 8/19/2019 Conc Handbook

    25/106

     ____________________________________________________________________ Assay formats 

    Response

    Concentration

    Time

    1

    2

    1

    2Response

    Figure 3-2. A single step direct assay gives an increasing response with increasing concentration. The range and sensitivity are determined in part by the time at which the response is measured: an interaction that is allowed to approach equilibrium will give a higher sensitivity at low analyte concentrations. The inset shows the sensorgrams from which the calibration curves are derived.

     

    3.1.2   Sandwich methods 

  • 8/19/2019 Conc Handbook

    26/106

    Assay formats_____________________________________________________________________

    Response

    Concentration

    Time

    1

    2

    1

    2Response

    Figure 3-3. Sensorgrams (inset) and calibration curves for a direct binding assay with enhancement. : primary response (analyte), : secondary response (enhancement reagent).

     

     

  • 8/19/2019 Conc Handbook

    27/106

     ____________________________________________________________________ Assay formats 

    3.2.1  Inhibition assays   

    Response

    Concentration

    Response

    log[concentration]

    Figure 3-4. Inhibition and surface competition assays give a calibration curve where the response is inversely related to the analyte concentration.Calibration curves are often shown on a log[concentration] scale (right panel) to expand the low concentration region.

    3.2  Indirect assays

  • 8/19/2019 Conc Handbook

    28/106

    Assay formats_____________________________________________________________________

     

      +=

       

    Response

    log[concentration]

    Increasing affinity

    Increasing concentrationof detecting molecule

    Figure 3-5. Increasing the affinity of the detecting molecule moves the operating range to lower analyte concentration and also narrows the range.

  • 8/19/2019 Conc Handbook

    29/106

     ____________________________________________________________________ Assay formats 

    3.2.2   Surface competition 

     

     

  • 8/19/2019 Conc Handbook

    30/106

    Assay formats_____________________________________________________________________

         

     

    Response

    Time

    Initial bindingrate   Binding level

    Figure 3-6. Binding rate and binding level measurements.

    3.3  Binding rate assays

  • 8/19/2019 Conc Handbook

    31/106

     ____________________________________________________________________ Assay formats 

     

       

    3.4  Choice of assay technique

  • 8/19/2019 Conc Handbook

    32/106

    Assay formats_____________________________________________________________________

     

    3.5.1  Practical approaches to reagent selection 

    3.5.2   Direct binding assays 

    •   

    • 

    3.5  Choice of ligand and other reagents

  • 8/19/2019 Conc Handbook

    33/106

     ____________________________________________________________________ Assay formats 

    • 

    • 

         

    3.5.3   Inhibition assays 

  • 8/19/2019 Conc Handbook

    34/106

    Assay formats_____________________________________________________________________

    3.5.4   Surface competition assays 

  • 8/19/2019 Conc Handbook

    35/106

     ________________________________________________________ Surface preparation principles 

    4. 

    Surface preparation principles

     

          S    e    n    s    o    r      C     h     i    p

          C      M     5

          C    e    r     t      i      f      i    e      d      G    r    a      d    e

    Dextranmatrix

    Glass

    Gold layer

    Figure 4-1. Schematic illustration of the structure of the sensor chip surface.

    4.1  Sensor surface properties

  • 8/19/2019 Conc Handbook

    36/106

    Surface preparation principles ________________________________________________________

    • 

    • 

    • 

    • 

    • 

    4.2.1  Amine coupling 

    4.2  Ligand immobilization methods

  • 8/19/2019 Conc Handbook

    37/106

     ________________________________________________________ Surface preparation principles 

    Figure 4-2. Amine coupling of ligands to the sensor surface.

    4.2.2   Thiol coupling       

    N SSCH2CH2NH2  HCl

    Figure 4-3. PDEA Thiol coupling reagent, 2-(2-pyridinyldithio)ethaneamine 

    hydrochloride.

  • 8/19/2019 Conc Handbook

    38/106

    Surface preparation principles ________________________________________________________

    Figure 4-4. Ligand thiol and surface thiol coupling of ligands to the sensor surface.

     

    4.2.3   Aldehyde coupling 

    Figure 4-5. Aldehyde coupling of ligands to the sensor surface.

  • 8/19/2019 Conc Handbook

    39/106

     ________________________________________________________ Surface preparation principles 

    4.2.4   Streptavidin-biotin capture     

     

     

    4.2.5  

    General capture methods   

  • 8/19/2019 Conc Handbook

    40/106

    Surface preparation principles ________________________________________________________

     

    4.2.6   Immobilizing small molecules 

    • 

     

    • 

    • 

    • 

  • 8/19/2019 Conc Handbook

    41/106

     ________________________________________________________ Surface preparation principles 

     

    4.3.1  Buffer conditions and pre-concentration     

    3.5 < pH < pI   pH > pI

    ligandisolectric point pI

    pH < 3.5

    ligandisolectric point pI

    ligandisolectric point pI

    surface

    pK 3.5a

    surface

    pK 3.5a

    surface

    pK 3.5a

    Figure 4-6. Ligand is concentrated on the surface through electrostatic attraction when the pH lies between the isoelectric point of the ligand and the pK a  of the surface. If the pH is too low or too high, ligand will not be concentrated on the surface.

       

    4.3  Conditions for ligand immobilization

  • 8/19/2019 Conc Handbook

    42/106

    Surface preparation principles ________________________________________________________

     

     

     

    4.4.1  Amount of immobilized ligand   

    4.4 

    Strategy for surface preparation

  • 8/19/2019 Conc Handbook

    43/106

     ________________________________________________________ Surface preparation principles 

    4.4.2   Choice of immobilization method   

     

  • 8/19/2019 Conc Handbook

    44/106

    Surface preparation principles ________________________________________________________

  • 8/19/2019 Conc Handbook

    45/106

     _______________________________________________________ Surface preparation in practice 

    5. 

    Surface preparation in practice

    • 

    • 

    • 

     

     

    5.1 

    Conditions for immobilization

  • 8/19/2019 Conc Handbook

    46/106

    Surface preparation in practice _______________________________________________________

    • 

    • 

    • 

         

     

     

     

     

  • 8/19/2019 Conc Handbook

    47/106

     _______________________________________________________ Surface preparation in practice 

     

     

     

     

    5.2.1  Preparing solutions 

    5.2 

    Immobilization procedure

  • 8/19/2019 Conc Handbook

    48/106

    Surface preparation in practice _______________________________________________________

    5.2.2   Amine coupling 

     

       

     

    5.2.3   Surface thiol coupling 

     

  • 8/19/2019 Conc Handbook

    49/106

     _______________________________________________________ Surface preparation in practice 

     

     

  • 8/19/2019 Conc Handbook

    50/106

    Surface preparation in practice _______________________________________________________

    5.2.4   Ligand thiol coupling 

     

     

  • 8/19/2019 Conc Handbook

    51/106

     _______________________________________________________ Surface preparation in practice 

    5.2.5   Aldehyde coupling 

     

      

     

  • 8/19/2019 Conc Handbook

    52/106

  • 8/19/2019 Conc Handbook

    53/106

     _______________________________________________________ Surface preparation in practice 

     

     

    1

    2

    3

    Response

    Time

    4

    Maximumbinding

    capacity

    Figure 5-2. Repeated injections of analyte without regeneration can be used to estimate the maximum analyte binding capacity of the surface.

    5.3  Testing the surface

  • 8/19/2019 Conc Handbook

    54/106

    Surface preparation in practice _______________________________________________________

    5.4.1  Low immobilization levels 

      • 

    • 

    • 

    • 

    Response

    Time

    NHS/EDC Ligand Ethanolamine

    Figure 5-3. Inadequate binding of ligand to the surface is seen as a poor increase in response after the ligand injection (the illustration shows a sensorgram for amine coupling).

    5.4  Troubleshooting surface preparation

  • 8/19/2019 Conc Handbook

    55/106

     _______________________________________________________ Surface preparation in practice 

      • 

    • 

    • 

    • 

    Response

    Time

    NHS/EDC Ligand Ethanolamine

    Figure 5-4. Inadequate immobilization of ligand is seen as a large drop in response as a result of the final washing step (the illustration shows a sensorgram for amine coupling).

    5.4.2   Low analyte responses 

       

  • 8/19/2019 Conc Handbook

    56/106

    Surface preparation in practice _______________________________________________________

  • 8/19/2019 Conc Handbook

    57/106

  • 8/19/2019 Conc Handbook

    58/106

  • 8/19/2019 Conc Handbook

    59/106

     _____________________________________________________________________ Regeneration 

    good

    bad

    Response

    Time

    Cycle 1 Cycle 2

    good

    bad

    Response

    Time

    Figure 6-1. Efficient regeneration removes all bound analyte. Inefficient regeneration leaves analyte on the surface (top panel). A second injection of analyte reveals whether the ligand is still fully active (bottom panel).

     

  • 8/19/2019 Conc Handbook

    60/106

    Regeneration _____________________________________________________________________

    6.2.1  Report point placing 

     

    6.2.2   Trend plots 

    • 

    • 

    • 

    6.2  Interpreting regeneration scouting

  • 8/19/2019 Conc Handbook

    61/106

     _____________________________________________________________________ Regeneration 

    Sample response(relative)

    Baseline response(absolute)

    Cycle number

    A B C D

    Starting values(cycle 1)

    Figure 6-2. Scouting for regeneration conditions. The report points from the first cycle give the starting values: thereafter the points are grouped according to the regeneration conditions tested. See text for interpretation.•••• = baseline response; x = sample response.

     

  • 8/19/2019 Conc Handbook

    62/106

    Regeneration _____________________________________________________________________

  • 8/19/2019 Conc Handbook

    63/106

     ___________________________________________ Developing and running concentration assays 

    7. 

    Developing and running

    concentration assays

    • 

    • 

    • 

    • 

    • 

    • 

    • 

     

    7.1 

    Assay requirement specification

  • 8/19/2019 Conc Handbook

    64/106

    Developing and running concentration assays ____________________________________________

    7.2.1  Preparing samples 

    • 

    • 

    • 

    7.2  General practical considerations

  • 8/19/2019 Conc Handbook

    65/106

     ___________________________________________ Developing and running concentration assays 

    7.2.2   Report point placing 

    Response

    Response

    Time

    Time

    Analyte binding

    Bulk refractive

    index

    Observed sensorgram

    Figure 7-1. The observed response results from a combination of analyte binding to the sensor surface and differences in bulk refractive index between the sample and running buffer.

  • 8/19/2019 Conc Handbook

    66/106

    Developing and running concentration assays ____________________________________________

    Response

    Time

    Analyte response+ bulk

    Analyteresponse

    Figure 7-2. Place report points for measuring response after the sample injection so that the measured response is not affected by the bulk refractive index of the sample.

    7.3 

    Adjusting the operating range

  • 8/19/2019 Conc Handbook

    67/106

     ___________________________________________ Developing and running concentration assays 

     

    7.3.1  Direct binding assays 

    • 

    Response

    Concentration

    Increasingaffinity

    Figure 7-3. Using a ligand with a higher affinity moves the calibration curve towards lower analyte concentrations.

    • 

  • 8/19/2019 Conc Handbook

    68/106

    Developing and running concentration assays ____________________________________________

    Response

    Concentration

    Increasingamount of ligand

    Figure 7-4. Higher amounts of immobilized ligand increase the response but 

    have little effect on the shape of the calibration curve.

    • 

    Response

    Concentration

    Time

    1

    2

    1

    2Response

    Figure 7-5. Longer contact times allow measurement at lower analyte concentrations. The inset shows the sensorgrams from which the calibration curves are derived.

     

  • 8/19/2019 Conc Handbook

    69/106

     ___________________________________________ Developing and running concentration assays 

     

    7.3.2   Inhibition assays 

    • 

    Response

    log[concentration]

    Increasing affinity

    Increasing concentrationof detecting molecule

    Figure 7-6. Increasing the affinity of the detecting molecule moves the operating range to lower analyte concentrations and also narrows the range.Increasing the concentration of detecting molecule moves the operating range to higher concentrations.

    • 

  • 8/19/2019 Conc Handbook

    70/106

    Developing and running concentration assays ____________________________________________

    Response

    log[concentration]

    Decreasing concentrationof detecting molecule

    • 

     

     

     

     

     

  • 8/19/2019 Conc Handbook

    71/106

     ___________________________________________ Developing and running concentration assays 

     

    7.4.1  Unwanted binding in direct binding assays 

     

    7.4.2   Unwanted binding in inhibition and surface competition assays 

    7.4  Unwanted binding of analyte or detecting molecule

  • 8/19/2019 Conc Handbook

    72/106

    Developing and running concentration assays ____________________________________________

    Response

    log[concentration]

    Figure 7-7. Unwanted binding of either analyte or detecting molecule to the 

    dextran matrix in an inhibition assay will introduce a background response level, reducing the response range of the assay.

    7.4.3   Testing for unwanted binding   

       

    7.4.4   Dealing with unwanted binding 

    • 

  • 8/19/2019 Conc Handbook

    73/106

     ___________________________________________ Developing and running concentration assays 

    • 

    • 

    7.5.1  Measuring specificity       

    7.5  Specificity and cross-reactivity

  • 8/19/2019 Conc Handbook

    74/106

    Developing and running concentration assays ____________________________________________

    100

    50

    0

    1   100

    Response/MW

    Concentration

    Compound A

    Compound B

    Figure 7-8. Cross-reactivity in direct assays is determined from calibration 

    curves of molecular weight-corrected response against concentration. In this illustration, compound B shows 1% cross-reactivity with compound A.

    7.5.2   Optimizing specificity 

     

    • 

  • 8/19/2019 Conc Handbook

    75/106

     ___________________________________________ Developing and running concentration assays 

    • 

    • 

    • 

    7.6.1  Non-specific binding to the sensor surface 

       

     

    7.6  Matrix interference

  • 8/19/2019 Conc Handbook

    76/106

    Developing and running concentration assays ____________________________________________

       

    • 

    • 

    • 

    7.6.2   Other matrix interference effects 

    • 

    •   

  • 8/19/2019 Conc Handbook

    77/106

     ___________________________________________ Developing and running concentration assays 

    • 

    • 

     

  • 8/19/2019 Conc Handbook

    78/106

    Developing and running concentration assays ____________________________________________

     

    • 

     

    • 

    • 

    • 

    7.7.1  Testing assay stability   

    7.7.2   Dealing with assay stability issues 

    • 

    7.7 

    Assay stability

  • 8/19/2019 Conc Handbook

    79/106

     ___________________________________________ Developing and running concentration assays 

    • 

    •   

    • 

    • 

     

    7.8  Running routine assays

  • 8/19/2019 Conc Handbook

    80/106

    Developing and running concentration assays ____________________________________________

    • 

    • 

    • 

  • 8/19/2019 Conc Handbook

    81/106

     ___________________________________________Measuring concentration in GxP environments 

    8. 

    Measuring concentration in

    GxP environments

    8.1.1  System performance   

     

    8.1 

    Setting up GxP assays

  • 8/19/2019 Conc Handbook

    82/106

  • 8/19/2019 Conc Handbook

    83/106

     ___________________________________________Measuring concentration in GxP environments 

    8.2.1  Specificity 

    • 

    • 

    • 

    8.2.2   Accuracy   

    .2  Validating GxP assays

  • 8/19/2019 Conc Handbook

    84/106

  • 8/19/2019 Conc Handbook

    85/106

     ___________________________________________Measuring concentration in GxP environments 

    8.2.5   Range 

    8.2.6  

    Robustness   

    8.3.1  Document the run settings 

    8.3.2   Data storage 

    .3  Running GxP assays

  • 8/19/2019 Conc Handbook

    86/106

    Measuring concentration in GxP environments ___________________________________________

    8.3.3   Audit trails 

  • 8/19/2019 Conc Handbook

    87/106

     __________________________________________________________The SPR detection principle 

    A. 

    The SPR detection principle

     

     

    Incidentlight

    Sensor chip

    Flow cell

    Reflectedlight

    SPR angle

     

    Reflected lightintensity

    Angle of reflectionSPR angle

    Figure A-1. The SPR detection principle.

    A.1  Surface plasmon resonance

  • 8/19/2019 Conc Handbook

    88/106

    The SPR detection principle __________________________________________________________

      

    A.2  What SPR measures

    A.3  Biacore configuration

  • 8/19/2019 Conc Handbook

    89/106

     __________________________________________________________The SPR detection principle 

         

  • 8/19/2019 Conc Handbook

    90/106

    The SPR detection principle __________________________________________________________

  • 8/19/2019 Conc Handbook

    91/106

     ____________________________________________Using binding rates to measure concentration 

    B. 

    Using binding rates to measure

    concentration

          

     

    B.1.1 

    Biochemical interaction rates 

       

    [ ][ ][ ] [ ]

      −=

    B.1  Factors determining binding rates

  • 8/19/2019 Conc Handbook

    92/106

    Using binding rates to measure concentration ____________________________________________

     

    ( )  

      −−=

     

    B.1.2   Mass transport processes   

    B.1.3   What limits the observed binding?       

     

  • 8/19/2019 Conc Handbook

    93/106

     ____________________________________________Using binding rates to measure concentration 

    Response

    Time

    Mass transport Interaction

    Sensorgram is linear ifmass transport is limiting

    Figure B-1. In a partially mass transport-limited situation, mass transport dominates at the beginning of the injection and interaction rate dominates late in the injection.

    B.2.1  Advantages of affinity-independent assays 

       

    •   

    • 

    • 

    B.2 

    Affinity-independent assays

  • 8/19/2019 Conc Handbook

    94/106

    Using binding rates to measure concentration ____________________________________________

    • 

    B.2.2   Affinity-independent assays in practice 

    • 

    • 

    • 

    •   

    • 

  • 8/19/2019 Conc Handbook

    95/106

     ____________________________________________Using binding rates to measure concentration 

     

    • 

     

    Figure B-2. Mass transport-limited binding proceeds at a constant rate (left panel), while interaction-limited binding displays curvature in the sensorgrams (simulated sensorgram data).

    • 

    • 

  • 8/19/2019 Conc Handbook

    96/106

    Using binding rates to measure concentration ____________________________________________

    B.3  Calibration-independent assays

  • 8/19/2019 Conc Handbook

    97/106

     ____________________________________________________________________________Index 

    Index

  • 8/19/2019 Conc Handbook

    98/106

    Index____________________________________________________________________________

  • 8/19/2019 Conc Handbook

    99/106

     ____________________________________________________________________________Index 

  • 8/19/2019 Conc Handbook

    100/106

    Index____________________________________________________________________________

  • 8/19/2019 Conc Handbook

    101/106

     ____________________________________________________________________________Index 

  • 8/19/2019 Conc Handbook

    102/106

    Index____________________________________________________________________________

  • 8/19/2019 Conc Handbook

    103/106

     ____________________________________________________________________________Index 

  • 8/19/2019 Conc Handbook

    104/106

  • 8/19/2019 Conc Handbook

    105/106

  • 8/19/2019 Conc Handbook

    106/106