36
Concentrating Solar Power Technologies Dr. Raed Sherif V.P., International Markets eSolar, Inc. [email protected] Presented at the iNEMI Alternative Energy Workshop San Jose, California October 2021, 2010

Concentrating Solar Power Technologies

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Concentrating Solar Power Technologies

Concentrating Solar Power Technologies

Dr. Raed SherifV.P., International Markets

eSolar, [email protected]

Presented at the iNEMI Alternative Energy WorkshopSan Jose, California ‐ October 20‐21, 2010

Page 2: Concentrating Solar Power Technologies

Overview of Solar Technologies Platforms

2

Photovoltaic Solar Thermal

Silicon Panels

Thin Film Panels

Concentrated PV Panels

Solar Technologies

Power Tower

Parabolic Trough

Linear Fresnel

Sterling Engine

Non‐concentrating Concentrating

Page 3: Concentrating Solar Power Technologies

Technology Efficiency Status Markets Pros Cons

Si panels 14% - 22% DC Standard, mature (GW deployment), 75% market share

Primarily rooftops and commercial ,and lately utility

Diffuse sun, established, proven cost reduction path

Intermittent, no clear path for higher efficiency , higher investment to set up manufacturing

Thin films ~ 11% DC CdTe of FS 25% market share, other thin film about ready to enter the market

Utilities Diffuse sun, lowestcapital cost

Material set, low efficiency, high BOS costs

CPV 25% - 32% DC Fragmented, emerging, many technologies, less than 20 MW installed

Commercial, utilities

Very high efficiency potential, low use of semiconductor, lower manufacturing set up costs

Fewdemonstrations, use of DNI only

CSP-Trough 14-15% AC Mature, standard, over 650 MW installed and many PPA’s including storage

Utility power generation

Established, over 20 + years, can be hybridized, storage capability

Water use, use of DNI only, lowpotential for cost reduction

CSP- CLFR 11% AC Under 10 MW installed,but finalist in the Solar Flagship of Australia

Industrial steam, utility power generation

Low capital cost,steam suitable for industrial process heat

Water use, use of DNI only, low efficiency, low steam temperature

CSP- Tower 18% - 22% AC Different solar fields,under 40 MW installed, PPA’s signed for hundreds of MW

Utility power generation

High efficiency, path for low LCOE, storage, hybrid

Water use, use of DNI only

Page 4: Concentrating Solar Power Technologies

Concentrating Photovoltaic

History

CPV Module Components

The Promise of CPV

Status of the Technology

Opportunities & Challenges

Page 5: Concentrating Solar Power Technologies

History

Go back to 1980 and ask: why is solar expensive?

To a first degree, the semiconductor is expensiveAnd it is inefficient (low kWh produced for every kW installed) 

So you need a lot of semiconductor area

Two solutions were considered

Reduce cost of semiconductor 

Use Concentration 

Page 6: Concentrating Solar Power Technologies

6

Some Historical CPV Systems

Interest in CPV evident in the 1970’s and 1980’s systems

But back then, CPV was too expensive – the technology was not ready!

Page 7: Concentrating Solar Power Technologies

Meanwhile, PV found a niche application 

1

10

100

1 10 100 1000 10000 100000

Cumulative Production (MW)

Mod

ule

Pric

e ($

/W) (

$200

2)

Historical

Projected 2004!1980

$21.83/W1985

$11.20/W 1990$6.07/W 1995

$4.90/ W 2000$3.89/W 2005

$2.70/W2010

$1.82/W2013

$1.44/W

PV was cost efficient in remote applications, then through FIT and incentive programs, gained market in grid‐connected 

Projections of lower module cost with higher volumes, increased efficiency, and automation have come true – except the time of silicon shortage

Page 8: Concentrating Solar Power Technologies

A New, Disruptive Technology

High efficiency, super expensive “multi‐junction” solar cells made their way into the domain of solar energy because of space application, building on the “dual‐junction” technology that was developed by the DOE 

High‐efficiency solar cells made of III‐V materials used to power spacecrafts

Picture courtesy of Spectrolab

Page 9: Concentrating Solar Power Technologies

1.0

0.8

0.6

0.4

0.2

00.25 0.45 0.65 0.85 1.05 1.25 1.45 1.65 1.85

INTE

NS

ITY

(AR

B U

NIT

S)

WAVELENGTH (Microns)

TOP CELL

MIDDLE CELL

BOTTOM CELL

GaInP2 GaInAs Ge

Multijunction PVSunlight

• State of the art is the 3J cell• Typical 3J cell contains 20 layers or more• Divides the solar spectrum (l < 1.750 mm) to maximize efficiency

Picture courtesy of Spectrolab

Draw

ing N

ot To

Sca

le

ContactA/R*

Top Cell: GaInP 2

Tunnel Junction

Bottom Cell: Ge

Ge Substrate

Contact

A/R*

Tunnel Junction

Middle Cell: GaInAs

*A/R: Anti-Reflective Coating

Page 10: Concentrating Solar Power Technologies

CPV Module Components

• Primary optics collect the DNI light

• Secondary optics homogenize the light and focus more on the PV  cell

• High efficiency cell packageto receive concentrated light

• A system of heat removal and electric connections

• Dual‐axis tracking

Example of a CPV module‐ picture courtesy of Amonix

Page 11: Concentrating Solar Power Technologies

SolarCell

Receiver

Sub-Module Module (total of 50 modules mountedon a dual-axis tracker)

Concentrating Photovoltaic Receivers/Cell Assemblies

CPV Receiver/Cell Assembly‐ Electric connection‐ Heat dissipation‐ Reliability‐ Cost

Example of a CPV module‐ picture courtesy of Sol3G

Page 12: Concentrating Solar Power Technologies

The promise of CPV‐ Path to Lowest LCOE

• Efficiency is leveraging in reducing LCOE

• Cell utilization is very small (1/1000 of the silicon cells)

• Cells replaced with conventional materials (steel, aluminum, glass)

• Promises of higher efficiency and lower cell costs have been coming true

• Field demonstrations and IEC qualification testing show technology to be robust

• Industry is nowhere near taking advantage of economies of scale yet 

Page 13: Concentrating Solar Power Technologies

CPV Advantage in Performance• Dual‐axis tracking provides higher kWh/kWp, and higher capacity 

factor‐ almost 60% higher than stationary flat plate Si module

1

1

11111111111111111

1111111

11

1

1111J

J

J

J

JJJJJJJJJJJJJJJJ

JJJJ

J

J

J

JJJJJJ

H

HH

HH

HH

HHHHHHHHHHHHH

HHH

HH

HH

HHHHHH0

10

20

30

40

50

60

70

80

90

100

6 8 10 12 14 16 18Local time (h)

1 Amonix = 8.8 kWh/kW

J Single axis = 7.2 kWh/kW

H Fixed Flat Plate = 5.0 kWh/kW

• For a 1 MW plant, CPV system would produce >8 GWh over a 25 year life more than a thin film panel

Picture courtesy of Amonix

Page 14: Concentrating Solar Power Technologies

CPV Chip Efficiency vs. Other Technologies• CPV chips efficiency increase about 1% per year: 40% commercial by end of 

2010 , 42‐43% by 2012 and path for > 45%, while prices going down due to economies of scale, automation, and learning

Picture courtesy of NREL

Page 15: Concentrating Solar Power Technologies

Where the CPV Industry is now, and where it is heading

Parameter Status in 2007 Status in 2010 Projected  by 2015

$/W installed $7‐$10/W $4‐$6/W <$3/W

Cents/kWh >$30 cents/kWh $15‐$20 cents/kWh Under $10 cents/kWh

Research device eff.

40.7% 41.6% (recently 42.3%) 48%

Commercialdevice eff.

35‐37% 39‐40% 42‐43%

Commercial cell cost

$10‐$15/sq. cm $6‐$8/sq. c m $3‐$5/sq. cm

Demonstrations Under 1 MW 4‐6 MW with PPA’s signed for 30+ MW

Hundreds of MW

Source: Dr. Sarah Kurtz of NREL Report on CPV

Page 16: Concentrating Solar Power Technologies

Opportunities & Challenges

• Technology has the potential to reach low LCOE

• Promises of commercial chip efficiencies of 40% and above are happening‐ chip efficiencies of 50% and above are doable!

• Many new chip suppliers, ensuring continuous drive to increase efficiency, reduce cost, and meet volume demands

• IEC qualification standards established, and CPV modules are meeting the standards

• Field demonstrations are proving viability of the technology

• PPA’s are being signed 

• No economies of scale achieved yet

• Bankability issues

• Fragmented technology, no standardization

Page 17: Concentrating Solar Power Technologies

Concentrating Solar Power Tower

Why Tower?

Traditional Obstacles to CSP 

Innovations in CSP Tower

Opportunities & Challenges

Page 18: Concentrating Solar Power Technologies

Among CSP technologies, the CSP Tower offers the best opportunities for scalable solar power at the lowest cost

Linear Fresnel Reflectors

Tubes fixed in placeUse direct steamLow concentrationLow maximum 

temperatureLowest efficiency (~ 11%)Limited demonstration

Trough

Most mature technology (over 500 MW installed)Single axis trackingSynthetic oilCostly heat 

exchangersLow concentrationMedium efficiency (~ 

16%)

Tower

Dual axis trackingHigh concentrationHigh maximum 

temperatureDemonstrated in Solar 

One, Solar Two, PS‐10, PS‐20, SierraHighest efficiency (18‐

22%)

Page 19: Concentrating Solar Power Technologies

Question:

Why is CSP expensive?

Page 20: Concentrating Solar Power Technologies

Materials, construction and installation have been costly for CSP

Traditional CSP requires intensive field construction – cranes, power tools,  and heavy civil work with expensive foundations

Mirrors use up large amounts of steel and concrete to resist wind loads

Precision installation, calibration, and alignment are time consuming 

Source: Abengoa PS‐10 project Lifting of a trough during construction

Page 21: Concentrating Solar Power Technologies

Trough mirror assembly on site with large steel  support structures

Other power tower heliostats require 3’ diameter steel posts set 20’ into the ground

The actuator is large and heavily engineered

Conventional technology

Curved trough mirrors and large heliostats (120 m2) require heavy support structures and expensive manual labor

Page 22: Concentrating Solar Power Technologies

eSolar: Innovative Modular and Scalable CSP 

South field of tracking mirrors

North field of tracking mirrors

Receiver Tower

Thermal Receiver  [direct steam generation]

Award‐winning Technology2010 World Economic Forum Technology Pioneer Award

2010 Renewable Energy World’s “Renewable Project of the Year”

2009 Power Engineering “Best Renewable Project of the Year”

Page 23: Concentrating Solar Power Technologies

Commercial Demonstration: Sierra SunTower Project

The Sierra SunTower produces 5 MW and consists of 2 modules side‐by‐side in Lancaster, California. Each module has 12,000 tracking mirrors focusing light on a receiver atop a 60 meter tower.

Concept of a power plant using 12 modules

side‐by‐side feeding one steam turbine to

form a 46 MW power plant. 

Each module produces 2.5‐2.8 MW

All solar field components have been demonstrated at commercial scale

46 MW units fit on a 250 acre land (~ 1 square km)

Can be deployed in 18‐22 months

Page 24: Concentrating Solar Power Technologies

Close‐up view of the mirror field. Notice the fact that there is no ground penetration. Frames come pre‐wired from the factory.

Page 25: Concentrating Solar Power Technologies

Pre‐Fabricated Components for Easy & Rapid Construction  

Pre‐fabricated mirrors and frames arrive in standard shipping containers on site

Simple, linear design and field layout reduce high ground preparation costs

Standard 210’ (65 m) wind towers are repurposed to host receivers, expediting the permitting process

External boiler designed by Babcock & Wilcox 

Page 26: Concentrating Solar Power Technologies

Big savings in Construction Costs!

Expensive crews, cranes and power tools required, with excavating, welding and fabrication done on‐site

Solar Trough/Other CSP Towers

Only hand tools (one ratchet wrench) required to unfold and tighten entire solar field in place with NO ground penetration

eSolar System

Page 27: Concentrating Solar Power Technologies

Cost Reduction and Local Manufacturing Opportunities

Small, flat mirrors require less steel, and can be manufactured locally

Low profile installation reduces construction equipment and labor cost

Pre‐fabricated components requiring less skilled labor for assembly on site

Small, flat mirrors ~ 1 sq. meters ensurelower material and labor costs

Mirror field is installed using hand tools with no ground penetration

Page 28: Concentrating Solar Power Technologies

Automated solar field calibration

System of cameras

Fully‐automated

Heliostat availability  > 99.9%

Full calibration in < 20 days

eSolar’s Core Innovation: Automated Calibration & Tracking SystemTwo‐axis tracking is supported by cameras and proprietary software

Before calibration After calibration

Page 29: Concentrating Solar Power Technologies

Individually Controlled Mirror Field

Page 30: Concentrating Solar Power Technologies

eSolar Automatic Heliostat Cleaning Robot

Cleaning position where the rows of  mirrors face each other and an eSolar proprietary cleaning robot move between rows

Page 31: Concentrating Solar Power Technologies

Sierra SunTower

All information contained in this presentation is confidential.No reproduction or distribution of this material is permitted without prior authorization from eSolar.

Page 32: Concentrating Solar Power Technologies

First Commercial Demonstration

Over 24,000 mirrors, 2 towers, one power block

Break ground July 2008, supply electricity to grid August 2009

Page 33: Concentrating Solar Power Technologies

Sierra SunTower – Time Line

3

Only operating solar tower power plant in the U.S. and one of only three in the world 

All information contained in this presentation is confidential.No reproduction or distribution of this material is permitted without prior authorization from eSolar.

Sierra SunTower

Validates eSolar’s technology; 3rd party engineer’s studies complete

Operational history matched or exceeded company forecasts

Small form factor enabled siting of power plant close to load

12‐month construction period

Continues to provide invaluable data to further improve future power plants

2008 2009

June Construction begins

December Heliostats installed

April  First Sun

July          First Sync

August  Unveiling

2010

Page 34: Concentrating Solar Power Technologies

Official Opening August 5, 2009

Page 35: Concentrating Solar Power Technologies

Sierra SunTower: Summary of Daily Performance

3All information contained in this presentation is confidential.No reproduction or distribution of this material is permitted without prior authorization from eSolar.

eSolar’s calibration system has allowed it to precisely predict receiver thermal energy absorption 

Predictive ability has consistently improved throughout Sierra SunTower’s operational life

Energy absorption model is transferable globally to large scale power plants

Page 36: Concentrating Solar Power Technologies

“If you want to find a new idea, read an old book!”Bobby Fischer

Thought