31
7/23/2019 Criticality Safety http://slidepdf.com/reader/full/criticality-safety 1/31 Chapter V CRITICALITY SAFETY IN PROCESSING PLANTS A. Plant Features with Criticality Potential Processing plants contain a multiplicity of work stations, and areas for both long-term and short-term storage. Criticality safety considerations go beyond the analysis of each of these in terms of subcritical individual units or storage arrays. The progression of fissilematerial through a plant involves transfers and special handling during which unusual conditions may be encountered. It is important that these operations be governed by procedures and be carried out by well-trained personnel. Consider a plant for processing highly enriched uranium as solids, such as fabrication of weapon com pon en ts or fuel elements for r ea ct or s. It is essential to avoid the effect of massive fissile units falling together or encountering other units as the result of an accident with transfer equipment. Minimum spacing between units can be maintained by the use of birdcages, provided there are appropriate procedures for loading and unloading them. In a plant for scrap recovery or processing irradiated fuel, the operations involving fissile solutions must be carefully planned. It is noteworthy that all criticality accidents that have occurred in processing plants have involved solutions. Mishaps that have led to these accidents include solution leakage, precipitation, dissolution of solids, instrument failure, and transfer among vessels. Avoidance of these mishaps calls for continued cooperation of criticality safety and operating personnel. In general, both physical and administrative criticality safety practices must be tailored to specific plant conditions. Th is requirement inevitably will require judgment. Special evaluation also may be required because there is no “standard” plant for which universal criticality safety recipes can be defined. 97

Criticality Safety

Embed Size (px)

Citation preview

Page 1: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 1/31

Chapter V

CRITICALITY SAFETY IN

PROCESSING PLANTS

A. Plant Features with Criticality Potential

P r ocessin g pla n ts con ta in a m ult iplicit y of w or k st a t ion s, a n d a r ea s for bot h lon g-t er m a n d

s hor t -t er m s tor a ge. C r it ica lit y s a fet y con sid er a t ion s g o bey on d t he a n a ly sis of ea ch of t h es e

in t er m s of s ub cr it ica l in div id ua l u nit s or s t or a g e a r r a y s. Th e pr og res sion of fis sile m a t er ia l

t hr ou gh a pla n t in volves t ra n sfer s a n d specia l h a ndlin g dur in g w h ich u nusua l con dit ion s

m a y be en cou nt er ed . I t is im por ta n t t ha t t hese oper a tion s be g over ned by pr oced ur es a n d

be ca r r ied ou t b y w e ll-t r a in ed per son n el.

C on sider a pla nt for processin g high ly enr ich ed ura nium a s solids, such a s fa brica t ion of

w ea pon com pon en ts or fuel elem en ts for r ea ct or s.

I t is essent ia l t o a void t he effect of

m a ss ive fis sile u nit s fa llin g t og et h er or en cou nt er in g ot h er u nit s a s t h e r es ult of a n a ccid en t

w it h t ra n sfer eq uipm en t. Min im um spa cin g bet w een un it s ca n be m a in ta in ed by t he use of

b ir d ca g es , pr ov id ed t h er e a r e a p pr opr ia t e pr oced ur es f or loa d in g a n d u nloa d in g t h em .

I n a pla n t for scr a p r ecover y or pr ocess in g ir ra d ia t ed fu el, t he oper a tion s in volvin g fissile

solut ions must be ca refully pla nned. I t is not ew or t hy t ha t a ll cr it ica lit y a ccident s t ha t

h a ve occu rr ed in pr oces sin g pla n t s h a ve in volv ed s olu t ion s. Mis ha ps t h a t h a ve led t o t h es e

a ccid en t s in clu de s olu t ion lea k a g e, pr ecipit a t i on , d is solu t ion of s olid s, in st r um en t f a ilu re,

a n d t r a ns fer a m on g v es sels . Avoid a nce of t h es e m is ha ps ca lls for con t in ued cooper a t ion of

cr it ica l it y s a f et y a n d op er a t i n g p er s on n el.

I n g en er a l, bot h ph ysica l a n d a dm in ist ra t ive cr it ica lit y sa fet y pr a ct ices m ust be t a ilor ed

t o specific pla n t con dit ion s. Th is r eq uir em en t in evit a bly w ill r eq uir e ju dg men t. S pecia l

eva lua t ion a lso m ay be req uired beca use t her e is no “st a nda rd” pla nt for w hich un iversa l

cr it ica l it y s a fet y r ecipes ca n b e d ef in ed .

97

Page 2: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 2/31

B.

Administration

P r ov is ion s of S t a n d a r d AN S I /AN S -8. 19,

A dm i ni st r at i ve Pr act i ces f or Nucl ea r C r i ti ca l i ty

Safeiy,

a re of m ajor sign ifica nce in pr ocessin g pla n ts.

Th is S ta n da rd r ecogn izes t ha t

cr it ica lit y s a fet y r eq uir em en t s m ust con t ribu t e t o t h e ph ysica l a n d econ om ic fu nct ion s of a

pla nt in a ba la nced ma nn er . Accordin gly , it pla ces no req uiremen t on t h e form of pla nt

or ga n iz a t ion . I n st ea d , r eq uir em en t s of t h e S t a n da r d a r e expr es sed in t er ms of m a n a gem en t ,

oper a t ion a l su per visor s, a n d a cr it ica lit y s a fet y s ta f f pr ovid ed by m a n a gem en t .

The S ta n da r d em ph a sizes t ha t effect ive cr it ica lit y con tr ol, like ot her bra n ch es of sa fet y,

req uires t he posit ive support of ma na gemen t a nd implemen t a tion by supemisors w it h

a ssist a nce of t he crit ica lit y sa fet y st a ff.

I t id en t ifies a s socia t e d r es pcm sib ilit ies , ca l ls f or

effect iv e t r a in in g of per son n el a n d con cis e oper a t i ng pr oced ur es , a n d h a s s ect ion s on pr oces s

ev a lu a t ion , m a t er ia l con t r ol, a n d pla n n ed r es pon se t o cr it ica l it y a ccid en t s.

c Training

Th e t r a in in g pr og ra m for per son s in volved in oper a t ion s w it h fissile m a t er ia l sh ou ld m a lie

s a fet y con sid er a t ion s, in clu din g cr it ica l it y s a fet y , a n in t eg ra l pa r t of a pr og ra m t h a t pr ov id es

n eces sa r y job s kil ls . S t a n d a r d AN S 1\ AN S -8.

20, NucZea r Cr i t i ca l i t y Saf et y T ra in i ng,

applies

t o per son n el a s socia t e d w i t h oper a t i on s w h er e t h er e is t h e pot en t ia l for a cr it ica l it y a ccid en t .

P rovision s of t he S ta nda rd a re con sist en t w it h t he pr ecept t ha t sa fet y educa t ion w ill be

m ost mea nin gful a n d r ea dily a ssimila t ed if it is clea rly releva n t t o oper a tion s. I t follow s

t ha t loca l supervision sh ould pa rt icipa t e in crit ica lit y sa fet y t ra in in g, or con duct it w it h

t h e s uppor t of cr it ica l it y s a fet y s pecia l is t s. Appr opr ia t e t r a in in g of s uper vis or y per son n el is

implied.

The S ta nda rd ca lls for t ra in in g in t he recogn it ion of crit ica lit y a la rms a nd t h e proper

respon se t o t hem. Tra in in g sh ould be support ed by discussion of select ed crit ica lit y

a ccid en t s. S t r a t t on )s h is t or y of n uclea r a ccid en t s30

d es cr ibes ea ch in s ufficien t d et a il t o be

h elpfu l for t h is pu rpos e.

Accoun ts of r ea l a cciden t exper ien ce in t ra in in g t a lks ca n h elp

k eep t h e a u dien ce a w a k e.

D. Criticality Alarms and Response

C rit ica lit y a la r ms ha ve t w ice in it ia t ed lifesa vin g eva cua t ion of a r ea s in w hich a ccid en ts

occurred.30

Th e va lue of su ch sy st em s is t h er efor e clea r in a r ea s for pr oces sin g sig nifica n t

a moun ts of fissile ma t er ia l. G uida nce for t he design , in st a lla t ion , a nd ma in t en a nce of

such sy st em s m a y be obt a in ed fr om S t a nd a rd ANS I \ANS -8.3,

Cr i ti ca l i ty A cci den t A l ar m

System.

Th is docum en t dir ect s t ha t a n a cciden t a la rm sy st em must be con sider ed for a ny

98

Page 3: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 3/31

a r ea con ta in in g m or e t ha n a t hr esh old q ua n tit y of fissile m a ter ia l. The S ta n da rd ca lls for

a n ea sily r ecogn ized sign al for im media t e eva cua t ion in ca se of a n a la r m. I t r ecom men ds

t ha t t he respon se of t he a la rm syst em t o ra dia t ion be t est ed a t lea st mon th ly, ea ch sign a l

gen er a t or be t est ed a t lea s t on ce ever y t hr ee m on t hs, a n d a n eva cu a tion d rill be per for med

a t lea s t a n nua lly .

Th e exist en ce of a n a la r m sy st em ca r ries w it h it cer ta in r espon sibilit ies. Th e sy st em m ust

be ma in t a in ed t o provide con fiden ce t ha t it w ill fun ct ion if n eeded, a nd t o min imize t he

fr eq uen cy of fa lse a la rm s. F alse a la rm s ca n h ave a n ega t ive im pa ct on sa fet y by cr ea t in g a

pot en t ia l for in jur y a s a r esu lt of pr ecipit ous r espon se.

F alse a la rms a lso t en d t o d est roy

con fid en ce in t h e s ys t em . U n a n n ou nced d rills a r e n ot en dor sed .

Th e respon se t o a n a la rm is t o be govern ed by a n emergen cy pla n w it h elemen ts given in

t he a d min ist ra t ive S t a nd a rd ANS 1\ ANS -8.19. F ur th er fea t ur es of a n em er gen cy pla n a r e

being considered.

E lem en ts of t he em er gen cy pla n in clud e pr oced ur es for eva cu a tion t o specified a ssem bly

s t a t ion s, a ct ion s a f t er a s sem bly , a n d t r ea t m en t of in ju red a n d expos ed per son s in a ccor d a n ce

w i t h a d va n ce a r r a n g em en t s.

P erson n el must be t ra in ed in t h eir proper respon se t o t h e a la rm in cludin g t h e use of.

eva cu a t ion r ou t es a n d d esig na t ed a s sem bly poin t s. E m er gen cy pla n s m ust be k ept cu rr en t ;

evolut ion of a pla n t ca n in fluen ce t he pr ocedur es t o be follow ed in t he even t of a n a la r m.

E Material Control

On e cr it ica lit y a ccid en t occu rr ed beca u se a con cen t ra t ed fissile solu t ion in a poly et h ylen e

cylin der w a s m ist a ken for a dilut e solut ion .30

Th is occur ren ce em ph a sizes t he va lue of

la b elin g or ot h er pos it iv e id en t ifica t i on of fis sil-em a t er ia l in h elpin g t o a v oid r ou t in g er r or s

w it h in a pla nt .

Also of va lue a re post ed limit s a t w ork st a tion s a nd st ora ge a rea s. I f

obser ved , for exa m ple, in t he t ra n sfer of m a ter ia l a lon g a glove-box lin e, post ed lim it s ca n

pr ev en t in a d ver t en t ov er loa d in g of a b ox.

La belin g a nd post ed lim it s ca n not t a ke t he pla ce of up-t o-da t e pr ocedur es used by w ell-

t r a i n ed per s on n el , b ut s h ou ld m a k e er r or s l es s li kely . C om pu t er iz ed a c cou n t in g p roced u r es ,

such a s pr oposed for sa fegua rds, sh ould con tr ibut e fur t her t o t he reduct ion of t ra nsfer

errors.

P r ovision s for h a ndlin g fissile m a ter ia l dur in g in ven t or ies m ust be a s ca r efully pla n ned a s

for r egu la r pla n t oper a t ion . Th is n eed is em ph a sized by t he t hr ee cr it ica lit y a ccid en ts t h a t

r es ul t ed f rom m is d ir ect i on of s ol ut i on s d ur in g i nv en t or y .30

99

Page 4: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 4/31

An occa sion a l r eq uir emen t t ha t sh ould be a n ticipa t ed is t he emer gen cy st or a ge of fissile

m a t er ia l t ha t ca n a ccum ula t e a s t he r esu lt of in ter rupt ion s of n or ma l oper a t ion s. Mish a ps

such a s fa ult y processin g or eq uipmen t fa ilure ma y in t errupt t he flow of solut ion s, a nd

a ccid en t s or ot h er d isr upt ion s m a y pr even t m a t er ia l fr om lea v in g t h e pla n t .

I n a pla n t la y ou t , t h e con ven ien ce of pr oper oper a t ion s sh ou ld be con sid er ed . To be a v oid ed ,

for exa m ple, is t r a n sfer of m a t er ia l t h rou gh a w or kin g a r ea w h en a n ot h er con ven ien t r ou te is

a v a ila b le, a n d u nn eces sa r y pr oces sin g of d iffer en t fis sion a b le m a t er ia l s in t h e s a m e a r ea . To

illu st ra t e, use of t he sa m e fur na ce for ca st in g en rich ed a n d n a t ur a l ur a nium , except d ur in g

in depen den t ca mpa ign s, could con tr ibut e t o t he con fusion of feed it em s. An exa mple of

m a kin g m ish a ps in con ven ien t is t o t r a n sfer fissile m a t er ia l on a sin gle pla n e, a s w it h specia l

ca r t s . Tr a n sfer b y cr a n e ov er ot h er fis sile m a t er ia l w ou ld be ob ject ion a b le.

F. Process Startup

B efore in it ia l opera t ion of a pla nt , or of a module t h a t is n ew or revised, con firma tion

of t he proper con dit ion of it s compon en t s is ma nda t ory .

C on fir m a t ion in clu des t es t in g

of in st rum en ta t ion , va lves, sea ls, t ra n sfer devices, a nd ven tila t ion a nd fir e-pr ot ect ion

eq u ipm en t . At t h is poin t , a d eq ua cy of t r a in in g sh ou ld be est a b lis hed .26

I t is a lso im por ta n t t o r ea s sess cr it ica lit y sa fet y befor e st a r tup. Th e in it ia l a s sessm en t ca n

be in flu en ced by ev olu t ion a r y ch a n ges d ur in g con st r u ct ion .

E ven t hough t he effect .of ea ch

ch a n ge h a s been con sid er ed , t h e a s -con st r uct ed con fig ur a t ion s hou ld be exa m in ed .

At t h is st age, it is a ppropr ia te t o recon sider ma t t ers of judgmen t a bout t h e a deq ua cy

of t he exper imen ta l ba sis for eva lua t in g t he crit ica lit y sa fet y of opera t ion . J u dgmen t is

in volved in d ecis ion s con cer nin g t h e a ppr opr ia t en ess of d ir ect ly a pplica b le exper im en t s,

of exper imen ts used for va ~ d a tin g ca lcula t ion s, or of a ddit ion a l sa fet y m ar gin s-a pplied

w hen va lida t ion is q uest ion a ble. An y doubt usua lly ca n be r esolved by mea n s of n eut ron -

m u lt i pl ica t i on m ea s u r em en t s a s ou t lin ed in S t a n d a r d AN S 1\ AN i9-8.6~ S a f et y in C o’’~ d u ct i ng

,,,

Subcr i t i ca l Neu t r on -M u l t i p l i ca ti on M easu remen t s i n S i tu .

Th ese meas uremen ts , con ducted

d ur in g s t epw i se in t r od uct ion of fis sile m a t er ia l , w ou ld id en t ify s a fely s ubcr it ica l con d it ion s.

In gen era l, t hey w ould simply pr ovide r ea ssur an ce t ha t n orm al oper a tion is a ccept a ble.

Th ey m ust n ot ca u se per son n el t o r ela x con cer nin g a ccid en t pot en t ia l.

100

Page 5: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 5/31

G. Maintaining Safety Provisions

D u rin g pla n t oper a t ion , con t in uou s ob ser va t i on a n d per iod ic s ur vey s a r e m ea n s of g ua r d in g

a g a in st a d ver se effect s of evolu tion a ry ch a nge in con dit ion s or pr a ct ices. H a s a vess el t h a t

cou ld con t a in m or e t h a n a cr it ica l volu me been br ou gh t in t o a pr oces s..a r ea ? H a s eq uipm en t

for fissile ma t er ia l been used for ot her ma t er ia l?

S hould fea t ur es of fir e pr ot ect ion be

r eview ed beca u se of ch a n ged pla n t con t en t ? H a ve pr eca u t ion s a g a in st t h e con seq uen ces of

n a tur a l d isa st er s such a s ea r th qua ke, flood , or t or na d o been r ela xed over t im e? Th e list of

q uest ion s d oes n ot st op h er e. I n fa ct , it d epen ds on d et a iled pla n t fea t u res , r egu la t ion s, a n d

t he policy of pla n t m a na gem en t. Th us, t he w ish for a un iver sa l ch eck list w ould be fu tile.

H. Examples of Plant Application

1.

Dissolver for Water-Reactor Fuel

Th e sa fe geomet ry of a 100-lit er dissolver for ch opped U (3.2)OZ fuel elemen ts is t o be

explor ed . Th e sh a pe of t he d issolver sh ould be sim ple a n d it is t o be sur roun ded by a st ea m

ja cket . Full w a t er reflect ion sh ould be a ssumed t o a llow for w a t er in t he st ea m ja cket a nd

for incidenta l reflect ion.

Ta ble 9 sh ow s a limit in g va lue of 26.4 cm for t he subcr it ica l dia met er of a lon g cy lin der of

heterogeneous oxide.86

Th is v a lu e i s es sen t ia l ly t h e in sid e d ia m e t er of 10-in ch S ch ed ule-5S

pipe. The dia met er limit for solut ion is significa nt ly gr ea t er . B eca use a cylin der of t his

dia met er h as a ca pa cit y of 55 lit er s per met er of len gt h, t he heigh t of a 100-lit er dissolver

w ould be a bout 1.8 m. A design st udy w ill sh ow w het h er t h is h eight meet s fun ct ion a l

requirements.

S hould t his lon g, sma ll dia met er prove t o be un desira ble, a n a lt ern a t ive w ould be a n

a n n ula r t a n k su rr ou nd in g a n eu t ron -a b sor bin g m a t er ia l t o r ed uce n eu t ron exch a n ge w it h in

t he con figura t ion . I f t h e a bsorbing ma ter ia l is w a t er a nd t h e in side dia met er is a t lea st

30 cm , t he a n nula r t hickn ess ca n be a ppr oxim a ted by a r eflect ed in fin it e sla b specified in

Ta ble 9 t o be 12.6-cm t hick. I f a ddit ion a l con serva t ism is desired, a t hickn ess of 10 cm

a nd a n in side dia met er of 40 cm ma y be a ssumed for t h e design st udy, t he ca pa cit y of

w h ich is a b ou t 157 lit er s per m et er . Accor din gly , a ves sel of 100-lit er ca pa cit y w ou ld h a ve

n ea r -eq u ila t e ra l ext er n a l d im en sion s. B e for e a d opt ion , t h e a ccept a b ilit y of t h e fin a l d es ig n

sh ou ld be con fir med eit h er by a va lid a t ed ca lcula t ion or by in s it u n eu tr on -m ult iplica t ion

meaimrements.2g

Of cou rs e, t h is d iss olver en com pa s ses m or e t h a n t h e sim ple con t a in er . I n t h e fir st pla ce, t o

a ccom mod a t e ir ra d ia t ed fu el, it m ust be on e com pon en t of a sh ield ed fu el-h a nd lin g sy st em .

The con ta in er must be modified for in troduct ion of t he ch opped fuel, dra in ing solut ion ,

a n d w it h dr a w a l of r esid ua l solid s. S pa r gin g t o fa cilit a t e u nifor m d issolu tion a lso m a y pr ove

101

Page 6: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 6/31

d es ir a ble. Th e u lt im a t e cr it ica lit y s a fet y eva lu a t ion m us t t a ke in t o a ccou nt a u xilia r ies a n d

in t er a ct ion w i t h ot h er com pon en t s.

F ur th er , t her e m a y be specia l r eq uir em en ts for ca m pa ign in g fuels fr om d iffer en t sou rces,

for in st a nce, t h e fuel up t o 4 w t%

ZS 5Uin t ile follow in g exa m ple of pla n t a pplica t ion . I f

t he possibilit y of h a ndlin g fuel a t somew ha t more t ha n 3.2 w t% 235U ca n be foreseen , it

sh ould be more effect ive t o pla n for it a t t his st age t ha n t o a da pt t o it la t er . Act ua lly , t h e

“con ser va t ive” a n nula r t hickn ess of 10 cm m a y pr ove t o be suit a ble for fuel en rich men ts of

n ea r ly 5 w t l o235U .

..-

2. Storage of Low-Enriched Uranium Solution

C on sid er v es sels for s t or in g a v a r iet y of u ra n iu m s olu t ion s in w h ich t h e 235Uen r ich m en t w i ll

n ot exceed 4 w t ?lo a nd t he ura nium den sit y w ill r ema in below 750 g/L. A t ot a l ca pa cit y of

1890 lit er s (500 g a l) is d es ir ed , a n d , beca u se of t h e pos sibilit y of lon g-t er m st or a ge a n d t h e

d ifficu lt y of in ter na l in spect ion , a sin gle vessel pa cked w it h R a sch ig r in gs is n ot select ed .

Th e pr efer r ed a r r a n g em en t is a pla n a r ba n k of cy lin d er s n ea r a 12-m -lon g, 5-m -h ig h con cr et e

w a ll, w it h a n a rrow w a lkw a y bet w een t he cylin der s a nd w a ll.

Accor din g t o Ta ble 8, t he subcr it ica l lim it on cy lin der d ia m et er for U (4) solu tion is 30 cm ;

t he n ext sm a ller com mer cia l pipe size is 10-in ch S ch ed ule-5S (26.6-cm -i.d .). At a usa ble

h eigh t of 4.6 m, t he ca pa cit y per cylin der is 250 lit ers a nd 8 cylin ders w ould be req uired.

C on st ruct ion a n d oper a t ion a l con ven ien ce w ould be m et by a on e-m et er cen t er spa cin g of

cy lin ders a nd w ould result in a ddit ion a l spa ce a t t he en ds of t he ba nk of cy lin der s.

A w a lkw a y of 0.7 m sepa r a t es t he cy lin der s fr om t he con cr et e w a ll a n d r ed uces t he effect of

t he w a ll t o t ha t of in ciden ta l r eflect ion on ea ch vessel. B eca use t he 30-cm d ia m et er limit

is ba sed on full w a t er r eflect ion , w hich is much mor e effect ive t ha n in ciden ta l r eflect ion ,

it is n ecessa ry t o sh ow t ha t t he effect of in t era ct ion a mon g t h e cylin ders is a ccept able.

Accor din g t o v a lid a t ed K E N O ca l cu la t i on s,147

k.ff = 0.725 for a sin gle cy lin der h a vin g on ly

2.5-cm -t h ick w a t e r r eflect ion , a n d k,ff = 0.785 for t h e lin ea r a r r a y spa ced fr om t h e con cr et e

w a ll, sh ow in g t h a t in ter a ct ion is a d eq ua t ely sm a ll. Th us, it is a ppr opr ia t e t o pr oceed w it h

t h e d esig n of t h is a r r a ng em en t a n d w it h d et a iled explor a t ion of con t in gen cies:

The low va lues of k,ff suggest t he rea son a blen ess of fur t her in vest iga t ion of a st ora ge

ba n k w it h sig nifica n t ly in cr ea s ed ca pa cit y . F or exa m ple, a on e-d im en sion a l ca lcu la t ion of

a 12-in ch S ch edule-5S pipe (31.5-cm-i. d .) in st ea d of t he 26.6-cm pipe r esult ed in a keff

of 0.9. Th e ca pa cit y of 8 cylin ders a t t he 4.6 m h eigh t w ould be in crea sed t o 750 ga llon s.

Of cour se, a ca r efu l com put a t ion a l st ud y a n d a n a ly sis of con tin gen cies w ould be r eq uir ed

b efor e a d opt in g t h is a p pr oa ch .

102

Page 7: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 7/31

3. Solution in Tanks Packed with Boron-Containing Raschig

Rings

In cer t a in ca ses, a s not ed before, a n a lt erna t ive t o geomet rica lly subcrit ica l t anks for

solu tion st or a ge is t he use of la r ge ca pa cit y t a nks pa cked w it h bor osilica t e-g la ss R a sch ig

r in gs. Ty pica lly , a lt hou gh on e-q ua r ter t o on e-t hir d of t he t a nk volum e is sa cr ificed t o t he

g la s s a b sor ber , t he t a n k m a y s till a ccom mod a t e la r ge volu mes of s olu tion m or e efficien t ly

t h a n lon g, lim it ed -d ia m et er cy lin der s or t hin s la b-like con t a in er s. Ot h er t ha n for pr im a ry

cr it ica l it y con t r ol, R a sch ig r in gs in a u xilia r y t a n k s m a y pr ot ect a g a in st a ccid en t a l cr it ica l it y

r es ult in g f rom in a d ver t en t d iv er sion of f is sile s olu t ion t o t h os e t a n k s.

Amer ican Na t iona l S tandard Use of Borosi l i ca ie-G lass Rasch ig R ings as a Neu t ron Absorber

in Solu t ions of F issiZeM ater ia l , ANSI \ ANS-8 .5 , defines appropria t e condi t ions for cr i t ica l i ty

cont rol. Rest rict ions exclude t he use of a lka line solut ions, H F, a nd hot , concent ra ted

H 3P O q . Tem per a t ur e a n d r a dia t ion field s a ls o a r e lim it ed . Th e S t a n da r d d efin es ch em ica l

a nd physica l pr oper ties t ha t a re t ypified by P y rex t ype 7740 a nd K im ba l t ype K G -33 a nd

lim it s t he r in g s ize t o 3.81-cm -o.d . I t s pecifies pa ckin g con dit ion s a n d g ives r eq uir em en t s

f or in spect ion a n d m a in t en a n ce. F in a lly , m a xim um d en sit ies of f is sile m a t er ia l in v es sels of

u nlim it ed s iz e a r e s pecified f or t h ree d if fer en t volu me per cen t a g es of g la s s. Ty pica l ly , a s t h e

g la s s volu me fr a ct ion r a ng es fr om 0.24 t o 0.32~ d en sit y lim it s r a ng e fr om 150 t o 200 g /L for

233U ,fr om 270 t o 4’00 g /L for 235U -en rich ed ur an iu m, fr om 115 t o 180 g P u /L for 239P u ,

a nd from 140 t o 220 g P u /L for plut on ium con ta ining m ore t ha n 5 w t ~ o 240P u.

Alt hough it is unlikely t ha t t hese rea son ably gen erous limit s w ould rest rict a pra ct ica l

pr oces s, t h er e cou ld be u nu su a l cir cu ms ta n ces t h a t w ou ld r eq uir e g rea t er g la s s fr a ct ion s.

B eca use com put a tiona l models ca nn ot closely a pproxima t e ra ndomly pa cked Ra sch ig

rings,

148 t he preferred guida nce for increa sed limit s w ould be exper iment a l da ta nea r

t he d es ir ed con dit ion s or com pu ta t ion a l r es ult s ver ified by

i n si tu

neutron mult ipl ica t ion

measuremerits.29

An exa m ple of a n exper im en ta l sy st em t ha t is su bcr it ica l a t a plut on ium

densit y grea ter t ha n t ha t permit ted by t he S ta nda rd is repor t ed by Lloyd, B ierma n, a nd

Clayton.137

Th e su bcr it ica l d en sit y of plu ton iu m (8.3 w t % 240P u ) in n it r a te s olu tion w a s

391 g/L w hen a 61-cm-dia met er t a nk w a s filled t o a dept h of 99.1 cm. Ra schig r ings

cont a ining 4.0 w t~ o boron occupied 18.870 of t he volume, a nd t here w a s a n effect ively

in fin it e w a t er r eflect or on t he t a nk w a lls a n d ba se.

Nurrni149

r epor t s t he u se of bor os ilica t e-g la s s r in gs w it h en rich ed u ra n iu m s olu tion s t h a t

h a v e f ree f lu or id e-ion con t en t s g r ea t l y e xceed in g t h e lim it s pecif ied in t h e S t a n d a r d . B e ca u s e

of t his devia t ion , t here is da ily visua l inspect ion a nd semia nnua l empt ying of t anks for

d et a iled exa m in a t ion . Th is is a m or e s tr in gen t m a in t en a nce sch ed ule t ha n t h a t r eq uir ed by

t he S t a n da r d.

Anot her a pproa ch t o environm en ts t ha t a re host ile t o borosilica t e gla ss is suggest ed by

exper im en ts a t B a t t elle P a cific Nor th w est L a bor a tor ies137 w i th plut on ium solut ion s in

a t a nk pa cked w it h st a in less st eel Ra schig r ings cont a in ing 1.0 w tYo boron.

A 45.7-

cm -dia met er t a nk, w a t er reflect ed on sides a nd bot tom , w a s pa cked w it h 1.27-cm-o. d.,

103

Page 8: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 8/31

1.Z7-cm -lon g s t eel r in gs occu py in g 27.070 of t h e volu me. At a d ept h of 99.1 cm , plu ton iu m

(8.3 w t % XOP U )solut ion s a t den sit ies of 275 g P u /L w it h 480 g No3/L a nd of 412 g P u/L

w it h 602 g N 03/L w er e s ubcr it ica l.

A fur t her exa mple in cludes da ta on plut on ium-ura nium n it ra te mixt ures in a 61-cm-

d ia m et er t a n k, w a t er r eflect ed on t he sid es a n d bot t om a n d pa cked w it h gla ss R a sch ig r in gs

con t a in in g 4 w t ~ o bor on .137–138 Th e r in gs , w h ich w e re 3. 81-cm -o.d . a n d 4.32 cm in len gt h ,

d is pl a ced 18. 8?l oof t h e s olu t ion v olu m e.

At a dept h of 90.4 cm, solut ion a t a den sit y of

180 g U /L (0.66 w t%

ZS SUin u) a nd 78.4 g P u/L (5.7 w t% 240P u in P u) con t a in in g 377 g

N 03/L w a s s ub cr it i ca l .

4. Solution Holdup Design

A cell in a U (93.2) r epr ocessin g fa cilit y h as a con cr et e floor a rea of 9 m2 a nd a n aly ses ha ve

s how n t h a t t h e n eu tr on in t er a ct ion bet w een t h e pr oces s ves sels a n d bet w een t h e ves sels a n d

t he floor is n egligible. Th e floor w it h sid ew a lls w ill ser ve a s a ca t ch ba sin for solu tion s t h a t

ma y lea k from t he vessels. An over flow lin e is t o be in st alled in t he floor , dra in in g t o a

poison ed ca t ch t a n k, t her eby lim it in g t he t h ickn ess of solut ion . Th e m a xim um expect ed

235u d en sit y in U OZ(N 03)2 is 25o

g/L A permitted

solut ion h eigh t over t he floor is t o

be det er min ed . The con figur a tion of t he solut ion is con ser va t ively a ppr oxima t ed by a n

efl?ect ivelyin fin it e un ifor m sla b w it h a t hick con cr et e r eflect or on on e sid e a n d in cid en ta l

r eflect ion on t h e ot h er s id e.

F r om Ta b le 1, t h e s pecified su bcr it ica l t h ickn es s of a n in fin it e sla b of U 02(N 03)2 r eflect ed

by 30-cm-t hick w a ter is 4.9 cm. A t hick w a ter reflect or on bot h surfa ces is expect ed t o

be mor e effect ive t ha n con cr et e r eflect ion on on e a nd in ciden ta l r eflect ion on t he ot her .

I t follow s t ha t t he specified h eigh t of t he over flow pipe sh ould n ot exceed 4.9 cm. Th e

ch osen h eigh t sh ould be m ea s ur ed fr om t he low est por tion of t he floor a s est a blish ed by a n

elevat ion survey.

104

Page 9: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 9/31

APPENDIX

Th is Appen dix pr ovides a descript ion of t he ca lcula t iona l

st udy lea ding t o t he curves

pr esen ted in F igur es 2 t hrough 13 of t his docum ent . The m ot iva t ion for t his st udy w a s t o

pr ov id e q u a n tit a t iv e ex a m ples illu st r a t in g t h e r ela t i on sh ip b et w e en s ys t em r ea ct iv it y (k ,f i)

a n d s ys t em g eom et r y. I nfer en t ia l in t h es e cu rv es a r e t h e pa r t ia l d er iv a t iv es of g eom et r ica l

size ( ) versus k.ff. F igures from repor t LA-108t50 -M 5 ’, C r i t i ca l D im ensions of Systems

contai ni ng ’235u, 23~Pu,U -r i d233””u,g86 Revision;”w ere a da pt ed t o provide a ba sis for t he

illust ra t ion . Th is a da pt a tion a ppea rs direct ly in F igures 2 t hrough 13. The a da pt a tion

b rin gs f or w a r d r es ult s f rom L A-1086o-M S f or ex per im en t a lly d et er m in ed cr it ica l s y st em s.

Th ese d a ta pr ovid e a r efer en ce t o in ter pr et t he cu rves. Th e t hr ee w ell-est a blish ed fissile

Duclides ZSSU ,~ s s~ , a n d Zs gpu w e re s elect ed f or t h e co-n st r uct ion of t h e ex a m -pies . Th e 235U

w a s t a ken t o be present a s U (93.2). S yst em composit ions w ere t a ken t o be met a l-w a ter

m ixt ur es a n d w er e select ed t o sy st em a tica lly spa n t he en tir e r an ge fr om lim it in g cr it ica l

fissile densit y (7 t o ’13 gra ms per lit er in w a ter) t o pure met a l densit y (a pproxima tely

20 ~ilograms per lit er ). F or t h es e s ys t em s , t h e n eu t ron s pect r um v a r ies s ys t em a t ica l ly f rom

a t h er m a liz ed d is t rib ut ion f or d ilu t e fis sile d en sit ies t o a s lig ht ly s of t en ed f is sion s pect r um

for t he pure met a l syst ems. Three syst em geomet ries w ere select ed t o complet e t he set

of exa m ples: sph er ica l, in finit e circula r cylin der , a nd infin it e pla na r sla b. In ea ch ca se,

t h e f is sile-b ea r in g r eg ion is s ur rou nd ed b y a t ig ht -f it t in g pu r e. w a t e r r ef lect or of ef fect iv ely

in fin it e t h ickn es s. Th ese a r e cla s sic g eom et r ies w h ich occu r r epea t ed ly in t h e lit er a t ur e of

cr it ica lit y s a fet y . Th e fir st d ocu men t ed occu rr en ce of t h es e g eom et r ies a n d t h e a s socia t ed

ch a ra ct er ist ic cu rves, kn ow n t o t he ed it or s, is foun d in t he r epor t  2~-400,Chain React ion

of Pure F issionable”M at ;r i a l s in Solu t ion .150

Th e m et a l -w a t e r s ys t em s u sed in t h e ex a m ples h a ve n o d ir ect exper im en t a l a n a l og . U r a n iu m

met a l a nd plut onium met a l a re not , in a chemica l sen se, soluble in w a ter . H ow ever , t he

m et a l -w a t e r m ix tu r es a r e n eu t ron ica l ly a p pr oa ch ed in a n a s y mpt ot ic s en se f or d ilu t e f is sile

sy st em s. 111su ch sy st em s t he a t om ic r a tio of t he h yd rogen t o t he fissile a t om ic species is

ver y h igh (a bove 1000). I n t hese s ys tem s, t he ot her n uclea r species n eed ed for a ch em ica l

s olu t ion , s uch a s n it r og en a n d flu or in e, a r e a ls o ver y d ilu te a n d h a ve a m in im um per tu rbin g

effect . H ence, t hese dilut e syst ems a pproa ch t he idea lized met a l-w a ter mixt ure. Over

t he r em a in in g r a nge, h ow ever , t he ch em ica l con st it uen ts , such a s n it rog en a n d flu or in e,

r epr esen t a ser ious pert ur ba t ion fr om t he idea lized m et a l-w a t er m ixt ur e.

H ence, a ny

com pa r is on b et w e en ca l cu la t ion a l a n d ex per im en t a l r es ult s r eq u ir es a ca r ef ul a n d a ccu ra t e

d et er min a t ion of t h e im pa ct of t he pr es en ce of t h es e ot h er n uclea r s pecies .

C a ut ion should be exercised in t he a pplica tion of t he curves presen t ed in Figures 2

t hrough 13. F irst , t he rea der should recognize t ha t t he curves represen t ca lcula t iona l

results.

S econd, t he rea der should not e t ha t t hese ca lcula tions do not conform t o

current va lida tion a nd verifica t ion crit er ia . No a t t empt ha s been ma de t o document a

r igor ous com plia nce w it h such crit er ia . Tha t is , soft w a re a nd pla t for m ver ifica t ion a nd

t he com pa rison of ca lcula t ion al r esult s w it h exper im en ta l r esult s ha ve n ot been ca rr ied

out a s descr ibed in C ha pt er I , S ect ion B -4 of t his docum en t, The Role of Calculational -

105

Page 10: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 10/31

Validation. Instead,wecomplywiththetraditionalcriteriafor reportingscientificresults

by providingsufficientdetail to allowfor independentreproducibilityandconfirmationof

results.

Thevalueofk,fiwascalculatedoraspecificnuclidetype,density,andsystemdimensionr .

Th e d im en sion x cor respon ds t o a sph er ica l d ia m et er , a n in fin it e cy lin der d ia m et er , or a n

in fin it e sla b t hickn ess. F or ea ch n uclide t ype, d en sit y, a n d sy st em geom et ry , four t o five

va lues of r w ere select ed w hich result ed in ca lcula ted k.ff’s in t he ra nge 0.5 t o -1.2. In

a d dit ion t he va lue of km for a n in fin it e m et a l-w a t er m ixt ur e w a s ca lcu la t ed . To d et er min e

t he va lue of x for a pa r ticula r va lue of k,ff, t he a ppr opr ia t e set of ca lcula t ion a l r esu lt s w er e

fit t ed t o a con t in uou s cu rve h a vin g t h e follow in g a lg ebr a ic for m.

In t h e a bove expression a , ~ , a n d y a re fit t in g pa ra met ers. Th is form provides a

m on ot on ica lly in crea sin g k,ff ver sus r w hich a sy mpt ot ica lly a ppr oa ch es km for la rge x

Th e curves sh ow n in F igures 2 t h rough 13 w ere gen era ted by fit t in g a splin e t h rough

t he ca lcu la t ed va lu es of x for ea ch select ed fissile d en sit y. Th e ca lcula t ion a l r esu lt s w er e

produced using t h e MC NP Mon t e C a rlo code (see Ref. 13). The cross-sect ion s w ere

ba s ed on E N DF /B -V cr os s-sect ion eva lu a t ion s pr ovid ed by t h e XTM g rou p a t L os Ala m os.

S pecifica l ly , t h e M C NP n ucli.d e id en t ifier s (ZAI D S ) s how n in Ta b le 16 w er e u sed .

Ta ble 16

Nuclides, C ross-S ect ion E va lua t ion s, a nd At omic

Weigh t s U sed for C a lcula tion a l Result s

106

Nuclide

IH

160

233

u

235u

238u

239pu

Avogac

ZAID

1001.5OC

8016.50c

92233.50c

92235.50c

92238.50c

9~ 239.55c

)’s n umber

(a t oms /b-cm)

Atomic Weight

1.00782475

15.994914,80

233.03962900

235.04392497

238.05078549

23 3.05215781

0.602204345

Page 11: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 11/31

The lw t r .Olt version of t he S (a ,fl) sca t t er ing model w a s used for t he w a t er in t he

m et a l-w a t er m ixt ur e a n d for t he w a t er in t he r eflect or .

Ta ble 17 g ives va lu es of t he m a ss d en sit ies a s su med for w a t er a n d for t he m et a l s ta t e of ea ch

n uclid e. Ta ble 18 g ives t h e n um ber d en sit ies of h yd rog en a n d oxy gen u sed for t he 15.2-cm

w a t er r eflect or . Ta b les 19 t hr ou gh 21 g ive t h e n um ber d en sit ies ca lcu la t ed for 22 s elect ed

f is sile m a s s d en s it i es f or t h e t h r ee f is sile n u clid es ZSSU ,ZSSU ,a nd 239P U .Fi na ll y, Ta bl es 22

t h rou gh 24 lis t t h e fin a l ca lcu la t ed g eom et r ica l d im en sion s (x va lu es) u sed t o pr od uce t h e

cu rves s how n in F ig ur es 2 t h rou gh 13.

Table

17

Mass Densities Assumed for

Water and Fissile Metal

M a ss D en sit y

Materia l

(g/cm 3)

Water

0.997801

233UMetal

18.05

235UMetal

(93.2 Wt%23’U )

18.76

II

239PuMetal

I

19.74

Table

18

Calculated Number Densities for

the 15.2 cm Water Reflector

NumberDensity

Nuclide

 atoms/b-cm

IH

0.066725294

160

0.033362647

.

1 7

Page 12: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 12/31

108

Table

19

Fissile Mass Densities and Calculated Number

Densities for 233UMetal-Water Mixtures

233u

Mas s

Densi ty

(kg/L)

0.005

0.006

0.007

0.008

0.009

0.010

0.011

0.012

0.013

0.014

0.020

0.030

0.050

0.100

0.200

0.500

1.000

2.000

5.000

10.000

14.000

18.050

N um ber D en sit v (a t om s

233u

.000012921

.000015505

.000018089

.000020673

.000023257

.000025841

.000028425

.000031010

.000033594

.000036178

.000051683

.000077524

.000129206

.000258413

.000516826

.001292064

.002584128

.005168257

.012920642

.025841285

.036177799

.046643517

“\

1~

.066706810

.066703114

.066699417

.066695720

.066692024

.066688327

.066684630

.066680934

.066677237

.066673540

.066651360

.066614393

.066540459

.066355625

.065985955

.064876948

.063028602

.059331909

.04.8241833

.029758372

.014971603

.000000004

160

.033353405

.033351557

.033349709

.033347860

.033346012

.033344163

.033342315

.033340467

.033338618

.033336770

.033325680

.033307197

.033270230

.033177812

.032992978

.032438474

.031514301

.029665955

.024120916

.014879186

.007485802

.000000002

Page 13: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 13/31

Table 20

I?issileMass Densities and Calculated Number

Densities for

U(93.2)

Metal-Water Mixtures

235u

Mas s

Number Densi ty (at oms/barn -cm)

Densi ty

(l{g /L)

235

u

238

u

IH

160

0.005

.000012810

.000000923

.066706212

.033353106

0.006

.000015373

.000001107

.066702396

.033351198

0.007

.000017935

.000001292

.066698580

.033349290

0.008

.000020497

.000001477

.066694764

.033347382

0.009

.000023059

.000001661

.066690947

.033345474

0.010

.000025621

.000001846

.066687131

.033343565

0.011

.000028183

.000002030

.066683315

.033341657

0.012

.000030745

.000002215

.066679498. .03.3339749

0.013

.000033307

.000002399

.066675682

.033337841

0.014 .000035869 .000002584 .066671866 .033335933

0.020

.000051242’

.000003691

.066648968

.033324484

0.030

.000076863

.000005537 .066610805

.033305403

0.050

.000128105

.000009229 .066534479

.033267240

0.100

.000256209

.000018457 .066343665

.033171832

0.200

.000512419

.000036915 .065962035

.032981018

0.500

.001281046

.000092286

.064817147

.032408574

1.000

.002562093

.000184573

.062909001

.031454500

2.000

.005124186

.000369145 .059092707

.029546354

5.000

.012810464

.000922863 .047643827

.023821914

10.000. .025620928 .001845726 .028562361 .014281180

14.000

.035869299’

.002584017

.013297187

.006648594

17.484

.044796448 .003227126

.000000004

.000000002

 

109

Page 14: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 14/31

110

Table 21

Fissile Mass Densities and Calculated Number

Densities for 239PUMetal-Water Mixtures

239pu

h fas s

Densi ty

(kg/L)

0.00.5

0.006

0.007

0.008

0.009

0.010

0.011

0.012

0.013

0.014

0.020

0.030

0.050

0.100

().2()()

0.500

1.000

2.000

5.000

10.000

14.000

19.740

N um ber D en sit v (a t o ms

239pu

.000012596

.000015115

.000017634

.000020153

.000022672

.0000251S1

.000027710

.000030230

.000032749

.000035268

.000050383

.000075574

.000125957

.000251913

.000503827

.001259567

.002519134

.005038267

.012595668

.025191337

.035267872

.049727697

U

IH

.066708393

.066705013

.066701632

.066698252

.066694872

.066691492

.066688112

.066684731

.066681351

.066677971

.066657690

.066623888

.066556283

.066387273

.066049252

.065035190

.063345086

.059964879

.049824257

.032923220

.019402390

.000000003

160

.033354196

.033352506

.033350816

.033349126

.033347436

.033345746

.033344056

.033342366

.033340676

.033338985

.033328845

.033311944

.033278142

.033193637

.033024626

.032517.595

.031672543

.029982440

.024912128

.016461610

.009701195

.000000002

Page 15: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 15/31

233

u

Mas s

Densi ty

(kg/L)

0.005

0.006

0.007

0.008

0.009

0.010

0.011

0.012

0.013

0.014

0.020

Iiefl

0.8

0.9

1.0

0.8

0.9

1.0

0.8

0.9

1.0

0,8

0.9

1.0

0.8

0.9

1.0

0.8

0.9

1.0

0.8

0.9

1.0

0.8

0.9

1.0

0.8

0.9

1.0

0.8

0.9

1.0

0.8

0.9

1.0

Table 22

Calculated Dimensions for

233u Metal water Mixtures

Sphere

Diameter

(cm)

317.12

105.78

76.12

179.13

62.29

104.73

54.16

80.25

177.95

48.55

67.26

112.46

44.71

59.44

88.23

32.93

39.88

49.50

Infinite

Cylinder

Diameter

(cm)

238.93

78.38

55.63

135.31—

45.22

76.90

38.85

58.24

135.68

34.78

48.71

83.69

31.68

42.72

64.94

22.72

27.93

35.19

Infinite

Slab

Thickness

(cm)

149.53

47.43

32.51”

84.71

25.58

46.12

21.67

34.28

84.06

18.92

28.02

50.54

16.96

24.04

38.59

11.20

14.47

19.10

233u

Mas s

Densi ty

(kg/L)

0.030

0.050

0.100

0.200

0.500

1.000

2.000

5.000

10.000

14.000

18.050

k,ff

0.8

0.9

1.0

0.8

0.9

1.0

0.8

0.9

1.0

0.8

0.9

1.0

0.8

0.9

1.0

0.8

0.9

1.0

0.8

0.9

1.0

0.8

0.9

1.0

0.8

0.9

1.0

0.8

0.9

1.0

0.8

0.9

1.0

Sphere

Diameter

(cm)

26.10

30.40

35.65

21.26

24.30

27.85

17.76

20.08

22.71

15.74

17.80

20.09

14.20

16.11

18.19

13.27

15.11

17.12

12.34

14.07

15.99

10.75

12.32

14.04

9.04

10.40

11.88

7.94

9.19

10.52

7.00

8.11

9.31

Infinite

Cylinder

Diameter

(cm)

17.50

20.72

24.74

13.82

16.09

18.72

11.07

12.79

14.75

9.50

11.00

12.69

8.25

9.63

11.18

7.53

8.87

10.35

6.85

8.11

9.50

5.77

6.89

8.12

4.71

5.66

6.71

4.08

4.91

5.83

3.58

4.31

5.11

Infinite

Slab

Thickness

(cm)

7.84

9.87

12.36

5.46

6.84

8.45

3.60

4.64

5.83

2.50

3.38

4.38

1.60

2.37

3.27

1.14

1.84

2.68

0.79

1.39

2.15

0.43

0.87

1.47

0.25

0.54

0.97

0.18

0.41

0.75

0.14

0.33

0.60

111

Page 16: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 16/31

  5u

Mas s

)ensity

‘kg /L )-

0.005

0.006

0.007

0.008

0.009

0.010

0.011

0.012

0.013

0.014

0.020

112

Table 23

Calculated Dimensions for U 93.2 Metal-Water Mixtures

kefl

  8

  9

1.0

  8

  9

1.0

  8

  9

1

8

  9

1

8

  9

1.0

  8

  9

1

8

  9

1

8

  9

1.0

  8

  9

1

8

  9

1

8

  9

1

Sphere

Diameter

(cm)

—.

——

130.68

87.11

1273.95

69.41

137.49

59.51

95.99

53.16

77.93

173.45

48.64

67.72

115.37

35.51

43.94

56.68

Infinite

Cylinder

Diameter

(cIn)

98.23

63.90

833.96

50.49

103.27

42.83

70.72

38.10

57.02

129.51

34.63

49.04

85.54

24.62

31.03

40.69

Infinite

S l a b

I’hickness

(cm)

—.

60.42

37.71

562.43

29.03

62.92

24.20

42.25

21.03

33.35

80.40

18.77

28.09

52.14

12.37

16.47

22.63

  5u

Mass

Density

(kg/L )

0.030

0.050

0.100

0.200

0.500

1.000

2.000

5.000

10.000

14.000

17.484

k,ff

  8

  9

1.0

  8

  9

1

8

  9

1

8

  9

1

8

  9

1

8

  9

1.0

0.8

  9

1

8

  9

1.0

  8

  9

1

8

  9

1

8

  9

1

Sphere

Diameter

(cm)

28.17

33.37

40.18

23.20

26.85

31.22

19.60

22.51

25.82

17.78

20.36

23.32

16.63

19.15

22.06

16.20

18.81

21.76

15.72

18.41

21.53

14.30

16.78

19.64

12.31

14.37

16.68

11.08

12.92

14.97

10.08

11.76

13.62

Infinite

Cylinder

Diameter

(cm)

19.01

22.94

27.98

15.20

17.96

21.28

12.44

14.56

17.02

10.96

12.88

15.06

9.99

11.83

13.98

9.55

11.47

13.72

9.17

11.14

13.41

8.15

9.98

12.10

6.90

8.39

10.09

6.12.

7.44

8.92

5.52.

6.72

8.05

Infinite

S l a b

Thickness

(cm)

8.77

11.20

14.42

6.28

7,96

9.99

4.37

5.68

7.19

3.30

4.45

5.79

2.47

3.58

4.88

2.06

3.19

4.52

1.71

2.83

4.19

1.24

2.22

3.45

0.85

1.60

2.56

0.67

1.28

2.07

0.56

1.09

1.77

Page 17: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 17/31

  9pu

Ma ss

Densi ty

(kg /L)

0.005

0.006

0.007

0.008

0.009

0.010

0.011

0.012

0.013

0.014

0.020

Table 24

Calculated Dimensions for

ZagpuMetal.Water Mixtures

k,ff

  8

  9

1

8

  9

1

8

  9

1

8

  9

1.0

  8

  9

1

8

  9

1

8

  9”

1

8

  9

1

8

  9

1

8

  9

1

8

  9

1

Sphere

Diameter

(cm)

235.44

84.59

344.79

61.59

100.75

50.95

72.49

135.53

44.84

59.55

89.85

40.65

52.20

72.23

37.65

47.26

62.44

35.38.

43.69

56.03

33.54

40.96

51.55

32.06

38.81

48.15

26.90

31.67

37.68

Infinite

Cylinder

Diameter

(cm)

178.13

61.77

264.35

44.46

74.83

36.39

52.66

101.00

31.70

42.95

66.19

28.53

37.36

52.75

26.24

33.55

45.03

24.51

30.77

40.18

23.12

28.74

36.76

21.99

27.11

34.15

18.05

21.61

26.22

Infinite

Sl a b

Thickness

(cm)

114.24

.

36.54

171.68

25.04

44.68

19.95

30.46

6.1.68

16.89

24.16

39.16

14.89

20.49

30.27

13.38

18.02

25.40

12.27

16.28

22.32

11.39

14.91

20.01

10.66

13.87

18.34

8.10

10.33

13.16

  9pu

Ma ss

Densi ty

(kg /L)

0.030

0.050

0.100

0.200

0.500

1.000

2.000

5.000

10.000

14.000

19.740

k,fi

  8

  9

1

8

  9

1.0

  8

  9

1

8

  9

1

8

  9

1

8

  9

1

8

  9

1

8

  9

1

8

  9

1

8

  9

1

8

  9

1

Sphere

Diameter

(cm)

23.31

27.04

31.52

20.63

23.74

27.37

18.66

21.46

24.68

17.66

20.37

23.48

16.75

19.40

22.44

15.86

18.38

21.26

14.56

16.84

19.42

11.98

13.80

15.82

9.27

10,65

12.14

7.76

8.91

10.13

6.23

7.13

8.08

Infinite

Cylinder

Diameter

(cm)

15.29

18.04

21.42

13.16

15.49

18.19

11.58

13.68

16.09

10.73

12.73

15.07

10.00

11.93

14.18

9.33

11.20

13.35

8.45

10.12

12.03

6.74

8.05

9.53

5.07

6.04

7.09

4.19

4.98

5.84

3.34

3.95

4.60

Infinite

Sl a b

Thickness

(cm)

6.26

7.98

10.08

4.81

6.22

7.90

3.63

4.89

6.34

2.94

4.14

5.55

2.35

3.52

4.88

1.97

3.06

4.33

1.55

2.50

3.62

0.96

1.61

2.42

0.57

0.99

1.49

0.42

0.73

1.12

0.31

0.53

0.81

113

Page 18: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 18/31

References

1

2.

3.

4.

5.

6.

7.

8.

9.

10.

11

12.

13.

14.

A.

D . C a lliha n , W. J . Ozeroff, H . C . ‘P a xt on , C . L . S chuske, “Nuclea r S a fet y

G u id e;’ U S At om ic E n er gy C om m is sion r epor t TI D -7016 (1957).

J . T. Th om a s, ed it or , “Nu clea r S a fet y G u ide, TI D-7016, R evision 2,” U S Nu clea r

Regula t ory corm-m

ssion repor t NU RE G /CR-0095, ORNL/NU R13G /CSD -6 (1978).

“ Nu clea r S a f et y G u id e,”

U S At om ic E n er gy C om mission r epor t TI D -7016, R ev. 1

(1961).

A m er i cu n N a t i on al St an d ar d f or N u cl ear Cr i t i cal i t y Sa fet y i n O per a ti on s w i t h F i ss-

ionable M ater iaZsOutside Reactorsl ANSI / ANS-8 .l - 1983 , Am er ica n N u clea r S oci-

et y , L a G r a ng e P a r k , I L (1983).

Am er i can N at ion al St an dar d for N u cl ear Cr i ti cal i ty Con tr ol of Speci al A ct in id e

E lements, AN SI / AN S-8.15-1981, America n Nuclea r S ociet y, La G ra nge P a rk, I L

(1981).

F . Willia m Wa lker , J osef R. B a rr in gt on, a nd F ra nk F ein er , edit or s,

NucZidesand

Isotopes, Four teenth Ed i t i on , G E N uclea r E n er gy , S a n J os e, C A, 12-13 (1989).

Proceed ings of t he ~ th A nnual S ci en t i f i c & Techn i ca l Con fer ence on Nuclea r E nergy

and Human Sa fet y, N i . zhn iNovgorod , Russi a , June ,28- Ju l y .2 ,1993, NE -93 (1993).

H. C. P a xt on , “G lossa ry of Nuclea r C rit ica lit y Terms,” Los Ala mos Na tiona l

La bora tory report LA-11627-MS (1989).

“G loss a ry of Ter ms in N uclea r S cien ce a n d Tech nology ,” pr epa r ed by ANS -9, t he

Am er ica n N uclea r S ociet y S t a n da r ds S u bcom mit t ee on N uclea r Ter min olog y a n d

U n it s , Am er ica n N uclea r S ociet y , L a G r a n ge P a r k, I L (1986).

E . D . C la y ton , “An om a lies of N uclea r C rit ica lit y,”

P a cif ic N or t h w e s t L a b or a t or ies

repor t P NL-SA-4868 Rev. 5 (1979).

H . C . P a xt on- a nd N. L.” P ruvost ~ -“C rit ica l D imensions of S yst ems C ont ain ing

23SU ,239P u, a nd

233u, 1986 Revision,”

L os Ala mos Na t ion al L abora t ory repor t

LA-1086O-MS (1987).

L . M. P et r ie a nd N. F . La nders, “K E NO V.a , An I mproved” Mont e C a rlo

C r it ica l it y P r og ra m Wit h S u per gr ou pin g,”

N U R E G /C R -0200, Volu me 2, S ect ion

F ll , O RN L /N U R E G /C S D -2/VI /R 2 (1984).

J . F . B r iesm eist er , edit or , “MC NP - A G en er al Mon te C arlo N-P a r ticle Tra nspor t

C od e, Ver s ion 4A, ” L os Ala m os N a t i on a l L a b or a t or y r ep or t L A-12625-M (1993).

“MONK 6 – A Mon te C arlo C ode for C rit ica lit y S a fet y C a lcula t ion sl” ANS WE RS

S er vice, AE A R ea ct or S er vices,’ Win fr it h Techn ology C en ter , D or ch est er , U K

(199.0).

115

Page 19: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 19/31

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

116

S . G la sst on e a nd M. C . E dlun d,

T he E l em en t s of Nucl ea r React or T heor y,

D . Va n

N os tr a n d C o., I n c., P r in cet on , N J (1952).

A. M. Wein berg a nd E . P . Wign er, The Physi ca l Theory of Neu t r on Cha in React or s,

Th e U n iver sit y of C h ica g o P r es s, C h ica g o, I L (1958).

H . S . I sbin ,

I n t roductory NucZearReactor Theory ,

R ein h old P u blis hin g C or p. , N ew

Y or k , N Y (1963).

G . I . B ell a nd S . G la sst on e,

N ucZearReactor Theory ,

Va n N os t ra n d R ein h old , N eAv

York, NY (1970).

J . R. La ma rsh ,

I n t r oduct i on t o Nucl ea r React or T heor y,

Addison-Wesley, Reading,

MA (1972).

A. F . H en ry ,

NzmZear-ReactorAnalysis,

M IT P r e ss , C a m b rid ge, M A (1975).

J . J . D uderst adt a nd L . J . H amilt on , Nuclea r

Reactor AnaZysis,

Wiley , N ew Yor k,

NY (1976).

S . G la sst on e a nd A. S eson ske, Nuclea r

Reactor Engineer i ng,

3rd E dit ion , Va n

N os t ra n d R ein h old , N ew Yor k, N Y (1981).

R. A. K n ief,

Nucl ea r Cr i t i ca l i ty Sa fet y, T heor y and P r act i ce,

American-Nuclear

S ociet y , L a G r a n g e P a r k, I L (1985).

R. A. K n ief Nucl ea r E ngi neer i ng, T heor y and T echnol ogy of Com m er ci a l Nucl ea r

Power,

2n d E d i t ion , Ta y l or & F r a n ci s/H e mi sph er e, Wa s h in g t on , D C (1992).

Amer ican N at iona l S tandard Admin i st ra t i ve Pract i ces for Nuc lear C ’r i t i cal i~ySafet y,

AN SI / AN S-8.19-1984, Am er ic~ n N uclea r S ociet y , L a G r a n g e P a r k, I L (1984).

A m er i can Na t i onal St andar d Nucl ea r C r i ti ca l i ty Sa fet y T r a i ni ng, A NS I / A NS -8.20-

1991,

Am er ica n N uclea r S ociet y , L a G r a n g e P a r k, I L (1991).

A m er i can N a ti on al St an d ar d Cr i t er i a for N u cl ear Cr i t i cal i ty Safet y Con tr ol s i n Op-

era t i ons w i t h Shiel d i ng and Con f i nemen t , ANS I / ANS-8 .10-1983,

American Nuclear

S ociet y , L a G r a n g e P a r k, I L (1983).

A mer i can N at ion al St an dar d Safety Gu id e for th e Per for m an ce of Cr i t i cal E xper -

iments, ANSI -N405-1975/ ANS-1 ,

Am er ica n Nuclea r S ociet y, La G ra nge P a r k, I L

(1975).

Am er i can N at i onal Standar d for Safety i n

Conduct i ng S ubcr i t i ca l Neu t r on -

M uZt ipZ ica t ionM easurements in S i tu , ANSI / ANS-8 .6 -1983,

American Nuclear Soci-

et y , L a G r a ng e P a r k, I L (1983).

W. R. S t ra t t on , revised by I l. R. S mit h ,

“A R eview of C rit ica lit y Accid en t s,”

L a w r e n ce L iv er m or e N a t i on a l L a b or a t o r y r ep or t D O E /N C T-04 (1989).

Page 20: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 20/31

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

American Na t i ona l Standard US Eof B orosi l i ca te-G lass Ras& ig R ings as a Neu t r on

A bsor ber i n Sol u t i on s of F i ssi l e M a t er i a l , ANS I/ANS -8.5-198”6, American Nuclear

S ociet y , L a G r a n ge P a r k, I L (1986).

G . E . H a nsen a nd H . C . P a xt on , ”“R eeva lua t ed C rit ica l S pecifica t ion s of S ome L os

Al a m os F a s t -N eu t r on S y s t em s ,n

L os Ala m os S cien t if ic L a b or a t or y r ep or t L A-4208

(1969).

J . T. Miha lczo, J . J . Lyn n, J . R . ‘Ta ylor , a nd G . E . H a nsen, “Mea sur em en ts Wit h a n

U n r e fl ect e d U r a n i um (93. 2%) M et a l S p h er e, ” P roceed ings of a Top i ca l M eet i ng on

Ph ysi cs an d M et h od s i n C r i ti cal i t y Sa fet y, N a sh vi l l e, T N , Sep tem ber 19-23, 1993,

Am er ica n N u clea r S ocie t y, L a G r a n g e P a r k , I L , 26-33 ‘(1993).

G .” R. K eepin ,

“N uclea r F iss ion a n d N uclea r S a f eg ua r ds : C om mon Tech nolog ies

a n d C h a llen ges ,”

Pr oceed i ngs of t he Con fer en ce 50 Y ear s w i th N u cl ear F i ssi on ,

G ai t h er sbu r g, M D , A pr i l 26-28, 198~ , N a t ion a l Aca d em y of S cien ces a n d N a t ion a l

I n st it u t e of S t a n d a r ds a n d Tech n olog y, Wa s h in gt on , D C (1989).

R. L . P r ice a nd N . L . P r uvost , “I nven tory D ifferen ce I nform at ion a nd C rit ica lit y

Sa fety , ” Proceed ings of an In ter na ti ona l Top i ca l M eet i ng on Sa fet y M a rgi n s i n C r i t i -

,,

ca l i t y S afet y, San I+anei sco, ~A, November 2 ’6-30, l g89,

Ameri ca n Nucl ea r So ci ety

report IS B N:894Z8-142-2, 165-167 (1989).

R. G . Ta ylor , “Mon it or ing for U ra nium Accum ula t ions in D iffusion P la nt E quip-

m en t ,” O a li R id ge G a s eou s D if fu sion P l a n t r epor t K -L -6316 (1973).

J.

T. Milia lczo, E . D . B la kema n,

G.

E.

Ra ga nl E . B . J ohnson, a nd Y.

H a ch iy a , ’’D y na m ic S u bcr it ica l it y M ea s u rem en t s U s in g t h e 252C f-S ou rce-D r iv en

Noi se Ana l ys is Metho d, ”

Nu cZearScience and Engineer i ng, 104, 314-338 (1990).

E . R. Ma rt in , D . F . J ones, a nd L; G . S peir , “P a ssive S egment ed G amma S ca n

Oper a t ion M a nu a l, “

Los Al a mos Sc ient if ic La bora t ory repor t LA-5652-M (1974).

R. B . Wa lt on , W. I . Whit t ed, a nd R. A. F orst er , “G amma -Ra y Assa y of Low -

E n r ich ed U r a n i um Wa s t e ,” N ucZear T echn ol ogy, 24, 81-92 (1974).

C . J . U mba rger a nd L. R. C ow der , “P or t a ble Ra dioa ct ivit y Monit or for Liq uid

E fflu en t s, S ur fa ce C on t a min a t ion s, a n d B u lk S olid Wa s t es ,” N ucZear I nstr uments

and M ethods, 121 , 491–498  1974 .

J. T. Mih a lczo, “ Ra n dom ly P u ls ed N eu t ron Mea s ur em en t s for S a feg ua r ds I n ter ro-

g a t ion ,” Oa k R id ge Y-12 P l a nt r epor t Y-D R -79 (1972).

J . E . F oley a nd L. R. C ow der ,

“Assa y of t he U ra nium C ont ent of Rover S cra p

w it h t h e R a nd om S ou rce I nt er rog a t ion S y st em ,”

Los Ala mos S cient ific La bora tory .,

report LA-5692-MS (1974).

117

Page 21: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 21/31

43.

44.

45.

46.

47.

4.8.

49.

50.

51.

52.

53.

118

R. Berg, R. S w en n en , G . B irkh off, L . B on da r , J . Ley , a n d B . B usca , “On t h e

D et er min a tion of t he P u-MO in S olid Wa st e C on ta in er s by S pon ta n eous F ission

Neu tr on Mea s ur em en ts. Applica t ion t o R epr ocessin g P la n t Wa s te,” E U R 5158e,

J oin t N uclea r R es ea r ch C en t r e, I S P R A E s t a blis hm en t , I t a ly (1974).

T. D . Reilly , E . R. Ma rt in , J . L . P a rker , L . G . S peir a n d R. D . Wa lt on ,

“A C on tin uous I n-Lin e Nlon it or for U F 6 E n rich men t ,”

N ucZear Z’echn oZogy,

23,

318-327 (1974).

J . L . F or st n er , “N uclea r S a fet y C on tr ol in t he C hem ica l P r ocessin g F a cilit ies of t he

S a va n na h R iver P l a n t ,”

Proceed ings of a Symposium on Cr i t i ca l i t y Con t r ol ojF i ssi l e

M u ter i ak , S tockhoZm,N ovember 1-5, 1965 ,

I n ter na t ion a l At om ic E n er gy Ag en cy ,

Vienna , 62’i-639 (1965).

A m er i can N a ti on al St an dar d Cr i t i cal i ty A cci d en t A l ar m Syst em , A N SI / A N S-8.3-

1986,

Am er ica n N uclea r S ociet y , L a G r a n g e P a r k, I L (1986).

J . M. J ura .n , F . M. G ryn a , J r ., a nd R. S . B in gh a m, J r ., edit or s,

Qual i t y Cont rol

Handbook, Th ir d E d it ion , M cG r a w -H ill, N ew Yor k, N Y (1974).

Amer i can Na t i ona l S tanda rd Qua l i t y Assu rance Program.Requ i r emen t s f or Nuclea r

Facil i t ies, AS M E N QA-1-1989 E d i t ion ., Am er ica n S oci et y of M ech a n i ca l E n g in eer s ,

N ew Yor k, N Y (19S 9).

A m .er k an Na t i onal St andar d Q ua l i ty A ssu r ance Requ i r em en t s f or Nucl ea r F aci l i t y

Applicat ions,

AS ME N QA-2-1989 E d it ion , Am er ica n S ociet y of Mech a n ica l E n gi-

n eer s, N ew Yor k, N Y (1989).

J . S . Aren dt , D . K . L oren zo, a nd A. F . Lusby, “E va lua tin g P rocess S a fet y in t h e

C hemica l I ndust ry, A Ma na ger’s G uide t o Qua nt it a t ive Risk Assessmen t,” J B F

Associa tes , Inc. (1989).

J . R . Wilson , “Applica t ion s of P R A t o C rit ica lit y S a fet y a t I CP P , ”

Proceedi ngs of an

In terna t iona l Top ica lM eet ing on Safety M argins in .Cr i t i ca l i t y Safet y, San Francisco,

CA , N ovem ber 26-30, 1989,

Am er ica n N u cl ea r S ociet y r epor t I S B N : 89448-142-2,

186-191 (1.989).

R . R . J a ckson , “S cien ce Applica t ion s I nt er na t ion a l C or por a t ion ’s E xper ien ce in

Apply in g P r ob a bilis t ic S a f et y As ses sm en t Tech n iq u es t o N uclea r C r it ica l it y Acci-

den t An alys is ,”

Pr oceed i ngs of an I n t er nat i onal T op i ca l M eet i ng on Sa fet y h a r gi n s

i n C r i ti ca l i ty S af et y, San F r anci sco, CA, Nov em ber 26-30, 1989,

American-Nuclear

Society report IS B N:89448-142-2, 179-182 (19S9).

Nuclear

Regulatory Commission

R egu la t or y G u ide 3.33, “Assu mpt ion s U s ed for

E v a lu a t i ng t h e P o t en t i a l R a d iol og ica l . C on s eq u en ces of Acci den t a l N u cl ea r -C r it i ca l -

it y in a F uel R epr ocessin g P l a nt ,”

US Nuclear Regula t ory Com.rn is s ion (1977).

Page 22: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 22/31

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

W. Th oma s a n d B . G ma l,

“I n -D ept h An a lysis of Acciden t a l C rit ica lit y in a

R epr oces sin g P l a n t ,”

P r oceed i ngs of a .n I n t er nat i onal T op i ca l M eet i ng on Sa fet y

M a r gi n s i n C r i ti ca l i ty S af et y, San F r anci sco, CA, Novem ber 26-30, 1989, American

Nuclear Society report ISB N:89448-142-2Z,207-213 (198~ ).

T. P . McLa ugh lin ,

“ P r oces s C r it ica l it y Accid en t L ilcelih ood s, C on seq u en ces a n d

E m er g en cy P l a n n i ng ,”

Nuclear

Energy,

31, N o. 2, 143-147 (1992).

Pr oceed i ngs of t he F i fi h I n ter n at i on al Con fer en ce on N u cl ear Cr i t i cal i ty Saf et y,

A lbuquerque, N hf , September 17-21, 199.5(1995).

R. L.

S ca l e, “ C on s eq u en ces of C r it i ca l it y Acci den t s ,”

Nuclea r Cr i t i ca l i t y Saf et y, US

Atomic En ergy Commiss ion ,repor t TID-26286j 16-24 (1974).

A. D . C a llih a n a nd J . T. Th oma s, “Acciden t a l Ra dia t ion E xcursion a t t h e Oa k

Ridge Y-12 P la nt - I ,”

H ealth Physics,

1,

363-372 1959 .

J . D . McLen don , “Acciden t a l Ra dia t ion E xcursion a t t he Oa k Ridge Y-12 P la nt -

II , ”

H ealth Physics,

2, 21-29 (1959).

G. S. H u rst ,

R. H . Rich ie, a nd L . C . E merson ,

“ Accid en t a l R a d ia t i on E x cu r si on

at

t he Oa k Ridge Y-12 P la nt - I I I ,”

H eal th Physics, 2 , 121-133 (1959).

T. L . S h ipma n, “Acut e Ra dia t ion D ea th Result in g from a n Acciden t a l Nuclea r

Cri t ical Excursiori , ”

J our haZof Occupd ti onaZM edi cin e,

Special Supplement, 147-149

(1961).

H . C . P a xt on , R. D ’. B a ker , W. J . Ma ra ma n, a nd Roy Reider , “Nuclea r-C r it ica l

Acciden t a t t he L os Ala mos S cien t ific. La bora t ory on D ecember 30, 1958,” Los

Alamos Scien t i fic L abora t ory repor t L AMS-2293 (1959).

W. C . R oesch et a l ., “ D m im et r y I n ves t ig a t i on of t h e R ecu plex C r it i ca l it y Acci den t , ”

H ea l t h Physi cs, 9 , 757 -768 (1963).

T.

G . H ugh es, “C rit ica lit y I ncid en t a t Win dsca le,”

Nuclea r Engineer i ng I n t erna -

t i on al , 17, N o. 189, 95-97 (1972).

W.

Sweet ,

“K ysh t ym Visit G ives F irst L ooli a t S oviet P lut on ium P roduct ion

Complex,”

Physics Today,

November 1989, 87-89 (1989).

L. A.

B ulda kov, S . N. D emin , V. A. K ost yuch en ko, N. A. K osh urn ikova , L .

Yu. K rest in in a , M. M. S a urov, Z. B . Toka rska ya , V. L. S h vedov, a n d I . A.

Tern ovskij, “Medica l C on seq uen ces of t he Ra dia t ion Acciden t in t he S out hern

Ura ls , ”

Pr oceed i ngs of an I n t er nat i onal S ym posi um on Recover y O per a ti ons i n t he

E ven t oj a N u cl ear A cci d en t or R ad i ol ogi cal E m er gen cy, V i en n a, N ovem ber 6-10,

1989, IAEA-SM -316/ 55-2 , 419-431 (1989).

“I nvest iga t ion of In ciden t in Ion E xch a nge Resin ,” H RC repor t 3719, At la nt ic

R ich field H a n f or d C om pa n y , R ich la n d , WA (1976).

Page 23: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 23/31

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

120

B . L . B r oa clh ea d a nd C . M. H opper ,

“ U p d a t e d Tool f or N ucl ea r C r it i ca l it y Accid en t

Emergency Response,

T ransact i ons of t he Amer i can Nuclea r Societ y, 72, 218 -220

(1995).

J . T. Th oma s, “C rit ica lit y of La rge S yst em s of S ubcr it ica l U (93) C om pon en ts,”

Oa k R id ge N a t ion a l L a bor a t or y r epor t OR NL -C D C -1 (1967).

P . L 4cor ch 6 a n d R . L . S ca le, “A R eview of t he E xper im en t s P er for med t o D et er min e

t he Ra diologica l C on seq uen ces of a C rit ica lit y Accid en t,” Oa k Ridge Y-12 P la n t

repor t Y/CDC-12 (1973).

American

N at i onal Standar d for N ucl ear Cr i t i cal i t y Cont r ol and Safety of

Phdon ium-u ran iu rn Fuel A [ i xt u res Out si de React or s, ANM / AN 8.12-1987~ Amer i c-

a n Nuclea r S ociet y, L a G ra n ge P a r k, I L (1987).

H . K . C la rk, “S ubcr it ica l Limit s for P lut on ium S yst ems,”

Engineer i ng, 79, 65 -84 (1981 ).

H . K . C la r k, “S ubcr it ica l L im it s for U r a nium -235 S y st em s,”

Engineer ing , 81, 351-378 (1982).

H . K . C la r k, “S ubcr it ica l L im it s for U r zm ium -233 S y st em s,”

Engineering, 81,379-395 (1982).

E . D . C la yt on , H . K . C la rk, G ordon Wa lker , a nd R. A. Libby,

Nuclea r Science and

Nuclea r Science and

Nuclea r Science and

“ B a s is for E x ten d in g

Lim it s in ANS I S ta n da rd for Mixed Oxides t o H et er ogen eous S yst em s,”

Nuclear

T’ecf in oi ogy,75, 225-229

(1986).

J . W. Webst er , “C a lcula t ed Neu tr on Mult iplica t ion F a ct or s of U n ifor m Aq ueous

S olu t ion s of Z33U a n d 235U , ” O a k R id ge N a t ion a l L a b or a t or y r epor t O RN L-C D C -2

(196’7).

S . R. B ierma n, G . R. S molen , a nd T. Ma t sumot o, “E xper imen t a l C rit ica lit y D a ta

C om pa r in g O rg a n ic a n d Wa t e r M od er a t i on ,”

T ransact i ons of t he Amer i can Nuclea r

Society, 54, 195-196

(1987).

H . K . C la r k, “E ffect of D ist ribut ion of F issile Ma t er ia l on C rit ica l Ma ss,” Nuclea r

Science

and Engineer i ng, 24, 133-141 (1966 ).

W. H . Roa ch a n d D . R. S mit h, “E st im at es of Ma ximum S ubcrit ica l D im en sion s of

S in gle F issile Met a l U n it s,” Oa k Rid ge Na t ion a l L a bor a t or y r epor t OR NL -C D C-3

(1967).

D . R. S mit h a nd W. ‘U . G eer , “C rilica l° M“a ss of a Wa ter-Reflect ed P lut on ium

Sph ere ,” Nuclear

Appl i ca ti ons and Technology, 7 , No . 5 , 405-408

(1969). ‘-

W. R. S t ra t t on ,

“crit ica lit y D a ta a nd F a ct ors Affect in g C rit ica lit y Qf S in gle -

H om og en eou s U n i t s ,” L os Ala m os S cien t if ic L a b or a t o ry r ep or t L A-3612 (1964).

Page 24: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 24/31

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

C . G . C h ezem a nd R. G . S t ein ke,

“L ow-En rich men t Ura n ium-Meta l Expon en t ia l

Exper imen ts , ” Nuclear Scien ce t ih d En gin eer ing , 31,549 (1967).

M. D a rrouzet , J . P . C h a uda t , E . A. F isch er, G . In gra m, J . E . S a n ders, W.

S ch olt yssek, “S t ud ies of U n it I Q L a tt ices in Met a llic U r a nium Assem blies Zebr a

8H , S nea k 8, E rm in e, a n d H a rm on ic U K ,” P r oceed in gs of

an. In ternat ional Sympo-

si um on Physi cs of F ast React or s, T ok yo, O ct ober 16-19, 1975’,

C om mit t ee for t he

I n t er n a t ion a l S y mpos iu m on P h y sics of F a s t R ea ct or s, A28 (1973).

C . E . New lon , “Th e E ffect of U ra nium D en sit y on t he S a fe 235U E n rich men t

C r it er ion ,” O a k R id ge G a s eou s D iffu sion P l a n t r epor t K -1550 (1962).

E . D . C la yt on , H . K . C la rk, D . W. Ma gn uson , J . H . C h a lmers, G ordon Wa lker ,

N. K et zla ch , Ryoh ei K iyose, C . L. B row n, D . R. S mit h , a nd R. Art iga s, ‘(B a sis

for S ubcr it ica l L im it s in P r oposed C rit ica lit y S a fet y S t a nd a rd for Mixed Oxid es,”

Nuclear Technology, 35, 97-111 (1977).

H . K . C la rk, “C r it ica l a nd S a fe Ma sses a nd D imen sion s of La t t ices of U a nd U OZ

R od s in Wa t e r, ” D P -1014, S a v a nn a h R iv er L a bor a t or y (1966).

H . K . C la rk, “Ma ximum S a fe Limit s for S ligh tly E nr ich ed U ra nium a nd U ra nium

Oxide,”

Pr oceed i ngs of a Sym posi u m on Cr i t i cal i ty Con tr ol of F i ssi l e M a ter i al s,

S tockholm , November 1 -5, 1965 ,

I nt er na t ion a l At om ic E ner gy Agen cy , Vien na ,

35-49 (1965).

R . C .. L loy d, “B u cklin g N fea s ur em en t sof F uel E lem en t s in a R a nd om Ar ra y , Wa t er

Moderated,”

N uclear Physics Research Quar ter l y Repor t , October-December , 1957,

Ha n ford En gin eer ing Developmen t L abora t ory repor t HW-54591, 35-36 (1957).

R. C . Lloyd, “B ucklin g Mea suremen t s for Fuel E lemen t s in a Ra ndom Arra y,”

Nuclea r Physi cs Resea rch Quar t er l y Repor t , January-March , 1958,

H a n for d E n gi-

n eer in g Developmen t L abora t ory repor t HW-55879, 12-13 (1958).

J . T. Th om a s, “C a lcu la t ed C r it ica lit y of Wa t er Mod er a t ed Oxid es of U r a n iu m-233,

Th or iu m-232, a n d C a r bon Mixt ur es,”

Oa k Ridge Y-12 P la nt repor t Y-D R-107

(1973).

R. C . Lloyd a n d E . D . C la yt on ,

‘cC r it ica l it y S a f et y D a t a Applica b le t o P r oces sin g

L iq uid -Met a l F a st B r eed er R ea ct or F uel,”

Nuclea r Science and Engineer i ng, 59,

21-26 (1976).

J . K . F ox, L. W. G iH ey, a n d “D . C a lliha n,

“ Cr it ica l Ma & S t ud ies , P a r t I X, Aq ueou s

U235Solutions,”

O a k R id ge N a t ion a l L a bor a t or y r epor t O RN L-2367 (1958).

J . K . F ox a nd L . W. G illey ,

“C r it ica l P a r a m et er s for P oison ed An nula r C y lin der s

C on t a i nin g Aq u eou s S olu t ion s of U 2 35, ”

Neu t ron Physi cs D iv i si on Annua l P rogress

Repor t f or Per i od End ing Sep tember 1 , 1958,

Oa k R id ge N a t ion a l L a bor a t or y r epor t

ORNL-2609, 31-33 (1958).

121

Page 25: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 25/31

94.

95.

96.

97.

98.

99.

100.

101.

lo~.

103.

104.

105.

122

C . C lcm et d ’O rva l , E . D eilg a t , M . H ou elle, a n d P . L 6cor ch 4, “ E xper im en t a l R es ea r ch

in F r a n ce on C r it ica l it y P r ob lem s’t (in F r en ch ), P r oceed in gs of a S y m pos iu m on C r it -

i ca l i ty Con t r ol of F i ssi l e i l f at er i a l s, St ock hol m , Novem ber 1-5? 1965,

In tern a t ion a l

At om ic E n er g y Ag en cy , Vi en n a , 193-213 (1965).

J . E . Ta nn er a n d H . M. F or eh a nd, “C rit ica l E xper im en ts for La rge S ca le E nr ich ed

U r a n i u m S ol ut i on H a n d l in g ,”

Proceed ings of a Top ica l h leet ingon Cr i t i ca l i t y Safet y

i n t he St or age of F i ssi l e M a ter i al j J a ck son , W’Y , Sept em ber 8-11, 1985,

American

Nuclea r Society report ISB N:89448-119-3, 65-79 (1985).

R. C . Lloyd a nd T. K oya ma , “C r it ica lit y E xper imen t s w it h Mixed P lut on ium-

U ra n ium Nit ra t e S olut ion a t P lut on ium F ra ct ion s of 0.2, 0.5, a nd 1.0. in Ann ula r

Cyl in dr ica l G eometry , ”

T ransact i ons of t he Amer i can Nuclea r Societ y, 56, 318 -319

(1988).

A m er i can N a ti on al St an dar d N u cl ear Cr i t i cal i ty Safet y Cr i ter i a for St eel -Pi pe I n -

t er sect i ons Con tain i ng Aqueous Solu t i ons of F i ssi l e M a ter i a l , ANS I / ANS-8 .9 -1987,

Am er ica n N uclea r S ociet y , L a G r a n g e P a r k, I L [1987).

D . D ickin son a nd C , L . S ch uske, “An E mpir ica l Mod el for S a fe P ipe I nt er sect ion s

Con ta in in g F iss ile Solu t ion , ”

Nuclear

Technology,

10,

179-187 1971 .

E . B . J oh ns on , “ Th e N uclea r C r it ica lit y of I n ter sect in g C y lin der s of Aq ueou s U r a n yl

F lu or id e S olu t ion s,” O a k R id ge Y-12 P l a n t r epor t Y-D R -129 (1974).

N. F . (loss, G . E . Wh it esides, a n d R. J . H in t on , “Mon t e C a rlo An a lysis of

E x per im en t a l ly C r it i ca l P i pe I n t e rs ect i on s ,”

T ransact i ons of t he Amer i can Nuclea r

Societ y, 17, 268 (1973).

L. B . E ngle, G . E . H a nsen , a nd H . C . P a xt on ,

“ R ea c t iv it y C on t r ib ut i on s of Va r i ou s

Ma t er ia ls in Topsy, G odiva , a nd J ezebel,”

Nucl ea r Sci ence and E ngi neer i ng, 8,

543-569 (1960).

J. D. Orn doff, H . C . P a xt on , a nd G . E . H a nsen , “C r it ica l Ma sses of Ora lloy a t

R ed uced C on cen t r a t ion s a n d D en sit ies ,”

L os Ala m os S cien t ific L a bor a t or y r epor t

LA-1251 (1951).

R. C . L loyd, E . D . C la yt on , a nd L . E . H an sen , “C rit ica lit y of P lut on ium Nit ra te

S olu t ion s C on t a in in g S olu ble G a d olin iu m, ”

Nuclea r Science and Engineer i ng, 48,

300-304 (1972).

R. C . Lloyd a nd E . D . C la yt on ,

“E ffect of B or on a n d G a d olin ium on t he C rit ica lit y

of P l ut on iu m-U r a n iu m S y st em s,”

T r ansact i ons of t he A m er i can Nuc ea r S oci et y,

23, 234-237 (1976).

E.

D . C la yt on a n d C . L. B row n ,

“C rit ica lit y a nd Nuclea r S a fet y of S ligh t ly

E n r ich ed U r a n iu m ,”

Chemi cal Engineer i ng Progress Symposium Ser i es,

61, No. 60,

33-43 (1965).

Page 26: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 26/31

106.

107.

108.

109.

110.

111.

112.

113.

114.

11.5.

116.

117.

V. I . Neeley , J . A. B erberet , a nd R. H . Ma st erson , “km of Three Weight P ercent

Z35U E n rich ed I J 03 a n d U 0 2(N 03)2° H y d r og en eou s S y s t em s ,” H W-66882~ H a n f or d

Engi neeri ng Devel opment La bora t ory (1961).

R. G win a nd D . W. Ma gnuson, “The Mea surement of E t a a nd Ot her Nuclea r

P r oper t ies of

ZS S Ua n d ZS S Uin C 1.it ica ]Aqueous solu tion s,” ~ u ciea r S cien ce a n d

Engineering, 12,364-380 (1962).

W. E . C on ver se, R . C . L loy d, E . D . C la y ton , a n d W. A. Yuill, C ’C rit ica lE xper im en ts

U s in g H ig h-E n r ich ed U r a n y l N it r a t e w i th C a d miu m Ab sor ber ,” Tr a n sa ct ion s of the

Amer ican Nuclea r Society, 32,328 -330 (1979).

J . T. Th om a s, “ Ref lect or s, I nfin it e C ylin der s, I nt er sect in g C y lin der s, a n d N uclea r

Criticali ty,” Nuclea r Science and Engineer ing , 67, 279-295 (1 .978 ).

R. C . Lloyd, C . R. Richey, E . D . C la yt on , a nd D . R. S keen, “C r it ica lit y S tudies

w i t h P l ut on iu m S olu t ion s,”

Nuclea r Science and Engineer ing , 25, 165 -173 (1966).

G. R. H a ndley, R. C , Robinson, a nd J . C . C line,

“ E f fect s of C on cr et e C om pos it i on

in N uclea r C r it ica l it y S a f et y C a lcu la t ion s,’t

Transact i ons of t he A mer i can Nuclea r

Societyj 61-, 182–184 (1990).

H. F . H enry, J . R. K night , a nd C . E . New lon,

“ G en er a l Applica t ion of a Th eor y of

N eu t r on I n t er a ct ion ,” O a k R id ge G a s e ou s D iff us ion P l a n t r epor t K -1309 (1956).

H . C . P a xt on , “H ist ory of D ensit y-Ana log S tora ge C rit er ia ,” Proceedings

of

a

Topica l M eet ing on Cr i t i cal i ty Safet y i n t he St or age of F i ssi l e M a t er i al , J a ck son ,

~~~y,Septemf ier 8 .11, 1985,

Am er ica n N u cl ea r S oci et y r ep or t I S B N : 89448-119-3,

346-352 (1985).

J . T. Th om as, “Rem a rks on S urfa ce D en sit y a nd D ensit y Ana log Repr esen ta t ion

of Ar ra y C r it ica lit y ,”

T r a nsa ct i on s of t he A m er i ca n N u cl ea r Soci et y, 22, 299-300

(1975).

J . T. Thoma s, “S ur fa ce D ensit y a nd D ensit y Ana logue Models for C rit ica lit y in

Arra ys of Fi ss il e.Ma ter ia l s ,”

Nuclea r Science and Engineer ing , 62, 424 -437 (1977).

M. C.

“E va ns a nd J . R. B ow &,

“Applica t ion s of t he Lim it in g S urfa ce D en sit y

Met hod t o Tr an sport a nd S tora ge of S pecia l Nuclea r Ma t eria ls,” Proceedi ngs of

a T opi cal M eet i ng on Cr i t i cal i ty Saf et y i n t he St or age of F i ssi l e M a ter i al , J a ck son ,

W Y, Sep tem ber 8-11, 1985, Am er ica n N u cl ea r S oci et y r ep or t I S B N : 89448-119-3,

307-321 (1985).

D . R. S mit h , “C rit er ia a nd E va lua tion for t he S tora ge of Fissile Ma ter ia ls in a

L a rge a n d Va r ied R ea ct or R esea r ch D evelopm en t P r og ra m med ,” Proceed ings of a

Sym p osi u m on Cr i t i cal i t y Con t r ol of F i ssi l e M a ter i a l s, St ock h ol m , N ovem ber 1-5,

1965, I n terna t i ona l Atomi c Energy Agency , Vi enna , 667’-677 (1965).

123

Page 27: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 27/31

118.

119.

120.

121.

1~~.

123.

124.

125.

126.

127.

128.

129.

130.

124

H. C.

P a x t on , “ D en s it y -An a l og Tech n iq u es ,”

Proceed ings of t he Lz%r rnore A r ray

Symposium, L iverm ore, CA, September 2?3-2 ’5 ,1968, L a w r en ce R a dia t ion L a bor a -

tory repor t L RL -CONF -680909, 6-11 (1968).

A m er i can N a ti on al St an d ar d Gu i de f or N u cl ear Cr i t i cal i ty Safet y i n t he St or age of

F i sd e M a t er i al s,

ANSI-N16.5-1975/ANS-8.7, America n Nuclear Society, La G ra nge

P a r k, I L (1975).

H . K . C la r k, “A S im ple P r a ct ica l Met h od for C a lcula t in g I nt er a ct ion ,” Proceedings

of a S ym posi um on . C r i ti ca l i ty Con t r ol of F i ssi l e M a t er i a l s? St ock hol m , Nov em ber

1-5 , 1965,

I n t er n a t i on a l At om ic E n er g y Ag en cy , Vien n a , 87-102 (1965).

H . K . C la r k, “I nt er a ct ion of F ission a ble U n it s,”

Nu clear Science and Engineer ing ,

15, 20-28 (1963).

H . K . C la r k, “Applica t ion of a S im ple, P r a ct ica l Met h od for C om put in g I nt er a ct ion

t o Ar ra y s F oun d E xper im en ta lly t o be C rit ica l,”

Nuc lear Science and Engineer ing ,

20, 307-313 (1964).

A. F . Th oma s a nd R. A. S cr iven , “Neut ron I n t era ct ion in F issile Assemblies,”

Progress in Nuc lear Energy, Ser ies .l~z,1%1.3- Technology , Engineer ing and Safety,

P erga .mon P ress , L on don , 253-291 (1960).

J . T. Th om a s, “ Cr it ica l Th ree-D im en sion a l Ar ra y s of U (93.2)-M et a l C y lin der s,”

Nuc lear Science and Engineer ing ,

52, 350-359 (1973).

O. C . K ola r , H . F . F in n, a n d N . L . P r uvost , C ’L iver mor eP lut on ium Ar ra y P r ogr a m:

E x per im en t s a n d C a l cu la t i on s ,”

Nuclear

Technology,

29, 57-72 (1976).

J . T. Th om a s, “E xper im en ta l a nd C a lcula t ed S yst em C rit ica lit y,”

Proceedi ngs of

a Sym posi um on C r i ti ca l i ty Con t r ol of F i ssi l e M a ter i a l s, S tock hol m , Nov em ber 1-5,

1965,

I n t er n a t i on a l At om ic E n er g y Ag en cy , Vien n a , 149-175 (1965).

J . T. Th oma s, “Th e C rit ica lit y of C ubic Arra ys of F issile Ma t er ia ls,” Oa k Ridge

}’-12 P l a n t r ep or t Y-C D C -1O (1971).

D . Yea r w ood , E . D . C la y t on , a n d B . L . K opon en , ‘{An om a lou s E ffect s of Mod er a t ion

in Tr a n spor t a t i on a n d S t or a g e Ar r a y s – R ev is it ed ,”

Proceedings of a Topica l M eet ing

on Physi cs and M ethods in Cr i t i ca l i t y Saf et y, Nashvi l l e, TN , Sep tember 19-23 , 1993 ,

Am er ica n N uclea r S ociet y , L a G r a n g e P a r k, I L , 99-101 (1993).

J . T. Th om a s, “E xper im en t a l Mea su rem en ts w it h Ar ra y s of U (97.7)F 6 N eu tr on -

C ou pled Th r ou gh C on cr et e, ”

T r an sact i on s of t he A m er i ca n N u cl ear Soci et y, 19,

199-200 (1974).

G. D.

E llis a n d G . R. H a ndley , “E n r ich ed U ra n ium S t ora ge in S t eel Tubes

E mbedd ed in C on cr et e,” Pr oceed i ngs of a T opi cal M eet in g on Cr i t ical i ty Safet y

i n t he St or age of F i ssi l e M a t er i al , J a ck son , WY , Sept em ber 8-llj 1985,

American

Nuclea r Society report ISB N:89448-119-3, 186-198 (1985).

Page 28: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 28/31

131.

13~.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

J . T. Th om a s, “A C rit ica lit y I ndica t or S yst em for S tora ge of F issile Ma t er ia ls,”

O a k R id ge N a t i on a l L a b or a t or y r ep or t U C C N D -C S D -I N F -48 (1975).

J . T. Thoma s, “C r it ica lit y of

znu Aq ueous Nit ra te S olut ions in Reflect ed a nd

U nref lected Arra ys , ”

Transact i ons of t he A mer i can Nuclea r S oci et y, 10, 538-539

(1967).

R. C . Lloyd, E . D . C la yt on , a nd J . H . C ha lmers, “C rit ica lit y of Arra ys of 233U

Solution,” Nuclea r Appl i ca t ions, 4 , 136 -141 (1968).

R. E. Rothe,

“A S urvey of Fissile S olut ion S t ora ge Met hods: C ha mpion t he

P ois on ed Tu be Ta n k ,” Pr oceed i n gs of a T op i ca l M eet i ng on Cr i t i ca l it y Sa fet y i n t h e

S torage of F issi l e.h [ater ia l , Jackson , WY, Sep tember 8 -11, 1985,

Ameri ca n Nucl ea r

Society report IS B N:89448-119-3, 4 2-64 (1985).

J. T. Thoma s, J . K . F ox, a nd E . B . J ohnson, “C rit ica l Ma ss S tudies, P a rt XI I I .

B or os ilica t e G la s s R a sch ig R in gs in Aq ueou s U r a n yl N it r a t e S olu tion s,” O a k R id ge

Na t i ona l La bora t ory repor t ORNL-TM-499 (1963).

J . T. Th oma s, “C rit ica l E xperiment s w it h Aq ueous S olut ion s of

233U OZ(N03)Z, ”

N eu t r on Ph ysi cs D i vi si on A nn u al Pr ogr ess R epor t f or Per i od E n di n g M a y 31, 1968,

Oak R id ge N a t i on a l L a b or a t or y r ep or t O RN L -4280, 53-55 (1968).

\

R. C. Lloyd, S . R. B ierma n, a nd E . D . C la yt on , “C rit ica lit y of P lut onium Nit ra te

S olu tion s C on t a in in g B e ra t ed R a sch ig R in gs ,”

Nuclea r Science and Engineer ing ,

50, 127 -134 (1973).

R. C . Lloyd a nd E . D . C la yt on ,

“C r it ica lit y of P u -U N it r a t e S olu tion C on ta in in g

G l a ss R a sch ig R in gs ,” Transact i ons of t he A mer i can Nuclea r S oci et y, 21, 236-237

(1975).

J . K . Fox a nd L . W. G illey, “C rit ica l P a ra met ers of Aq ueous S olut ions of U 235,”

N eu t r on Ph ysi cs D i vi si on A nn u al Pr ogr ess R ep or t f or Per i od E nd i ng Sep tem ber 1,

1957, O a k R id ge N a t i on a l L a b or a t or y r ep or t O R NL -2389, 71-83 (1959).

D . C killih a n, “ E xper im en t s for C rit ica lit y C on t rol,” Proceed ings of a Symposium

on Cr i t i ca l it y Con t r ol i n Ch em i cal an d M et al l u r gi cal Pl an t s, K a r lsr u h e7 G er m a ny,

589-614 (1961).

O. D. Thompson a nd D . D . Yea rw ood,

“P lut on ium S olut ion S tor age in Arr ays

of S ix-in ch P ipes,” Pr oceed in gs of a T opi cal M eet in g on Cr i ti cal i ty Safet y i n t he

S tor age of F i ssi l e M a ter i a l , J ackson , WY, Sep tember 8-11, 1985, Ameri ca n Nucl ea r

So ci ety repor t I SB N:8g448-l lW3, 92-98 (1985).

S a fet y S er ies No. 6, R egu l at i on s f or t h e Sa fe T r a nsp or t of R ad i oa ct i ve M a t er i a l s,

1985 Ed i t i on , I n t er n a t i on a l At om ic E n er g y Ag en cy , Vien n a (1985).

125

Page 29: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 29/31

143.

144.

145.

146.

147.

148.

149.

150.

S a fet y S er ies N o. 37,

A dvi sor y M a ter i al for th e A ppl i cat i on of th e I AE A T r an spor t

Regulat ions, Second Edi t ion,

I n t er n a t i on a l At om ic E n er g y Ag en cy , Vien n a (1982).

49 C FR 173.4,

Regu la t ions, Packaging and Transpor ta t ion , Rad ioact i ve M ater ia ls,

Depar t men t of Tran s por ta t ion (1991).

10 C FR 71,

Packaging and T ranspor t a ti on of Rad ioact i ve M a ter i a l ,

N u clea r R eg u-

la tory Commiss ion (1991).

D OE Or der 5480.3 (1985), S a fet y

Requi r emen t s f or t he Packaging and T ranspor t cz-

t ion of H azardous M ater ia ls, H azardous Substances, and H azardous J?’ustes(1985.).

W. c.

J orda n , N. F , La n ders, a n d La M. P et r ie, “va lida t ion of ~ EN() V.a ,

C om pa r ison w it h C r it ica l E xper im en t s,”

Oa k Ridge Na t ion a l L a bor a tor y r epor t

ORNL/CS D/TM-238 (1986).

J . P . Nich ols, C . L. S ch uske, a nd D . W. Ma gn uson , “U se of B orosilica te-G la ss

Ra scl@ Rin gs a s a Neut ron Absorber in S olut ion s of F issile Ma t er ia l,” Oa k Ridge

Y-12 P l a n t r epor t Y-C D C -8 (1971).

E . O. N ur mi, “U s e of B or osilica t e-G la ss Ra sch ig Rin gs in a H ost ile E n vir on men t,”

T ransact i ons of t he Amer i can Nuclea r Societ y, 19, 181 (1974 ).

R-

F. C hrist y a n d J . A. Wh eeler ,

“C h a in R ea ct ion of P u re F ission a ble Ma t er ia ls in

S olu t ion ,” U S G o ver n men t r epor t C P -400 (1943).

126

Page 30: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 30/31

Thi sreporthasbeenreproduceddi rectl yf i omthe

bestavai l abl eopy .

I t isavai l ableoDOEandDO Econtractors

from theO@e ofScient@ andTechnical

In fwat ion,

P.O.BOX62,

OakRidge,TN37831.

Pr i cesareavai l abl efr om615 576-8401.

It isavai lableothepubli cji -omhe

NationalTechni calnfo rmat i onSm”ce,

USDepar tmentof Commerce,

5285Por tRoyalRd.,

Spri ng@ld,VA 22161.

Page 31: Criticality Safety

7/23/2019 Criticality Safety

http://slidepdf.com/reader/full/criticality-safety 31/31