12
Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033) Current Flow emitter current (i E ) – is current which flows across EBJ Flows “out” of emitter lead minority carriers – in ptype region. These electrons will be injected from emitter into base. Opposite direction. Because base is thin, concentration of excess minority carriers within it will exhibit constant gradient.

Current Flow - UIC Electrical and Computer Engineering · Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033) Current Flow Concentration

Embed Size (px)

Citation preview

Page 1: Current Flow - UIC Electrical and Computer Engineering · Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033) Current Flow Concentration

Oxford University PublishingMicroelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033)

Current Flow

emitter current (iE) – is current which flows across EBJ  Flows “out” of emitter lead

minority carriers – in p‐type region. These electrons will be injected from emitter into base. Opposite direction.

Because base is thin, concentration of excess minority carriers within it will exhibit constant gradient.

Page 2: Current Flow - UIC Electrical and Computer Engineering · Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033) Current Flow Concentration

Oxford University PublishingMicroelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033)

Straight line represents constant gradient.

00

( ) concentration of minority carriers a position x (where 0 represents EBJ boundary)   thermal‐equilibrium value of minority carrier (elect

/

ron) concentration in base 

0

reg

(eq6.1)  0 BE

pp

Tv

nn

Vp

x

n e

pn

pn

00

0

ionvoltage applied across base‐emitter junction

thermal voltage (constant)

ppBE

pT

nn

nv

V

Page 3: Current Flow - UIC Electrical and Computer Engineering · Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033) Current Flow Concentration

Oxford University PublishingMicroelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033)

Current Flow

Concentration of minority carrier np at boundary EBJ is defined by (6.1).

Concentration of minority carriers np at boundary of CBJis zero. Positive vCB causes these electrons to be swept across junction.

00

( ) concentration of minority carriers a position  x (where 0 represents EBJ boundary)   thermal‐equilibrium value of minority carrier  

/

(electron) concentration in  ase

0

b

(eq6 0.1) 

pp

BE T

x

n

v V

n

pn e

pn

pn

0

00

 regionvoltage applied across base‐emitter junction

thermal voltage (constant)

ppE

pB

T

nn

nv

V

Page 4: Current Flow - UIC Electrical and Computer Engineering · Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033) Current Flow Concentration

Oxford University PublishingMicroelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033)

Current Flow

Tapered minority‐carrierconcentration profile exists.

It causes electrons injected into base to diffuse through base toward collector.

As such, electron diffusion current (In) exists.

cross‐sectiona area of the base‐emitter junction magnitude of the electr

this simplificationmay be made ifgradient assumedto be straight line

(e

(eq6.2)

q6.2) 

 0

E

pn E n

pE n

Aq

n

dn xI A qD

dxdn

AI qDW

on charge electron diffusivity in base

 width of basenD

W

Page 5: Current Flow - UIC Electrical and Computer Engineering · Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033) Current Flow Concentration

Oxford University PublishingMicroelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033)

Current Flow

Some “diffusing” electrons will combine with holes(majority carriers in base).

Base is thin, however, and recombination is minimal. Recombination does, however, cause gradient to take slightly curved shape. The straight line is assumed.

Page 6: Current Flow - UIC Electrical and Computer Engineering · Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033) Current Flow Concentration

Oxford University PublishingMicroelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033)

00

( ) concentration of minority carriers a position x (where 0 represents EBJ boundary)   thermal‐equilibrium value of minority carrier (elect

/

ron) concentration in base 

0

reg

(eq6.1)  0 BE

pp

Tv

nn

Vp

x

n e

pn

pn

00

0

ionvoltage applied across base‐emitter junction

thermal voltage (constant)

ppBE

pT

nn

nv

V

Recombination causes actual gradient to be curved, not straight. 

Page 7: Current Flow - UIC Electrical and Computer Engineering · Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033) Current Flow Concentration

Oxford University PublishingMicroelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033)

The Collector Current

It is observed that most diffusing electrons will reach boundary of collector‐basedepletion region.

Because collector is more positive than base, these electrons are swept into collector. collector current (iC) is approximately equal to In.

iC = In

 intrinsic carrier density doping concentration of base

/

0

2

(eq6.3) 

saturation current: 

(eq6.4) 

BE Tv VC S

E

n

n pS

E n iS

A

iNA

i I

A qD nI

W

A qD nI

W N

e

Page 8: Current Flow - UIC Electrical and Computer Engineering · Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033) Current Flow Concentration

Oxford University PublishingMicroelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033)

The Collector Current

Magnitude of iC is independent of vCB. As long as collector is positive, with respect to base.

saturation current (IS) – is inversely proportional to W and directly proportional to area of EBJ. Typically between 10‐12 and 10‐18A Also referred to as scale current.

Page 9: Current Flow - UIC Electrical and Computer Engineering · Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033) Current Flow Concentration

Oxford University PublishingMicroelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033)

The Base Current

base current (iB) – composed of two components: ib1 – due to holes injected from base region into emitter. ib2 – due to holes that have to be supplied by external circuit to replace those recombined.

 transistor parameter

/

(eq6.5) 

(eq6.6)  BE T

CB

v VSB

ii

Ii

e

Page 10: Current Flow - UIC Electrical and Computer Engineering · Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033) Current Flow Concentration

Oxford University PublishingMicroelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033)

The Base Current

common‐emitter current gain () – is influenced by two factors: width of base region (W) relative doping of base emitter regions (NA/ND)

High Value of  thin base (small W in nano‐meters) lightly doped base / heavily doped emitter (small NA/ND)

Page 11: Current Flow - UIC Electrical and Computer Engineering · Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033) Current Flow Concentration

Oxford University PublishingMicroelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033)

The EmitterCurrent

All current which enters transistor must leave. iE = iC + iB

Equations (6.7) through (6.13) expand upon this idea.

this expression is generated through combination of (6.5) and (6.7)

/(eq6.8/6.9) 

(eq6.10) 

(eq6.11

1

)

1

 

BE T

C

v VE C S

C E

i

i i I

i i

e

this parameter is reffered 

/

toas   

(eq6.13) 

(eq6.1

1 1

2)

,  

  BE Tv VSE

Ii

common‐base current gain

e

Page 12: Current Flow - UIC Electrical and Computer Engineering · Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033) Current Flow Concentration

Oxford University PublishingMicroelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033)

Exercises 6.1, 6.2, 6.3 (page 315 on 7th edition textbook)