118
COMPUŞI ORGANICI AI AZOTULUI AMINE R – NH 2 NITRODERIVAŢI R – NO 2 NITROZODERIVAŢI R – NO COMPUŞI DIAZOICI Ar – N = N – OH COMPUŞI AZOICI Ar – N = N – Ar AMINE Definiţie Aminele sunt derivaţi ai amoniacului în care unul sau mai mulţi atomi de hidrogen sunt înlocuiţi cu radicali organici. Clasificare I. În funcţie de gradul de substituire al atomului de azot: - primare: R–NH 2 - secundare: R 2 NH - terţiare: R 3 N II. În funcţie de natura radicalilor legaţi de azot: - Alifatice (alchil-, cicloalchilamine) - Aromatice (arilamine) - Mixte Nomenclatură Numele aminelor se formează adăugând sufixul amină la numele radicalului hidrocarbonat corespunzător. Pentru denumirea aminelor cu structură mai complicată se foloseşte prefixul amino (N- metilamino) înaintea numelui hidrocarburii de bază. Denumire Structură Metilamină CH 3 –NH 2 Dimetilamină (CH 3 ) 2 NH Trimetilamină (CH 3 ) 3 N Etilamină (etanamină) CH 3 –CH 2 –NH 2 Etilmetilamină C 2 H 5 –NH–CH 3 Etilmetilpropilamină CH 3 N CH 2 CH 3 CH 2 CH 2 CH 3 Fenilamină (anilină) C 6 H 5 –NH 2 Fenilmetilamină (N-metilanilină) C 6 H 5 –NH–CH 3 Fenildimetilamină (N,N-dimetilanilină) C 6 H 5 N CH 3 CH 3 1

curs organica

Embed Size (px)

Citation preview

Page 1: curs organica

COMPUŞI ORGANICI AI AZOTULUI

AMINE R – NH2

NITRODERIVAŢI R – NO2

NITROZODERIVAŢI R – NOCOMPUŞI DIAZOICI Ar – N = N – OH COMPUŞI AZOICI Ar – N = N – Ar

AMINE

Definiţie

Aminele sunt derivaţi ai amoniacului în care unul sau mai mulţi atomi de hidrogen sunt înlocuiţi cu radicali organici.

Clasificare

I. În funcţie de gradul de substituire al atomului de azot:- primare: R–NH2

- secundare: R2NH- terţiare: R3NII. În funcţie de natura radicalilor legaţi de azot:

- Alifatice (alchil-, cicloalchilamine)- Aromatice (arilamine)- Mixte

Nomenclatură

Numele aminelor se formează adăugând sufixul amină la numele radicalului hidrocarbonat corespunzător. Pentru denumirea aminelor cu structură mai complicată se foloseşte prefixul amino (N-metilamino) înaintea numelui hidrocarburii de bază.

Denumire StructurăMetilamină CH3–NH2

Dimetilamină (CH3)2NHTrimetilamină (CH3)3NEtilamină (etanamină) CH3–CH2–NH2

Etilmetilamină C2H5–NH–CH3

Etilmetilpropilamină CH3 N

CH2CH3

CH2 CH2 CH3

Fenilamină (anilină) C6H5–NH2

Fenilmetilamină (N-metilanilină) C6H5–NH–CH3

Fenildimetilamină (N,N-dimetilanilină) C6H5 N

CH3

CH3

1

Page 2: curs organica

p-Nitroanilină NH2

NO2

2-Metilanilină (o-Toluidină) NH2

CH3

2,6-Dimetilanilină (2,6-Xilidină) NH2

CH3H3C

1,2-Diaminoetan (etilendiamină) CH2 CH2

NH2 NH2

1,2-diaminobenzen (o-Fenilendiamină) NH2

NH2

Etilenimină

NH

CH2H2C

Tetrametilenimină (pirolidină) CH2H2C

H2CNH

CH2

Pentametilenimină (piperidină)

H2C

H2CNH

CH2

CH2

H2

C

Morfolină H2C

H2CNH

CH2

CH2

O

Sărurile aminelor sunt săruri de amoniu substituite cu radicali organici;2

Page 3: curs organica

Sărurile tetrasubstituite se numesc săruri cuaternare de amoniu. Pentru sărurile aminelor cu hidracizi se mai utilizează denumirile vechi de clorhidraţi, bromhidraţi,

iodohidraţi.

CH3 NH3]Cl clorura de metilamoniu(clorhidratul metilaminei)

C6H5 N(CH3)3]Br bromura de trimetilfenilamoniu

(n-C4H9)4N]I iodura de tetrabutilamoniu

Structură

În amine, ca şi în amoniac, atomul de azot utilizează orbitali hibridizaţi sp3 pentru formarea a trei legături σ. Al patrulea orbital al azotului, hibridizat tot sp3, conţine o pereche de electroni p neparticipanţi. Aminle au structura unei piramide turtite, cu baza triunghiulară, în vârful căreia se află atomul de azot.

Bazicitatea aminelor

Datorită electronilor neparticipanţi ai azotului, aminele au caracter bazic, ca şi amoniacul.În soluţie apoasă are loc o reacţie de echilibru electrolitic:

R NH2 H2O R NH3 HO++

Kb[R NH3] [HO ]

[R NH2]=

• Cu cât valoarea Kb este mai mare cu atât baza este mai tare. • Bazicitatea aminelor alifatice variază în ordinea: NH3 < R – NH2 < R3N < R2NH.

Această variaţie se datorează efectului respingător de electroni (+I) al grupelor alchil, care creşte densitatea de electroni la azot, crescând astfel capacitatea de a accepta protoni sau de a ceda electroni.

• Aminele terţiare sunt mai slab bazice decât cele secundare datorită unor efecte sterice apărute datorită tensiunii exercitate de grupele alchil, de interferenţele lor sterice.

N

R'

R H

N

RR

R

H

• Aminele aromatice sunt baze mai slabe decât cele alifatice datorită efectului de conjugare p–π dintre electronii p ai azotului şi electronii π ai nucleului aromatic.

NH2 NH2 NH2 NH2

• Bazicitatea aminelor aromatice este influenţată de natura substituenţilor de pe nucleul benzenic. Substituenţii respingători de electroni (efect +I) măresc bazicitatea (toluidinele sunt mai bazice

decât anilina);

3

Page 4: curs organica

Substituenţii atrăgători (efect –I) scad bazicitatea (CF3; NO2).NH2 NH2

NO2

NH2

NO2

> >

Diferenţa dintre meta şi para provine din faptul că la meta-nitroanilină nu intervine efectul –E al grupei NO2. La para-nitroanilină atomul de oxigen dublu legat permite delocalizarea electronilor ciclului către atomul de azot.

Metode de obţinere

1. Alchilarea Hofmann a amoniacului

a) cu compuşi monohalogenaţi alifatici – se formează monoamine

NH3 R NH2

R X

- HXR2NH R3N

+ +

- HX

R X +

- HX

R X + R XR4N]X

aminaprimara

amina secundara

aminatertiara

sare cuaternara de amoniu

b) cu compuşi dihalogenaţi alifatici – se formează diamine

CH2 CH2

X X

2 NH3- 2 HX

+ CH2 CH2

NH2 NH2

c) cu compuşi halogenaţi aromatici – reacţia nu are loc decât în prezenţa unui catalizator de Cu fin divizat, la temperatură înaltă, (halogenul este nereactiv).

C6H5 NH C6H5 C6H5 I+Ni

(C6H5)3N HI+

(C6H5 – Br)Clorul din clorobenzen se substituie mult mai greu.

2. Reacţii de reducere

a) reducerea nitroderivaţilor – se formează amine primare.

R NO2Fe, Zn; Sn / HCl; H2SO4; H2 / Ni, Pt, Pd

R NH2

nitroderivatalifatic

Ar NO2

+ 6[H]; cat.Ar NH2

nitroderivataromatic

H2O- 2

b) reducerea nitrililor – se formează amine primare.

4

Page 5: curs organica

R CNLiAlH4; H2 / Ni, Pd

R CH2 NH2

c) reducerea amidelor

R CO

NH2

LiAlH4 / eter

H2O_R CH2 NH2 amina primara

amina secundara R CH2 NH R_ H2O

LiAlH4 / eterR C

O

NH R'

amina teriara R CH2 NR'2_ H2O

LiAlH4 / eterR C

O

NR'2

d) reducerea oximelor – se formează amine primare.

R CH=O H2N OH+H2O_

R CH=N OH R CH2 NH2

LiAlH4; H2 / Ni, Pt, Pd

aldehida hidroxilamina aldoxima

C OR

R

cetoximahidroxilamina

LiAlH4; H2 / Ni, Pt, Pd

_ H2O+ H2N OH C=N OH

R

RCH

R

RNH2

cetona

e) reducerea iminelor – se formează amine primare.

aldehida

+R CH=O NH3H2O_ R CH=NH

+ H2 / NiR CH2 NH2

aldimina

cetona

C OR

R_ H2O

NH3+ C NHR

R

H2 / Ni+ CH

R

RNH2

cetimina

3.Degradarea Hofmann a amidelor – se formează amine primare.

R–CONH2 + NaBrO NaOH

R–NH2 + NaBr + CO2

Proprietăţi fizice

Stare de agregare• Aminele inferioare sunt gaze cu miros de amoniac.• Aminele mijlocii sunt lichide cu miros neplăcut de peşte.

5

Page 6: curs organica

• Aminele superioare sunt solide.Au temperaturi de fierbere mai scăzute decât alcoolii.SolubilitateAminele inferioare sunt solubile în apă; solubilitatea scade cu creşterea masei moleculare.Solubilitatea se datorează faptului că aminele primare şi secundare formează legături de hidrogen

mai slabe decât în alcooli: N.......H–N....Aminele aromatice sunt puţin solubile în apă.

Proprietăţi chimice

1. Reacţia cu acizi minerali (HCl; H2SO4) – se formează săruri de amoniu solubile în apă. Transformarea aminelor în sărurile lor solubile serveşte la separarea aminelor din amestecuri cu ajutorul substanţelor neutre.

R NH2 + HX R NH3] X

R2NH HX+ R2NH2] X

R3NH] X + HXR3N

C6H5 NH3] ClC6H5 NH2 + HCl sau C6H5 NH2 HCl

clorhidrat de anilina

sulfat de anilina

H2SO4C6H5 NH2sau C6H5 NH2 + H2SO4 C6H5 NH3] HSO4

2. Reacţia de acilare (protejează grupele amino în reacţiile de oxidare, nitrare, halogenare). Aminele primare şi aminele secundare formează amine substituite. Aminele terţiare formează săruri de amoniu.

a) cu acizi carboxilici

R–NH2 + R’–COOH → R–NHCOR’ + H2O

R2NH + R’–COOH → R2NCOR’ + H2O

b) cu cloruri acide

R–NH2 + R’–COCl → R–NHCOR’ + HCl

R2NH + R’–COCl → R2NCOR’ + HCl

R3N R' COCl+ R3NCOR']Cl clorura de acilamoniu

c) cu anhidride acide

R NH2 + (R' CO)2OH

R NHCOR' + R' COOH

6

Page 7: curs organica

+H

(R' CO)2O R2NCOR' R COOH+R2NH

d) cu esteri

R NH2 R' COOR"+ R NHCOR' R" OH+

3. Reacţia cu acidul azotos (HNO2)

A. aminele primare

a) alifatice – se formează alcooli

R NH2 HONO+0 - 50C

R OH + N2 + H2O

b) aromatice – se formează săruri de diazoniu.

Ar NH2 + HONO + HClH2O- 2

Ar N N]ClH2O; t0C+

Ar OH N2 HCl+ +0 - 50C

B. aminele secundare alifatice şi aromatice – se formează nitrozamine (lichide uleioase de culoare galbenă, insolubile în apă, extrem de toxice).

R2NH + HONO → R2N–NO + H2O

(CH3)2NH + HONO → (CH3)2N–NO + H2Odimetilnitrozamină

C. aminele terţiare

a) alifatice – la echilibru, rezultă un amestec de amine terţiare, sărurile lor şi un compus nitrozamoniu care se descompune la încălzire cu un acid diluat

b) aromatice – se formează nitrozamine aromatice.N(CH3)2

+ HONO

H2O_

N(CH3)2

NO

p-nitrozodimetilanilina

4. Reacţii de condensare cu compuşi carbonilici – se formează imine.

R CH O H2N R'+ R CH N R'H2O_

aldimine

C OR

RH2N R'+ C N

R

RR'

cetimine

H2O_

5. Reacţii pe nucleul aromatic.Grupa –NH2 este substituent de ordinul I şi orientează substituţia electrofilă în poziţiile orto şi para.

a) Reacţia de halogenare7

Page 8: curs organica

NH2

+ 3 Br2- 3HBr

NH2

BrBr

Br

2,4,6-tribromoanilina

b) Reacţia de sulfonare – se formează acid p-anilinsulfonic (acid sulfanilic).NH2

H2SO4

H2O

+_

NH2

SO3H

c) Reacţia de nitrare. Nu are loc direct deoarece este însoţită de oxidare.

NH2

NO2

NH2

CH3COCl

- HCl

+

NHCOCH3

HNO3

H2O

+ 2

- 2

NHCOCH3

NO2

NHCOCH3

NO2

+

H2O

H2O

+

+

NH2

NO2

CH3COOH

CH3COOH

_

_

o-nitroanilina

p-nitroanilina

Reprezentanţi

Metilamina, CH3–NH2, este un gaz cu miros de amoniac. Se găseşte în cantităţi mici în unele plante. Este folosită ca solvent în sinteza organică, la sinteza medicamentului adrenalină, coloranţilor şi insecticidelor.

Etilamina, CH3–CH2–NH2, se utilizează ca solvent în industria petrolului şi în sinteza organică.Dimetilamina, (CH3)2NH, se găseşte împreună cu trimetilamina în deşeurile de peşte care iau

naştere, în general, prin descompunerea proteinelor. Dimetilamina este folosită la obţinerea acceleratorilor de vulcanizare şi a unor medicamente.

Dietilamina, (C2H5)2NH este folosită la sinteza unor medicamente (novocaină, antimalarice).Anilina, fenilamina, C6H5–NH2, o fost pusă în evidenţă pentru prima dată în 1826, la distilarea

uscată a indigoului (în portugheză numit anil) şi apoi în gudroanele rezultate la distilarea uscată a cărbunilor (1834).

Anilina este un lichid incolor (t.f. = 1840C) care se colorează în galben în contact cu aerul şi apoi în brun, datorită oxidării.

Este miscibilă cu acetona, etanolul, benzenul, eterul etilic. Este insolubilă în mulţi solvenţi organici.8

Page 9: curs organica

• Cu hipoclorit de calciu se colorează în violet (reacţie de identificare)• Cu KMnO4 / H2SO4 se colorează în verde, apoi în albastru-negru, formând un colorant numit negru

de anilină• Cu HCl şi H2SO4 formează săruri care colorează lemnul în galben• Cu aldehidele aromatice formează baze Schiff.

Derivaţii acetanilidei, p-etoxiacetanilida (fenacetina) şi p-hidroxiacetanilida (paracetamol) sunt substanţe active care intră în formula unor medicamente cu acţiune analgezică şi antipiretică.

C2H5O NHCOCH3 HO NHCOCH3

p-etoxiacetanilida (fenacetina)

p-hidroxiacetanilida (paracetamol)

Inhalată este toxică!Anilina este folosită la sinteza intermediarilor, a coloranţilor, a acceleratorilor de vulcanizare, a unor

mase plastice şi a unor medicamente.Derivatul său acetilat, acetanilida, numită antifebrină, are proprietăţi antipiretice.

o- şi p-Toluidină, CH3–C6H4–NH2, sunt folosite la fabricarea coloranţilor.

Amfetamina (Benzedrina), 2-amino-1-fenilpropan

CH2 CH

CH3

NH2

Metamfetamina (Metedrina), 2-metilamino-1-fenilpropan

CH2 CH

CH3

NH CH3

Sunt amine sintetice, stimulante ale SNC. Reduc oboseala şi foamea prin creşterea nivelului de glucoză din sânge. De aceea sunt folosite în combaterea depresiilor uşoare şi la reducerea hiperactivităţii la copii.

Putresceina, H2N–(CH2)4–NH2, (tetrametilendiamina), este un compus cristalin, rezultat la descompunerea proteinelor.

Cadaverina, H2N–(CH2)5–NH2, (pentametilendiamina), este un compus lichid, produs la descompunerea bacteriană a lisinei; este toxică.

Toluendiaminele sunt toxice. 2,4-Toluendiamina este cancerigenă pentru animalele de laborator.

COMPUŞI DIAZOICI AROMATICI(SĂRURI DE ARENDIAZONIU)Ar–N=N–OH (Cl-, NO3

-, HSO3-)

Nomenclatură

Compuşii diazoici sunt denumiţi ca hidrocarburi ca hidroxizi sau săruri ale unui cation numit diazoniu.

Numele hidrocarburii corespunzătoare radicalului aren (Ar) este precedat de numele anionului şi urmat de sufixul diazoniu.

9

Page 10: curs organica

C6H5–N=N–OH hidroxid de benzendiazoniuC6H5–N=N–Cl clorură de benzendiazoniuC6H5–N=N–OSO3H sulfat de benzendiazoniu

Structură

Pentru reprezentarea compuşilor diazoici se folosesc două formule:

• Ionică Ar N N] X

• Covalentă Ar–N=N–X

Metode de obţinere

• Diazotarea aminelor aromatice

Ar NH2 HONO HCl+ +0-50C

Ar N N] Cl + 2 H2O

C6H5 N N] Cl0-50C

++ HClNaNO2C6H5 NH2 NaOH H2O+ +

Proprietăţi fizice

Compuşii diazoici sunt solizi, incolori, solubili în apă, mai puţin solubili în solvenţi organici. În stare anhidră sunt foarte instabili şi explodează la şoc, cu excepţia borofluorurilor de diazoniu. În soluţie apoasă se descompun la temperatura camerei.

Proprietăţi chimice

1. Reacţia de cuplare

a) cu fenoli – se formează azoderivaţi

N N] X OH+00C; C6H5O-Na+

N N OH- HX

p-hidroxiazobenzen (culoare oranj) para

b) cu amine terţiare aromatice – se formează aminoazoderivaţi

+ N(CH3)2N N] X

para

CH3COO-Na+; 00C

- HXN N N(CH3)2

p-dimetilaminoazobenzen (culoare galbena)

2. Reacţia de hidroliză – se formează fenoli

Ar N N] XH2O / H+

Ar OH N2 HX+ +

3. Reacţia cu cianură cuproasă – se formează nitrili aromatici

10

Page 11: curs organica

Ar N N] X + CuCN ++ CuXN2Ar CN

4. Reacţia de formare a derivaţilor halogenaţi aromatici

Ar N N] X +

CuCl

CuBr

KI

Ar Cl

Ar I

Ar Br

+ N2 + CuX

+ N2 + CuX

+ N2 + KX

Ar N N] BF4

t0C; THF+ N2 + BF3Ar F

ARILHIDRAZINE

Sunt compuşi de substituţie ai hidrazinei cu radicali aril.a) Monoarilhidrazine: Ar – NH – NH2

b) Diarilhidrazine • Nesimetrice: Ar2N–NH2

• Simetrice: Ar–NH–NH–Ar c) Tetraarilhidrazine: (Ar)2N–N(Ar)2

Reprezentanţi

Fenilhidrazina, C6H5–NH–NH2. Este un lichid incolor, care se descompune la temperatura de fierbere. Proaspăt distilată la vid este slab galbenă; prin expunere la aer se colorează rapid în roşu-brun.

Este foarte toxică!În funcţie de natura reactanţilor cu care vine în contact poate avea caracter acid, bazic, reducător sau

oxidant.• Cu aldehidele şi cetonele, prin încălzire, formează fenilhidrazone frumos cristalizate.• Cu hidraţii de carbon formează osazone.• Sub formă de 2,4-dinitrofenilhidrazină, compus cristalin de culoare roşie, este folosită la

identificarea şi dozarea compuşilor carbonilici.

Tetrafenilhidrazina, (C6H5)2N–N(C6H5)2 este un compus cristalin, incolor, care prin dizolvare în toluen şi încălzire devine verde-brun.

OXIME

Sunt considerate derivaţi funcţionali ai aldehidelor şi cetonelor, rezultaţi prin condensarea acestora cu hidroxilamină.

R–CH=N–OH aldoximă

C NR

ROH cetoxima

11

Page 12: curs organica

C6H5 NH OH

C6H5N

CH3OH

N-fenilhidroxilamina

N-fenil-N-metilhidroxilamina

COMPUŞI AZOICI

A. AROMATICI

Ar–N=N–Ar azoderivaţi

Ar N N

O

Ar azoxiderivati

Ar–NH–NH–Ar hidrazoderivaţi

Ex.

N N CH3 benzenazo-p-toluen

N N N(CH3)2 benzenazo-p-dimetilaminobenzen

C6H5 N N

O

C6H5 azoxibenzen

C6H5 N N C6H5 azobenzen

C6H5 NH NH C6H5 hidrazobenzen

Metode de obţinere

1. Reducerea nitroderivaţilor aromatici în mediu alcalin, urmată de oxidare.

C6H5 NO2

[H] / Zn + NaOH

H2O- 2C6H5 NH NH C6H5

O2

H2O_ C6H5 N N C6H5

hidrazobenzen azobenzen

2

2. Condensarea nitrozoderivaţilor aromatici cu amine aromatice primare.

N O H2N+ _ H2ON N

12

Page 13: curs organica

3. Cuplarea compuşilor diazoici cu fenoli.

N N]X OH+00C / C6H5O-Na+

_ C6H5OH

NaX_

N N OH

p-hidroxiazobenzen (culoare oranj)

4. Cuplarea compuşilor diazoici cu amine aromatice.

+ NH2N N]X N N NH2

p-aminoazobenzen (culoare rosie)

- HX

Proprietăţi fizice

• Azoderivaţii aromatici sunt compuşi solizi, coloraţi, puţin solubili în apă.

Proprietăţi chimice

1. Reducerea – se formează compuşi hidrazoici (incolori).

azobenzen (rosu)

C6H5 N N C6H5 C6H5 NH NH C6H5H2+Zn + NaOH; LiAlH4

hidrazobenzen (incolor)

2. Oxidarea

a) cu oxidanţi slabi

C6H5 N N C6H5

H2O2; CrO3+C6H5 N N C6H5

O

azoxibenzen

b) cu oxidanţi puternici

C6H5 N N C6H5

KMnO4C6H5 NH22

B. ALIFATICI

Azoderivaţi. Hidrazoderivaţi.

• Nu se pot obţine prin reducerea nitroderivaţilor alifatici în mediu bazic• Se pot obţine prin oxidarea hidrazinei, urmată de alchilare.

13

Page 14: curs organica

H2N NH2 + 2 HCOOHNH CH=O

NH CH=O

CH3I

- 2HI

+ 2 N CH=O

N CH=O

CH3

CH3

NH NHH3C CH3 N NH3C CH3H2

_

• Azoderivaţii alifatici inferiori sunt compuşi gazoşi, instabili termic.

NITRODERIVAŢI

Nitroderivaţii conţin în molecula lor una sau mai multe grupe nitro –NO2, atomul de azot fiind legat de un atom de carbon.

Clasificare

După natura radicalului hidrocarbonat, în: Alifatici

• primari: R–CH2–NO2

• secundari R2CH–NO2

• terţiari R3C–NO2

Aromatici: Ar–NO2

Nomenclatură

Denumirea unui nitroderivat se obtine prin adăugarea prefixului nitro la numele hidrocarburii de la care derivă.Ex.

CH3–NO2 nitrometan

NO2 nitrociclohexan

Structură

R NO

O

R NO

O

R NO

O

-1/2

-1/2

Prin difracţia razelor X s-a arătat că în grupa nitro nu există legături duble şi simple, electronii fiind localizaţi între cei 3 atomi. Există o conjugare izovalentă care face ca legăturile să fie egale şi echivalente între ele.

• Grupa –NO2 este polară.• Grupa –NO2 are efect acidifiant asupra atomilor de hidrogen din poziţia α din nitroalcani.

R CH2 NO

OR CH2 N

O

O

14

Page 15: curs organica

Metode de obţinere

Agenţii de nitrare sunt:1) Cationul nitroniu, NO2 +, în cazul nitrării în fază lichidă, la temperatură joasă.2) Molecula de dioxid de azot, în cazul nitrării în fază lichidă, la temperatură înaltă.

Agentul de nitrare electrofil rezultă dintr-un amestec de acid azotic şi acid sulfuric.

HNO3 H2SO4+ 2 NO2 H3O HSO4+ + 2

1.Nitrarea hidrocarburilor saturate.

R H HONO2+4000C

+ H2OR NO2conc.

dil. R NO2 H2O+1000C

+ HONO2R H

Ar CH2 NO2 H2O++ HONO2Ar CH3

t0Cdil.

arilalcan

2. Nitrarea hidrocarburilor aromatice.Reprezintă una din reacţiile cele mai importante ale chimiei compuşilor organici aromatici deoarece

nitroderivaţii constituie material de bază pentru sinteze de alţi compuşi aromatici cu azot. Prin intermediul aminelor şi sărurilor de diazoniu se introduc diferite grupe funcţionale pe inelul aromatic.

+ HONO2Ar HH2SO4

H2O+Ar NO2

Grupa –NO2 este un substituent de ordinul II care dezactivează nucleul aromatic şi orientează ceilalţi substituenţi în poziţia meta.

NO2

HNO3

H2SO4

H2O

NO2

NO2

+_

nitrobenzen m-dinitrobenzen

NO2

2 HNO3

H2SO4+ 2

H2O- 2

NO2

NO2

NO2 NO2

++ 2

- nitronaftalina

1,5-dinitronaftalina 1,8-dinitronaftalina

15

Page 16: curs organica

CH3

2+ 2

- 2 H2O+ 2

H2SO4HNO3

CH3

NO2

CH3

NO2

+HNO3

CH3

NO2

NO2O2N

T.N.T.Proprietăţi fizice

• Nitroderivaţii alifatici sunt lichide cu p.f. ridicate, sau solide frumos cristalizate.• Nitroderivaţii aromatici au miros specific de migdale amare, sunt coloraţi slab în galben.• Temperaturile de fierbere şi de topire cresc cu creşterea numărului de grupe nitro în moleculă.• Sunt insolubili în apă, uşor solubili în alcool, eter, benzen.• Sunt substanţe toxice; la încălzire la temperaturi înalte (mai ales polinitroderivaţii) se descompun

violent, exploziv.

Proprietăţi chimice

1. Reacţia de reducere

R NO2

+ [H], (Fe, Zn / HCl); H2 / cat.

H2O_R NH2 amina primara

Ar NO2 + 2Fe + 6HCl Ar NH2 FeCl3 H2O+ +2 2

Ar NO2 Ar NOAr NH2+

Ar N N Ar Ar NH NH Ar

nitroderivat nitrozoderivat azoderivat hidrazoderivat

Fe, Zn / HAr NO2 Ar NH2

Reprezentanţi

Nitrometanul, CH3–NO2, este un lichid cu utilizări reduse. Se foloseşte ca solvent pentru unele răşini sintetice.

Nitrobenzenul, C6H5–NO2, este un lichid gălbui, cu miros de migdale amare, toxic, mai ales în stare de vapori. Se foloseşte ca materie primă pentru obţinerea anilinei şi benzidinei, iar ca substanţă odorantă, sub numele de esenţă de mirban.m-Dinitrobenzenul, C6H4(NO2)2, este folosit la obţinerea m-fenilendiaminei şi a m-nitroanilinei.

2,4,6-Trinitrotoluenul (Trotilul), C6H2(NO2)3CH3 este un compus cristalin gălbui. Este foarte stabil, se păstrează indiferent de condiţiile de temperatură şi umiditate, fără a se degrada. Este exploziv, dar numai după amorsare. Se foloseşte în proiectilele de artilerie sau bombele de avion.

2,4,5-Trinitrofenolul (Acid picric), C6H2(NO2)3OH este un solid de culoare galbenă, exploziv. Se foloseşte la identificarea hidrocarburilor aromatice cu care formează complecşi cu transfer de sarcină, numiţi picraţi.

NITROZODERIVAŢI

16

Page 17: curs organica

• Conţin în moleculă grupa funcţională nitrozo –NO.• Sunt izolabili doar nitrozoderivaţii alifatici terţiari (R3C–NO) şi cei aromatici terţiari.• Nitrozoderivaţii primari şi secundari sunt instabili şi trec în formele tautomere mai stabile,

izonitroderivaţi.

Metode de obţinere

1. Nitrozarea hidrocarburilor alifatice.

R–H + NOCl → R–NO + HCl clorura de nitrozil

2. Nitrozarea hidroacrburilor aromatice.

N(CH3)2

HNO2+

N(CH3)2

N O

N(CH3)2

N O

+ H

N(CH3)2

N OH

galben-portocaliu verde

Proprietăţi fizice

• Nitrozoderivaţi alifatici sunt coloraţi în albastru intens.• Nitrozoderivaţii aromatici sunt coloraţi în verde.• Nitrobenzenul în topitură, soluţie sau vapori este un monomer colorat în verde.• Au miros înţepător, neplăcut.

Proprietăţi chimice

Nitrozoderivaţii sunt mai reactivi decât nitroderivaţii şi de aceea nu se pot conserva timp îndelungat.

1. Oxidarea cu agenţi oxidanţi (HNO3, H2O2, KMnO4) – se formează nitroderivaţi.

R–NO + [O] → R–NO2

2. Reducerea cu hidrogen în stare născândă – se formează amine.

R NO + 4[H]Me + HCl

R NH2 H2O+

3. Reacţia de condensare.

a) cu anilină – se formează azobenzen.

C6H5 N O H2N C6H5+H2O_ C6H5 N N C6H5

b) cu fenilhidoxilamină – se formează azoxibenzen.

17

Page 18: curs organica

C6H5 N N C6H5

O

_ H2O+ HN C6H5

OH

C6H5 N O

COMPUŞI ORGANICI CU SULF

Sulful, situat în grupa a VI–a principală a sistemului periodic, ar trebui să formeze compuşi organici asemănători celor cu oxigen. Unii compuşi organici cu sulf au corespondenţă celor cu oxigen, alţii nu. Aceasta se datorează caracterului electronegativ mai slab al sulfului comparativ cu oxigenul. Legătura C–S este mai slab polară decât legătura C–O. Sulful are o tendinţă mai scăzută decât oxigenul de a forma legături stabile.

Clasificare

• Monosubstituiţi (Tioli)• Disubstituiţi (Tioeteri sau sulfuri)• Monooxigenaţi (Sulfoxizi)• Dioxigenaţi (Sulfone)

DENUMIRE FORMULĂ STRUCTURALĂTioalcool (alchilmercaptan) R–SH Tiofenol (Arilmercaptan) Ar–SHTioaldehidă

C SR

H

TiocetonăC S

R

R

Tioeter (sulfură) R–S–RPolisulfură R – (S)n – R Sulfoxid

SR

RO

SulfonăS

R

R

O

O

Sare de sulfoniuR3S ] X

Acid sulfenic R–SOH Acid sulfinic R–SO2HAcid sulfonic R–SO3HSulfonamidă R–SO2NH2

Sulfoclorură (Clorura acidului sulfonic) R–SO2ClAcid tioic

R COS

H

Acid ditioicR C

S

SH

Acid sulfuros H2SO3

Acid sulfuric H2SO4

18

Page 19: curs organica

Ex. CH3SHmetantiolC2H5SH etantiolC3H4SH 1-propantiolCH3 CH CH3

SH

2-propantiol

TIOLI (MERCAPTANI), R–SH, Ar–SH

• Sunt derivaţi ai hidrogenului sulfurat, H2S, aşa cum alcoolii sunt derivaţi ai apei, H2O. Conţin în moleculă grupa caracteristică –SH.

• Tiolii se găsesc în ţiţei (câteva procente), alături de alţi compuşi cu sulf şi sunt nedoriţi datorită acţiunii lor corozive.

Ex:CH3CH2SH

C6H5 SH

etantiol (etilmercaptan)

benzentiol (tiofenol)

HS CH2 COOH acid mercaptoacetic

CH3 C

CH3

SH

CH2CH3 2-metil-2-tiobutan

Metode de obţinere

1. Tratarea alcoolilor cu pentaclorură de fosfor.

5R–CH2–OH + P2S5 → 5R–CH2–OH + P2O5

2. Tratarea alcoolilor cu hidrogen sulfurat.

R OH H2Scataliza eterogena; 4000C

+ + H2OR SH

3. Reacţia compuşilor organo-magnezieni cu sulf.

R MgBr + S8 R S MgBrH2O / H

R SH + MgBrOH

C6H11MgBr + S8 C6H11 SHH2O / H

C6H11 S MgBr

4. Reacţia compuşilor halogenaţi alifatici cu tiouree.

R X CSNH2

NH2+ C S

H2N

H2NR ] X

H2O+

- HXC O

H2N

H2N+ R SH

tiouree sare de S-alchilizotiouroniu uree

19

Page 20: curs organica

Proprietăţi fizice

Tiolii sunt substanţe lichide cu t.f. mai mici decât ale alcoolilor corespunzători deoarece nu formează decât legături de hidrogen foarte slabe cu atomii de sulf.

• Termenii inferiori au o solubilitate mică în apă.• Termenii superiori au o solubilitate mare în solvenţi organici. Au miros specific neplăcut foarte

persistent. Se utilizează pentru odorarea unor hidrocarburi saturate inferioare.

Proprietăţi chimice

1. Caracterul acid. Reacţia cu baze. Se formează mercaptide (săruri solubile în apă ale tioalcoolilor).• Tiolii au caracter acid mai pronunţat decât alcoolii (H2S este un acid mai tare decât H2O).

R–SH + NaOH → R–S- Na+ + H2Oacid tare bază tare bază slabă acid slab2 R–SH + HgO → (RS)2Hg + H2O

Denumirea de mercaptide provine din latinescul „mercurium captans” (reţine mercurul) şi se bazează pe proprietatea tioalcoolilor de a forma cu mercurul compuşi insolubili.

2. Reacţia de oxidare

a) cu O2, I2 – se formează disulfuri.

2R–SH + O2 → R–S–S–R + H2O2 2 R – SH + I2 → R – S – S – R + 2HI

b) cu HNO3; KMnO4; H2O2 – se formează acizi sulfonici.

R S S R R S S R

O

O

R S S R

O

O O

O

disulfura

sulfona disulfona

R S OH R SO

OH

(R SO2H)

R SO3H

R SH

acid sulfenic

acid sulfinic

acid sulfonic

3. Reacţia cu compuşi carbonilici (adiţie)R SH

R SHO CH R

H2O

HCl

_R S

R SCH R mercaptal

(tioacetal) aldehida

R S

R SC

R

R'_

HCl

H2OO C

R

R'R SH

R SHmercaptol(tiocetal)

cetona

20

Page 21: curs organica

TIOETERI

Tioeterii (sulfurile) pot fi considerate ca derivaţi ai tiolilor; conţin doi radicali organici legaţi de acelaşi atom de sulf.

Nomenclatură

Sulfurile se pot denumi cu un prefix alchiltio sau aciltio (în loc de alchiloxi sau aciloxi de la eteri).

Clasificare

• aciclice• ciclice

TIOETERI ACICLICI

CH3–S–CH3 dimetiltioeter (dimetilsulfură)CH3–S–CH2–CH2–CH3 metil-propil-sulfurăCH3 CH CH2

S CH3

CH3 2-(metiltio)butan

H2N CH COOH

CH2

CH2

S CH3

acid -amino- -(metiltio)butanoic

Metode de obţinere

1. Condensarea compuşilor halogenaţi alifatici sau a sulfaţilor de alchil cu sulfuri alcaline

2 R–X + Na2S → R–S–R + 2NaXsulfură simetrică

2 R–O–SO3 + Na2S → R–S–R + Na2SO4

2. Condensarea compuşilor halogenaţi saturaţi cu mercaptide

R–X + R’–S- Na+ → R–S–R’ + NaX (X = I, Br)R–X + Ar–S- Na+ → R–S–Ar + NaXR – S-Na+ + (CH3O)2SO2 → R–S–CH3 + CH3OSO3Na

Ex. CH3–Br + C2H5–S-Na+ → CH3–S– C2H5 + NaBr

3. Reacţia eterilor cu pentasulfură de fosfor

5 R–O–R + P2S5 → 5 R–S–R + P2O5

4. Adiţia tioalcoolilor la alchene

R–CH=CH2 + R’–SH → R’–CH2–CH2–S–R’

5. Adiţia hidrogenului sulfurat la epoxizi

21

Page 22: curs organica

H2C

O

CH2H2S+ S

CH2

CH2

CH2

CH2

OH

OH

+ 2HCl

H2O_2S

CH2

CH2

CH2

CH2

Cl

Cl

iperita

2

tiodiglicol(β, β’-diclorodietilsulfură, sulfură de etil diclorată)

Iperita este un compus uleios, cu acţiune vezicantă asupra pielii, folosit ca gaz de luptă în primul război mondial. Hipocloritul de sodiu (NaOCl) transformă iperita într-un sulfoxid netoxic.

TIOETERI CICLICI

S S S SO

tiiran(etilensulfura)

tietan tiolan tian oxiran

Proprietăţi fizice

Tioeterii sunt compuşi lichizi, insolubili în apă, solubili în solvenţi organici. Au temperaturile de fierbere mai mari decât ale eterilor corespunzători. Au miros eterat.

Proprietăţi chimice

1.Reacţia de desulfurare prin reducere cu H2 / Ni Raney – se formează hidrocarburi.

R S R' + H2

NiRH + R'H

2. Reacţia de alchilare cu compuşi halogenaţi alifatici – se formează săruri şi baze de sulfoniu

R S R R' X+ R S R]X

R'

AgOH

- AgXR S R]OH

R'

sare de sulfoniu baza de sulfoniu (hidroxid de trialchilsulfoniu)

3. Reacţia de oxidare (H2O2 / AcOH; KMnO4; HNO3; H2SO4)

R S RH2O2 / acetona

R S R

O

R S R

O

O

sulfoxid sulfona

H2O / CH3COOH

DISULFURI. POLISULFURI

22

Page 23: curs organica

• Disulfurile, trisulfurile....polisulfurile se denumesc folosind prefixele ditio, tritio....politio.• Disulfurile pot fi considerate ca esteri ai acidului sulfenic, R–SOH, cu tiolii (R–SH).

Ex. CH3–S–S–S–CH2–CH2–CH3 1-(metiltritio)propanCH3–S–S–CH3 dimetil-disulfură (DMDS)CH3–S–S–C2H5 etil-metil-disulfurăC6H5–S–S–C6H5 difenil-disulfurăCH3 CH CH2

S

CH2 CH3

S

CH3

2-(metilditio)pentan

Disulfurile de alchil inferioare sunt lichide cu miros de usturoi.

Disulfura de alil, (CH2=CH–CH2)2S, se găseşte în usturoi („Allium sativum”).Monosulfoxidul disulfurii de alil, Alicina, este un antibiotic care se găseşte tot în usturoi.

CH2 CH CH2 S

O

S CH2 CH CH2

SULFOXIZI. SULFONE

R S R

O

R S R

O

O

Ex.CH3–SO–CH3 dimetil-sulfoxidC6H5–SO2–C6 H5 dimetilsulfonă

Structură

S OR

RS O

R

R

sulfoxid

R S R

O

O

R S R

O

O

R S R

O

O

sulfona(activitate antimicrobiana)

Metode de obţinere

23

Page 24: curs organica

1. Oxidarea tioeterilor (sulfurilor)

R S RH2O2 / acetona, NaIO4, la rece

R S R

Osulfura

sulfoxid

H2O2 / AcOH; KMnO4

CrO3; HNO3

R S R

O

O

sulfona

2. Din arilsulfocloruri sau acizi sulfonici, prin încălzire îndelungată cu hidrocarburi aromatice, în prezenţa AlCl3.

Ar SO2Cl Ar H+t0C

Ar SO2 Ar + HCl

sulfoclorura

+ H2OAr SO2 Art0C

+ Ar HAr SO3H

acid sulfonicReprezentanţi

Dimetilsulfoxidul, DMSO, (CH3)2SO, este un lichid incolor (t.f.=1890C), miscibil cu apa şi total solubil în eter şi solvenţi organici (cu excepţia hidrocarburilor saturate). Este inodor. Trece uşor prin piele, putând antrena alte molecule organice. Constituie o cale posibilă pentru a elibera medicamentele care conţin compuşi ce pot fi distruşi în sistemul digestiv, în sânge. Această cale nu poate fi generalizată însă datorită efectelor toxice ale solventului. Pe de altă parte, DMSO este redus în organism la dimetilsulfură, cu miros foarte urât.

ACIZI SULFINICI. R–SO2H

Acizii sulfinici alifatici sunt instabili, se autooxidează şi se reduc cu uşurinţă, de aceea nu se pot izola.

Sunt compuşi solizi, incolori sau gălbui, solubili în apă; au miros dezagreabil şi sunt foarte toxici.

ACIZI SULFONICI. R–SO3H. Ar–SO3H

Nomenclatură

Denumirea acizilor sulfonici se obţin prin adăugarea sufixului sulfonic la numele hidrocarburii pe care se grefează grupa sulfonică, precedat de cuvântul acid.

Este necesară deosebirea acizilor sulfonici (sulful este legat direct de carbon) de esterii acidului sulfuric (sulful este legat de oxigen).

Ar(R)–SO3H acidR–O–SO3H ester

A. ACIZII SULFONICI ALIFATICI. R–SO3H

DENUMIRE STRUCTURĂAcid propansulfonic CH3–CH2–CH2–SO3HAcid metansulfonic CH3–SO3HAcid etansulfonic CH3–CH2–SO3H

Metode de obţinere

1. Oxidarea energică a tiolilor

24

Page 25: curs organica

R SH + 3[O]KMnO4; NaOCl

R SO3H

2. Sulfoclorurarea hidrocarburilor

R SO2ClH2O

HCl

+_ R SO3H+ SO2Cl2R H _ HCl

h

3. Sulfoxidarea hidrocarburilor

R H SO2 Cl2+ +h

R SO3H + 2HCl

B. ACIZII SULFONICI AROMATICI. Ar–SO3H

Au o importanţă mai mare decât cei alifatici datorită utilizărilor lor numeroase.

Metode de obţinere

1. Sulfonarea directă a hidrocarburilor aromatice

Ar–H + H2SO4 (conc.) → Ar–SO3H + H2OEx.

H2SO4; 200C

H2O

+

_

SO3H

H2SO4; 2000C

_ H2O

+

SO3H

SO3H H2O_

H2SO4; 3000C

SO3H

SO3HHO3S

acid benzensulfonic acid benzentrisulfonic

CH3

3H2SO4

H2O

+ 2

- 2

CH3

SO3H

CH3

SO3H

+

acizi orto-, meta si para-toluensulfonici

toluen

CH3

SO3H+

13%

79%8%

25

Page 26: curs organica

H2SO4+

t < 1000C

t > 1000C

H2O

H2O_

_

SO3H

SO3H

H2SO4+_ H2O

H2O_H2SO4

SO3H

SO3H

SO3H

HO3S+

acid - naftalensulfonic

acid -naftalensulfonic

acid 1,5-naftalen-disulfonic

acid 2,6-naftalen-disulfonic

Proprietăţi fizice

Acizii sulfonici aromatici sunt substanţe solide, frumos cristalizate, higroscopice, solubile în apă, insolubile în solvenţi organici uzuali.

Sunt acizi tari, cu o tărie comparabilă cu a acidului sulfuric şi acidului periodic Nu pot fi distilaţi deoarece se descompun.

Sărurile lor sunt solubile în apă.

Proprietăţi chimice

1.Desulfonarea – se formează hidrocarburi aromatice

Ar SO3H H2O+ C6H6 H2SO4+H2SO4 dil.; 150-2500C

2.Topirea alcalină – se formează fenoli

+ NaOHAr SO3H3000C

H2O_Ar SO3Na

NaOH; 3000C

Na2SO3_ Ar OH

3.Topirea cu cianuri alcaline – se formează nitrili

Ar SO3H NaCN+ Ar CN K2SO3+

4.Reacţia cu pentaclorura de fosfor – se formează sulfocloruri

Ar SO3Na PCl5+ Ar SO2Cl POCl3 NaCl+ +

benzensulfoclorura(benzensulfonilclorura)

Sulfoclorurile aromatice sunt intermediari în multe sinteze organice.

26

Page 27: curs organica

C6H5SO2Cl H2O C6H5SO3H- HCl

+

R OH+- HCl

C6H5SO3R

NH3+ 2NH4Cl_ C6H5SO2NH2

CH3 NH2+- HCl

C6H5SO2NHCH3

C6H6AlCl3

- HClC6H5SO2C6H5+

acid sulfonic

ester sulfonic

benzensulfonamida (sulfamida)

difenilsulfona

N-metil-benzensulfonamida

Sulfonamidele (sulfamidele), amide ale acizilor sulfonici, sunt substanţe solide, frumos cristalizate, cu temperaturi de topire nete. În 1908 a fost sintetizat un compus nou, p-aminobenzensulfonamidă, care a trecut însă neobservat. În 1938, G. Domagk a primit premiul Nobel pentru descoperirea acţiunii antibacteriene a unei noi sulfamide: „prontozilul roşu”.

H2N

NH2

N N SO2NH

NH2

SO2NH2

NH2

NH2

NH2

+

sulfanilamida(agent antistreptococic)

1,2,4-triaminobenzen (inactiv)

Sulfanilamida a fost introdusă în terapeutică sub numele de „prontozilul alb”.

Un număr important de medicamente bacteriostatice sunt compuşi derivaţi de la sulfonamide, cu formula generală:

NH2

SO2NH R

NH2

SO2NH

N

N

O CH3

NH2

SO2NHO

N

CH3CH3

sulfametin(2-sulfonamido-5-metoxipirimidina)

sulfafurazol(5-sulfamido-3,4-dimetilizoxazol)

Dintre arilsulfocloruri, toluensulfoclorurile (orto- şi para-) au importanţă practică deosebită.o-Toluensulfonilclorura este un produs lichid, folosit la sinteza zaharinei (o sulfimidă benzoică).

27

Page 28: curs organica

CH3

H2SO3Cl (exces)

H2O_

CH3

SO2Cl NH3

- HCl

+

CH3

SO2NH2 KMnO4

_ H2O

COOH

SO2NH2

H2O_

CNH

SO2

O

zaharina

Sarea de sodiu a zaharinei este solubilă în apă, de aceea zaharina se comercializează pentru gustul ei dulce. Este de 500 de ori mai dulce decât zaharoza. A fost descoperită în 1879 de Ira Remsen şi folosită ca edulcorant de către diabetici şi supraponderali. Din 1960 a fost suspectată de acţiune cancerigenă. Testările pe şoareci au arătat că nu induce cancerul, dar că, în cantităţi mari, accelerează diviziunea celulelor.p-Toluensulfonilclorura este un produs solid, folosit la sinteza p-toluenclorosulfonamidei sodate, numită cloramina T.

CH3

SO2Cl

+

- HCl

NH3

CH3

SO2NH2

+ NaOCl

H2O_

CH3

SO2NCl

Na

Cloramina T are acţiune dezinfectantă datorită punerii în libertate a acidului hipocloros (HClO). Este folosită la dezinfectarea rănilor şi la sterilizarea apei de băut.

p-Toluensulfonilclorura se numeşte scurt tosilclorură (p-toluensulfonilul se numeşte grupă tosil).

AMINOACIZI

Definiţie

Aminoacizii pot fi consideraţi derivaţi funcţionali ai acizilor mono- şi policarboxilici în care unul sau mai mulţi atomi de hidrogen sunt înlocuiţi cu grupe –NH2.

Nomenclatură

Denumirea aminoacizilor se obţine prin adăugarea prefixului amino la numele acidului, precizând poziţia grupelor amino faţă de grupa carboxil prin cifre sau litere greceşti.

Clasificare

Denumire aminoacid Structură aminoacidAcizi monoamino-monocarboxilici (caracter neutru)

Acid α-aminoacetic, glicocol, glicină CH2

NH2

COOH

Acid α-aminopropionic, α-alanină CH3 CH

NH2

COOH

28

Page 29: curs organica

Acid α-amino-3-metilbutanoic, Acid α-aminoizovalerianic, valină*

CH CH

NH2

COOH

CH3

CH3

Acid α-aminoizocapronic, leucină* CH2 CH

NH2

COOHCH

CH3

CH3

Acid α-amino-β-metilvalerianic, izoleucină* CH3 CH2 CH

CH3

CH

NH2

COOH

Acid β-fenil-α-aminopropionic, fenilalanină* CH2

C6H5

CH

NH2

COOH

Acizi monoamino-dicarboxilici (caracter acid)Acid aminosuccinic, acid asparagic, acid aspartic HOOC CH2 CH

NH2

COOH

Acid α-aminoglutaric, acid glutamic HOOC CH2 CH2 CH

NH2

COOH

Acizi diamino-monocarboxilici (caracter bazic)Acid α, δ-diaminovalerianic, ornitină CH2 CH2 CH2 CH

NH2

COOH

NH2

Acid α, ε-diaminocapronic, lisină* CH2

NH2

CH2 CH2 CH2 CH

NH2

COOH

Acid -α-amino-δ-guanidinovalerianic, arginină* H2N CH

NH2

NH CH2 CH2 CH2 CH

NH2

COOH

HidroxiaminoaciziAcid α-amino-β-hidroxipropionic, serină CH2 CH

OH NH2

COOH

Acid β-hidroxi-α-aminobutiric, treonină* CH3 CH

OH

CH

NH2

COOH

p-Hidroxifenilalanină, tirosinăHO CH2 CH

NH2

COOH

TioaminoaciziAcid α-amino-β-tiopropionic, cisteină CH2 CH

SH NH2

COOH

Acid di(α-amino-β-tiopropionic), cistină

S

S

CH2

CH2

CH

CH

COOH

COOH

NH2

NH2

Acid α-amino-γ-S-metil-tiobutiric), metionină* CH3 S CH2 CH2 CH

NH2

COOH

Aminoacizi heterociclici

29

Page 30: curs organica

Acid pirolidin-α-carboxilic, prolină

NH

COOH

Acid 4-hidroxipirolidin-2-carboxilic, hidroxiprolină

NH

HO

COOH

Imidazolilalanină, histidină* CH2 CH

NH2

COOH

N NH

β-Indolilalanină, triptofan*

NH

CH2 CH

NH2

COOH

Aminoacizii formulaţi mai sus reprezintă principalii aminoacizi care intră în constituţia proteinelor. Până în prezent s-au izolat circa 50 de aminoacizi naturali.

Aminoacizii pot fi sintetizaţi de organismele vii, plante sau animale. Aminoacizii care nu sunt sintetizaţi de organismul animal şi trebuie introduşi prin hrană se numesc esenţiali. Aminoacizii sintetizaţi de organism se numesc neesenţiali.

Pentru omul adult sunt necesari următorii 10 aminoacizi esenţiali: valină, leucină, izoleucină, fenilalanină, triptofan, treonină, lisină, metionină, arginină, histidină, furnizaţi zilnic prin hrană. Spre deosebire de lipide şi glucide, în organism nu se fac rezerve de aminoacizi.

Aminoacizii esenţiali nu se pot înlocui unii pe alţii.

Structură

Aminoacizii au în molecula lor o grupă funcţională acidă (grupa –COOH) şi o funcţiune bazică (grupa –NH2). Cele două grupe se neutralizează reciproc, intramolecular.

Aminoacizii au structură dipolară, de amfion.

H2N R COOH H3N R COO

Datorită structurii dipolare, aminoacizii au caracter amfoter.• În mediu acid se comportă ca baze; captează protoni şi trec în cationi.• În mediu bazic se comportă ca acizi; cedează protoni şi trec în anioni.În ambele cazuri pH-ul nu se schimbă. Soluţiile poase ale aminoacizilor au rol de soluţii tampon

(păstrează constant pH-ul soluţiei).

H3N R COOH

H3N R COO

H2N R COO

cation (in mediu acid)

amfion (in mediu neutru)

anion (in mediu bazic)

Metode de obţinere

30

Page 31: curs organica

1. Hidroliza acidă (H2SO4; HCl), bazică sau enzimatică a proteinelor – se formează 20-25 aminoacizi

2. Aminarea acizilor halogenaţi

R CH

X

COOHNH3

- HX

+R CH

NH2

COOH

CH2

Cl

COOH+

- HX

NH3CH2

NH2

COOH

acid monocloroacetic glicocol (glicina)

3. Sinteza Gabriel

CO

CO

N K Cl CH2 COOR+- KCl

CO

CO

N CH2 COOR

ftalimida potasica esterul unui acid halogenat

H2O+ 2COOH

COOH

CH2

NH2

COOHR OH+ +

acid o-ftalic glicocol alcool

4. Reacţia cianhidrinelor aldehidelor şi cetonelor cu amoniac – se formează α-aminoacizi

R CH O HCN+ R CH CN

OH

NH3

H2O

+_

R CH CN

NH3

H2O

NH3

+2_ R CH COOH

NH3

cianhidrina aminonitril aminoacid

CH2 O HCN+ CH2

OH

CN_+

H2O

NH3CH2

NH2

CN _+2

NH3

H2OCH2

NH2

COOH

glicocol5. Reducerea oximelor acizilor cetonici

R C COOH

O

H2N OH+H2O_ R C COOH

N OH

H2

_ H2O

+R CH COOH

NH2

acid -cetonic oxima

6. Adiţia amoniacului la dubla legătură a acizilor dicarboxilici nesaturaţiHOOC CH CH COOH NH3+ HOOC CH2 CH COOH

NH2acid fumaric

acid asparagic7. Sinteza de β-aminoacizi

31

Page 32: curs organica

a) β-alanina este singurul β-aminoacid cunoscut

CH2 CH

CN

NH3+ CH2 CH

NH2 CN

H2O

NH3

+2_ CH2 CH2

NH2

COOH

acrilonitril aminoacrilonitril - alanina

b) Degradarea Hofmann a monoamidelor acizilor dicarboxilici

COH2C

H2C CO

O NH3+

CH2

CH2

CONH2

COOH

NaOBr

NaBrCO2

+

__

CH2

CH2

NH2

COOH

anhidrida succinica monoamida succinica - alanina

COO

CO+ NH3

CONH2

COOH __

+

NaBrCO2

NaOBrNH2

COOH

anhidrida ftalica monoamida o-ftalica acid o-aminobenzoic (acid antranilic)

Proprietăţi fizice

Aminoacizii sunt substanţe solide, cristaline, cu p.t. mult mai ridicate decât ale acizilor corespunzători datorită structurii lor amfionice.

Nu pot fi distilaţi deoarece se descompun la punctul de topire.Sunt solubili în apă, puţin solubili sau insolubili în solvenţi organici.Unii aminoacizi au gust dulce.Toţi aminoacizii naturali sunt optic activi, cu excepţia glicocolului şi fac parte din seria L, adică au

grupa –NH2 în stânga catenei, în reprezentarea prin formulele plane.Există şi aminoacizi cu configuraţia D.Proprietăţi chimice

A. Caracterul amfoter

Aminoacizii au proprietăţi chimice determinate de prezenţa celor două grupe funcţionale –COOH şi –NH2. În stare solidă, aminoacizii se află sub formă de amfioni. Astfel, în soluţie apoasă există la echilibru cei 3 ioni ai aminoacidului, din care forma amfionică în exces. Existenţa acestor ioni explică solubilitatea în apă şi nevolatilitatea aminoacizilor.

• În mediu puternic acid toţi aminoacizii se găsesc sub formă de cationi. H3N R COOH

• În mediu puternic bazic toţi aminoacizii se găsesc sub formă de anioni. H2N R COO

• În mediu neutru există sub formă de saruri interne, numite zwitterioni (amfioni) sau ioni dipolari.

H3N R COO

Aminoacizii pot da săruri atât cu acizii, cât şi cu bazele, ei sunt amfoteri.Există o valoare intermediară de pH, numit punct izoelectric (pI), la care concentraţia de anioni şi

cationi este egală şi predomină forma amfionică sau dipolară. Valoarea punctului izoelectric depinde de

32

Page 33: curs organica

structura aminoacidului, adica de prezenţa unei grupe –NH2 sau –COOH suplimentare. La punctul izoelectric solubilitatea aminoacizilor în apă este minimă.

B. Reacţii datorate grupei carboxil

1. Reacţia cu pentaclorură de fosfor – se formează cloruri acideR CH COOH

NH2

PCl5+ R CH COCl

NH2

POCl3 HCl+ +

2. Reacţia de esterificare

R CH COOH

NH2

R OH+HCl

R CH COOR

NH3]Cl

3. Decarboxilarea – se formează amine primare

R CH COOH

NH2CO2

t0C_ R CH2 NH2

4. Reducerea – se formează aminoalcooli

R CH COOH

NH2

+ 4 [H]Na / EtOH

R CH CH2

NH2 OH

C. Reacţii datorate grupei amino

1. Acilarea – se formează N-acilaminoacizi.

a) cu cloruri acide (CH3COCl = clorura de acetil, C6H5COCl = clorura de benzoil).

R CH COOH

NH2

R' COCl+- HCl

R CH COOH

NHCOR'

HO

b) cu anhidride acide

+ (R' CO)2OR CH COOH

NH2R' COOH_

R CH COOH

NHCOR'

2. N-alchilarea cu sulfat de metil

R CH COOH

NH2

(CH3)2SO4+H2SO4

_ R CH COOH

N(CH3)2

3. Desaminarea cu acid azotos – se formează hidroxiacizi (Metoda van Slyke).

R CH COOH

NH2

HNO2+H

R CH COOH

OH

N2 H2O+ +

33

Page 34: curs organica

4. Reacţia cu clorura (bromura) de nitrozil – se formează α-cloro(bromo)acizi

R CH COOH

NH2

+ NOCl

N2

H2O

__

R CH COOH

Cl

5. Încălzirea cu acid iodhidric – se formează acizi carboxilici

R CH COOH

NH2NH3

_

HI; 2000CR CH2 COOH

6.Condensarea cu aldehide – se formează imine.R CH COOH

NH2

H2C=O+ R CH

N=CH2

COOHH2O-

D. Reacţii datorate ambelor grupe funcţionale

1. Reacţia cu metale grele – se formează săruri complexe interne (săruri chelatice)

CH2

NH2

COOH2+ CuO; t0C H2N CH2CH2 NH2

C OOCu

CO O

( se prezinta sub forma unor ace bleu)

2. Trialchilarea – se formează betaine (trialchilderivaţi ai aminoacizilor)

R CH COOH

NH2

CH3I3+ R CH COO

N(CH3)3

+ 3NaOH+ 3 NaI + 3 H2O

3. Comportarea termică – depinde de poziţia grupei amino faţă de grupa carboxil.

a) α-amioacizii – suferă reacţii de condensare

• Prin eliminarea unei molecule de apă intermolecular rezultă o dipeptidă în care se găseşte o legătură amidică, –CO–NH2, numită legătură peptidică.

R CH COOH

NH2

H2N CH

R

COOH+H2O_ R CH CO

NH2

NH CH COOH

R

• Prin eliminarea a două molecule de apă intermolecular – se formează compuşi ciclici derivaţi de la piperazină.

_ H2O+ H2N CH

COOH

RR CH COOH

NH22 HN

NH

O

O

R

R

dicetopiperazina

34

Page 35: curs organica

b) β-aminoacizii

• Prin eliminarea intramoleculară a amoniacului – se formează acizi α, β-nesaturaţi

R CH CH2

NH2

COOHt0C

NH3_ R CH CH COOH

CH2 CH2

NH2

COOH _ NH3

t0CCH2 CH COOH

- alaninaacid acrilic

c) γ şi δ-aminoacizi

• Prin eliminarea intramoleculară a apei are loc o ciclizare – se formează lactame

CH2 CH2 COOHCH2

NH2

t0C

H2O_

NH

O

- butirolactama

CH2 CH2 COOHCH2CH2

NH2

_ H2O

t0C

NH

O

- valerolactama

4. Reacţia cu ninhidrina (o tricetonă) – reacţie de identificare şi dozare. Este caracteristică α-aminoacizilor – apare o coloratie albastru-violet, cu excepţia prolinei care formează o coloraţie galbenă.

Reprezentanţi

Glicocol, glicină (acid aminoacetic) a fost denumit astfel datorită gustului său dulce (glycos = dulce; colta = clei).

α-alanina (acid α-aminopropionic) = componentă normală a tuturor proteinelor.β-alanina (acid β-aminopropionic) – se obţine numai prin sinteză; este folosit ca antagonist al

bufeurilor de căldură la menopauză.Acidul asparagic şi acidul glutamic sunt componente foarte răspândite ale proteinelor.Acidul antranilic (acid o-aminobenzoic) se găseşte sub formă de ester metilic (antraniliat de metil)

în uleiul din flori de iasomie, portocale şi tuberoză. Preparat sintetic, se foloseşte în parfumerie.Acidul meclofenic (acid N-(2,6-dicloro-m-tolil)antranilic) este un antiinflamator nesteroidian. El

inhibă sinteza de prostaglandine prin blocarea ciclooxigenazei.

COOH

NH

Cl CH3

Cl

Acidul m-aminobenzoic se foloseşte la obţinerea unor coloranţi azoici.Acidul p-aminobenzoic (PAB) este factor de creştere pentru numeroase microorganisme. Face parte

din grupa vitaminelor H. Intră în constituţia acidului folic.Esterii săi au proprietăţi anestezice.Esterul etilic se numeşte anestezină (benzocaină) = anestezic local, liposolubil.

35

Page 36: curs organica

COOC2H5

NH2

Esterul acidului p-aminobenzoic cu dietilaminoetanolul se numeşte novocaină (procaină) şi se foloseşte sub formă de clorhidrat.

C

NH2

O

O CH2 CH2 N(C2H5)2

AMINOALCOOLI

• Aminoalcoolii conţin în molecula lor, pe lângă grupe –NH2, şi grupe –OH.

Nomenclatură

• Se denumesc prin adăugarea sufixului ol la numele hidrocarburii, urmat de sufixul amină.

Metode de obţinere

1. Tratarea oxidului de etilenă cu soluţie apoasă de amoniac

NH3

O

H2C CH2+ CH2

OH

CH2

NH2

etanolamina( - hidroxietilamina, - aminoetanol)

+

O

H2C CH2NH3 2HN

CH2

CH2

CH2

CH2

OH

OHdietanolamina

3NH3

O

H2C CH2

+ HN

CH2

CH2

CH2 CH2 OH

CH2

CH2

OH

OH

trietanolamina

2. Hidrogenarea catalitică a aminoesterilor

R CH COOR

NH2

+ [H]Ni - Raney sau LiAlH4

R CH CH2

NH2

OHR OH_

36

Page 37: curs organica

Proprietăţi fizice

Termenii inferiori sunt lichide vâscoase, higroscopice, solubile în apă, cu p.f. ridicate datorită asocierilor moleculare prin legături de hidrogen.

Proprietăţi chimice

1. Reacţia de N-acilare

R CH

OH

NH2 CH3COCl+AlCl3

R CH

OH

NHCOCH3- HCl

2. Reacţia cu sodiu metalic – se formează alcoxizi

R CH

OH

NH2 + Na R CH

ONa

NH2 + 1/2 H2

3. Reacţia cu clorură de tionil – se formează cloroalchilamine

N(CH2–CH2–OH)3 + 3 SOCl2 → N(CH2–CH2–Cl)3 2,2’,2”-tricloro-trietilamină

4.Tratarea cu acid sulfuric – se formează imine

CH2

NH2

CH2

OH

H2SO4

H2O

+_

CH2H2C

NH

aziridina(etilenimina)

CH2

NH2

CH2

OSO3H

NaOH

Na2SO4

+

_

etanolamina sulfat acid

Reprezentanţi

Etanolamina, (2-aminoetanol, colamina) este o componentă a fosfatidelor; rezultă prin decarboxilarea enzimatică a serinei.

HO CH2 CH2 N(CH3)3OH

• Colina este una din vitaminele grupei B. • Derivatul acetilat al colinei, acetilcolina, este un mediator chimic al sistemului nervos parasimpatic.

CH2

OCOCH3

CH2 N(CH3)3OH

Dietanolamina, prin deshidratare intramoleculară, conduce la morfolină (un compus heterociclic).

HO CH2 CH2

NH

CH2CH2HOH2O N

H

O

_

37

Page 38: curs organica

Trietanolamina formează săpunuri neutre cu acizii graşi superiori. Săpunurile sunt folosite ca emulgatori în industria textilă, a pielăriei şi în cosmetică.

Propranololul, (1-(izopropilamino)-3-(1-naftiloxi)-2-propanol), are acţiune antihipertensivă.

O CH2 CH

OH

CH2 NH CH(CH3)2

AMINOFENOLI

Metode de obţinere

1. Obţinerea o- şi p-aminofenolilor prin reducerea o- şi p-nitrofenolilor (sau nitrozofenolilor).

OH

NO2 + 6 [H]Zn + HCl

OH

NH2H2O+ 2

2. Obţinerea m-aminofenolilor

OH

OH

NH3

2000C

H2O+

_

OH

NH2

rezorcina

Proprietăţi fizice

• Sunt substanţe solide, puţin solubile în apă, solubile în mediu acid sau bazic.

Proprietăţi chimice

1. Datorită proprietăţilor slab bazice formează săruri cu acizii tari

2. Datorită proprietăţilor slab acide formează fenoxizi cu hidroxizii alcalini

3. N-Alchilarea

4. N-Acilarea

5. Oxidarea izomerilor orto şi para – se formează chinone

6. Datorită proprietăţilor lor reducătoare, se folosesc ca revelatori fotografici

Reprezentanţi

m-Aminofenolul este folosit la sinteza acidului p-aminosalicilic (PAS), tuberculostatic.p-Aminofenolul este folosit ca revelator fotografic, la colorarea blănurilor.

38

Page 39: curs organica

• Eterul etilic al p-aminofenolului (p-etoxianilina), Fenetidina, prin acetilare trece în Fenacetină, cu acţiune analgezică şi antipiretică.

OC2H5

NH2

OC2H5

NHCOCH3

Fenetidina Fenacetina

• Prin acetilarea p-aminofenolului se formează N-(p-hidroxifenil)acetamida, paracetamolul, cu acţiune analgezică şi antipiretică.

NH

HO

CCH3

O

Adrenalina, (epinefrina), este un hormon secretat de medulosuprarenală; reglează tensiunea arterială şi metabolismul glucidic acţionând antagonist cu insulina.

OH

OH

CH

OH

CH2 NHCH3

HIDRAŢI DE CARBON

Hidraţii de carbon sau zaharidele reprezintă o clasă vastă de de produşi naturali care intră în compoziţia oricărei celule vii, fiind un element structural al acizilor nucleici.

Hidraţii de carbon, alături de grăsimi, proteine, vitamine şi unele săruri minerale, sunt componente esenţiale ale hranei. Spre deosebire de proteine, care trebuie resintetizate continuu, hidraţii de carbon pot fi depozitaţi în organismele vii sub formă de polizaharide de rezervă (glicogen în regnul animal şi amidon în regnul vegetal).

Clasificare

- În funcţie de comportarea lor la hidroliză:A. Monozaharide (Oze)B. OligozaharideC. Polizaharide (Ozide)

A. Monozaharidele nu se hidrolizează. Ele se pot clasifica:1. După numărul atomilor de carbon:

- trioze- tetroze- pentoze- hexoze, etc

2. După tipul grupei funcţionale carbonil:

39

Page 40: curs organica

- aldoze- cetoze

B. Oligozaharidele sunt formate din 2-10 resturi de monozaharide unite prin legături eterice la hidroxilul semiacetalic.După numărul de monozaharide rezultate la hidroliză, există:

- Dizaharide- Trizaharide- Tetrazaharide, etc

C. Polizaharidele sunt compuşi macromoleculari formaţi din mai mult de 10 unităţi de monozaharide, unite prin legături eterice. Prin hidroliza polizaharidelor în cataliză acidă sau enzimatică, se obţin monozaharide.

MONOZAHARIDE (MONOZE)

Sunt alcooli polihidroxilici cu 3-8 atomi de carbon, care conţin o grupă carbonil.Sunt de două tipuri:

• Polihidroxialdehide = aldoze• Polihidroxicetone = cetoze

CH=O

CH

CH2OH

OH

CH2OH

C=O

CH2OH

CH=O

CHOH

CHOH

CH2OH

aldotrioza cetotrioza aldotetroza

CH=O

CHOH

CHOH

CHOH

CH2OH

CH=O

CHOH

CHOH

CHOH

CHOH

CH2OH

CH2OH

C=O

CHOH

CHOH

CHOH

CH2OH

aldopentoza aldohexoza cetohexoza

Majoritatea zaharurilor au denumiri comune, inspirate din numele produşilor naturali din care au fost izolate iniţial.

CH=O

C OHH

CH2OH

CH=O

C OHH

C

CH2OH

OHH

CH=O

C HHO

C

CH2OH

OHH

glicerinaldehida eritroza treoza

40

Page 41: curs organica

CH=O

C OHH

C

C

OHH

CH2OH

OHH

CH=O

C HHO

C

C

OHH

CH2OH

OHH

CH=O

C OHH

C

C

HHO

C

OHH

CH2OH

OHH

CH=O

C HHO

C

C

HHO

C

OHH

CH2OH

OHH

CH=O

C OHH

C

C

HHO

C

HHO

CH2OH

OHH

riboza arabinoza glucoza manoza galactoza

Monozaharidele, cu excepţia dihidroxiacetonei, sunt combinaţii optic active.Cea mai simplă monozaharidă, glicerinaldehida, are un singur atom de carbon asimetric. Ea există

sub forma a doi enantiomeri, cu configuraţiile de mai jos.

D (+) glicerinaldehida

CH=O

C OHH

CH2OH

L (-) glicerinaldehida

CH=O

C HHO

CH2OH

Monozaharidele care au în formulele Fisher, la atomul de carbon chiral vecin cu grupa –CH2OH, o configuraţie identică cu a D–glicerinaldehidei, se încadrează în seria D. Ele se consideră înrudite configurativ cu D-glicerinaldehida.

Monozaharidele care au configuraţia identică cu cea din L-glicerinaldehidă se încadrează în seria L.Între configuraţiile D – L şi sensul de rotaţie (+) spre dreapta şi spre stânga a luminii polarizate nu

există nici o legătură.Toate celelalte monozaharide conţin grupele de alcool secundar legate de un atom de carbon chiral.

N = 2n ; N = numărul de stereoizomeri n = numărul de atomi de carbon chirali (asimetrici)

N = 21 = 2 (aldotrioze)N = 22 = 4 (aldotetroze)N = 23 = 8 (aldopentoze)N = 24 = 16 (aldohexoze)

Numerotarea atomilor de carbon din monozaharide începe la atomul de carbon aldehidic pentru aldoze şi la atomul de carbon marginal cel mai apropiat de grupa carbonil pentru cetoze.

Cetozele care au un atom de carbon chiral în minus faţă de aldozele izomere, au un număr de stereoizomeri micşorat corespunzător.

Notaţiile D şi L nu au nici o legătură cu rotaţiile optice. Monozaharidele care au grupa alcool secundar cea mai depărtată de grupa carbonil orientată spre

dreapta, fac parte din seria D. Monozaharidele în care grupa –OH secundară cea mai depărtată de grupa carbonil este orientată spre

stânga, fac parte din seria L.

Epimeri

Diastereoizomeri care diferă între ei doar prin configuraţia unui singur atom de carbon chiral se numesc epimeri.

41

Page 42: curs organica

Ex: Glucoza este epimer cu cu manoza la C2.

manoza

CH=O

C HHO

C

C

HHO

C

OHH

CH2OH

OHH

1

2

glucoza

CH=O

C OHH

C

C

HHO

C

OHH

CH2OH

OHH

12

Glucoza este epimer cu galactoza la C4.

galactoza

CH=O

C OHH

C

C

HHO

C

HHO

CH2OH

OHH

glucoza

CH=O

C OHH

C

C

HHO

C

OHH

CH2OH

OHH

Structura ciclică (semiacetalică) a monozaharidelor

Triozele şi tetrozele au structură aciclică.Pentozele, hexozele şi monozaharidele cu mai mulţi atomi de carbon se găsesc sub formă de

semiacetali ciclici, mai stabili decât formele aciclice.Formarea ciclurilor cu 5 şi, mai ales, 6 atomi de carbon, este favorizată de tensiunile de ciclu

minime.După numele heterociclurilor cu oxigen cu 5 şi 6 atomi de carbon, forma ciclică a monozaharidelor este

denumită furanozică şi piranozică.

CHHC

HCO

CH

HC

HCO

CH

CH

H2

C

furan - piran

• În D–glucoză, grupa aldehidică se află în apropiere spaţială cu grupa hidroxil de la atomul de carbon din poziţia 5. În poziţie sterică favorabilă, perechea de electroni neparticipanţi de la atomul de carbon al grupei –OH din poziţia 5 (sau 4) atacă atomul de carbon cu densitate mică de electroni al grupei carbonil, cu producerea unei noi legături C–O. Atomul de carbon al aceleiaşi grupe –OH migrează la atomul de oxigen al grupei carbonil, formându-se un semiacetal.

42

Page 43: curs organica

Grupa hidroxil care se formează la atomul de carbon al grupei carbonil se numeşte semiacetalică sau glicozidică şi are proprietăţi diferite de ale celorlalte grupe hidroxil.

OH

C

CH2OH

H

OH

H

H

OH

H

OH

H

O1

23

4

5

6

glucoza(forma ciclica glucopiranozica)

6

5

4

3 2

1

O

CH2OH

H

OH

H

H

OH

H

OH

H

OH

Grupele –OH situate în dreapta în formulele aciclice plane, se scriu dedesubtul planului ciclului, iar cele situate în stânga, deasupra planului.

În soluţie se stabileşte un echilibru la care concentraţia formei ciclice, favorizată energetic, este mult mai mare decât concentraţia formei aciclice.

În stare solidă, echilibrul este total deplasat în favoarea formei ciclice.Prin transformarea grupei carbonil se formează 2 stereoizomeri numiţi anomeri, notaţi cu α şi β.• Stereoizomerul în care grupa –OH glicozidoc are aceeaşi orientare (vecinătate spaţială) cu –OH de la

C2 al D–glucozei, se numeşte anomer α.• Stereoizomerul cu –OH glicozidic orientat în direcţia opusă se numeşte anomer β

Glucoza este un polihidroxi–semiacetal cu ciclu piranozic (de şase atomi).

C

C OHH

C

C

HHO

C

OHH

CH2OH

H

OHH

O

C=O

C OHH

C

C

HHO

C

OHH

CH2OH

OHH

H C

C OHH

C

C

HHO

C

OHH

CH2OH

H

HO H

O

α-glucoză forma aldehidică β-glucoză (α-glucopiranoză) (β-glucopiranoză)

O

CH2OH

H

OH

H

H

OH

H

OH

H

OH

OH

C

CH2OH

H

OH

H

H

OH

H

OH

H

O

O

CH2OH

H

OH

H

H

OH

H

OH

OH

H

anomer α forma aldehidică anomer β

Inelul piranozic poate exista, ca şi ciclohexanul, în conformaţii fără tensiune, scaun sau baie.Cei doi anomeri ai glucozei au conformaţiile:

43

Page 44: curs organica

OCH2OH

HOHO

OHH

OH

OCH2OH

HOHO

OHOH

H

anomer α anomer β(D-glucoză)

• Pentozele dau de obicei cicluri de cinci, furanozice.• Fructoza liberă are ciclu piranozic.

CH2OH

C

C

O

C

HHO

C

OHH

CH2OH

OHH

CH2OH

C

C

C

HHO

C

OHH

CH2OH

H

HO

O

CH2OH

C

C

C

HHO

C

OHH

CH2

OHH

H

O

1

6

D-fructoză D-fructofuranoză D-fructopiranoză

O CH2OH

OHOH

H

CH2OH

HH

OH

1

2

3 4

5

6 6

5

43

2

1 O OH

CH2OHOH

H

CH2OH

HH

OH

anomer α anomer β (D-fructofuranoză)

O

H

HCH2OH

OH

H

OH

OH

H OH

H

O

H

HOH

CH2OH

H

OH

OH

H OH

H1

2

34

5

6

anomer α anomer β (D-fructopiranoză)

Proprietăţi fizice

Monozaharidele (în special pentozele şi hexozele) sunt compuşi neutri, cristalini, incolori, solubili în apă, puţin solubili în alcool şi insolubili în eter, cloroform, hidrocarburi.

44

Page 45: curs organica

Proprietăţi chimice

Monozaharidele prezintă proprietăţi specifice compuşilor carbonilici şi alcoolilor.

1. Reducerea – se formează alcooli polihidroxilici

CH=O

(CHOH)n

CH2OH

H2/Ni

CH2OH

(CHOH)n

CH2OH

CH2OH

C=O

(CHOH)n-1

CH2OHaldoza poliol

cetoza

2. Oxidarea

a) blândă, cu apă de clor, apă de brom sau HNO3 diluat – se formează acizi aldonici (fără degradarea moleculei).

CH=O

(CHOH)4

CH2OH

[O]COOH

(CHOH)4

CH2OHH2O_

C

C

O

C

C

C

CH2OH

OH

H

OHH

H

HO

HO

glucoza acid D-gluconic

-lactona

b) energică, cu HNO3 concentrat – se formează acizi aldarici (acizi zaharici, acizi polihidroxidicarboxilici).

[O]/HNO3 dil.

CH=O

(CHOH)n

CH2OH

COOH

(CHOH)n

CH2OH

aldoza acid zaharic

CHO

C

C

C

C

CH2OH

OH

H

OH

OH

H

HO

H

H

HNO3 conc.

COOH

C

C

C

C

CH2OH

OH

H

OH

OH

H

HO

H

H

D-glucoza acid D-glucaric

45

Page 46: curs organica

Prin oxidarea aldozelor la grupa hidroxil primară se obţin acizi uronici. Oxidarea are loc după protejarea grupei carbonil şi a grupelor –OH secundare (prin esterificare). Se transformă doar grupa –CH2OH liberă.

C

C

C

C

C

CH2OH

OH

OH

H

OH

H

H

HO

H

H

O[O]

C

C

C

C

C

COOH

OH

OH

H

OH

H

H

HO

H

H

O

α-D-glucoză acid glucuronic

Acidul glucuronic are rol important în detoxifierea organismului.

d) oxidarea cu reactivi Tollens şi Fehling – aldozele conduc la acizi aldonici, cetozele conduc la compuşi α-dicarbonilici.e) oxidarea cu acid periodic (HIO4) – are loc ruperea legăturilor dintre două grupe >CH–OH vecine.

CH=O

C

C

C

C

CH2OH

OH

H

OH

OH

H

HO

H

H

5HIO4+

HCOOH

HCOOH

HCOOH

HCOOH

HCOOH

+ 5HIO3

Reacţia permite determinarea naturii piranozice sau furanozice a ciclurilor de monozaharide. Acidul periodic are proprietatea de a oxida α-glicolii. Dacă în moleculă se găsesc mai multe grupe >CH–OH vecine, are loc ruperea legăturii dintre ele.

3. Acţiunea bazelor

- Hidroxizii alcalini concentraţi distrug monozaharidele.- Bazele diluate provoacă o inversare a configuraţiei atomului de carbon C2, de la C1 şi invers, numită α–inversiune (epimerizare).Ex: D–glucoză ↔ D–manoză ↔ D–fructoză

Epimerizarea are rol important în reacţia de degradare a monozaharidelor, în cursul fermentaţiei alcoolice.

4. Acţiunea acizilor

a) Acizii diluaţi nu produc modificări în structura monozaharidelor

b) Acizii concentraţi, la cald, deshidratează pentozele si hexozele

46

Page 47: curs organica

CH=O

(CHOH)3

CH2OH

H

-3H2O OCH=O

pentoza furfurol

CH=O

CHOH)4

CH2OH

(H

H2O- 3 OCHOHOH2C

H2O / H+ 2HCOOH H3C C CH2

O

CH2 COOH+

hexoza hidroximetilfurfurol acid levulic

Aceste reacţii permit identificarea pentozelor şi hexozelor.

5.Reacţia de condensare cu fenilhidrazină – se formează fenilhidrazone → osazone

C=O

C

C

C

C

CH2OH

OH

H

OH

OH

H

HO

H

H

H

C6H5 NH NH2

H2O

+

_

C

C

C

C

C

CH2OH

OH

H

OH

OH

H

HO

H

H

H N NH C6H5

_ H2O

C6H5 NH NH2+ 2

NH3

C6H5NH2_

_

C

C

C

C

C

CH2OH

N

H

OH

OH

HO

H

H

H N NH C6H5

NH C6H5

glucoza fenilhidrazonaglucozei

osazona glucozei

H2O / H+ 2

C6H5 NH NH2- 2

C=O

C

C

C

C

CH2OH

O

H

OH

OH

HO

H

H

H

reducere

CH2OH

C

C

C

C

CH2OH

O

H

OH

OH

HO

H

H

osona fructoza

Osazonele sunt substanţe de culoare galbenă, frumos cristalizate, greu solubile în apă, care servesc la caracterizarea monozaharidelor şi se descompun la încălzire.

6. Eterificarea

a) Eterificarea hidroxilului glicozidic – se formează glicozide (heterozide), care sunt combinaţii cu caracter de acetal.

Glicozidele glucozei se numesc glucozide. Glicozidele fructozei se numesc fructozide. Prin eterificare cu metanol în prezenţă de HCl se formează α-metilglucozidă.

47

Page 48: curs organica

C

C

C

C

C

CH2OH

OCH3

OH

H

OH

H

H

HO

H

H

O

C=O

C

C

C

C

CH2OH

OH

H

OH

OH

H

HO

H

H

H

CH3OHHCl

+

α-D-glucoză α-D-metilglucozidă

• Molecula de alcool care participă cu grupa –OH la formarea glicozidei se numeşte aglicon.

b) Eterificarea grupelor –OH alcoolic

Prin tratarea metilglucozei cu agenţi de metilare mai energici (CH3I/Ag2O sau (CH3)2SO4/HO-) se eterifică toate grupele –OH şi se formează pentametil–D–glucoză.

O

CH2OH

H

H

OCH3

H

OHH

OH

H

OH

CH3I, Ag2O

- 5 HI

+ 5 O

CH2OCH3

H

H

OCH3

H

OCH3H

OCH3

H

OCH3

1,2,3,4,6-pentametil-D-glucoză

7. Esterificarea grupelor hidroxil

Prin tratarea monozaharidelor cu anhidridă acetică, în prezenţă de catalizatori bazici, sunt esterificate toate grupele –OH libere, cu excepţia –OH implicat în ciclul piranozic.

O

CH2OH

H

H

OH

H

OHH

OH

H

OH

(CH3CO)2O; CH3COONaO

CH2OCOCH3

H

OCOCH3

H

H

OCOCH3H

OCOCH3

H

OH3COC

- pentaacetil-D-glucoza

H3COC

O

CH2OCOCH3

H

H

OCOCH3

H

OCOCH3H

OCOCH3

H

O

- pentaacetil-D-glucoza

(CH3CO)2O; ZnCl2; 00C

8. Reacţii de identificare

48

Page 49: curs organica

Cu reactivul Tollens – se formează oglinda de argint. Cu reactivul Fehling – se formează un precipitat cărămiziu de oxid de cupru. Cu reactivul Benedict – se formează un precipitat roşu.

OLIGOZAHARIDE

Oligozaharidele sunt hidraţi de carbon ce conţin un număr mic de resturi de monozaharide unite prin legături glicozidice.

Cele mai importante oligozaharide sunt dizaharidele hexozelor, rezultate prin eliminarea unei molecule de apă între două molecule de monozaharidă.

2C6H12O6H2O_

C12H22O11

Legătura dintre resturile de monozaharide se formează prin eterificarea grupelor –OH glicozidice de la fiecare rest de monozaharidă. Această legătură se numeşte legătură dicarbonilică (C–O–C). Toate dizaharidele sunt, deci, glicozide, unul din resturi putând fi considerat aglicon.

• Legătura dintre monozaharide realizată prin eterificarea hidroxililor glicozidici de la fiecare rest de monozaharidă se numeşte legătură dicarbonilică.

Dizaharidele cu cu legătură dicarbonilică, dar care nu au hidroxil glicozidic liber, se numesc zaharuri reducătoare. Ele nu dau reacţiile caracteristice monozaharidelor. Ex: trehaloza, zaharoza.

• Legătura dintre monozaharide realizată prin eterificarea hidroxilului glicozidic al unei molecule de monozaharidă cu unul din hidroxilii alcoolici ai celeilalte molecule de monozaharidă se numeşte legătură monocarbonilică.

Dizaharidele cu legătură monocarbonilică au un hidroxil glicozidic liber şi se numesc zaharuri nereducătoare.Din această categorie fac parte:

- maltoza (2 resturi glucoză)- celobioza (2 resturi glucoză)- lactoza (glucoză + galactoză)

Zaharoza (Zahărul)

Este dizaharida cea mai răspândită în natură. Este un compus solid, cristalin, solubil în apă, insolubil în majoritatea solvenţilor organici. Se găseşte în cantităţi mici în toate plantele în care se produce fotosinteză, în nectarul florilor (alături de glucoză şi fructoză). Trestia de zahăr şi sfecla de zahăr reprezintă sursele industriale de zaharoză.

1) Prin hidroliză în mediu acid sau enzimatic rezultă o moleculă de α-glucoză + o moleculă de β-fructoză.

Zaharoza este o zaharidă nereducătoare, deci legătura între cele două molecule se formează prin participarea –OH glicozidic de la ambele molecule – se formează o legătură dicarbonilică.

O

CH2OH

HH

OHOH

H

H

OH

H

O

1

23

4

56

OCH2OH

H

OH

OH

H

H

CH2OH

5

643

2

1

49

Page 50: curs organica

2) Prin metilare – se formează un octometilderivat

3) Invertirea zahărului – reprezintă schimbarea sensului de rotaţie a planului luminii polarizate în urma hidrolizei zaharozei.

Maltoza

Se găseşte în malţul din drojdia de bere; se obţine prin hidroliza parţială (acidă sau enzimatică) a amidonului. Este de trei ori mai dulce decât zaharoza.

Se compune din 2 molecule de D-glucopiranoză unite printr-o legătură 1,4-monocarbonilică (între –OH glicozidic al unei molecule şi –OH de la C4 al celeilalte molecule).

OH

CH2OH

HOH

H

H

OH

H

OH

O

CH2OH

HHH

OHOH

H

OH

OH

Celobioza

Este un compus cristalin, incolor, solubil în apă. Se obţine prin hidroliza enzimatică (celobiaza) a celulozei.

Se compune din două molecule de D-glucoză. Nu se cunoaşte grupa –OH implicată în legătura monocarbonilică.

O

H

OHH

CH2OH

OH

H

O

CH2OH

H

H

H

OHOH

H

H

OH

O

OH

H

H

Lactoza

Se compune din D-glucoză şi D-galactoză legate printr-o legătură β-carbonilică.

HO

H

OHH

CH2OH

OH

H

O

CH2OH

H

H

OH

HOH

H

H

OH

O

OH

H

POLIZAHARIDE

50

Page 51: curs organica

Polizaharidele sunt hidraţi de carbon cu structuri macromoleculare, formate din sute sau mii de resturi de unităţi de monozaharide unite prin legături glicozidice. Au formula moleculară –(C6H10O5)n– .

Polizaharidele se găsesc mai ales în plante, care le sintetizează şi în care au rolul de a asigura rezistenţa mecanică (intrând în pereţii celulari), rol de substanţe de rezervă (nutriţional), rol de agent specific (heparina).

Polizaharidele, numite de biochimişti aglicani, dau prin hidroliză chimică sau enzimatică monozaharide sau derivaţi ai acestora.

Glicanii pot fi:- homoglicani (celuloză, amidon)- heteroglicani (mucopolizaharide)

Polizaharidele naturale sunt formate din hexoze sau pentoze. Sunt substanţe solide, amorfe sau cu structură microcristalină, insolubile sau greu solubile în apă.

CELULOZA –(C6H10O5)n–

Celuloza este o polizaharidă foarte răspândită în natură. Intră în constituţia pereţilor celulelor vegetale, alături de alte polizaharide. Bumbacul conţine cea mai mare cantitate de celuloză.

Celuloza este o polizaharidă formată din resturi de β-D-glucopiranoză unite prin legături 1,4-β-glicozidice la C4. Se formează macromolecule filiforme.

La tratare cu anhidridă acetică, (CH3CO)2O, şi cu H2SO4, celuloza trece în octa-O-acetilcelobioză, demonstrând că legăturile glicozidice din celuloză se găsesc în β, la fel ca în celobioză.

O

H

OH

OH

HHOH

HH

CH2OH

O

OH

CH2OH

HOH

H

H

OH

H

O

OH

H

OH

H

CH2OH

OH

HH

O

OH

CH2OH

H

OH H

OH

OH

H

Hn

Macromoleculele filiforme sunt orientate fie paralel, formând regiuni cu aspect microcristalin, fie sunt împletite cu goluri între ele formând regiuni cu aspect amorf. Orientarea paralelă permite formarea unui număr mare de legături de hidrogen, ceea ce dă rezistenţă mecanică ridicată fibrelor de celuloză.

Proprietăţi fizice

Celuloza este un compus solid, de culoare albă, fără gust, fără miros, insolubilă în apă şi solvenţi organici; infuzibilă, cu o bună rezistenţă mecanică.

Proprietăţile fizice deosebite de ale celobiozei se datorează masei moleculare mari şi legăturilor de hidrogen numeroase care leagă strâns macromoleculele între ele. Astfel, pătrunderea solvenţilor între macromolecule pentru a le îndepărta şi îmbiba este limitată.

Proprietăţi chimice

Grupele –OH din celuloză implicate în legăturile de hidrogen sunt mai puţin disponibile pentru reacţii chimice.

1.Hidroliza enzimatică

a) sub acţiunea enzimei celulază – se formează celobioză.b) sub acţiunea enzimei celobiază – se formează glucoză.

51

Page 52: curs organica

(C6H10O5)ncelulaza

+ n/2 H2On/2 C12H22O11

+ n/2 H2O

celobiazanC6H12O6

celobioza glucozaceluloza

2. Reacţia de esterificare cu HNO3/H2SO4 – se formează nitraţi de celuloză

CH OH + HO NO2 CH ONO2 + H2O

[C6H9O4 (ONO2)]n C6H8O3

ONO2

ONO2 n n

C6H7O2

ONO2

ONO2

ONO2

mononitrat de celuloză dinitrat de celuloză trinitrat de celuloză

Numărul de grupe –OH care se esterifică depinde de concentraţia şi de raportul dintre cei doi acizi, de temperatură, de presiune şi de timpul de reacţie.

Nitrarea unui număr mai mic de grupe –OH decât cel total existent în celuloză conduce la esteri numiţi fulmicoton (12% N) sau colodiu (10% N).

Fulmicotonul este un compus cu aspect fibros, solubil în acetonă. Explodează la lovire sau la încălzire bruscă. Serveşte la fabricarea pulberii fără fum în industria explozivilor.

Colodiul, în amestec cu o solutie alcoolică de camfor, formează o masă termoplastică numită celuloid. În soluţie de alcool etilic-eter etilic se foloseşte la acoperirea rănilor.

3. Reacţia de acetilare cu un amestec de anhidridă acetică şi acid acetic, în prezenţă de catalizatori (H2SO4, H3PO4, ZnCl2) – se formează acetaţi de celuloză.

CH OCOCH3 + CH3COOHCH OH + (CH3CO)2O

C6H7O2

OCOCH3

OH

OH

n n

C6H7O2

OCOCH3

OH

OCOCH3 C6H7O2

OCOCH3

OCOCH3

OCOCH3

n

monoacetat de celuloză diacetat de celuloză triacetat de celuloză

4. Reacţia de esterificare cu dimetilsulfat, în prezenţă de hidroxid alcalin – se formează metilceluloză (produs stabil, de culoare albă, fără gust, fără miros, slab higroscopic, care se poate conserva timp îndelungat).

Metilceluloza, în contact cu diferiţi reactivi, este stabilă. Este solubilă în apă, cu formarea unei soluţii vâscoase, care încălzită la peste 500C se coagulează, iar prin răcire gelul format trece iar în soluţie.

Este stabilă biologic. Este netoxică şi inertă fiziologic.Proprietăţile metilcelulozei permit utilizarea ei în tehnica farmaceutică. Ex: aglutinant la obţinerea comprimatelor. Este superioară amidonului şi gelatinei, putându-se folosi

în concentraţii mici. Se utilizează şi la obţinerea emulsiilor datorită proprietăţilor sale tensioactive, ca agent de îngroşare a siropurilor fără zahăr şi coloid protector.

5. Reactia cu sulfat de etil în exces – se formează etilceluloză, utilizată la fabricarea lacurilor, pielii sintetice, a adezivilor, ca izolator electric.

6. Reacţia cu NaOH concentrat – se formează alcaliceluloză (combinaţie sodată).

52

Page 53: curs organica

(C6H10O5)n ≡

C6H7O2

OH

OH

OH

n

+ n NaOH_ n H2O n

C6H7O2

OH

ONa

OH

Din alcaliceluloză, prin tratare cu apă, se regenerează celuloza, care a suferit însă unele modfificări structurale – rezultă celuloză hidrat. Tratarea fibrelor de celuloză cu NaOH se numeşte mercerizare. Se formează fibre lucioase, care fixează mai bine apa şi coloranţii.

a) Alcaliceluloza reacţionează cu sulfura de carbon (CS2) şi formează xantogenat de celuloză (vâscoză), care se filează într-o baie acidă (H2SO4) regenerând celuloza sub formă de fibre. Se obţine astfel mătasea tip vâscoză, cu compoziţie identică cu a celulozei.

(C6H10O5)n = [C6H7O2(OH)3+ n NaOH

H2O- n[C6H7O2(OH)2O-Na+]n

nCS2

[C6H7O2(OH)2(O C

S

SNa]nH2SO4+ n

CS2

NaHSO4

- n

- nxantogenat de celuloza

[C6H7O2(OH)3]n

Celofanul se obţine din xantogenatul de celuloză prin tragere în film subţire şi adăugare de plastifianţi în baia de precipitare.

b) Alcaliceluloza reacţionează cu monocloroacetat de sodiu (ClCH2COONa) – se formează carboximetilceluloza, o pulbere amorfă care se umflă în apă, dar nu se dizolvă. Carboximetilceluloza nu este toxică şi de aceea este folosită în tehnica farmaceutică ca aglutinat superior gelatinei, amidonului şi metilcelulozei la realizarea comprimatelor.

Se recombină ca agent de stabilizare a suspensiilor şi la realizarea de unguente şi geluri.Carboximetilceluloza se prezintă ca o pulbere amorfă care se umflă în apă, dar nu se dizolvă. Nefiind

toxică, se foloseşte în tehnica farmaceutică ca aglutinant, emulgator, în parfumerie.

AMIDONUL

Reprezintă polizaharida de rezervă a plantelor; se găseşte sub formă de granule în tuberculi sau în seminţele unor plante (cartofi, cereale, etc). Se formează în frunze din CO2 şi H2O, prin procesul de fotosinteză, unde este hidrolizat enzimatic până la glucoză pentru a putea fi transportat mai departe în plantă.

Amidonul se prezintă sub formă de granule (20–100 μ) de culoare albă, ale căror forme diferă de la plantă la plantă şi care formează o pulbere amorfă, insolubilă în apă rece. Spre deosebire de celuloză, amidonul nu este o substanţă unitară. El este format din:- amiloză (în interiorul granulei) = structură liniară, reprezintă 10-20 %- amilopectină (în învelişul granulei) = structură ramificată, reprezintă 80-90 %

Amiloza se poate separa de amilopectină prin dizolvarea amidonului în apă caldă şi precipitarea amilozei prin adăugarea de alcooli cu C5–C6, acizi graşi sau nitroalcani. Se formează soluţii vâscoase ca nişte geluri, numite cocă. Numai amilopectina formează coca.

Atât amiloza cât şi amilopectina sunt polizaharide formate din molecule de α-D-glucopiranoză unite prin legături α-glicozidice.

• Amiloza este formată din resturi de α-D-glucoză unite prin legături 1,4-α-glicozidice similare celor din maltoză.

• Amilopectina este formată din resturi de α-D-glucoză unite prin legături 1,4-α-glicozidice, dar şi 1,6-glicozidice.

Proprietăţi fizice

53

Page 54: curs organica

Amidonul este o pulbere albă, amorfă, insolubilă în apă rece. În apă caldă (~ 900C) granulele de amidon se umflă datorită îmbibării şi, la un moment dat, se sparg, formând o soluţie lipicioasă şi vâscoasă. Aceasta, după răcire la o anumită temperatură, se transformă într-un gel numit cocă.

Proprietăţi chimice

1.Reacţia cu iodAmidonul dă la rece o coloraţie albastră care dispare la cald. Această coloraţie se datorează amilozei.• Amiloza – dă o coloraţie albastră• Amilopectina – dă o coloraţie slabă, violaceu-purpurie

2. Hidroliza acidă, la încălzire – se formează α–D–glucoză Hidroliza poate fi şi parţială – se formează dextrină şi maltoză. Dextrina cuprinde polizaharide cu

mase moleculare mai mici decât a amidonului. Amestecul de dextrină şi maltoză se numeşte melasă amidonată şi se foloseşte la prepararea prăjiturilor.

3. Hidroliza enzimatică = zaharificare = se formează maltoză şi glucoză.Reacţia are importanţă în digestie.

(C6H10O5)n

+ n/2 H2O (amilaza)n/2 C12H22O11

+ n/2 H2O (maltaza)n C6H12O6

zimaza

- 2n CO22n C2H5OH

amidon maltoza glucoza

etanolAmidonul este utilizat în tehnica farmaceutică ca excipient diluant, absorbant, aglutinant,

dezagregant şi la prepararea unor pulberi. În cantităţi mari se foloseşte ca materie primă pentru obţinerea etanolului, butanolului, dextrinei (utilizată la finisarea ţesăturilor, la prepararea cleiurilor vegetale).

GLICOGENUL

Reprezintă polizaharida de rezervă din regnul animal; se depoziteză în ficat şi ţesut muscular. Este alcătuit din resturi de D–glucopiranoză unite prin legături 1,4-monocarbonilice. Din punct de vedere structural seamănă cu amilopectina, de aceea se numeşte şi amidon animal.

Este solubil în apă caldă. Nu difuzează prin membranele celulare. Glicogenul este sintetizat în ficat. El se formează din glucoză în fiecare celulă. La sinteza glicogenului ia parte acidul adenozintrifosforic (ATP).

COMPUŞI HETEROCICLICI AROMATICI

Compuşii în care toţi atomii din ciclu sunt identici se numesc aliciclici sau homociclici, iar cei care conţin în ciclu cel puţin două specii de atomi se numesc heterocicli.

Cei mai studiaţi sunt compuşii heterociclici care conţin în afară de carbon atomi de azot, oxigen, sulf, comparativ cu cei în care heteroatomul este fosfor, bor, staniu, siliciu. Unii compuşi heterociclici saturaţi studiaţi în capitolul anterioare (oxid de etenă, lactone, lactame) au proprietăţi apropiate de ale compuşilor aciclici.

Compuşii heterociclici saturaţi prezintă proprietăţi legate de tensiunea de ciclu şi conformaţia lor.În continuare vom studia sisteme heterociclice fundamentale cu inele de 5 şi de 6 atomi, mono- şi

poliheteroatomice, cu O, N, S şi derivaţii lor.

Nomenclatură

54

Page 55: curs organica

Majoritatea compuşilor heterociclici au denumiri speciale. Numele lor se obţine şi conform regulilor IUPAC, când compuşii heterociclici se pot defini prin nume scurte şi simple, care precizează mărimea ciclului, numărul, natura şi poziţia heteroatomilor, precum şi gradul de nesaturare al ciclului.1) Numărul atomilor din ciclu (3,4,5,6,7,8,9,10) este precizat de o rădăcină: ir, et, ol, in, ep, oc, on, ec.2) Felul heteroatomului este indicat de prefixul oxa, tia, aza pentru oxigen, sulf, azot.- Când sunt doi heteroatomi se folosesc prefixele dioxa, ditio, diaza.- Când sunt doi sau mai mulţi heteroatomi diferiţi, ei sunt menţionaţi în ordinea: oxigen, sulf, azot. Ex: oxaza, tiaza.3)Gradul de nesaturare este indicat prin sufixe:

Număr atomi din ciclu Rădăcina

Cicluri fără azot Cicluri cu azotNesaturate Saturate Nesaturate Saturate

3 ir irenă iran irină iridină4 et etă etan etă etidină5 ol ol olan ol olidină6 in ină an ină *7 ep epină epan epină *8 oc ocină ocan ocină *9 on onină onan onină *10 ec ecină ecan ecină *

4)Numerotarea atomilor din ciclu se începe de la un heteroatom astfel încât al doilea heteroatom să aibă numărul cel mai mic.

Când sunt prezenţi mai mulţi heteroatomi ordinea priorităţii este: O > S > N.La compuşii heterociclici cu un singur heteroatom, poziţiile se notează şi cu literele alfabetului grecesc: α, β, γ.a) Heterocicli cu 3 atomi în ciclu

O O SS

oxiran oxirena tiiran tiirena

NH

NH

aziridina azirina

b) Heterocicli cu 4 atomi în ciclu

O O S S HN HN

oxetan oxeta tietan tieta azetidina azeta

c) Heterocicli cu 5 atomi în ciclu

O O

oxolan(oxaciclopentan)(tetrahidrofuran)

3,4-dihidropiran(3,4-dihidroxol)

55

Page 56: curs organica

S S

tiolan(tiaciclopentan,tetrahidrotiofen)

3,4-dihidropiran(3,4-dihidroxol)

NH

NH

azolidina

(azaciclopentan,pirolidina)

2,3-dihidropirol(2,3-dihidrazol)

d) Heterocicli cu 5 atomi în ciclu şi 2 heteroatomi

N

NH

NN

12

34

5

1

2

34

5

imidazol(1,3-diazol)

3H-pirazol(3H-1,2-diazol)

N

O ON

1

2

3

1

2

3

oxazol(1,3-oxazol)

izoxazol(1,2-oxazol)

N

S

1,3-tiazol

e) Heterocicli cu 6 atomi în ciclu şi 1 heteroatom

NH

piperidina(azaciclohexan, perhidroazina)

f) Heterocicli cu 6 atomi în ciclu şi 2 heteroatomi

N

N

NH

HN

piridazina(1,2-diazina)

piperazina

g) Heterocicli cu mai mulţi atomi în ciclu

56

Page 57: curs organica

NH

NH

azepina perhidroazepina

Joncţiunea a două cicluri

- Laturile heterociclului principal vor fi indicate prin litere, după ordinea numerotării heterociclului luat izolat

- Laturile heterociclului substituant vor fi indicate prin două cifre corespunzătoare numerotării normale a heterociclului luat izolat. Dacă substituantul este carboxilic, această precizare nu mai este necesară.

NH

O+

pirol furan

a

bc

d

e

1

2

3 4

5NH

O

furo[2.3.b]pirol

N

+

N

benzen piridina

benzo[b]piridina (chinona)

a

b

c

e

d(1)

Nbenzo[c]piridina (izochinolina)

(2)

COMPUŞI HETEROCICLICI PENTAATOMICI CU UN HETEROATOM

Sistemele heterociclice fundamentale cu inel de 5 atomi având un singur heteroatom în ciclu sunt:

O NH

S1

2

34

5

furan pirol tiofen

Poziţiile se notează cu cifre, începând de la heteroatom. Poziţiile 2 şi 5 se numesc α, iar 3 şi 4 se numesc β.

Structură. Caracter aromatic.

Furanul, tiofenul şi pirolul, cele 3 sisteme heterociclice fundamentale cu inel de 5 atomi, cu 1 heteroatom în ciclu, conţin un sistem de 6 electroni care corespunde regulii aromaticităţii a lui Hückel (4n + 2) ë π.

57

Page 58: curs organica

La formarea sextetului aromatic participă 4 ë aparţinând celor două duble legături şi perechea de electroni neparticipanţi de la heteroatom.

Cu ajutorul difracţiei de raze X s-a arătat că în aceste molecule toţi atomii sunt coplanari.

X X

X = O, S, NHSistemul heterociclic are 4 atomi de carbon hibridizaţi sp2 uniţi prin legături σ sp2-sp2, fiecare atom

de carbon fiind legat de un atom de hidrogen prin legături σ sp2-s. Orbitalii p nehibridizaţi ai celor 4 atomi de de carbon conţin câte un electron fiecare. Heteroatomul are în orbitalul p neparticipant 2 electroni. Prin întrepătrunderea orbitalului p al heteroatomului cu cei 4 orbitali nehibridizaţi ai atomilor de carbon rezultă orbitali moleculari extinşi în care sunt delocalizaţi 6 electroni. Prin această delocalizare (conjugare) sistemul se stabilizează.

CC

C

C

N H

HH

H

H

Caracterul aromatic este demonstrat de proprietăţile chimice ale heterociclurilor şi de energia lor de conjugare.

E conj. furan = 22 kcal/molE conj. pirol = 24 kcal/molE conj. tiofen = 28 kcal/mol

Structura electronică a sistemelor heterociclice cu 5 atomi poate fi reprezentată prin structurile limită:

X XXXX

I II a II b IIIa IIIb

Repartiţia electronilor în heterociclii cu 5 atomi este mult diferită de cea din heterociclii cu 6 atomi. Prin implicarea unei perechi de electroni neparticipanţi ai heteroatomilor în conjugarea aromatică, heteroatomul este sărăcit în electroni, în timp ce atomii de carbon se îmbogăţesc în electroni. Astfel, heteroatomul va avea o sarcină parţial pozitivă, iar atomii de carbon vor avea sarcini parţial negative. Atomii de carbon vecini cu heteroatomul (poziţia α) sunt mai bogaţi în electroni, deci mai reactivi decât atomii mai depărtaţi (poziţia β). Aceasta explică orientarea preferenţială către poziţia α, observată în reacţiile de substituţie electrofilă (predomină structurile limită II).

Conform structurilor prezentate, heterociclii de tipul furanului, tiofenului şi pirolului sunt foarte sensibili faţă de reactanţii electrofili (mai reactivi decât benzenul) şi inerţi faţă de reactanţii nucleofili.

Influenţa heteroatomului

Oxigenul este mai electronegativ decât azotul şi acesta este mai electronegativ decât sulful. Astfel, în furan, electronii neparticipanţi sunt mai puţin implicaţi în conjugarea aromatică faţă de pirol. Deci furanul are un caracter aromatic mai slab decât pirolul şi acesta mai slab decât tiofenul. Caracterul aromatic deosebit de pronunţat al tiofenului se datorează electronegativităţii slabe a sulfului comparativ cu azotul şi oxigenul.

58

Page 59: curs organica

Influenţa substituentului

Substituenţii pot mări sau micşora densitatea de electroni din nucleu prin efecte inductive (-I) sau electromere, de conjugare (-E).

Substituenţii atrăgători (acceptori) de electroni cu efect –I şi –E micşorează densitatea de electroni din nucleu şi stabilizează sistemul faţă de reactanţii electrofili.

Ex: -COOH; -CHO; -COR; -NO2.

GRUPA FURANULUI

O

Ciclurile furanice se întâlnesc la hidraţii de carbon. Furanul se găseşte în cantităţi mici în fracţiunile volatile ale gudroanelor rezultate la distilarea uscată a lemnului.

Metode de obţinere

1.Decarbonilarea catalitică a furfurolului

OCHO

ZnO Cr2O3; 4500C

(cromit de zinc) O+ CO

2.Oxidarea catalitică a furfurolului

OCHO

CuO/H2O

OCOOH

Cu; 2200C

Ofurfural acid piromucic

(acid 2-furoic) furan

_ CO2

3.Încălzirea 1,4-dicetonelor. Sinteza Paal – Knor.

CH2H2C

C C RR

O O

CHHC

C C RR

OH OH

ZnCl2 sau P2O5 / t0C

O RR

tautomerie ceto-enolica derivat alchilat

H2O_

4.Din esteri β-cetonici şi α-clorocetonă.

59

Page 60: curs organica

ROOC CH2

C OCH3

Cl CH

C

R

RO - HCl

ROOC CH

C

O

R

CH R

C

O

R+

ROOC C

C

OH

R

C R

C

OH

R

O

ROOC R

RR

_ H2O

5.Prin tratarea materialelor care conţin pentozani (coceni, coji de seminţe de floarea-soarelui şi de orez, tărâţe) cu H2SO4 diluat, la încălzire, urmată de hidroliză până la pentoze şi deshidratare, rezultă furfurol.

Denumirea în latină a furfurolului este furfur = tărâţe; de aici provine numele întregii clase.

Proprietăţi fizice

Furanul este un lichid incolor (t.f. 310C), cu miros slab de cloroform. Este insolubil în apă, solubil în solvenţi organici. Bazele nu au nici o acţiune asupra furanului. Acizii îl polimerizează. Furanul şi derivaţii săi colorează în verde o surcea de brad înmuiată în HCl (reacţia ligninei).

Proprietăţi chimice

Furanul dă reacţii de substituţie electrofilă (caracteristice stării aromatice) şi reacţii de adiţie 1,4 (caracteristice sistemului dienic). Furanul, cu energia de conjugare 22kcal/mol, are caracter nesaturat pronunţat. El este instabil faţă de acizi, dă reacţii în poziţiile 2 şi 5, urmate de deschidere de ciclu.

Furanul dă reacţii de SE, dar, datorită instabilităţii faţă de acizi, reacţiile au loc doar în condiţii speciale.

I.Caracter acido-bazic

a) Furanul nu are caracter acid deoarece nu reacţionează cu bazele obişnuite.- Cu compuşi cu caracter bazic (ex. Fenilsodiu) formează săruri.

OC6H5

-Na++

ONa C6H6+

b) Caracterul bazic nu poate fi apreciat deoarece în soluţii acide polimerizează, trecând într-un polimer amorf.

+O

HBrOH Br

Bazicitatea este totuşi redusă datorită blocării electronilor neparticipanţi ai oxigenului printr-un efect de conjugare.

II.Reacţii de substituţie electrofilă.

60

Page 61: curs organica

Furanul are o reactivitate ridicată faţă de reactanţii electrofili. Substituţia electrofilă are loc în poziţiile 2 şi 5 (α), sau în poziţia 3 când 2 este ocupată.

1.Halogenarea (cu clor şi brom).

O+ X2 (Cl2)

CH2Cl2 (-400C)

OCl

- HCl

+ (Cl2 Br2)O

EtOH

- HCl O

H

Cl

EtOH

O

H

OEt

H

EtO

compus 1,4-dicarbonilic

2.Nitrarea

O+ HNO3

(CH3CO)2O / - 100C

CH3COOH_O

NO2CH3OCO _CH3COOH

Py

ONO2

2-nitrofuran 3.Sulfonarea. La tratarea cu H2SO4, furanul se rezinifică. De aceea sulfonarea se realizează cu

aductul Py.SO3.

OC5H5N+SO3

-+

OSO3H

acid furan-2-sulfonic

4.Acilarea. Nu se efectuează cu AlCl3 deoarece are loc rezinificarea (reactant acid).

O(CH3CO)2O+

BF3

OCOCH3 CH3COOH+

5.Formilarea. Metoda Gattermann.

+ HCN + HClO

ZnCl2 / eter

OCH=NH HCl

H2O+

NH4Cl_ OCHO

6.Cuplarea

OCl N N]Cl+

ON=N Cl

7.Metoda Reimer-Tiemann

CHCl3 + NaOH → : CCl2 + NaCl + H2O diclorocarbenă

61

Page 62: curs organica

OCCl2+

OCHCl2

H2O+

- 2HCl OCHO

III.Reacţii de adiţie

Furanul este sistemul cel mai nesaturat din serie. Dă reacţii de adiţie în poziţiile 2, 5, comparându-se cu o dienă ciclică.

1.Adiţia Br2

OBr2+

CH3OH sau CH3COOH

Br Br

H H

compus instabil, neizolabil 2.Adiţia H2

H2

Ni (1250C; 100 at)+

OOtetrahidrofuran (THF)

3.Sinteza dien. Reacţii de cicloadiţie 4+2.

O

C

C

O

O

O

+

O

CO

CO

O

H

H2O_

COO

CO

anhidridamaleica

anhidrida ftalica

IV.Oxidarea

OO2+

V2O5 / 3500C

OOO anhidrida maleica

V.Deschiderea ciclului furanic

+

O

CH3OH / H2SO4 CH2

CH2

CHO

CHO

Derivaţi ai furanului cu inele condensate

Benzofuranul (Cumarona)

O1

2

34

5

6

7

62

Page 63: curs organica

Este un lichid uleios (t.f. 1730), incolor, stabil la acţiunea bazelor, dar care în mediu acid polimerizează. Se formează în timpul cocsificării cărbunilor.

Dibenzofuranul (Difeniloxidul)

O

Este un compus cristalin (t.top. 870C), foarte stabil deoarece nu are duble legături.

GRUPA TIOFENULUI

S

Tiofenul se găseşte în natură ca atare, dar intră şi în compoziţia a numeroşi produşi răspândiţi în natură. Se găseşte în gudroanele de la distilarea cărbnilor de pământ, de unde se separă împreună cu benzenul. Separarea de benzen se face chimic, prin rafinare cu H2SO4, tiofenul sulfonându-se mai rapid.

Metode de obţinere

1.Din compuşi 1,4-dicetonici. Sinteza Paal-Knorr.

H2C

C

CH2

C

OO

RR

HC

C

CH

C

OHOH

RRP2S5

SRR

H2O_

2.Din n-butan şi vapori de sulf.

CH3CH2CH2CH3500-7000C

CH2=CH CH=CH2+ 2S / 7000C

H2_

Sn-butan 1,3-butadiena

3.Din succinat disodic şi trisulfură de fosfor

CH2

CH2

COO-Na+

COO-Na+P2S5+

S

4.Din acetilenă şi sulf

CH

CH+ S2

3000C

S

Proprietăţi fizice

63

Page 64: curs organica

• Tiofenul este un lichid incolor, insolubil în apă, cu miros de benzen. Este solubil în solvenţi organici.

Proprietăţi chimice

Dintre toţi compuşii heterociclici cu inel de 5 atomi, tiofenul seamănă cel mai mult cu benzenul în ceea ce priveşte comportarea chimică. Tiofenul este stabil la temperatură înaltă, dar, în general, este mai reactiv decât benzenul.

Având energia de conjugare cea mai mare (28 kcal/mol), are caracterul aromatic cel mai pronunţat, comparativ cu benzenul. Are caracter nesaturat mai slab decât furanul, deoarece sulful este mai puţin electronegativ şi reţine mai slab electronii neparticipanţi.

Nu dă reacţii de adiţie în poziţiile 2 şi 5, dar dă reacţii de substituţie electrofilă.

1.Halogenarea

SBr2 (I2)+

SBr

SBrBr+

C6H6

Cl2+ amestec de compusi polisubstituiti

2.Sulfonarea

SH2SO4+

H2O_S

SO3H (60%)

3.Clorosulfonarea

SHSO3Cl+

CHCl3

- HCl SSO2Cl

4.Nitrarea

SNO2- H2O

(CH3CO)2+ HNO3

S S

NO2

(60%) (10%)

+

5.Acilarea

S+ (CH3CO)2

BF3

CH3COOH_S

COCH3

6.Formilarea

S

DMF / POCl3+

SCH=N

CH3

CH3

CH3COO-Na+

SCHO

64

Page 65: curs organica

7.Metoda Reimer-Tieman. Clorometilarea.

SCH2O HCl++

H2O_S

CH2Cl

8.Reducerea

S

+ H2 / Ni

+ Na / NH3

S

S S

+

+

tetrahidrotiofen (tiolan)

2-tiolen 3-tiolen9.Oxidarea

a) blândă – nu atacă inelul tiofenic

b) energică (HNO3) – se obţine acid maleic şi acid oxalic

c) oxidarea alchiltiofenilor în mediu foarte bazic, demonstrează stabilitatea mare a inelului tiofenic

SCH3

RO-Na+ (O2)

800C, 4 zile SCOOH

Derivaţi ai tiofenului cu inele condensate

Benzotiofen (Tionaften)

S

Este un produs de sinteză cu proprietăţi asemănătoare naftalinei, fără utilizări.

GRUPA PIROLULUI

NH

Pirolul se găseşte în cantităţi mici în gudroanele rezultate la pirogenarea cărbunilor şi, în cantităţi mari în produsele de pirogenare a unor materiale bogate în proteine (oase, coarne).

În natură există compuşi care conţin nucleul pirolic (hemoglobina, clorofila).

Metode de obţinere

1.Acţiunea amoniacului asupra furanului

65

Page 66: curs organica

ONH3

Al2O3, 4500C+

H2O_NH

2.Din compuşi 1,4-dicarbonilici (Sinteza Paal-Knorr) – se formează derivaţi ai pirolului

CH2 CH2

C C

OO

RR

CH CH

C C RR

OH OH

NH3

H2O

+_ 2 N

H

RR

3.Din esteri β-cetonici şi α-aminoacizi (Sinteza Knorr)

ROOC CH2

CR O

CO CH3

CHH2N COOR+ H2O-2

N

CH3ROOC

COORCH3

H NH

COORCH3

ROOC CH3

4.Din ester β-aminocrotonic şi hidroxicetone

ROOC CH

CCH3

NH2

CHO CH3

C CH3

O

+ -2 H2O

NH

CH3CH3

ROOC CH3

5.Distilarea uscată a sării de amoniu a acidului mucic (obţinut prin oxidarea galactozei cu acid azotic).

HO CH

CH

CH

CH

OH

OHOH

COOHHOOC

+NH3

NH

+ R NH2

N

R

pirol N-substituit

6.Adiţia acetilenei la aldehida formică, urmată de tratarea cu amoniac

HC CH CH2O+Cu2C2

CH2

OH

C C CH2

OH

NH3, p

NH

2

Proprietăţi fizice

Pirolul proaspăt distilat este un lichid incolor, cu miros de cloroform care, în contact cu aerul şi lumina, se colorează în roşu-brun, iar în timp polimerizează. Pirolul este insolubil în apă, solubil în solvenţi organici.

Proprietăţi chimice

1. Caracterul bazic

66

Page 67: curs organica

Pirolul are caracterul slab bazic: reacţionează cu acizii (HBr, H2SO4, HNO3) dar caracterul bazic nu poate fi apreciat deoarece polimerizează în soluţii acide.

NH

+ HBrN

H H

Br

Bazicitatea slabă a pirolului se datorează perechii de electronii ai azotului care participă la formarea sextetului aromatic (4n+2π) şi astfel disponibilitatea lor pentru protonare scade.

2. Reacţia cu metale alcaline

NH

+ K (KOH)H2O_

N

K

CH3I+

- KI N

CH3

t0C

NH

CH3

pirolat de potasiu(stabil in absentaapei)

N-metilpirol 2-metilpirol

3.Reacţia cu reactivii Grignard

NH

+ R-MgXN

MgX- RH

4. Halogenarea – are loc la temperatură scazută (de la -400C la +200C); se formează un amestec de compuşi (mono, di, tri şi tetrasubstituiţi).

NH

Br2+ 4NH

Br Br

BrBr

- 4HBr

Cl2

NH N

Cl Cl

ClCl

Cl

pentacloropirol

5.Sulfonarea

NH

SO3+Py, 900C

NH

SO3H

6.Nitrarea

67

Page 68: curs organica

NH

CH3COO NO2+AcOH; - 100C

NH

NO2NH

NO2

+

50% 13%7.Acilarea

NH

(CH3CO)2O+2500C

NH

COCH3

8.Formilarea

+ HCN + HClNH

ZnCl2/eter

NH

CHO

9.Cuplarea

+NH

O2N N N] ClNH

N N NO2

10.Reducerea

NH

+ H2cat.

NH

pirolidina

NH

Na/NH3+NH

NH

2-pirolina 3-pirolina

+

11.Oxidarea

H2CrO4+NH

(acid cromic) NH

OO

maleinimida

Produşi naturali cu inele pirolice

68

Page 69: curs organica

Coloranţii din sânge şi din frunze conţin un sistem macrociclic format din 4 inele pirolice. Sistemul heterociclic de bază se numeşte porfină.

NH N

N HN

1

2 3

4

5

67

8

Alchilporfinele substituite la atomii de carbon ai inelelor pirolice se numesc porfirine. Porfina şi porfirinele sunt colorate roşu-închis. Ele formează complecşi cu metalele (Fe, Cu, Mg).

Hemoglobina, colorantul roşu din sângele vertebratelor, este o cromoproteidă compusă dintr-o componentă proteică (globina) şi o componentă prostetică cu structură macrociclică (hemul).

Hemul este o combinaţie a protoporfirinei cu fier divalent legat complex. Prin oxidarea fierului divalent la fier trivalent se obţine hemina, care are un atom de clor ionizat. Prin eliminarea reductivă a fierului (cu Zn/CH3COOH) se obţine protoporfirina.

N N

NN

CH3CH

H3C CH=CH2

CH3

(CH2)2COOH(CH2)COOH

H3C

CH2

Fe

A B

CD

Cl

N HN

NNH

CH3CH

H3C CH=CH2

CH3

(CH2)2COOH(CH2)COOH

H3C

CH2

Hemina Protoporfirina

Clorofila, colorantul verde din frunze, este un amestec de două clorofile (a şi b) cu structură porfirinică, având drept metal magneziul.

Clorofila a = verde închis Clorofila b = verde deschisCele două clorofile se deosebesc prin prezenţa în inelul B a unei grupe metil (clorofila a), respectiv a

unei grupe aldehidice (clorofila b).

INDOLUL ŞI COMPUŞI CU INEL INDOLIC

NH

NHNH

indol izoindol carbazol

Numeroşi produşi naturali cu inel indolic au denumiri uzuale.

69

Page 70: curs organica

NH

CH2 CH

NH3

COO

NH

CH2CH2NH2

triptofan triptamina

NH

CH2 N(CH3)2

NH

CH2COOH

gramina acid indolilacetic

Indolul (2,3-Benzopirol)

NH

NH

NH

I II III

Structurile limită I şi II conservă starea aromatică şi au o pondere mai mare decât structurile limită III, în care conjugarea aromatică a benzenului este afectată.

Metode de obţinere

1.Sinteza Fisher – tratarea fenilhidrazonelor compuşilor carbonilici cu ZnCl2, la 2000C, sau cu acid polifosforic, la 1200C.

NH NCH

CH2 RZnCl2; 2000C

NH

R

NH

CH3

ZnCl2; 2000C

NH NCH

CH2 CH3

-metilindol

2.Sinteza Neniţescu – reducerea o, w – dinitrostirenului

CH=CH

NO2

NO2

Fe / CH3COOH

NH2OH_NH

3.Metoda Reissert – din o-nitrotoluen şi ester oxalic

70

Page 71: curs organica

CH3

NO2

COOR

COOR+

EtO-Na+

- R-OH

CH2

NO2

C

O

COOR

Zn/AcOH

H2O_

CH2

NH2

C

O

COOR

_ H2ONH

COOC2H5

H2O

C2H5OHCO2

+

__

NH

4.Metoda Madelung

CH3

NH C

O

R

EtO-Na+; 3700C

H2O_NH

R

derivat acilat al o-toluidinei

5.Sinteza din acetilenă şi anilină – trecere prin tuburi încălzite, la 7000C

CH

CHNH2

+7000C

NH

6.Indolul se găseşte în gudroanele cărbunilor de pământ, de unde se izolează prin transformare în sare de potasiu. Apare şi liber în unele esenţe de flori (de portocal, iasomie).

Proprietăţi fizice

Indolul este un compus cristalin, incolor, puţin solubil în apă. În stare pură are miros plăcut. În concentraţii mici accentuează mirosul unor flori, de aceea se utilizează în parfumerie. În stare impură sau în concentraţii mari are miros dezagreabil.

Proprietăţi chimice

În indol, inelul este mai reactiv decât inelul benzenic.

1.Reacţiile de substituţie electrofilă au loc în poziţia β, spre deosebire de pirol, care se substitutie în poziţia α.

NH

NH

+ E

NH

E

Reacţiile de substituţie clasice:- halogenare

71

Page 72: curs organica

- nitrare- sulfonare

nu prezintă interes practic. Mult mai importante sunt reacţiile în care indolul are rol de reactant electrofil.

2.Metoda Vilsmeyer

NH

(CH3)2N CHO+ POCl5+

NH

CH=N(CH3)2

(NH(CH3)2_

NH

CH=O

indol

dimetilformamida

3.Reacţia Mannich – condensarea cu formaldehidă şi dimetilamină

NH

CH2O HNCH3

CH3+ +

H2O_NH

CH2 N(CH3)2

gramina

Gramina (β-dimetilaminometilindol) este un alcaloid care se găseşte în orzul încolţit şi alte graminee.

4.Condensarea cu cloruri acide

NH

Cl C

O

C

O

Cl+- HCl

NH

C

O

C

O

Cl

Clorura acidului indolilglioxilic (intermediar în sinteza altor derivaţi ai

indolului cu importanţă biologică)

5.Caracterul acid. Prin tratare cu metale alcaline sau reactivi Grignard pirolul cedează un proton, formând un anion stabilizat prin conjugare.

NH

(K)

- H N N N

Anionul indolului reacţionează cu cloruri acide în poziţia β.

N

C

O

R

Cl

+N

COR

H

NH

COR

6.Compuşi oxigenaţi ai indolului

72

Page 73: curs organica

NH

O

NH

O NH

O

O

indoxil oxindol isatina(pulbere rosie, insolubila in apa)

Indigo = cristale aciculare de culoare albastră cu reflexe arămii, care în topitură sau vapori au culoare roşie; este insolubil în apă, alcool, eter şi puţin solubil în cloroform şi nitrobnzen, la fierbere.

NH

O

HN

O

HN

O

Br

NH

O

Br

indigo purpura antica

COMPUŞI HETEROCICLICI PENTAATOMICI CU DOI HETEROATOMI

AZOLI

Sunt compuşi heterociclici de cinci atomi care conţin doi heteroatomi, dintre care unul este azotul, iar al doilea este oxigen, sulf sau tot azot.

N

O

N

SON

SN

1

2

34

5

oxazol(1,3-oxazol)

tiazol(1,3-tiazol)

izoaxazol(1,2-oxazol)

izotiazol(1,2-tiazol)

N

NH

NH

N

imidazol(1,3-diazol)

pirazol(1,2-diazol)

Numerotarea poziţiilor din ciclul azolilor se face începând de la heteroatom, ordinea priorităţii fiind: O > S > N.

Grupa oxazolului (1,3-oxazol)

N

O1

2

34

5

oxazol(1,3-oxazol)

73

Page 74: curs organica

Structură

Oxazolul conţine un sistem de 6 ē π asemănător heterociclurilor aromatice pentaatomice cu un singur heteroatom. Oxazolul are 3 atomi de carbon şi un atom de azot hibridizaţi sp2, având şi un ē aparţinând orbitalului p nehibridizat. Celălalt heteroatom, oxigenul, participă cu o pereche de electroni situată într-un orbital p coplanar cu ceilalţi patru orbitali p. Întrepătrunderea laterală a acestor orbitali p formează orbitali moleculari extinşi, care stabilizează sistemul heterociclic.

Azolii au caracter aromatic mai pronunţat decât heterociclurile corespunzătoare cu un heteroatom.

Metode de obţinere

1.Reacţia dintre o α-halogenocetonă şi amide.

R C

CHR X

OR C

O

NH2

+1000C

H2O

HX

_

_

N

OR

R

R

2.Deshidratarea α-aminocetonelor acilate sau benzoilate.

CH2

C

NH

C

O

R

O

R

CH N

C CR R

OH OH

H2SO4; HFanh.; P2O5/CHCl3

H2O_

N

OR R

Proprietăţi fizice

• Oxazolul este un lichid solubil în apă, cu miros de piridină.• Are caracter bazic mai slab decât tiazolul sau imidazolul, deoarece oxigenul are un efect inductiv

atrăgător de electroni mai puternic decât azotul sau sulful.

Proprietăţi chimice

• Reacţiile de substituţie electrofilă sunt rare.• Oxazolii dau uşor reacţii de oxidare cu permanganat de potasiu, peroxizi, conducând la amine.• Oxazolul dă uşor reacţii de hidrogenare şi hidroliză.

Grupa izoxazolului (1,2-oxazol)

Metode de obţinere

1.Din compuşi 1,3-dicarbonilici şi hidroxilamină

C

O O

C

H2

CCH3H3C H2N OH+

H2O_ C

O N

C

H2

CCH3H3C

HO

monoxima

74

Page 75: curs organica

C

HOO

N

C

H2

CH3C CH3 H , ciclizare

ON

CH3

H3C

derivat de izoxazol

2.Din aldehide şi nitriloxizi

C

C

R

R

C

N

C6H5

O

+ cicloaditie 1,3-dipolara

ON

C6H5R

R

benzonitriloxid derivat de izoxazol

Proprietăţi fizice

Izoxazolul este un lichid solubil în apă şi solvenţi organici. Are caracter bazic mai slab decât oxazolul.

Proprietăţi chimice

1.Reacţia de nitrare cu amestec sulfonitric; oleum, la 700C.

ON HNO3+

ON

O2N

4-nitro-izoxazol

2.Reacţia de sulfonare

ON

HSO3Cl; 1000C

HCl

+_

ON

HO3S

acid 4-izoxazolilsulfonic

3.Reacţia de oxidare

ON

Ph Ph

Ph

O3Ph C

O

C

Ph

N O C Ph

O

Derivaţi de izoxazol

A.Izoxazolone = cetone ale unor dihidroizoxazoli care ar putea fi obţinuţi teoretic din oximele esterilor β-cetonici.

ON

CH3

O

75

Page 76: curs organica

B.Izoxazolidone

Cicloserina, (4-amino-izoxazolid-3-onă), este un antibiotic cu spectru larg de acţiune, izolat din Streptomyces orchidaceus, S. lavandulae.

ONH

OH2N

C.Benzizoxazoli – există sub forma a doi izomeri.

NO

ON

4,5-benzizoxazol 3,4-benzizoxazol (indoxazon) (antranil)

Grupa tiazolului şi izotiazolului

N

S SN

1

2

34

5

tiazol izotiazol

1

2

34

5

Tiazoli

Metode de obţinere

1.Prin condensarea compuşilor carbonilici α-halogenaţi cu tioamide (metoda Hantzsch).

CH=O

CH2Cl

H2NCH

S+

- HCl

N

S

tiazol cloracetaldehida tioformamida

2.Prin ciclizarea α-aminocetonelor acilate sau benzoilate cu P2S5.H2C

C C

NH

RR

O O

P2S5+N

SR R

derivat de tiazol

H2O- 2

3.Din cloroacetldehidă şi tiouree

CH

CH

OH

Cl

H2N

CS

NH2

N

SNH2

+ - HCl

H2O-2-aminotiazol

76

Page 77: curs organica

2-Aminotiazolul este utilizat la fabricarea sulfatiazolului, o sulfamidă importantă, cu efect bacteriostatic.

Proprietăţi fizice

Tiazolul este un lichid cu miros de piridnă. Are caracter bazic; cu acizii tari formează săruri de tiazoliu cristaline, stabile. Are caracter aromatic pronunţat; este rezistent la oxidare şi hidrogenare.

Proprietăţi chimice

1.Reacţia de nitrareDerivaţii alchilaţi ai tiazolului (4-metiltiazol; 2,5-dimetiltiazol) se nitrează cu acid azotic /oleum, la

1600C. Tiazolul nu se poate nitra în aceste condiţii.

N

S

H3C

HNO3/oleum; 1600C

H2O_+ N

S

H3C

O2N

2.Reacţia de sulfonare.

N

S

H2SO4 + SO3 / HgSO4; 2500C+N

SHO3S

Derivaţii 4-metilaţi şi 2,5-dimetilaţi se sulfonează cu H2SO4/SO3, în absenţa catalizatorilor, la 2000C.

3.Reacţia de halogenare.• Tiazolul nu se poate bromura în condiţii normale;• Derivaţii 2- sau 4-metilaţi se pot bromura în poziţia 5.

N

S

H3C

Br2

- HBr+

N

S

H3C

Br

Compuşi naturali cu inel tiazolic

Sulfatiazol (2-sulfanilaminotiazol) este un agent bacteriostatic cu acţiune rapidă.N

SNH SO2 NH2

Penicilinele = antibiotice produse de mucegaiuri ca Penicillium notatum, Penicillium chrisogenum; Aspergillus.

Penicilina, un derivat al tetrahidrotiazolului, a fost descoperit de A. Fleming (1929) şi este primul antibiotic utilizat în terapeutică (1943).

Antibioticele sunt substante produse de organismele vii şi au însuşirea de a împiedica (în concentraţii foarte mici) creşterea microorganismelor.

Astăzi, în terapia bolilor infecţioase, se utilizează peniciline de semisinteză obţinute prin acilarea acidului rezultat la hidroliza penicilinei G, în prezenţa enzimei penicilinază.

77

Page 78: curs organica

N

S

HOOC

H3C

H3CNH2

O

N

S

HOOC

H3C

H3CNHCOR

O

acilare

PenicilinaPenicilina V: R = –CH2OC6H5

Penicilina K: R = nC7H15

Penicilina G: R = –CH2C6H5

Benzotiazolul şi derivaţii săi

Se obţin prin condensarea o-aminotiofenolilor cu acizi carboxilici.

NH2

SH

CH

HO

O

+H2O- 2

N

S

o-aminotiofenol acid formic benzotiazol

1

2

34

5

6

7

Izotiazoli

Metode de obţinere

1.Obţinerea izotiazolului din propenă, amoniac şi dioxid de sulf, în prezenţă de Al2O3, la 2000C.

CH3 CH CH2 NH3 SO2+ +Al2O3; 2000C

SN

2.Obţinerea izotiazolului din aldehidă propargilică şi tiosulfat de sodiu.

HC C CHO Na2S2O3+ CH CH

S

CHO

SO3Na

NH3 (lq)

HSO4Na_S

N

Proprietăţi fizice

• Izotiazolul este un lichid cu miros de piridină. Are caracter slab bazic.

Proprietăţi chimice

1.Halogenarea – randament slab.

SN X2

- HX+

SN

X

2.Nitrarea – în poziţia 4, cu randamente bune.

78

Page 79: curs organica

SN

HNO3

H2O

+

_S

N

O2N

Grupa imidazolului (1,3-diazol)

N

NH

N

NH

N

NH

N

NH

N

NH

Structuri limită

Metode de obţinere

1.Condensarea glioxalului cu amoniac şi formaldehidă.

CH

CH

O

O2NH3 CH2O+ +

H2O- 3

N

NH

2.Sinteza unor derivaţi de imidazol din α-aminocetone.

O O

C

NHH2C

C RRCH3COONH4, t0C

CH3COOH

H2O

+

_

- 2

N

NH

RR

Proprietăţi fizice

Imidazolul este un compus cristalin, incolor, solubil în apă şi solvenţi polari, insolubil în solvenţi nepolari.

• Bazicitatea Imidazolul are caracter puternic bazic deoarece la formarea sextetului de electroni participă doar un

atom de azot. Al doilea atom de azot poate accepta un electron, formând săruri cu acizii tari.• Aciditatea

Imidazolul are şi caracter acid; prin cedarea protonului de la atomul de azot se formează un anion stabilizat prin conjugare.

N

NH

NH

NN N

• Imidazolul formează săruri cu unii ioni metalici (Ag) şi combinaţii complexe cu metale tranziţionale.• Imidazolul se poate asocia prin legături de hidrogen.

79

Page 80: curs organica

N N H N N H N N H

polimer liniar

Astfel, imidazolul are temperatura de fierbere ridicată.

Proprietăţi chimice

1.Reacţia de N-alchilare cu halogenuri de alchil.

N

NH

R I+

- HI

N

N

R

- HI

+ R IN

N

R

RN

N

R

R

2.Reacţia de N-acilare.

N

NH

(RCO)2O+ N

NH

COR

CH3COOH_

N

N

COCH3N

N

COCH3

3.Reacţia de nitrare.

N

NH

HNO3 / H2SO4+ N

NH

O2N

H2O_4-nitroimidazol

4.Reacţia de sulfonare.N

NH

H2SO4 fumans; 1600C+

H2O_

N

NH

HO3S acid 5-imidazolsulfonic

5.Reacţia de halogenare.

N

NH

+ 2NaOClH2O; 200C

- 2 NaOH

N

NH

Cl

Cl 4,5-dicloroimidazol

N

NH

Br2+AcOH / AcONa

- 3 HBr

N

NH

Br

Br

BrNa2SO3

- 2NaBr- H2SO3

+ N

NH

Br

2,4,5-tribromoimidazol

3

80

Page 81: curs organica

6.Reacţia de hidrogenare – se formează imidazoline.N

NH

N

NH

NH

NH

2-imidazolina 3-imidazolina 4-imidazolina

Imidazolinele sunt substanţe bazice volatile, care hidrolizează uşor în mediu acid, refăcând aldehidele şi aminele din care s-au sintetizat.

2-Imidazolina se întâlneşte în biotină, un compus natural important.

NH

NH

S

(CH2)4COOH

O

biotina

Salazolina (2-benzil-4,5-dihidroimidazol) este vasodilatator periferic.N

NH

CH2

Clonidina, 2-[(2’,6’-diclorofenil)-imino]-imidazolidina este antihipertensiv.

NH

NH

N

Cl

Cl

7.Compuşi oxigenaţi ai imidazolinei = imidazolidone.

NH

NH

OO

hidantoină (2,5-imidazolidinodionă)

8.Benzimidazoli – se obţin prin condensarea o-fenilendiaminei cu acizi sau esteri.

N

NH

R

Grupa pirazolului (1,2-diazol)

81

Page 82: curs organica

NH

N

Metode de obţinere

1.Reacţia de cicloadiţie 1,3-dipolară dintre acetilenă şi diazometan.

CH

CH

CH2

N

N

+

NH

N

2.Condensarea compuşilor 1,3-dicarbonilici cu hidrazină sau derivaţii săi.

C

O O

C

H2

CRR H2N NH C6H5+

H2O- 2 NNR

R

C6H5

Proprietăţi fizice

Pirazolul este un compus cristalin, cu miros slab de piridină, solubil în apă şi solvenţi organici.Pirazolii sunt compuşi stabili, cu temperaturi de fierbere ridicate datorită asocierii moleculelor prin

legături de hidrogen liniare sau ciclice, cu formare de dimeri sau trimeri.

NN H

H NN

H

NN

NN

HN

N

H

Proprietăţi chimice

Datorită caracterului aromatic, pirazolul poate da reacţii de SE în poziţia 4.

1.Caracterul acido-bazic• Pirazolul are caracter slab bazic, mai slab decât imidazolul. Cu acizii slabi formează săruri care

hidrolizează în prezenţa apei sau se descompun la încălzire.• Pirazolul are şi caracter slab acid. Formează săruri cu metalele (Ag).

2.Reacţia de halogenare.

NH

N Br2+CH3COONa

- NaBr- CH3COOH N

H

N

Br

3.Reacţia de nitrare.

82

Page 83: curs organica

NH

NHNO3 / H2SO4

H2O

+

_ NH

N

O2N

4.Reacţia de sulfonare cu oleum

NH

Noleum

NH

N

HO3S

5.Reacţia de reducere.

a)cu sodiu şi alcool – se formează derivaţi dihidrogenaţi = pirazoline (intermediari importanţi la prepararea ciclopropanilor).

NH

NNa / EtOH

NH

N

b)cu paladiu – se formează pirazolidine (tetrahidropirazoli).

NH

NH

6.Reacţia de oxidare. • Pirazolul este rezistent la oxidare.

7.Tautomeria.• Derivaţii monosubstituiţi prezintă tautomerie. Astfel, 3-metilpirazolul este identic cu 5-

metilpirazolul.

NH

N

CH3

NNH

CH3

8.Cetoderivaţii şi dicetoderivaţii se numesc pirazolone (au importanţă practică deosebită).

3-Oxoderivatul 1-fenilpirazolidinei – revelator fotografic.

NNH

O

C6H5

1-Fenil-3-metilpirazolin-5-ona – compus cristalin.

83

Page 84: curs organica

NN

O

CH3

C6H5

Fenazona, 1-Fenil-2,3-dimetil-pirazolin-5-ona, este un analgezic cu gust amărui.

NN

CH3

CH3O

C6H5

Fenilbutazona, 4-butil-1,2-difenil-3,5-pirazolidindiiona, este folosită ca antireumatic.

NN

C4H9

O

O

C6H5

C6H5

Aminofenazona (Piramidonul) – este derivatul dimetilat al 4-aminofenazonei.

NN

(CH3)2N CH3

CH3

C6H5

O

Benzopirazolii (Indazolii) – se obţin prin ciclizarea o-acilfenilhidrazinei.

NNH

R

HETEROCICLICI PENTAATOMICI CU TREI HETEROATOMI

GRUPA TRIAZOLILOR

În funcţie de poziţia atomilor de azot din ciclu, triazolii pot exista în două forme tautomere:

N

NH

N

N

NNH

1,2,3 - triazol

1H 2H

1 2

34

5

12

34

5

84

Page 85: curs organica

N

NH

N

HN

NN1

2

34

5

1

2

34

5

1H 4H

1,2,4 - triazol

Metode de obţinere

A. 1H-1,2,3-Triazoli

1.Cicloadiţia 1,3-dipolară unei azide la o alchină.

C

C

R

R

N

N

N

R

+

N

NNR

R

R

B. 2H-1,2,3-Triazoli

1.Oxidarea bis-arilhidrazonelor cu săruri de Cu (II).

C

C

N

N

R

R

NH

NH

C6H5

C6H5

oxidare C

C

N

N

R

R

N

N

C6H5

C6H5

ciclizareN

NNR

R

C6H5

3,4-dialchil-N-fenilosotriazol C. 1H-1,2,4-Triazoli

1.Condensarea unei acilhidrazide cu o tioamidă, la 1500C.

C6H5 C NH

O

NH2 S CC6H5

NH2

+H2S_

C6H5 C NH

O

N C

NH2

C6H5

H2O_

benzoilhidrazina benzotiamida

N

NH

N

C6H5

C6H53,5-difenil-1,2,4-triazol

GRUPA OXADIAZOLILOR

85

Page 86: curs organica

N

ON

NN

O

NO

N

1,2,4-oxadiazol 1,3,4-oxadiazol 1,2,5-oxadiazol

• 1,2,3-Oxadiazolul nu este cunoscut.• Se cunosc derivaţi stabili ca sidnonele şi sidnoniminele.

N

NO

O

R

N

NO

R

NR

sidnone sidnonimine

Metode de obţinere

1.Sidnonele se obţin din aminoacizi în trei etape:I.Nitrozare

R NH CH

R

COOH+ HONO

H2O_R N

N

CH

R

COOH

O

Aminoacid

II.Formarea unei anhidride mixte.(CH3CO)2O

CH3COOHR N

N

CH

R

COOH

O

_R N

N

CH

C

R

OO

OCOCH3

III.Ciclizare.

_ CH3COOH

N

NO

O

R RR N

N

CH

C

R

OO

OCOCH3

2.Sidnoniminele se obţin prin nitrozarea α-alchilaminonitrililor, urmată de ciclizarea intermediarului rezultat.

CH3 NH CH

C

CH3

N

HONO / HCl

nitrozareH2O

CH3 N CH

N C

O N

CH3

HCl anh.

ciclizareN

NO

NH

H3C CH3

• Unii derivaţi ai sidnoniminelor au rol în terapeutică.86

Page 87: curs organica

3.Obţinerea 1,2,4-oxadiazolilor prin O-acilarea unei aminoxime cu cloruri acide, urmată de o reacţie de ciclizare.

C

N

NH2R

OH

C

O

Cl R

+- HCl N

C

R NH2

OC

O

R

(CH3CO)2O

H2O

N

NO

R

R

4.Obţinerea 1,2,4-oxadiazolilor printr-o reacţie de cicloadiţie 1,3-dipolară.

R' C NC

N

R

O

+

nitril nitriloxid

N

ON

R

R'

derivat de 1,2,4 - oxadiazol (caracter aromatic slab)

5.Obţinerea 1,2,5-oxadiazolilor (furazani) prin deshidratarea α-dioximelor cu anhidridă acetică, anhidridă succinică, H2SO4.

OH HO

N

CC

N

RR

H2O- NO

N

R R

6.Obţinerea 1,3,4-oxadiazolilor prin ciclizarea diacilhidrazinelor.

O O

C

NHHN

CR RCOCl2

- H2O

NN

ORR

Proprietăţi chimice

• 1,2,4-Oxadiazolii şi 1,2,5-oxadiazolii nu dau reacţii de substituţie electrofilă (SE).• 1,3,4-Oxadiazolii dau reacţii reacţii de SE la atomii de azot; iar în poziţiile 2 şi 5 dau reacţii de

substituţie nucleofilă (SN).• Oxadiazolii sunt rezistenţi la acţiunea agenţilor oxidanţi.

GRUPA TIADIAZOLILOR

N

SN

N

SN

NN

S

NS

N

1,2,3-tiadiazol 1,2,4-tiadiazol 1,3,4-tiadiazol 1,2,5-tiadiazol

87

Page 88: curs organica

Metode de obţinere

1.Obţinerea 1,2,3-tiadiazolilor prin ciclizarea hidrazinelor în prezenţă de SOCl2 (Metoda Hund şi Mori).

C

CH2

NR

R NH2

SOCl2

- 2HCl- H2O

N

SNR

R

2.Obţinerea 1,2,3-tiadiazolilor prin cicloadiţia 1,3-dipolară a diazometanului la izotiocianatul de fenil.

C6H5 N C S CH2 N N+

N

SNC6H5

3.Obţinerea 1,2,4-tiadiazolilor prin oxidarea tioamidelor cu agenţi oxidanţi (H2O2; SOCl2; POCl3).

C SR

H2N2

oxidare

- H2O- H2S

N

SNR

R

4.Obţinerea 1,2,5-tiadiazolilor prin ciclizarea 1,2-diaminelor cu mono- sau diclorură de sulf.

R CH CH R

H2N NH2

S2Cl2

- 2HCl- H2S

NS

N

R R

5.Obţinerea 1,3,4-tiadiazolilor prin reacţia tiohidrazidelor cu fosgen.

R C NH

S

NH2

COCl2

- H2O- HCl

+NN

SR R

Proprietăţi chimice

• 1,2,4-Tiadiazolul este sensibil la acţiunea bazelor, acizilor, agenţilor oxidanţi sau reducători;• Reacţiile de substituţie elctrofilă (SE) au loc doar la atomul de azot din poziţia 4;• 1,2,5-Tiadiazolul are moleculă plană, slab bazică, cu caracter aromatic; stabilă la aciunea acizilor,

rezistentă la oxidare;• 1,2,5-Tiadiazolii dau reacţii de substituţie nucleofilă (SN) în poziţiile 3 şi 4 şi la atomul de sulf;• 1,2,5-Tiadiazolii dau reacţii de substituţie elctrofilă (SE) dacă pe heterociclu există grupe activatoare

(-NH2; -CH3);• 1,3,4-Tiadiazolul are caracter aromatic mai puternic decât 1,2,5-oxadiazolul şi mai slab decât

tiofenul.

Utilizări

88

Page 89: curs organica

• Fungicide;• Insecticide;• Bactericide.

Reprezentanţi

Timololul, 1-(terţ-Butilamino)-[(4-morfolino-1,2,5-tiadiazol-3-il)oxi]-2-propanol, este antiadrenergic.

O

N

NS

N

O CH2 CH

OH

CH2 NH C

CH3

CH3

CH3

1

2

34

5

123

Acetazolamida, N-[5-Aminosulfonil)-1,3,4-tiadiazol-2-il]-acetamidă, inhibitor al anhidrazei carbonice, are toxicitate redusă şi este utilizată la tratarea glaucomului, a ulcerelor gastroduodenale.

NN

SSO2NH2CH3CONH

1

2

3 4

5

HETEROCICLI PENTAATOMICI CU PATRU HETEROATOMI

GRUPA TETRAZOLILOR

NN

NH

N

NN

N

NH

1H 2H

tetrazol

Metode de obţinere

1.Cicloadiţia 1,3-dipolară a acidului azothidric (HN3).

N

CH

N

N

HN

+

NN

NH

N

acidcianhidric

acidazothidric tetrazol

2.Reacţia dintre benzonitril şi azidă de sodiu.

89

Page 90: curs organica

C6H5 C N NaN3+

DMFNN

NH

NC6H5 5-fenil-tetrazol

Proprietăţi fizice

• Tetrazolul este un compus solid, incolor.

Proprietăţi chimice

• Nu are proprietăţi bazice;• Tetrazolul are caracter aromatic pronunţat;• Tetrazolul dă reacţii de substituţie elctrofilă SE (halogenare);• Nucleul tetrazolic este rezistent la oxidare şi reducere (excepţie LiAlH4);• Nu are acţiune farmacologică.

HETEROCICLI PENTAATOMICI CU CINCI HETEROATOMI

PENTAZOLI

• Nu s-a putut izola pentazolul, ci doar un derivat al său – fenilpentazolul.

N N

NN

NR

HETEROCICLI HEXAATOMICI CU UN HETEROATOM

A. GRUPA PIRANULUI

• Heteroatomul este oxigenul.

B. GRUPA PIRIDINEI

• Heteroatomul este azotul.

GRUPA PIRANULUI

OOOX

- piran - piran sare de piriliu

Aceşti heterocicli au un caracter puternic nesaturat. Piranii nu îndeplinesc una din condiţiile esenţiale ale stării aromatice, aceea a conjugării continue. Prin oxidarea piranilor (cu eliminrea a doi electroni şi a unui proton) conjugarea devine posibilă şi sistemul se stabilizează. Se formează astfel o sare de piriliu cu un sistem de 6 ē π (4 ē provin de la 4 atomi de carbon, 2 ē provin de la atomul de oxigen; al 5-lea atom de

90

Page 91: curs organica

carbon are un orbital p liber) şi o sarcină pozitivă la oxigen. Astfel, oxigenul va exercita un efect puternic atrăgător de electroni care va scădea densitatea de electroni în poziţiile α şi γ. De aceea, acest tip de heterociclu nu dă reacţii de substituţie electrofilă.

Metode de obţinere

1.Deshidratarea 1,5-dialdehidelor sau 1,5-dicetonelor sub acţiunea unor agenţi deshidratanţi (FeCl3; H2SO4; POCl3).

CH CH CH CH

HO OH

+ HX

- H2O

sare de piriliu

XO

2.Condensarea unei cetone α, β-nesaturată cu o metil-cetonă, în prezenţa unui agent deshidratant.

CH CH

C C

O O

C6H5 C6H5 CH3

C

O C6H5

+

HBF4

- H2OO C6H5C6H5

H C6H5

BF4

Proprietăţi fizice

• Sărurile de piriliu sunt compuşi cristalini, incolori, uşor solubili în apă, fără hidroliză.

Proprietăţi chimice

I.Reacţiile de substituţie nucleofilă – depind de natura substituenţilor deja existenţi pe nucleu.

1.Reacţia cu amine.

O

CH3

H3C CH3

C6H5NH2+

N

CH3

H3C CH3

C6H5

sare de N-fenil-piridiniu II.Reacţii de substituţie electrofilă SE – nu se cunosc.

Sărurile de benzopiriliu• Reprezintă structura de bază a multor produşi naturali;• Prin condensarea cationului piriliu se formează:•

91

Page 92: curs organica

OO

1

2

3

45

6

7

8 12

345

6

7

8

benzo[b]piriliu,1-benzopiriliu,cromiliu

benzo[c]piriliu,2-benzopiriliu,izocromiliu

Metode de obţinere

1.Condensarea aldehidei salicilice cu aldehida acetică, în prezenţa HCl – se formează clorura de 1-benzopiriliu.

CHO

OH

H2CH

CHO+

- H2O

CH

OH

CHCHO

- H2O OCl

HCl

2.Condensarea compuşilor 1,3-dicarbonilici cu fenol – se formează derivaţi de benzopiriliu.

CH2C C

O O

CH3H3C

HO

+HX

- 2H2OO

CH3

CH3X

Proprietăţi chimice

I.Reacţii de SE – nu se cunosc.

II.Reacţii de SN

1. Prin tratarea sărurilor de benzopiriliu cu hidroxizi alcalini, la temperatura camerei, se obţin combinaţii hidroxilice covalente numite pseudobaze sau cromenoli.

92

Page 93: curs organica

OX

HO

H O OH

H

- cromenol

O

H OH

+2

- cromenol

oxidare oxidare

O O O

O

cumarinabenzo - - pirona

cromona(benzo - - pirona)

Cumarina este un compus cristalin, incolor, care se găseşte în multe plante. Se foloseşte în parfumerie, în cofetărie, la prepararea sucurilor şi esenţelor de fructe.

2-Fenilcromona, Flavona, face parte dintr-o clasă de substanţe colorante în galben, numite flavone (flavus = galben).

O

O

C6H5 O

O

C6H5

flavona izoflavona

Izoflavona este scheletul de bază al unor coloranţi vegetali de culoare galbenă.

Catechinele şi epicatechinele sunt derivaţi hidroxilaţi ai flavonei (2,3-dihidroflavone).

OH

OHH

OOH

HO OH

OH

OH

HOH

OOH

HO OH

OH

(+) catechina (-) epicatechina

Antocianidinele sunt săruri de polihidroxiflaviniu foarte răspândite în flori, care dau culoarea roşie, violet sau albastră acestora.

Se pot găsi ca atare sau mai ales ca glicozide denumite antociani (antocianine sau cianine).

93

Page 94: curs organica

O

O

O

HOOH

OH

Cl

- glucoza

- glucoza

antocian

Antocianidinele şi antocianii îşi schimbă culoarea în funcţie de pH.

O

OH

OH

HOOH

OH

CH3COOHO

O

OH

HO

OH

OH

antocianidina (cianidina)- culoare rosie -

- culoare violet -

O

O

OH

HO

O

OH

Na2CO3

- culoare albastra -

• Aceste modificări determină diversitatea culorilor florilor şi fructelor;• Unii derivaţi de cumarină se foloseşte la tratarea bolilor cardiovasculare;• Unii derivaţi de cromonă se folosesc ca agenţi antialergici.

Xantona (dibenzo-γ-pirona) este un compus cristalin, de culoare galbenă, stabil, prezent în unele plante (ex. Rădăcina de genţiană).

O

O

GRUPA PIRIDINEI

Piridina şi omologii săi se găsesc în gudroanele rezultate la distilarea cărbunilor şi în uleiul obţinut de la distilarea uscată a oaselor nedegresate. Din fracţia corespunzătoare, piridina se extrage prin tratare cu H2SO4 diluat. Se formează o sare solubilă în apă din care acidul sulfuric este eliberat prin tratare cu bicarbonat de sodiu.

94

Page 95: curs organica

Nucleul piridinic apare în numeroşi produşi naturali: alcaloizi vegetali (nicotină), unele vitamine (B6, nicotinamidă).

HC

HC

N

CH

CH

HC

12

345

6

Clasificare. Nomenclatură

Numerotarea poziţiilor din inelul piridinic începe la atomul de azot. Poziţiile 2 şi 6 se mai notează cu α; poziţiile 3 şi 5 cu β; poziţia 4 cu γ.

• Metilpiridinele se numesc picoline (α, β, γ);• Dimetilpiridinele se numesc lutidine;• Trimetilpiridinele se numesc colidine.

N CH3 N CH3

CH3

N CH3

CH3

H3C

α-picolină 2,4-lutidină colidină

Structură

Asemănarea cu benzenul nu este formală, ci se manifestă în multe proprietăţi fizice şi în caracterul chimic al piridinei. Acesta este determinat de atracţia exercitată de atomul de azot asupra electronilor π din nucleu, care scade densitatea de electroni pe întregul nucleu, dar mai ales în poziţiile α şi γ comparativ cu β. De aceea substituţia electrofilă în poziţia β are loc mai lent.

Inelul piridinic are structură plană.Conform teoriei orbitalilor moleculari, fiecare atom din ciclu este hibridizat sp2, deci posedă un

orbital p perpendicular pe planul ciclului, ocupat cu un electron. Cei 6 orbitali atomici (OA) p se contopesc în 6 orbitali moleculari (OM) extinşi, dintre care 3 OM ocupaţi de câte 2 electroni (cu energie joasă) şi 3 OM neocupaţi (cu energie înaltă).

C C

N

CC

CH

H H

H H

Starea reală a piridinei este hibridul mai multor structuri limită (cu sarcini pozitive la atomii de carbon din α şi γ şi sarcini negative la atomul de azot) şi a două structuri tp Kekulé.

N N N N N N3

sau

95

Page 96: curs organica

Repartiţia neuniformă a electronilor este confirmată de apariţia unui moment de dipol de 2,2 D.

Metode de obţinere

1.Dehidrogenarea piperidinei

H2C

H2C CH2

CH2

H2

C

NH3 ClNH3 Cl

NH3-

- 2HClNH

- 3H2; 2000C; Pd

+ 3H2 N

Clorhidrat de cadaverină piperidină piridină

2.Din 1,5-dicetone şi amoniac

C

C C

CC

H CH3H

CH3

CH3H3C

H

H3C

O O

NH3

- 2H2O

+

NH

H CH3

CH3

CH3H3C

H3C oxidare

N

CH3

CH3

CH3H3C

H3C

- H2

3, 4, 5-trimetil-2,6-heptandionă 2,3,4,5,6-pentametil- 2,3,4,5,6-pentametil-1,4-dihidropiridină piridină

CH

CH

O

CH2

NH3+Al2O3; 3500C

- 2H2O N

CH3

acroleină 3-picolină

3.Din compuşi 1,3-dicarbonilici, aldehide şi amoniac (metoda Hantzch).

H3C

C

CH2

O

C O

H3C

CH3

C O

H

H2C

C

C

O CH3

O

CH3+ +NH3; 200C

- 3H2O NH

H CH3

COCH3

CH3

H3COC

H3C

2,4-pentandionă acetaldehidă 2,4-pentandionă derivaţi de 1,4-dihidropiridină

NaNO2; AcOH; 200C

N

CH3

COCH3

CH3

H3COC

H3C

3,5-diacetil-2,6-dimetilpiridină

96

Page 97: curs organica

4.Cicloadiţie Diels-Alder (4 + 2)

CH

CH

CH2

CH2

C6H5

C

N

+NH

C6H5 - H2 N C6H5

butadienă benzonitril instabil 2-fenilpiridină

5.Încălzirea la 3000C a piridinei cu halogenuri de alchil – se formează alchilpiridine.

N

CH3I

N

CH3

I

+3000C

-HI N CH3 N

CH3

+

Proprietăţi fizice

Piridina este un lichid incolor (în stare pură), stabil, cu t.f. mai ridicată decât a benzenului. Are miros neplăcut, persistent, caracteristic. Este miscibilă cu apa în orice proporţie, este foarte solubilă în apă, alcool şi eter. Se foloseşte ca solvent pentru compuşii organici greu solubili în solvenţi obişnuiţi.

Proprietăţi chimice

I.Caracterul acido-bazic

• Piridina este o bază slabă – cu acizii tari formează săruri uşor solubile în apă.Atomul de azot al piridinei posedă o pereche de electroni neparticipanţi. Deoarece densitatea de

electroni este mare la atomul de azot, ar trebui ca piridina să fie o bază tare. Bazicitatea scăzută se datorează hibridizării sp2 a atomului de azot, faţă de hibridizarea sp3 a atomului din aminele alifatice.

N

+ HCl

NH Cl

(sare stabilizată prin conjugare)

• Bazicitatea piridinei este de 104 ori mai mică decât a unei amine alifatice.

NH

+ H2O

N

H3O+

II.Reacţii de substituţie electrofilă.

• Decurg mai greu şi cu randamente mai mici decât la benzen; au loc în poziţia 3.

97

Page 98: curs organica

1.Reacţia de nitrare – decurge foarte greu deoarece în mediu acid se formează ionii de piridiniu, în care nucleul este dezactivat.

N

+ KNO3

H2SO4; 3000C

- H2O- KOH

N

NO2

3-nitropiridină (5%)

2.Reacţia de sulfonare – are loc similar celei de nitrare.

N

H+

NH

SO3; H2SO4; HgSO4; 2200C; 24 ore

- H2ONH

SO3H

acid piridin-3-sulfonic

3.Reacţia de halogenare directă (Cl, Br, I)

N

+ Br2

220 - 3000C

- HBr N

Br

3-bromopiridină

N

Cl

- HCl+ Cl2

N

AlCl3

3-cloropiridină

Reacţiile de substituţie electrofilă decurg mai uşor dacă pe nucleul piridinic există grupe funcţionale respingătoare de electroni (-CH3; -NH2). De aceea, α-aminopiridina este utilizată ca materie primă pentru sinteza unor derivaţi substituiţi ai piridinei.

N NH2

HNO3

H2O

+

-N NH2

O2N

III.Reacţii de substituţie nucleofilă.

1.Reacţia cu amidura de sodiu (Reacţia Cicibabin).

N

NaNH2+1100C

- NaH N NH2

2-aminopiridină

2.Reacţia cu hidroxid de potasiu

98

Page 99: curs organica

+

N

KOHN OH- KH

3200C

NH

O

2-piridinol 2-piridinonă (2-hidroxipiridină)

3.Reacţia cu compuşi organo-metalici

N

+ C6H5Litoluen; 1000C

- LiH N C6H5

2-fenilpiridină

IV.Oxidarea

• Nucleul piridinic este stabil la oxidare;• Sub acţiunea unor agenţi oxidanţi ca KMnO4, K2Cr2O7 în mediu acid se oxidează unii substituenţi de

pe nucleul piridinic;• Sub acţiunea CrO3 se pot oxida grupele hidroxil;• Sub acţiunea H2O2 se formează piridin-N-oxidul.

+

N

H2O2- H2O N

O

V.Reducerea

N

Na / EtOH; H2 / Pt

N

compus majoritar

piperidină (lichid cu miros puternic de ammoniac, foarte solubil în apă)

N

Na + NH3 / EtOH

NH

1,4-dihidropiridină

VI.Reacţia de acilare

N

(CH3CO)2O+

N

COCH3

CH3COO

sare de N-acilpiridiniu

99

Page 100: curs organica

VII.Reacţia de alchilare

+ CH3I

N N

CH3

I

sare de alchilpiridiniu

Derivaţi de piridină

Alchilpiridine

1.Metilpiridinele = picoline (3 izomeri)

N CH3 N

CH3

N

CH3

α-picolină β-picolină γ-picolină(2-metilpiridină) (3-metilpiridină) (4-metilpiridină)

2.Dimetilpiridinele = lutidine (6 izomeri)

3.Trimetilpiridinele• Cea mai importantă este 2,4,6-trimetilpiridina = colidina.

N

CH3

CH3H3C

Reprezentanţi

Piridoxina (2-metil-3-hidroxi-4,5-di-(hidroximetil)piridina), Vitamina B6 este prezentă în ficat, tărâţe de orez.

N

CH2OH

CH2OH

H3C

HO

1

62

34

5

• Deficienţa în această vitamină produce anemie, în timp ce deficienţele extrem de severe pot provoca chiar moartea.

Piridoxalul (2-metil-3-hidroxi-4-formil-5-hidroximetilpiridina) sub formă de fosfat are rol de enzimă în organism.

100

Page 101: curs organica

N

CHO

CH2OH

H3C

HO

Nicotina, (S)-3-[N-metil-2-pirolidil]-piridina conţine un nucleu piridinic şi unul pirolidinic.

N

NH

CH3

Nicotina este principalul alcaloid din tutun, unde se găseşte sub formă de săruri ale acizilor citric şi malic. Este un lichid uleios, incolor, solubil în apă şi solvenţi organici. În cantităţi mici este excitant al SNC şi al SN periferic. În cantităţi mari produce depresie, greaţă, vomă, paralizie.

În organism, nicotina este biotransformată în compuşi netoxici şi de aceea nu se acumulează. Fumul de ţigară conţine oxid de carbon, hidrocarburi aromatice cu nuclee condensate care au acţiune cancerigenă.

Nicotina naturală este levogiră.Prin sinteză se obţine un racemic din care se poate separa izomerul dextrogir mai puţin toxic şi cu efecte

fiziologice diferite.

Acizii piridincarboxilici

N COOHN

COOH

N

COOH

acid picolic acid nicotinic acid izonicotinic(acid α-piridincarboxilic) (acid β-piridincarboxilic) (acid γ-piridncarboxilic)

• Amida acidului nicotinic (Vitamina antipelagroasă, Factor PP) se găseşte în ficat, drojdie de bere. Lipsa sa şi a acidului nicotinic produce pelagra.

• Hidrazida acidului nicotinic (Izoniazida) se utilizează în tratamentul tuberculozei.

Derivaţi hidrogenaţi ai piridinei

• tetrahidroderivaţii = piperidinele = se obtin în cantităţi mici la hidrogenarea piridinei sau a derivaţilor ei cu hidrogen în stare născândă.

• hexahidroderivaţii = se întâlnesc în natură, în special în alcaloizi.

Nifedipin (DCI), Dimetilesterul acidului 4-(2’-nitrofenil)-2,6-dimetil-1,4-dihidropiridin-3,5-dicarboxilic, are acţiune antihipertensivă, coronarodilatatoare.

NH

NO2

COOCH3

CH3H3C

H3COOC

101

Page 102: curs organica

Amlodipinul, (R,S)-dimetilesterul acidului 4-(2’-clorofenil)-2-metil-6-aminoetoximetil-1,4-dihidropiridin-3,5-dicarboxilic este mai activ decât nifedipinul datorită înlocuirii grupei nitro cu grupa cloro. Astfel, sunt necesare doze de aproximativ 3 ori mai mici la tratarea hipertensiunii arteriale şi a anghinei pectorale.

NH

Cl

COOCH3

CH2H3C

H3COOC

OCH2

CH2NH2

Felodipinul, (R,S)-etil-metil-esterul acidului 4-(2’,3’-diclorofenil)-1,4-dihidro-2,6-dimetilpiperidin-3,5-dicarboxilic.

NH

Cl

ClH

COOC2H5

CH3H3C

H3COOC

Coniina, (+)-α-propilpiperidina, este un alcaloid care se extrage din cucută; este un lichid incolor, greu solubil în apă, solubil în alcool. În cantităţi mari paralizează centrii motori şi provoacă moartea prin paralizia centrilor respiratori.

NH

H

CH2CH2CH3

Derivaţi ai piridinei cu inele condensate

Benzopiridina poate exista sub forma a doi izomeri, în functie de modul de condensare a nucleului piridinic cu cel benzenic.

NN

1

2

3

45

6

78 1 2

345

6

7

8

chinolina izochinolinabenzo [b] piridină benzo [c] piridină

102

Page 103: curs organica

GRUPA CHINOLINEI

Chinolina are structură asemănătoare cu a piridinei.

N N N N

Chinolina are un caracter slab bazic datorită perechii de electroni neparticipanţi din orbitalul hibridizat sp2 al atomului de azot.

Inelul chinolinic este mai reactiv decât inelul piridinic in reacţiile de substituţie electrofilă sau de oxidare. Substituţia electrofilă la chinolină are loc în poziţiile 5 şi 8, în timp ce la piridină are loc în poziţia 2.

Metode de obţinere

1.Chinolina se extrage din gudroanele rezultate la distilarea cărbunilor de pământ.• Se mai obţine şi prin distilarea în mediu bazic a alcaloidului cinconină.

2.Sinteza Skraup – încălzirea anilinei cu H2SO4 concentrat, glicerol şi nitrobenzen sau acid arsenic.

NH2

O CH CH CH2

H2SO4; C6H5NO2; 1300C

H2O+

-NH

N- 2[H]

anilină acroleină

3.Sinteza Doebner-Miller (variantă a sintezei Skraup) – condensarea unei amine aromatice cu aldehide alifatice, în prezenţa HCl (ZnCl2) – se formează omologii alchilaţi ai chinolinei.

NH2 O CH CH

CH

CH3

+- H2O

N CH3

anilină aldehidă crotonică 2-metilchinolină(chinaldină)

4.Sinteza Friedlander – condensarea o-acilanilinelor cu aldehide α-metilenice sau cu cetone, în cataliză acidă sau bazică.

NH2

CHOCH3

CH=O+

NaOH

- H2ON

o-aminobenzaldehidă acetaldehidă chinolină

Proprietăţi fizice

Chinolina este un lichid cu miros caracteristic, insolubil în apă, solubil în solvenţi organici. În stare pură se păstrează incoloră multă vreme; prin impurificare se colorează în galben, apoi în brun.

Are caracter aromatic mai slab decât naftalina.

103

Page 104: curs organica

Proprietăţi chimice

1.Caracterul bazic.• Chinolina este o bază mai slabă decât piridina.

2.Reacţii de reducere

N

Na + EtOH; Zn + HCl

NH

tetrahidrochinolina

N

H2/Ni; Pd; 200C; CH3OH

NH

decahidrochinolina

3.Reacţii de oxidare

N

KMnO4

N

COOH

COOH- CO2 N

COOH

acid chinolinic acid nicotinic(acid 2,3-piridin-dicarboxilic neizolabil)

4.Reacţii de substituţie elctrofilă

Au loc mai uşor decât la piridină. Atomul de azot protonat influenţează mai slab dezactivarea atomilor de carbon din inelul benzenic, astfel încât substituţia electrofilă va avea loc pe acest inel mai ales în poziţiile 5 şi 8.

a)Reacţia de nitrare

N

HNO3+NH

NO2

NH

NO2

+ (1:1)H2SO4; 00C

- H2O

b)Reacţia de sulfonare

- H2O

H2SO4; SO3 30%; 900C

N

+

NH

SO3H

t > 2500C

NH

HO3SO

acid chinolin-8-sulfonic

104

Page 105: curs organica

c)Reacţia de halogenare

N

Br2; H2SO4+

NH

Br

NH

Br

+

5-bromochinolină

5.Reacţii de substituţie nucleofilă – decurg uşor.• Atomul de azot activează poziţiile 2 şi 4.

N

NaNH2+NH3 lq., - 650C

- NaH N NH2

amidură 2-aminochinolină de sodiu

N

+ KOH (NaOH); 2500C

- KH N OH

2-hidroxichinolină

N

+ R-MgX

N R

2-alchilchinolină

6.Reacţia de alchilare

N

CH3

N

CH3I+

I

sare cuaternară de amoniu

Derivaţi de chinolină

Hidroxichinoline

Oxina, 8-hidroxichinolina, este un compus cristalin care stă la baza unor medicamente antibacteriene (Clorchinaldol, Saprosan).

105

Page 106: curs organica

N

OH

N

Cl

OH

Cl CH3

oxina clorchinaldol(5,7-dicloro-8-hidroxi-2-metilchinolina)

Chinina şi cinconina – alcaloizi izolaţi din coaja arboreluui de chinină.

Chinina, 6-metoxi-4-chinolil-[2S, 4S, 5R]-5-vinil-2-chinuclidinil-(R)-metanol, este folosită în tratamentul malariei.

N

C

H3CO

NH

HO

H

CH=CH2

H

H

Acizi cu nucleu chinolinic

N COOHN

COOH

N

HOOC

COOH

acid chinaldinic acid cinconinic acid chininic

GRUPA IZOCHINOLINEI

N

1

2

345

6

78

Structură

N N N

106

Page 107: curs organica

Metode de obţinere

1.Izochinolona se găseşte în gudroanele de la distilarea uscată a cărbunilor.

2.Ciclizarea β-feniletilaminelor N-acilate, urmată de dehidrogenarea catalitică a 3,4-dihidroizochinolinelor obţinute (Metoda Bischler-Napieralski).

CH2CH2

NH2

CH3COCl+

- H2

- HCl

CH2CH2

NHCOCH3

P2O5; t0C

- H2ON

CH3

Pd / C; 1900C

N

CH3

1-metilchinolina

CH2CH2

NH

OHC

- H2O

P2O5; 2000C

N

Pd

- H2N

N-formil-β-feniletilamină

Prin această metodă se obţine papaverina, un alcaloid care se găseşte în opiu, utilizat ca antispastic, vasodilatator.

N

CH2

H3C

H3C

OCH3

OCH3

papaverină

Proprietăţi fizice

• Izochinolina este un compus solid cu miros asemănător cu al benzaldehidei.

Proprietăţi chimice

1.Caracter bazic• Are caracter bazic mai puternic decât chinolina: cu acizii organici şi anorganici formează săruri

cristaline.

107

Page 108: curs organica

2.Reacţii de substituţie electrofilă – decurg greu şi preferenţial pe inelul benzenic, în poziţiile 5 şi 8, rar în poziţia 4.

a)Reacţia de nitrare cu amestec sulfonitric.

N+ 2 HNO3

2 H2SO4; 00C

- 2 H2O N

NO2

N

NO2

+2

b)Reacţia de halogenare.

NBr2+

AlCl3; 750C

- HBr N

Br

N

Br

Br

+ Br2 / HCl; C6H5NO2

N - HBr N

Br

3.Reacţii de substituţie nucleofilă.

N+ NaNH2

- NaH N

NH2

1-aminoizochinolina

N

OH

- KH+ KOH

N1-hidroxiizochinolina

N

NH2

- MgHX+ R-MgX

N(R-Li)

1-alchilizochinolina

4.Reacţia de oxidare

N+ [O]

KMnO4 / HO

N

HOOC

HOOC

COOH

COOH

+

acid cincomeronic acid ftalic

108

Page 109: curs organica

Reprezentanţi

Morfina, (5α, 6α)-7,8-didehidro-4,5-epoxi-17-metilmorfinan-3,6-diol, este primul alcaloid izolat în stare pură din plante. Conţine un nucleu izochinolinic şi unul fenentrenic. Are acţiune anestezică şi narcotică. La administrare repetată dă dependenţă.

O

N

HO

CH3

H

HO1

23

4

5

67

8

910

11

1213

14

1517

Derivaţii tetrahidrogenaţi ai izochinolinei se găsesc în structura unor alcaloizi cu acţiune psihotropă, hipotensoare.

GRUPA ACRIDINEI

9-Azaantracen, Dibenzopiridina, Benzochinolina

N

12

3

456

78 9

10

Metode de obţinere

1.Se găseşte în fracţia antracenică a agudroanelor rezultate la distilarea uscată a cărbunilor.

2.Condensarea difenilaminei cu acid formic, în prezenţă de clorură de zinc (deshidratant).

NH

+ HCOOH

N

ZnCl2

Proprietăţi fizice

• Acridina este un compus cristalin, solubil în solvenţi organici.• Soluţiile de acridină au fluorescenţă albastră, caracteristică întreagă clase a acridinelor.

Proprietăţi chimice

1.Caracter bazic.• Acridina este o bază mai slabă decât chinolina, comparabilă ca tărie cu piridina.• Cu acizii tari dă săruri de culoare galbenă.• Cu halogenurile de alchil formează săruri cuaternare de amoniu.• Acridina are caracter aromatic pronunţat.

109

Page 110: curs organica

2.Reacţiile de substituţie au loc foarte greu, în condiţii energice, la temperaturi ridicate, dând produşi de substituţie electrofilă pe inelele benzenice.

3.Reacţia de reducere – se formează acridan (9,10-dihidroacridină).

N

H2Na (Hg)

+

NH

4.Reacţia de oxidare – se formează acid acridinic (acid 2,3-chinolindicarboxilic)

N

+ [O]KMnO4

N

COOH

COOH

5.Reacţia de N-alchilare – se formează o sare cuaternară de acridiniu

N

+ R-X

N

R]I

Reprezentanţi

Chinacrina, (Atebrin), N’-(6-cloro-2-metoxiacridin-9-il)-N,N-dietilpentan-1,4-diamina, este un medicament antiparazitar folosit în tratamentul malariei. Este mai eficient decât chinina.

N

NH

CH CH2CH2CH2 NC2H5

C2H5

Cl

H3C

H3C

1

3

4 56

78

9

10

COMPUŞI HETEROCICLICI HEXAATOMICI POLIHETEROATOMICI

AZINE

I. DIAZINE (2 atomi de azot)II. OXAZINE (oxigen şi azot)III. TIAZINE (sulf şi azot)

I. DIAZINE

Există 3 diazine izomere:

N

N

N

N

N

N

Piridazina pirimidina pirazina(1,2-diazina) (1,3-diazina) (1,4-diazina)

110

Page 111: curs organica

Piridazina

• Este diazina cea mai puţin importantă.

Metode de obţinere

1.Condensarea anhidridei maleice cu hidrazină.

C

O

CO

O

H2N

H2N+

HCl, t0C

- H2O NH

NH

O

O

N

N

OH

OH

POCl3; t0C

N

N

OH

OH

+ H2 / Pd / C

N

N

Proprietăţi fizice

• Piridazina este un compus lichid.

Proprietăţi chimice

1.Caracterul bazic – mai slab decât al piridinei

2.Reacţiile de substitiţie electrofilă• au loc mai greu datorită celui de-al doilea atom de azot;• nu se cunoaşte nici o reacţie de nitrare, sulfonare, doar câteva reacţii de halogenare.

Pirimidina şi derivaţii săi

Este cea mai importantă dintre cele trei diazine deoarece intră în constituţia unor compuşi naturali, ca: acizi nucleici, vitamina B1, medicamente barbiturice, sulfamide.

Structură

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

111

Page 112: curs organica

Metode de obţinere

1.Condensarea esterului malonic cu uree în etanol, în prezenţă de etoxid de sodiu.

CH2N

H2NO H2N

COOR

COOR+

EtOH / EtONa

- 2 H2O- 2 R-OH

N

N OHHO

OH

N

N

Cl

ClCl

6 [H]

- 3HCl

N

N

POCl3

- 3 H2O

2.Condensarea dintre uree şi acid formilacetic – se formează uracil (2,4-dihidroxipirimidină).

CH2N

H2NO CH2

CH=O

COOH

+H2SO4

NH

NH

O

O N

N

OH

OH- 2H2O

Uracil(tautomerie lactam-lactimă)

• Uracilul se găseşte în celulele vii, rezultând la scindarea hidrolitică a acizilor nucleici.

3.Condensarea esterului formilacetic sodat cu S-alchil-tiouree.

+ CH2

CH=O

COOR

CH2N

H2NSH

N

N

OH

S C2H5

1. POCl32. NH3

N

N

NH2

S C2H5

+ HCl; + H2O

N

N

NH2

OH

(citosină; 2-hidroxi-4-aminopirimidină)

Proprietăţi fizice

• Pirimidina este un compus solid, uşor solubil în apă, higroscopic.

Proprietăţi chimice

1.Caracterul bazic este foarte slab.• soluţiile apoase au caracter neutru;• cu acizii formează săruri.

2.Reacţii de substituţie electrofilă.

112

Page 113: curs organica

• Substituţia electrofilă este împiedicată de existenţa celor 2 atomi de azot cu caracter electronegativ care determină scăderea densităţii electronice la grupele CH, accentuată în poziţiile 2,4,6.

• SE este posibilă doar în poziţia 5, unde densitatea electronică scade cel mai puţin.• Halogenarea sau nitrarea nu pot avea loc pe nucleul pirimidinic nesubstituit.• Prezenţa unei grupe activante (-NH2; -OH) permite reacţiile de nitrare, halogenare, nitrozare,

sulfonare.

3.Reacţii de substituţie nucleofilă – decurg mai uşor.

N

N NaNH2

- NaH

+

N

N

NH2

4-aminopirimidină• Derivaţii pirimidinei substituiţi pe nucleu cu halogeni, grupe alchiloxi, nitro, dau mai uşor reacţii de

substituţie nucleofilă în poziţiile 2,4,6.

4.Reacţia de oxidare.• Nucleul pirimidinic este stabil la oxidare (caracter aromatic).

Reprezentanţi

• Derivaţii acidului barbituric, barbituraţii, sunt folosiţi în terapeutică pentru proprietăţile lor sedative şi hipnotice.

Barbitalul, Veronalul, Acid 5,5-dietilbarbituric

NH

NH

O

OO

C2H5

C2H5

Fenobarbitalul, Acid 5-etil-5-fenilbarbituric

NH

NH

O

OO

C2H5

C6H5

Seconal, Acid 5-alil-5-(1-metil-butil)-barbituric

HN

NH

O

OO

CH

CH2 CH=CH2

CH3

CH2CH2CH3

Baze pirimidinice

• Sunt derivaţi ai pirimidinei care conţin grupele –OH şi –NH2 şi care se obţin prin hidroliza acizilor nucleici.

113

Page 114: curs organica

Vitamina B1, Tiamina – conţine nucleul pirimidinic şi cel tiazolic sub formă de sare.

N

N

CH2N

SH3C

CH3

CH2CH2OH

NH3ClCl

Face parte din complexul de vitamine B care se găsesc în drojdia de bere, ficat, tărâţele cerealelor.Lipsa vitaminei B1 afectează inima şi deteriorează celulele nervoase; în cazuri extreme produce

paralizia. Lipsa vitaminei B1 poate provoca şi tulburări ale unor procese celulare prin modificări ale concentraţiei acidului piruvic.

Vitamina B2, Riboflavina – se găseşte în cantităti mici în toate celulele plantelor şi animalelor. Este un important factor al creşterii, intrând în constituţia unor enzime cu rol fundamental în funcţionarea organismului.

CH2 OH

CH OH

CH OH

CH OH

CH2

N

N

N

NH

O

O

H3C

H3C

ribitol

flavina

Pirazina şi derivaţii săi

N

N

1,4-diazina

Metode de obţinere

1.Autocondensarea α-aminocetonelor sau α-aminoaldehidelor în mediu bazic, în prezenţă de aer sau a unui agent oxidant.

C

CHR

R O

NH2

H2N CH

C

R

RO+

HO; O2

- 2H2O N

N R

R

R

R- H2

N

N R

R

R

R

Proprietăţi fizice

• Pirazina este o substanţă solidă;• Are caracter aromatic pronunţat, marcat de rezistenţa la oxidare.

114

Page 115: curs organica

Proprietăţi chimice

1.Caracter bazic – mai slab decât piridina.

2.Substituţiile la atomul de carbon sunt rare.

3.Reacţia de reducere – se formează piperazină (hexahidropirazină).

N

N[H]; Na / EtOH

NH

HN

Piperazina este un compus cristalin, solubil în apă, cu caracter aromatic bazic pronunţat. Este folosită în tratamentul gutei. Are acţiune antihelmintică (eficace împotriva diferiţilor oxiuri şi ascarizi).

Benzodiazine

A.Benzodiazepine

NN

N

N

1

2

3

456

7

8 1

2

3

45

6

7

8

cinolină ftalazină

• Cinolina este o bază slabă.• Ftalazina este un compus cristalin de culoare galbenă; este mai bazică decât cinolina.

B.Benzopirimidina (Chinazolina)

N

N

C.Benzopirazina (Chinoxalina)N

N

II. OXAZINE ŞI TIAZINE

• Se prezintă sub forma a 3 izomeri de poziţie:

O

N

O

N

O

N

2H 4H 6H 1,3-oxazină

• Nici unul din izomeri nu are caracter aromatic deorece fiecare conţine un atom de carbon hibridizat sp3.

• Sistemul ciclic 1,3-oxazinic intră în structura unor antibiotice naturale.

115

Page 116: curs organica

• Sistemul 1,4-oxazinic este cunoscut sub forma derivatului tetrahidrogenat, morfolina, utilizată ca solvent.

O

HN

1

2

345

6

Fenotiazina – compus cristalin, incolor, foarte uşor oxidabil. Nucleul fenotiazinic este prezent în structura medicamentului clorpromazină, folosit în tratamentul unor boli psihice.

HN

S

N

S

Cl

(CH2)3 N(CH3)2

Fenotiazină clorpromazină

• Compuşii cu nucleu fenotiazinic au şi acţiune sedativă, antihistaminică, antiemetică.• Unele săruri de fenotiazină sunt folosite ca şi coloranţi.

N

S(CH3)2N N(CH3)2

albastru de metilen

GRUPA PURINEI

Purinele sunt compuşi heterociclici poliheteroatomici care conţin un schelet format prin condensarea unui inel pirimidinic cu unul imidazolic.

N

N

N

NH

1

2

34

56

7

8purina

Purinele rezultă prin hidroliza acizilor nucleici, alături de pirimidine, o pentoză şi H3PO4.Purina este o substanţă solidă, cristalină, greu solubilă în apă, neutră, cu caracter aromatic.

Metode de obţinere

1.Reacţia aminoacetonitrilului cu formamida.

CH2

CN

NH2 O=CH

NH2+

- 2H2O

N

N

NH2

NH2

H2N CHO2

- H2O- NH3

N

N

N

NH

• Se cunosc 3-hidroxiderivaţi ai purinei.

116

Page 117: curs organica

N

N

N

NH

OH

N

N

N

NH

OH

HO

N

N

N

NH

HO

OH

OH

6-hidroxipurina 2,6-dihidroxipurina 2,6,8-trihidroxipurina (hipoxantina) (xantina) (acid uric)

Hipoxantina rezultă la hidroliza acizilor nucleici.Xantina se găseşte în cantităţi mici în sânge, urină, calculi renali. Este un compus cristalin, care se

descompune înainte de topire, puţin solubil în apă.Are caracter slab bazic:

• Cu acizii minerali şi cu metalele alcaline formează săruri;• Prin oxidare conduce la aloxan şi uree.• Xantinele metilate la azot se gasesc în unele plante.

Adenina şi guanina sunt componente ale acizilor nucleici.

N

N

N

NH

NH2

N

N

N

NH

OH

H2N

Adenină guanină(6-aminopurină) (2-amino-6-hidroxipurină)

Teofilina, 1,3-dimetilxantina, este un compus cristalin care se găseşte în frunzele de ceai; are acţiune diuretică şi de stimulator cardiac.

Teobromina, 3,7-dimetilxantina, este un compus cristalin care se găseşte în boabele de cacao; are acţiune diuretică.

Cafeina, 1,3,7-trimetilxantina, este un compus cristalin care se găseşte în boabele de cafea, în frunzele de ceai, în fructul de cola, cacao. Are gust amar. Este folosită în terapeutică pentru acţiunea stimulatoare asupra SNC şi aparatului cardiovascular.

Acidul uric se găseşte în cantităţi mici în corpul uman. Se depune sub formă de uraţi de sodiu şi amoniu (calculi) în rinichi.

PTERIDINE

• Pteridinele sunt compuşi care conţin în moleculă un inel pirimidinic condensat cu unul pirainic.• Sunt puţin răspândite în natură.

Pteridina, (pirazino[2,3-d]pirimidina), este un compus de culoare galbenă.

N

N

N

N1

2

3

4 5

6

7

8

Xantopterin a este un pigment galben izolat din fluturi şi alte insecte.

117

Page 118: curs organica

N

N

N

NHO

OH

OH

Leucopterina este un compus de culaore albă izolat din aripile fluturilor albi.

N

N

N

NH2N

OH

OH

OH

Acidul folic, acid pteroilmonoglutamic, este un compus cristalin de culoare galben-portocalie, insolubil în apă, acetonă, benzen, solubil în acizi minerali şi hidroxizi alcalini. Se găseşte în frunzele de spanac, lăptuci, în ficatul mamiferelor. Are rol în producerea globulelor roşii şi stimulează creşterea unor bacterii. Lipsa acidului folic în organism provoacă amenii.

N

N

N

NH2N

OH

CH2 NH CONH CH

COOH

CH2 CH2

COOH

Acidul folinic, acid 5-formil-5,6,7,8-tetrahidropteroilglutamic, rezultă prin transformarea acidului folic şi are rol in diviziunea celulară.

N

N

N

NH

H2N

OH CHO

CH2

H

NH CONH CH CH2

COOH

CH2

COOH

12

3 4 56

7

8

118