46
1 CURSO DE PÓS-GRADUAÇÃO LATO SENSU INSTITUTO EDUCACIONAL ALFA APOSTILA TÓPICOS E DIDÁTICA DA ÁLGEBRA MINAS GERAIS

CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

Embed Size (px)

Citation preview

Page 1: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

1

CURSO DE PÓS-GRADUAÇÃO LATO SENSU

INSTITUTO EDUCACIONAL ALFA

APOSTILA

TÓPICOS E DIDÁTICA DA ÁLGEBRA

MINAS GERAIS

Page 2: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

2

FUNÇÕES

Função do 1º. Grau

Função Constante

Função potência

Função Racional

Função Raiz

Função polinomial

Função logarítmica

Função trigonométrica

O conceito de função sofreu uma grande evolução ao longo dos séculos,

sendo que a introdução do método analítico na definição de função (séc., XVI, séc.

XVII) veio para revolucionar a Matemática.

É importante apontarmos a origem da noção de função, lembrando desde o

tempo dos gregos onde a teoria dominante era a Geometria Euclidiana que tinha

como elementos fundamentais: o ponto, a reta e o plano.

Foi nessa época que a teoria do Cálculo Infinitesimal surgiu, e a noção de

função tornou-se um dos fundamentos do Cálculo Infinitesimal.

Há aspectos muito simples sobre este conceito, que podem ser encontrados

em épocas anteriores, como operações de contagem. Mas o seu surgimento como

Page 3: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

3

conceito claramente individualizado, e como objeto de estudo corrente em

Matemática, remonta apenas ao final do século XVII.

A origem da noção de função confunde-se, então, com os primórdios do

Cálculo Infinitesimal. Ela surgia de forma um tanto confusa nos "fluentes" e "fluxões"

de Newton (1642 - 1727), aproximando-se bastante do sentido atual de função, com

a utilização dos termos "relatia quantias" para designar variável dependente, e

"genita" para designar uma quantidade obtida, a partir de outras, por intermédio das

quatro operações aritméticas fundamentais.

Leibniz (1646 - 1716) teve seu papel de importância nesta História, foi ele

quem primeiro utilizou o termo "função", em 1673, no manuscrito Latino "Methodus

tangentium". Leibniz usou o termo apenas para designar, em termos muito gerais, a

dependência de uma curva de quantidades geométricas, como as sub tangentes e

sub normais. Introduziu, igualmente, a terminologia de "constante", "variável" e

"parâmetro".

Com o desenvolvimento do estudo de curvas por meios algébricos, tornou-se

indispensável um termo que representasse quantidades dependentes de alguma

variável por meio de uma expressão analítica. Com esse propósito, a palavra

"função" foi adaptada na correspondência trocada entre 1694 e 1698 por Leibniz e

Johann Bernoulli (1667 - 1748).

O termo "função" não aparecia ainda no léxico matemático utilizado em 1716,

mas, dois anos mais tarde Johann Bernoulli publicou um artigo, que viria a ter

grande divulgação, contendo a sua definição de função de uma certa variável como

uma quantidade que é composta de qualquer forma dessa variável e constantes.

Page 4: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

4

Não podemos nos esquecer de Euler (1707 - 1783) - um antigo aluno de

Bernoulli – que substituiu o termo "quantidade" por "expressão analítica". Foi

também Euler quem introduziu a notação f(x).

A noção de função era então identificada, na prática, com a “expressão

analítica”, situação que haveria de vigorar pelos séculos XVIII e XIX, apesar de logo

se perceber que conduzia a diversas incoerências e limitações do significado real do

que era a expressão analítica.

Esta noção, associada às noções de continuidade e de desenvolvimento em

série, conheceu sucessivas ampliações e clarificações, que lhe alteraram

profundamente a natureza e o significado.

Com o desenvolvimento do estudo das funções foram surgindo numerosas

aplicações da Matemática a outras ciências, pois os cientistas, partindo de

observações, procuravam uma fórmula (uma função) para explicar os sucessivos

resultados obtidos. A função era, então, o modelo matemático que explicava a

relação entre as variáveis.

Assim, o conceito de função, que hoje nos parece simples, é resultado de

uma evolução histórica, conduzindo sempre, cada vez mais à abstracção, e que só

no século XIX teve o seu final.

Page 5: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

5

Definição:

Função é qualquer relação de A em B, que associa a cada elemento de A um

único elemento de B. Ex:

Fig. 1: Conceito de Função

TIPOS DE FUNÇÃO

2.1) Função do 1º. grau

2.1.1) Função Crescente e Decrescente

A função é crescente quando, na função, o valor de x aumenta e o valor da

imagem de x também aumenta. x2 > x1 → f(x2) > f(x1)

Ex:

Page 6: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

6

Fig. 2: Função crescente

A função é decrescente quando na função, o valor de x aumenta e o valor da

imagem de x diminui. x2 > x1 → g(x2) < g(x1) Ex:

Fig. 3: Função decrescente

Estudos dos sinais de f(x) = ax +b

Para fazermos o estudo dos sinais da função de 1º grau, precisamos

estabelecer uma propriedade dessa função.

Page 7: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

7

Uma função de 1º grau, f(x) = ax + b:

- é crescente se a > 0

- é decrescente se a < 0

Demonstração:

Sejam x1 e x2 dois números reais quaisquer, com x2 > x1. Então, temos:

1º) f(x) = ax + b e a > 0

x2 > x1

Multiplicando ambos os membros pelo número a positivo, o sentido da

desigualdade se conserva.

ax2 >ax1

Somando b a ambos os membros desta desigualdade, teremos:

ax2 +b >ax1 +b

Ou seja,

f(x 2 ) > f(x 1 )

2º) f(x) = ax + b e a < 0

x2 > x1

E, novamente, vamos multiplicar ambos os membros pelo número a negativo,

inverte-se o sentido da desigualdade.

Page 8: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

8

a * x2 > a* x1

Neste momento, somaremos b a ambos os membros desta desigualdade, e teremos:

ax2 + b < ax1 + b

Ou seja,

f(x2) < f(x1)

Desenhando apenas o eixo Ox, o gráfico da função de 1º grau pode ser:

F(x) = ax + b

Fig. 4: Gráficos das funções descritas acima.

Page 9: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

9

Por exemplo, para estudar os sinais de f(x) = -4x + 3

1º) Cálculo da raiz

f(x) = 0 → -4x + 3 = 0 → x = 4

3

2º) Como a = -4, a função é decrescente.

Portanto, o gráfico de f (x) tem o seguinte aspecto:

Fig. 5: Gráfico

Assim temos:

f(x) = 0 ↔ x =4

3

f(x) > 0 ↔ x < 4

3

f(x) < 0 ↔ x > 4

3

Função Constante

Função constante é toda função em que os elementos do domínio possuem

uma mesma imagem.

Ex: A, f(x) = kx

4

3

Page 10: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

10

Fig. 6: Diagrama de Função Constante

2.3) Função potência:

Toda função do tipo y = x n, onde "n" é um número natural, é chamada

Função Potência. São exemplos de funções potências:

y = x2

y = x3

y = x4

O domínio de y = x n é o conjunto dos reais, porque sempre podemos calcular

x n, independente do valor de "x".

Observemos o gráfico y = x2 abaixo, onde "n" é um número par:

para "x" positivo, o crescimento da função é cada vez mais rápido: para "x" no intervalo [1,2] temos "y" no intervalo [1,4]; para "x" no intervalo [2,3] temos "y" no intervalo [4,9]; para "x" no intervalo [3,4] temos "y" no intervalo [9,16]; e assim por diante.

Observe que o gráfico para "x" negativo é uma reflexão do gráfico para "x" positivo.

Fig. 7: Gráfico de f(x)=x2

Page 11: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

11

Para o caso "n" ímpar, temos o gráfico abaixo.

Fig. 8: Gráfico de f(x) = x elevado à potência ímpar

2.4) Função Racional: O Conceito de Proporcionalidade Inversa

Toda função do tipo y = a/x (com "a" constante e x diferente de zero)

estabelece uma relação tal que y.x é constante. Dizemos, então, que a variação de

"y" é inversamente proporcional à variação de "x".

Por exemplo: y = x

1

Onde a = 1.

Observemos a função y = a/x para "a" positivo. Podemos verificar as

seguintes características:

Quando "x" cresce, tanto quanto quisermos em valor absoluto, o valor de "y"

fica cada vez menor em valor absoluto, aproximando-se cada vez mais de zero, sem

nunca alcançá-lo;

Quando "x" se aproxima de zero, o valor de "y"fica bem grande.

Page 12: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

12

Quando “x” assume valores cada vez mais negativo, o valor de “y” tende a

zero, e quando “x” chega, assume valores negativos, próximos a zero, o valor de

“y” tende a menos infinito.

Figura 9: Gráfico da função a/x , com “a” positivo.

Como seria o comportamento desta função para "a" negativo?

Uma análise similar para o caso "a" negativo é mostrado no gráfico abaixo.

Figura 10: Gráfico da função a/x, com “a” negativo.

2.4.1) Função Racional Particular

Toda função do tipo y = 1/x n, com x diferente de zero, é um caso particular de

Função Racional. São exemplos dessas funções:

Page 13: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

13

y = 1/x2

y = 1/x3

y = 1/x4

O domínio de y = 1/x n é o conjunto dos reais, menos o zero, pois 1/ 0 não

está definido.

A função y = 1/x também é um caso particular de Função Racional, onde "n" é um

número ímpar.

podemos fazer "x" crescer tanto quanto quisermos (em valor absoluto) e teremos um "y" cada vez menor, aproximando-se cada vez mais de zero, sem nunca alcançá-lo;

podemos também fazer "x" ter um valor muito próximo de zero (em valor absoluto), obtendo, neste caso, um "y" tão grande quanto quisermos, sem limite.

Figura 11: Gráfico da função y=nx

1com n ímpar

Para o caso "n" par, temos o gráfico abaixo.

Page 14: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

14

Figura 12: Gráfico da função y= 1/x, com n par.

Função Raiz

Toda função do tipo y = x 1/n, onde "n" é um número natural, é chamada Função

Raiz. São exemplos de funções raízes:

e assim por diante.

O domínio de y = x 1/n depende do parâmetro "n": se "n" for um número ímpar

o domínio será o conjunto dos reais; se "n" for um número par o domínio será os

reais positivos, pois a raíz de índice par, e radicando negativo, não está definida no

conjunto dos números reais.

Observe o gráfico y = x 1/2 abaixo, onde "n" é um número par:

a função raiz é crescente e positiva, para qualquer valor de "x".

seu crescimento é mais significativo para valores pequenos de "x"; à medida que aumentamos o valor de "x", diminuímos a velocidade de crescimento da função.

Figura 13: Gráfico da função y= x2

1

Page 15: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

15

Exercício resolvido 1

1- Anderson faz o trajeto de sua casa à escola a pé. Ele faz sempre o mesmo

trajeto, e percorre 1800m. Sai às 7:00 para chegar às 7:30, horário em que

começam as aulas.

No que segue, vamos falar em gráficos tempo-distância e tempo-velocidade:

Gráfico tempo-distância Gráfico tempo-velocidade

registra a distância que Anderson encontra-

se de casa, em função do tempo

registra a velocidade com que Anderson faz

o trajeto, em função do tempo

Observação: A variável tempo será representada no eixo x.

a) Esboce o gráfico tempo-distância que representa o trajeto de Anderson.

Figura 14: Gráfico da função f(t) = 1 t

b) Esboce o gráfico do tempo-velocidade com que Anderson faz o trajeto.

0 200 400 600 800 1000 1200 1400 1600 18000

200

400

600

800

1000

1200

1400

1600

1800

tempo(segundos)

dis

tância

(m)

Distância X Tempo

Page 16: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

16

Figura 15: Gráfico da função f(t) = 1 (velocidade X tempo)

Funções polinomiais

Polinômios

Um polinômio de grau n é uma função da forma

p(x) = anxn + an-1x

n-1 +...+ a2x2 + a1x + a0

onde os coeficientes a0, a1,..., an são números reais conhecidos, an ≠ 0 e n é

um número natural.

A função linear afim y = ax + b, cujo gráfico é uma reta, e a função quadrática

y = ax2 + bx + c, cujo gráfico é uma parábola, são exemplos de polinômios de

primeiro grau e de segundo grau, respectivamente. O polinômio de grau zero é uma

função constante. Cada uma das parcelas aixi de um polinômio, é chamada

monômio de grau i.

Dado um polinômio p(x) = anxn + an-1x

n-1 +...+ a2x2 + a1x + a0, verifiquemos

qual o significado geométrico da constante a0 .Observemos o polinômio y = 2x4 - 3x3

-4x2 -1x + 2 cujo gráfico é dado abaixo, e somente foi alterado o valor da constante

0 200 400 600 800 1000 1200 1400 1600 18000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Tempo (segundos)

Velo

cid

ade (

m/s

)

Gráfico da função Velocidade X tempo

Page 17: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

17

a0. Observe o efeito que esta mudança acarreta no gráfico da função, quando a0 = -

20, ao = -10, ao= , ao= 10 e a=20.

Figura 16: Gráfico da função f(x)= 2x

4 - 3x

3 -4x

2 -1x + 2

Os exemplos mais simples de polinômios são as funções de potências da

forma 1, x, x2, ..., xn .

Abaixo, estão traçados, em conjunto, os gráficos das seguintes funções

potência de grau ímpar:

f(x) = x3 g(x) = x5

Figura 17 Gráfico da função f(x)=x3 Figura 18: Gráfico da função g(x)=x

5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2-8

-6

-4

-2

0

2

4

6

8

x

y

f(x)=x3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2-40

-30

-20

-10

0

10

20

30

40

x

y

f(x)=x5

ao=2

ao= - 20

ao=10

ao=20

ao= - 10

Page 18: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

18

Observemos que quando x tende a infinito, o y também aumenta. E quanto

maior o n, temos essa característica mais atenuante.

Tabelas 1 e 2: Valores de x e f(x)

x F(x)=x^3 x g(x)=x^5

-10 -1000 -10 -100000

-9 -729 -9 -59049

-8 -512 -8 -32768

-7 -343 -7 -16807

-6 -216 -6 -7776

-5 -125 -5 -3125

-4 -64 -4 -1024

-3 -27 -3 -243

-2 -8 -2 -32

-1 -1 -1 -1

0 0 0 0

1 1 1 1

2 8 2 32

3 27 3 243

4 64 4 1024

5 125 5 3125

Abaixo, estão traçados, em conjunto, os gráficos das seguintes funções potência de

grau par:

F(x)= x 2 g(x) =x 6

Page 19: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

19

Figura 19: Gráfico da função g(x)=x

2 Figura 20: Gráfico da função g(x)=x

4

Estes gráficos foram feitos no software “ Matlab” :

Figura 21: Tela inicial do Matlab

À direita, vemos o prompt “ >>” esperando o nosso comando, para fazer o

gráfico da função f(x) = x 3 . Por exemplo utilizamos o seguinte comando:

fplot('x^3',[-2 2]);

-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

0.5

1

1.5

2

2.5

3

3.5

4

x

yf(x)=x2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

2

4

6

8

10

12

14

16

x

y

g(x)=x4

Page 20: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

20

Onde observamos que a potência é representada pelo acento circunflexo e o

intervalo que x pertence é de -2 a 2.

Para colocar nome nos eixos e o título do gráfico, abrirá uma janela

mostrando o gráfico, clique no “Insert” (inserir), que abrirá outra janela, em que irá

escolher Xlabel , Ylabel e Title.

Figura 22: Tela do gráfico f(x) = x3

Page 21: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

21

Um estudo completo de funções:

A princípio, conhecendo-se o gráfico da função que modela o fenômeno que

se quer estudar, é fácil localizar, visualmente, os seus máximos, ou mínimos, no

intervalo considerado. Abaixo, o gráfico da função:

Fig. 23: Gráfico da função f(x)= 4x xx 40080 23

Um ponto (x0, f(x0)) é um ponto máximo (mínimo) relativo, ou local de uma

função f, quando f(x0) é o maior (menor) valor da função, em qualquer intervalo em

torno de x0 .Por outras palavras, (x0, f(x0)) é um ponto de máximo (mínimo) relativo

da função f, se f(x0) é o maior (menor) valor da função, numa certa vizinhança de x0.

Vamos determinar inicialmente o domínio desta função:

D(f) = R

Determinemos, agora, o intercepto x ( x, 0)

Para isso, deveremos igualar a função a 0:

4x 040080 23 xx

0 1 2 3 4 5 6 7 8 9 100

100

200

300

400

500

600

x

y

Determinação dos extremos da função 4*x3-80*x2+400*x

Page 22: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

22

Nesse caso, podemos colocar o x em evidência para acharmos as raízes

reais:

0)10020(4 2 xxx

4x=0 x=0

Ou 0)40020( 2 xx

Onde tiramos que x = 10

As raízes reais são 0 e 10.

Derivando a primeira, teremos: F´(x) = 12x2-160 x+ 400

Onde igualaremos a 0 para estudarmos o sinal da função

O discriminante será = (-160)2- 4*12*400 =6400

E as raízes desta equação serão x 1 = (160 +80)/24=240/24 = 10

A outra raiz será x 2 = (160-80)/24 = 3,3

Page 23: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

23

Fig. 24: Gráfico da função f(x)= 12x2

-160 x+ 400

O que observamos é que antes de 3 e depois de 10 temos a função positiva

e, entre eles, a função fica negativa.

Assim,

F é crescente em ]- 3,3, [ e ]10, [

F é decrescente em ] 3,3 ; 10[.

Podemos verificar se existe ponto de inflexão, ou seja, se há um ponto que

mude a concavidade da função. Para isso, observemos a segunda derivada da

função estudada:

f ’’(x)= 24x-160

Igualemos a f ’’(x) =0

Teremos: 24x-160=0 e x=6,66.

O que significa que encontramos o ponto de inflexão, pois f é côncava para baixo em ]-

6,6; [ e côncava para cima em ]6,6 ; [

-200

0

200

400

600

800

1000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

y

x

Estudo do sinal da derivada primeira

Page 24: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

24

Resolvendo equações polinomiais

I) Raízes complexas e irracionais

Se o número complexo a + bi é uma raiz da equação racional inteira P(x)=0, com

coeficientes reais, então o número complexo conjugado a-bi também é uma raiz. Sendo

assim, toda equação racional inteira de grau ímpar com coeficientes reais têm pelo menos

uma raiz real.

Se a equação racional inteira P(x)=0, com coeficientes racionais, tem a+ b como raiz,

onde a e b são racionais e b é irracional, então a- b também é uma raiz.

II) Teorema da raiz racional

Se b/c , uma fração racional irredutível, é uma raiz da equação:

anxn + an-1x

n-1 +...+ a2x2 + a1x + a0=0 com an 0

com coeficientes inteiros, então b é um fator de a0 e c é um fator de an.

Assim, se b/c é uma raiz racional de 6x 3 +5x 2 -3x+2=0 , os valores de b são

limitados aos fatores de 2, que são ,2,1 e os valores de c são limitados aos

fatores de 6 que são 6,3,2,1 .

As raízes racionais possíveis são .3/2,6/1,3/1,2/1,2,1

III) Teorema da raiz inteira.

Segue-se que, uma equação P(x)=0 tem coeficientes inteiros e o coeficiente líder é 1:

anxn + an-1x

n-1 +...+ a2x2 + a1x + a0=0

teremos que toda raiz racional d P(x) =0 é um inteiro e um fator de ao.

Desse modo, as raízes racionais de uma equação como:

Page 25: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

25

x3+2x

2-11x-12=0

se existirem, estão limitadas a .12,4,3,2,1

IV) Teorema do Valor intermediário:

Se P(x) =0 é uma equação polinomial com coeficientes reais, então os valores

aproximados para as raízes reais de P(x)+0 podem ser encontrados esboçando-se o gráfico

de y=P(x) e determinando-se os valores de x nos pontos onde o gráfico intercepta o eixo x.

O importante deste processo é o fato de que, se P(a) e P(b) têm sinais opostos,

então P(x)=0 tem pelo menos uma raiz entre x=a e x=b;

Exercício resolvido 2:

Encontre o(s) intervalo(s) em que estão as raízes de P(x)= 2x 3 -5x 2 -6x+4

Solução:

Vamos iniciar pelo intervalo [-4,4]

P(-4) = -180

P(-3) = -77

P(-2) = -20

P(-1)=3

P(0)=4

P(1)=-5

P(2)=-12

P(3)=-5

P(4)=28

Page 26: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

26

Observe que P(-2) e P(-1), P(0) e P(1) e P(3) e P(4) têm sinais opostos

Ou seja, existe uma raiz entre -2 e -1, outra entre 0 e 1 e a terceira entre 3 e

4.

Nem sempre é possível localizar todas as raízes reais através deste

procedimento, porque poderia haver mais de uma raiz entre dois inteiros

consecutivos. Quando existe um número par de raízes entre dois inteiros

consecutivos, o Teorema do Valor Intermediário não vai revelá-las, pois utilizamos

apenas valores inteiros para x. O Teorema do Valor Intermediário não nos diz

quantas raízes reais existem no itervalo, mas apenas que existe pelo menos uma

raiz no intervalo.

V. Cotas, inferior e superior, para raízes reais

Um número a é denominado cota superior, ou limite superior, para as raízes

reais de P(x)=0 se nenhuma raiz é maior que a.

Um número b é denominado cota inferior, ou limite inferior, para as raízes

reais de P(x)=0 se nenhuma raiz é menor que b.

Seja:

anxn + an-1x

n-1 +...+ a2x2 + a1x + a0=0

com an, an-1, .. a2, a1, a0 reais e an>0

Teremos:

(1) Se pela divisão sintética de P(x) por x-a, com a 0, todos os números obtidos na

segunda linha são positivos ou nulos, então a é uma cota superior para todas as raízes reais

de P(x)=0.

(2) Se pela divisão sintética de P(x) por x-b, com b 0, todos os números obtidos na

segunda linha são alternadamente positivos e negativos (ou nulos), então b é uma cota

inferior para todas as raízes reais de P(x)=0.

Page 27: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

27

Exercício resolvido 3:

Encontre um intervalo através das cotas, inferior e superior, que contenha

todas as raízes de P(x)= P(x)= 2x 3 -5x 2 +6.

Vamos iniciar fazendo a divisão pelos inteiros 1,2, 3,...

Na 1ª. linha colocamos os coeficientes 1,-5 0 e 6

Na 2ª. linha colocamos o número 1 para iniciar a divisão.

Fazemos a operação: Abaixa o número 2

Fazemos 1 * 2+ (-5) = -3

1 * (-3) + 0 =-3

1*(-3) + 6 = -3

Como não conseguimos todos os números da 2ª. linha, positivos ou nulos, vamos tentar

com o número 2:

2 -5 0 6

2 2 -1 -2 2

(multiplica)

2 -5 0 6

1

2 -3 -3 -3

soma

Page 28: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

28

Quando dividimos por 3, a linha do quociente é toda positiva, de modo que 3 é o menor

inteiro, que é uma cota superior para todas as raízes.

2 -5 0 6

3 2 1 3 15

Cota superior = 3

Vamos fazer a divisão sintética com -1:

2 -5 0 6

-1 2 -7 7 -1

Quando dividimos por -1 , a linha do quociente alterna o sinal, assim, -1 é o maior inteiro

que é uma cota inferior para as raízes de P(x).

Cota inferior = -1

Portanto, as raízes reais de P(x) = 2x3-5x

2+6 estão no intervalo (-1,3).

VI) Regra de Sinais de Descartes

Se os termos de um polinômio P(x) com coeficientes reais forem listados em ordem

decrescente das potências de x, dizemos que ocorre uma variação de sinal, pois dois

termos consecutivos diferem em sinal.

Page 29: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

29

A Regra de Sinais de Descartes diz que:

“ O número de raízes positivas de P(x)=0 é igual ao

número de variações de sinal de P(x) ou menor que este

número, diferindo deste por um número par, e o número de

raízes negativas de P(x)=0 é igual ao número de variações de

sinal de P(-x) ou menor que este número.”

Por exemplo: x9-2x

5+2x

2- 3x+12=0

Existem 4 variações de sinal de P(x), portanto pode ter 4, (4-2) ou (4-4) raízes

positivas.

Quando P(-x) = (-x)9-2(-x)

5+2(-x)

2- 3(-x)+12

P( - x) = -x9+2x

5+2x

2+ 3x+12

Apenas 1 variação de sinal, ou seja, 1 raiz negativa.

E as outras raízes?

Elas são raízes complexas !!!

Exercício resolvido 4:

I) Encontre uma raiz real de x 3 +3x 2 +8=0, com uma precisão de 2 casas

decimais.

Solução:

Pela Regra de Descartes, temos:

Não há raízes positivas, não há variação de sinal em P(x)

Page 30: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

30

Quando P(-x) = (-x) 3 +3(-x) 2 +8

P(-x)= -x 3 +3x 2 +8

Há 1 variação de sinal, portanto, 1 raiz negativa.

Então, vamos verificar onde está esta raiz:

P(-4) P(-3) P(-2) P(-1)

-68 -28 -6 4

Teremos uma raiz entre -2 e -1, onde há variação de sinal.

E ainda teremos que verificar o intervalo de comprimento de um décimo, que contém a raiz:

x -1 -1,1 -1,2 -1,3 -1,4 -1,5 -1,6 -1,7 -1,8

P(x) 4 3,369 2,672 1,903 1,056 0,125 -0,896 -2,013 -3,232

Podemos verificar que a mudança de sinal de P(x) ocorre quando x=-1,5 e x= -1,6

A procura da nova raiz entre -1,6 e -1,5, então, teremos que tentar -1,51; -1,52; -1,53,...

-

1,51 -1,52 -1,53

0,027049 -0,07181 -0,17158

Temos, então, uma raiz entre -1,52 e -1,51.

I) Dado que uma raiz de x3+ 2x

2-23x -60=0 é 5, resolva a equação.

Page 31: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

31

Pela divisão sintética, temos:

1 2 -23 -60

5 1 7 12 0

Assim, a equação derivada (mas não é a P’(x))= x2+7x +12=0, cujas raízes são: -3

e -4.

Assim, as três raízes são: -4,-3 e 5.

II) Determine as raízes racionais de 4x3+ 15x-36=0

Sabendo que b é um fator de a0= -36

E c é um fator de an,=4

Assim, os valores de b são limitados em .36,12,9,6,3,2,1

Os valores de c estão limitados a 4,2,1

E as raízes racionais possíveis são:

Raízes negativas: -36 , -18, -12, -9, -6, -9/2, -4, -3, -9/4, -2, -1,-3/4, -1/2, -1/4

Raízes positivas: 1/4, 1/2, 3/4, 1,2,9/4, 3,4,9;2, 6, 9, 12, 18, 36.

Teste para cota superior:

4 0 15 -36

1 4 4 19 -17

Ainda há um termo negativo

Page 32: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

32

4 0 15 -36

2 4 8 31 26

Todos os números da 2ª. linha são positivos, portanto, não há raiz (real) maior que 2.

Teste para cota inferior:

4 0 15 -36

-1 4 -4 19 -55

Determinamos que não há raiz (real) menor que -1.

Assim, as únicas raízes racionais possíveis, maiores que -1 e menores que 2, são:

-3/4, -1/2, -1/4, ¾, 3/2.

Assim, teremos:

x P(x)

-0,75

-

48,9375

-0,5 -44

-0,25

-

39,8125

0,75

-

23,0625

1,5 0

Descobrimos, portanto, que 3/2 é a única raiz racional.

Page 33: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

33

E as outras são as raízes da equação: 4x2

+6x +24=0

4 0 15 -36

1,50 4 6 24 0

As outras raízes são soluções desta equação, e são: x=- i4

87

4

3

Função logarítmica

Logaritmo

Se bx=N, onde N é um número positivo e b é um número positivo distinto de 1, então

o expoente x é o logaritmo de N na base b e é escrito da seguinte forma:

X=log b N

O logaritmo tem algumas aplicações muito importantes, principalmente no que diz

respeito à transformação de números que estão sendo multiplicados para a operação de

adição e à transformação de números de potência para a multiplicação. Devido a essas

facilidades, o logaritmo tem sido muito utilizado em operações, como na Matemática

Financeira.

Propriedades do logaritmo:

I) log b (M*N)= log b M+ log b N

Exemplo: log (10 * 10) = log10+log10=1+1 =2

II) log bN

M= log b M - log b N

Page 34: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

34

Exemplo: log

10

100=log100-log10=2-1=1

III) log b Mn=n log b M

Exemplo: log 102= 2* log10= 2*1 = 2.

LOGARITMOS COMUNS

O sistema de logaritmos cuja base é 10 é chamado de sistema de logaritmo

comum. Quando a base é omitida , subentende-se que a base é 10.

Por exemplo, log 12=1,07918 pois 10 07918,1 =12.

N o 1 2 3 4 5 6 7 8 9

10 0000 0043 0086 0128 0170 0212 0253 0294 0334 0374

11 0414 0453 0492 0531 0569 0607 0645 0682 0719 0755 12 0792 0828 0864 0899 0934 0969 1004 1038 1072 1106 13 1139 1173 1206 1239 1271 1303 1335 1367 1399 1430

14 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732

15 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014

16 2041 2068 2095 2122 2148 2175 2201 2227 2253 2279 17 2304 2330 2355 2380 2405 2430 2455 2480 2504 2529 18 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765

19 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989

20 3010 3032 3054 3075 3096 3118 3139 3160 3181 3201

21 3222 3243 3263 3284 3304 3324 3345 3365 3385 3404 22 3424 3444 3464 3483 3502 3522 3541 3560 3579 3598 23 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784

24 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962

25 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133

26 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298 27 4314 4330 4346 4362 4378 4393 4409 4425 4440 4456 28 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609

29 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757

30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900

31 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038 32 5051 5065 5079 5092 5105 5119 5132 5145 5159 5172 33 5185 5198 5211 5224 5237 5250 5263 5276 5289 5302

34 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428

35 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551

36 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670 37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786 38 5798 5809 5821 5832 5843 5855 5866 5877 5888 5899

39 5911 5922 5933 5944 5955 5966 5977 5988 5999 6010

40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117

Page 35: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

35

41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222

42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325

43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425

44 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522

N O 1 2 3 4 5 6 7 8 9

O dígito que precede a parte decimal do número é a característica do

logaritmo, e a fração decimal é a sua mantissa. Portanto, nesse exemplo:

Característica=1

Mantissa= 0,7918

A mantissa do logaritmo de um número é encontrada em tabelas, na quais

subentende-se que cada mantissa seja precedida por vírgula, uma vez que ela é

sempre inferior a 1.

A característica é determinada por uma análise do número, de acordo com as

condições:

a)Para um número maior que 1 , a característica é positiva e igual à quantidade de

dígitos antes da vírgula menos um. Por exemplo:

Número: 4.768 Característica: 3

Número: 346 Característica: 2

Número: 567 Característica: 2

b) Para um número menor que 1, a característica é negativa e igual à quantidade de

zeros, após à vírgula, mais 1. O sinal negativo da característica é representado da

seguinte maneira: _

1 , um traço em cima do numeral, que mostrará apenas uma

casa antes da vírgula, como o número:0,3485.

Page 36: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

36

Tabela de logaritmos comuns

Vamos utilizar a tabela de logaritmos. Suponha que queiramos encontrar o

logaritmo de 456. Assim, descemos na coluna de N até 45, deslocamo-nos para a

direita até o coluna 6 e anotamos o número: 6590.

Sabemos que a característica de 456 é 2, então o log456 = 2,6590.

N O 1 2 3 4 5 6 7 8 9 45 6532 6542 6551 6561 6571 6580 6590 6599 6609 6618 46 6628 6637 6646 6656 6665 6675 6684 6693 6702 6712 47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803 48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893

49 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981 49 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981

50 6990 6998 7007 7016 7024 7033 7042 7050 7059 7067 51 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152

52 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235 53 7243 7251 7259 7267 7275 7284 7292 7300 7308 7316 54 7324 7332 7340 7348 7356 7364 7372 7380 7388 7396

55 7404 7412 7419 7427 7435 7443 7451 7459 7466 7474

56 7482 7490 7497 7505 7513 7520 7528 7536 7543 7551 57 7559 7566 7574 7582 7589 7597 7604 7612 7619 7627 58 7634 7642 7649 7657 7664 7672 7679 7686 7694 7701 59 7709 7716 7723 7731 7738 7745 7752 7760 7767 7774 60 7782 7789 7796 7803 7810 7818 7825 7832 7839 7846 61 7853 7860 7868 7875 7882 7889 7896 7903 7910 7917 62 7924 7931 7938 7945 7952 7959 7966 7973 7980 7987 63 7993 8000 8007 8014 8021 8028 8035 8041 8048 8055 64 8062 8069 8075 8082 8089 8096 8102 8109 8116 8122 65 8129 8136 8142 8149 8156 8162 8169 8176 8182 8189 66 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254 67 8261 8267 8274 8280 8287 8293 8299 8306 8312 8319 68 8325 8331 8338 8344 8351 8357 8363 8370 8376 8382 69 8388 8395 8401 8407 8414 8420 8426 8432 8439 8445

70 8451 8457 8463 8470 8476 8482 8488 8494 8500 8506 71 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567 72 8573 8579 8585 8591 8597 8603 8609 8615 8621 8627 73 8633 8639 8645 8651 8657 8663 8669 8675 8681 8686

74 8692 8698 8704 8710 8716 8722 8727 8733 8739 8745 75 8751 8756 8762 8768 8774 8779 8785 8791 8797 8802 76 8808 8814 8820 8825 8831 8837 8842 8848 8854 8859

77 8865 8871 8876 8882 8887 8893 8899 8904 8910 8915 78 8921 8927 8932 8938 8943 8949 8954 8960 8965 8971 79 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025 80 9031 9036 9042 9047 9053 9058 9063 9069 9074 9079 81 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133 82 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186

Page 37: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

37

83 9191 9196 9201 9206 9212 9217 9222 9227 9232 9238 84 9243 9248 9253 9258 9263 9269 9274 9279 9284 9289 N O 1 2 3 4 5 6 7 8 9

Exercício resolvido 5:

Calcule log 5,638

Vamos até à tabela de logaritmos na linha de 56 e na coluna 3:

Mantissa de log 5,630=0,7505

Mantissa de log 5,640=0,7513

Fazemos a diferença tabular: 0,7513 – 0,7505 = 0,0008

Assim, teremos: 0,8 * 0,0008 = 0,00064

Como queremos log 5,6380, fazemos:

Log 5,630 + 0,00064 = 0,7505+ 0,00064 = 0,7511 (aproximando para 4 casas

decimais)

Comentário adicional: A mantissa de log 5638 , log 563,8 , log 56,38, etc... é 0,7511,

mas as características diferem:

Assim: log 5638 =3,7511 log 0,5638 = 751,1_

Log 563,8 = 2,7511 log 0,05638 = 1751,2_

Log 56,38 =1,7511

Log 5,638 = 0,7511

Antilogaritmo é o número que corresponde a um logaritmo. O antilogaritmo de

0,7511 “significa” o número cujo logaritmo é 0,7511, esse número é 5,6380.

Logaritmos naturais

Page 38: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

38

O sistema de logaritmos cuja base é a constante é chamado de sistema logarítmico

natural.

A indicação de um logaritmo com base“ e” (2,718...) é ln Assim, ln25 = loge 25.

Utilização de tabelas com logaritmos naturais

Abaixo, uma parte da tabela de logaritmos naturais:

N 0 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09

1 0 0,01 0,0198 0,0296 0,0392 0,0488 0,0583 0,0677 0,077 0,082 1,1 0,0953 0,1044 0,1133 0,1222 0,131 0,1398 0,1484 0,157 0,1655 0,174

1,2 0,1823 0,1906 0,1989 0,207 0,2151 0,2231 0,2311 0,239 0,2469 0,2546

1,3 0,2624 0,27 0,2776 0,2852 0,2927 0,3001 0,3075 0,3148 0,3221 0,3293

1,4 0,3365 0,3436 0,3507 0,3577 0,3646 0,3716 0,3784 0,3853 0,392 0,3988

1,5 0,4055 0,4121 0,4187 0,4253 0,43]8 0,4383 0,4447 0,4511 0,4574 0,4637

1,6 0,47 0,4762 0,4824 0,4886 0,4947 0,5008 0,5068 0,5128 0,5188 0,5247

1,7 0,5306 0,5365 0,5423 0,5481 0,5539 0,5596 0,5653 0,571 0,5766 0,5822

1,8 0,5878 0,5933 0,5988 0,6043 0,6098 0,6152 0,6206 0,6259 0,6313 0,6366

1,9 0,6419 0,6471 0,6523 0,6575 0,6627 0,6678 0,6729 0,678 0,6831 0,6881

2 0,6931 0,6981 0,7031 0,708 0,713 0,7178 0,7227 0,7275 0,7324 0,7372

2,

1 0,74]9 0,7467 0,7514 0,7561 0,7608 0,7655 0,7701 0,7747 0,7793 0,7839

2,2 0,7885 0,793 0,7975 0,802 0,8065 0,8109 0,8154 0,8198 0,8242 0,8286

2,3 0,8329 0,8372 0,8416 0,8459 0,8502 0,8544 0,8587 0,8629 0,8671 0,8713

2,4 0,8755 0,8796 0,8838 0,8879 0,892 0,8961 0,9002 0,9042 0,9083 0,9123

2,5 0,9163 0,9203 0,9243 0,9282 0,9322 0,9361 0,94 0,9439 0,9478 0,9517

2,6 0,9555 0,9594 0,9632 0,967 0,9708 0,9746 0,9783 0,9821 0,9858 0,9895

2,7 0,9933 0,9969 1,0006 1,0043 1,008 1,0116 1,0152 1,0188 1,0225 1,026

2,8 1,0296 1,0332 1,0367 1,0403 1,0438 1,0473 1,0508 1,0543 1,0578 1,0613

2,9 1,0647 1,0682 1,0716 1,075 1,0784 1,0818 1,0852 1,0886 1,0919 1,0953

3 1,0986 1,1019 1,1053 1,1086 1,1119 1,1151 1,1184 1,1217 1,1249 1,1282

3,1 1,1314 1,1346 1,1378 1,141 1,1442 1,1474 1,1506 1,1537 1,1569 1,16

3,2 1,1632 1,1663 1,1694 1,1725 1,1756 1,1787 1,1817 1,1848 1,1878 1,1909

Para determinação do logaritmo natural de um número entre 1 e 10 tal como

ln 3,26 =1,1817

Page 39: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

39

Se desejarmos determinar o logaritmo natural de um número natural de um

número maior que 10 ou menor que 1.escreveremos o número em notação

científica, aplicaremos as regras dos logaritmos, e usaremos a tabela de logaritmos

naturais e o fato de ln10=2,3026.

Exemplo: ln 326 = ln (3,26 * 10 2 ) =

ln 3,26 + 2*ln10=

1,1817 + 2 *2,3026 =

5,8769

Exercício resolvido 6:

I. Calcule, utilizando logaritmo:

P = 3,81 * 43,4

Solução:

logP= log (3,81 * 43,4)

log P = Log 3,81 + log 43,3

log P =0,5802 + 1,6364=2,2166.

MUDANÇA DE BASE:

Na HP12 C, não encontramos logaritmo decimal, somente ln, como podemos

observar na figura abaixo:

Fig. 25: Calculadora HP 12c

Page 40: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

40

Essa é uma das razões porque devemos saber mudar a base do logaritmo,

caso queiramos fazer alguma operação com os logaritmos.

A mudança de base do logaritmo obedece a seguinte condição:

log c b = c

b

a

a

log

log

Por exemplo, se queremos saber log 100 e não temos em mãos a tábua de

logaritmo comum, ou nenhuma calculadora científica, podemos fazer:

10ln

100ln

No caso da HP 12 C, aplica-se o algoritmo:

100 (g) (ln) (enter)

10 (g) (ln)

O resultado sera igual a 2.

Algumas outras aplicações de logaritmos:

I) O volume L de um som (em decibéis), percebido pelo ouvido humano

depende da relação entre a intensidade I do som e o limiar Io de audição da media

do ouvido humano.

II) Os químicos utilizam o potencial de hidrogênio, pH de uma solução para

medir sua acidez ou basicidade. O pH da água destilada é cerca de 7. Se o pH da

solução for superior a 7, diz-se que é ácida, se for inferior, diz-se que é básica. Se [

H ] é a concentração de íons de hidrogênio em mols por litro, o pH é dado pela

fórmula (Spegel & Moyer, 2004):

Page 41: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

41

pH = -log [ H ]

Determine o pH da solução cuja concentração de íons de hidrogênio é 4,65 X 10 5

mols por litro.

pH= -log [4,65 X 10 5 ]

pH= -log 4,65 + 5log 10

pH= - 0,6674 + 5 =4,3326

III) O número e está envolvido em muitas funções que ocorrem na natureza. A curva

de crescimento de vários materiais podem ser descritas pela equação exponencial:

A=Ao* e rt

A população de um país era 1.200.000 em 1990, e tinha uma razão anual de

crescimento de 3%. Se o crescimento é exponencial, qual será a população em

2008?

A=1.200.000 e 18*03,0

A= 1.200.000 * 1,7160 =2.059.208 pessoas

IV ) Sabemos que o montante calculado em operações que estão sob o regime de

juros composto segue a seguinte regra:

FV = PV * (1 + i ) n

Onde FV = valor futuro ou montante

PV= valor presente

i= taxa de juros

n= período

Determine o período que dobrará um capital que é investido sob regime de

juros compostos a uma taxa de 1 % am.

2PV=PV*(1+0,01) n

2 = 1,01 n

Log 2 = n *log 1,01

0,3010 = n* 0,0043

n= 70 meses.

Page 42: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

42

FUNÇÃO LOGARÍTMICA

1) Observe a função do gráfico de f(x) = log x

Fig. 26: Gráfico de f(x)= log x

Perceba que quando x=1 temos log1, e qualquer número elevado a 0 será 1.

2) Quando temos f(x)= - log x

Fig. 27: Gráfico da função f(x)=- log x

Obteremos valor da função somente no 4º. Quadrante (x >0 e y<0)

Gráfico da função logarítmica

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1 3 5 7 9 11 13 15 17 19

x

y=

log

x

Gráfico da função f(x) = - log x

-1,4

-1,2

-1

-0,8

-0,6

-0,4

-0,2

0

1 3 5 7 9 11 13 15 17 19

x

y =

-lo

g x

Page 43: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

43

BIBLIOGRAFIA

FRANK AYRES JR. - Álgebra Moderna - - Mcgraw-Hill do Brasil Ltda. - 1971

GELSON IELZZI e OSVALDO DOLCE - Álgebra III - Editora Moderna - 1973

HIGINO H. DOMINGOS - Fundamentos da Aritmética - Capítulos I, II e III - Atual

Editora - São Paulo 1991.

NACHBIN,L. - Introdução à Álgebra. McGraw-Hill do Brasil, 1971

SPIEGEL, Murray e. MOYER Robert. Álgebra. São Paulo: Ed.Bookman, 2002.

Page 44: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

44

ATIVIDADES DE FIXAÇÃO

1) Numa certa cidade, 3/12 dos moradores são de nacionalidade estrangeira.

Sabendo-se que o total de habitantes é 11.760, o nº de brasileiros nessa

cidade é:

a) 8.250

b) 9.600

c) 10.780

d) 8.500

e) 8.820

2) Numa eleição em que dois candidatos disputaram o mesmo cargo, votaram 2.150

eleitores. O candidato vencedor obteve 148 votos a mais que o candidato derrotado.

Sabendo-se que houve 242 votos nulos, quantos votos obteve cada candidato ?

a) 1.149 e 1.001

b) 1.100 e 952

c) 1.223 e 1.075

d) 1.028 e 880

e) 1.001 e 907

3) Uma torneira despesa 180 litros de água em 9 minutos. Quantos litros despejará

em 2 horas e um quarto ?

a) 2.345

b) 1.800

c) 1.890

d) 2.360

e) 2.700

4) Uma caixa d’água tem as seguintes dimensões internas: 4m de comprimento;

2,5m de largura; e 1,5m de altura. Estando cheia até os 2/5 do seu volume máximo,

ela contém um volume de:

a) 12m3

Page 45: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

45

b) 6m3

c) 15m3

d) 9m3

e) 18m3

5) Um vinicultor tem estocado 20 barris de vinho, com 150 litros cada um. Vai

engarrafá-los em frascos que contém 0,75 litros cada. Quantos frascos serão

necessários ?

a) 2.600

b) 3.500

c) 4.000

d) 400

e) 350

6) A sucessão X, Y, Z é formada com números inversamente proporcionais a 12, 8 e

6, e o fator de proporcionalidade é 24. O valor de X, Y e Z é:

a) 2,3,6

b) 3,5,7

c) 2,4,6

d) 3,6,8

e) 2,3,4

7) Se cada passo que você dá equivale a 0,6m, quantos passos você dará para

andar 2,4 km ?

a) 4.000

b) 400

c) 40.000

d) 3.600

e) 400.000

8) Quais os juros produzidos por R$ 80.000 ao fim de 300 dias sendo a taxa anual

de 12% ?

a) 7.500

b) 6.000

Page 46: CURSO DE PÓS-GRADUAÇÃO LATO SENSU - Ambiente Virtual do ...admin.institutoalfa.com.br/_materialaluno/material95306.pdf · Leibniz (1646 - 1716) teve seu papel de importância nesta

46

c) 8.000

d) 6.200

e) 9.600

9) Percorri de carro 300 km em 4 horas. Quanto tempo gastarei para percorrer 450

km, se aumentar a velocidade do carro em 1/5 ?

a) 5 horas

b) 4 h 30 min

c) 5 h 30 min

d) 5 h 10 min

e) 4 horas

10) Numa prova, um aluno acertou 30 questões, que correspondem a 60% do

número de questões da prova. Quantas questões tinha essa prova ?

a) 45

b) 50

c) 55

d) 60

e) 70