24
7/21/2019 DATA ASIMILASI UNTUK PEMULA http://slidepdf.com/reader/full/data-asimilasi-untuk-pemula 1/24 4D-Var for Dummies Jeff Kepert Centre for Australian Weather and Climate Research A partnership between the Australian Bureau of Meteorology and CSIRO 8th Adjoint Workshop, Pennsylvania, May 17-22 2009

DATA ASIMILASI UNTUK PEMULA

Embed Size (px)

DESCRIPTION

DATA ASIMILASI UNTUK PEMULA

Citation preview

Page 1: DATA ASIMILASI UNTUK PEMULA

7/21/2019 DATA ASIMILASI UNTUK PEMULA

http://slidepdf.com/reader/full/data-asimilasi-untuk-pemula 1/24

4D-Var for Dummies

Jeff Kepert

Centre for Australian Weather and Climate ResearchA partnership between the Australian Bureau of Meteorology and CSIRO

8th Adjoint Workshop, Pennsylvania, May 17-22 2009

Page 2: DATA ASIMILASI UNTUK PEMULA

7/21/2019 DATA ASIMILASI UNTUK PEMULA

http://slidepdf.com/reader/full/data-asimilasi-untuk-pemula 2/24

Page 3: DATA ASIMILASI UNTUK PEMULA

7/21/2019 DATA ASIMILASI UNTUK PEMULA

http://slidepdf.com/reader/full/data-asimilasi-untuk-pemula 3/24

 1854: Meteorological Dept of the British Board of Trade

created

 “...in a few years .... we might know in this metropolis the

condition of the weather 24 hours beforehand.” (M.J.BallMP, House of Commons, 30 June 1854.)

 Response from House: “Laughter”

Page 4: DATA ASIMILASI UNTUK PEMULA

7/21/2019 DATA ASIMILASI UNTUK PEMULA

http://slidepdf.com/reader/full/data-asimilasi-untuk-pemula 4/24

Page 5: DATA ASIMILASI UNTUK PEMULA

7/21/2019 DATA ASIMILASI UNTUK PEMULA

http://slidepdf.com/reader/full/data-asimilasi-untuk-pemula 5/24

Why Data Assimilation is Important

 Numerical Weather Prediction (NWP) is (largely) an initialvalue problem. Has contributed to enormous forecast improvements

Extracts the maximum value from expensive observations  Accurate analyses are necessary for getting the most from

field programs.

 Reanalyses of past data using modern methods are an

essential resource for climate research.

Page 6: DATA ASIMILASI UNTUK PEMULA

7/21/2019 DATA ASIMILASI UNTUK PEMULA

http://slidepdf.com/reader/full/data-asimilasi-untuk-pemula 6/24

Best Linear Unbiased Estimate (BLUE)

  Observations y 1  and y 2  of a true state  x t :

y 1 =x t  + 1   y 2  =x t  + 2

 The statistical properties of the errors are known:

1 = 0   21 = σ2

1   12 = 0

2 = 0   22 = σ2

2

  Estimate x a  of x t  as a linear combination of the

observations such that x a  = x t   (unbiased) and

σ2a  = (x a − x t )

2

is minimised (best).   Then

x t  = σ2

2y 1 + σ21y 2

σ21 + σ2

2

Page 7: DATA ASIMILASI UNTUK PEMULA

7/21/2019 DATA ASIMILASI UNTUK PEMULA

http://slidepdf.com/reader/full/data-asimilasi-untuk-pemula 7/24

Best Linear Unbiased Estimate (cont’d)

 Same estimate found by minimising

J (x a ) = (x a − y 1)2

σ21

+ (x a − y 2)2

σ22

  Minimising J  is the same as maximising exp(−J /2)  Hence for Gaussian errors the BLUE is the maximum

likelihood (or optimal) estimate.

 For many pieces of data  y = (y 1, y 2, . . . , y n )T ,

J (x a ) = (x a − y)T P−1(x a − y)

where P is the error covariance matrix of  y.

Page 8: DATA ASIMILASI UNTUK PEMULA

7/21/2019 DATA ASIMILASI UNTUK PEMULA

http://slidepdf.com/reader/full/data-asimilasi-untuk-pemula 8/24

Assimilation: The Big BLUE

Assimilation combines a short-term numerical forecast withsome observations:

J (xa ) = (xa − xf )T B−1(xa − xf ) + (H(xa )− y)T R−1(H(xa )− y)

  xa  is the analysis

  xf  the short-term forecast

  y are the observations

 H produces the analysis estimate of the observed values  R is the observation error covariance

 B is the forecast error covariance

Page 9: DATA ASIMILASI UNTUK PEMULA

7/21/2019 DATA ASIMILASI UNTUK PEMULA

http://slidepdf.com/reader/full/data-asimilasi-untuk-pemula 9/24

The Atmospheric Infrared Transmission Spectrum

Page 10: DATA ASIMILASI UNTUK PEMULA

7/21/2019 DATA ASIMILASI UNTUK PEMULA

http://slidepdf.com/reader/full/data-asimilasi-untuk-pemula 10/24

HIRS (High resolution InfraRed Sounder) Channel

Weights

Page 11: DATA ASIMILASI UNTUK PEMULA

7/21/2019 DATA ASIMILASI UNTUK PEMULA

http://slidepdf.com/reader/full/data-asimilasi-untuk-pemula 11/24

Finding the minimum of J 

J (xa ) = (xa − xf )T B−1(xa − xf ) + (H(xa )− y)T R−1(H(xa )− y)

Solve directly ∇J  = 0.

 Have to manipulate big matrices   Nonlinear H is very difficult (satellite radiances)

Iterative minimisation (a.k.a. variational assimilation).

 Finds full 3-D structure of the atmosphere (3D-Var)

 Other observations and background helps constrain thepoorly-conditioned and underdetermined inversion of the

satellite radiances

Page 12: DATA ASIMILASI UNTUK PEMULA

7/21/2019 DATA ASIMILASI UNTUK PEMULA

http://slidepdf.com/reader/full/data-asimilasi-untuk-pemula 12/24

Minimising J 

J (xa ) = (xa − xf )T B−1(xa − xf ) + (H(xa )− y)T R−1(H(xa )− y)

To minimise J , we need the gradient:

∇J (xa ) = 2B−1(xa − xf ) + 2HT R−1(H(xa )− y)

H =

 ∂ Hi ∂ xa , j 

 is the Jacobian of H (a.k.a. the tangent linear)

HT  is the adjoint of H

Page 13: DATA ASIMILASI UNTUK PEMULA

7/21/2019 DATA ASIMILASI UNTUK PEMULA

http://slidepdf.com/reader/full/data-asimilasi-untuk-pemula 13/24

The Importance of B

J (xa ) = (xa − xf )T B−1(xa − xf ) + (H(xa )− y)T R−1(H(xa )− y)

B is important:

 Conditioning and speed of convergence

 Getting the statistics right

 Describing atmospheric balance

 Spatial scale of analysis

B in the model variables fails miserably:

 Rank deficient

 Too large to store, let alone operate on

Page 14: DATA ASIMILASI UNTUK PEMULA

7/21/2019 DATA ASIMILASI UNTUK PEMULA

http://slidepdf.com/reader/full/data-asimilasi-untuk-pemula 14/24

B the best you can B

Representing B typically involves:  Transform to less-correlated variables.

(u , v ) =⇒ (ψ, χ) u  = −∂ψ/∂ y  + ∂χ/∂ x , v  = ∂ψ/∂ x  + ∂χ/∂ y  Replace mass field by unbalanced mass:

φunbal  = φ − φbal(ψ)  Transform to spectral space.

  Rescale.

These make B diagonal =⇒ good conditioning and

computational efficiency.  Truncate the small scales.  Forecast error spectrum is red,

with little power at small scales. So truncate  B.

Page 15: DATA ASIMILASI UNTUK PEMULA

7/21/2019 DATA ASIMILASI UNTUK PEMULA

http://slidepdf.com/reader/full/data-asimilasi-untuk-pemula 15/24

Incremental Formulation

Replace

J (xa ) = (xa − xf )T B−1(xa − xf ) + (H(xa )− y)T R−1(H(xa )− y)

by

J (δ x) = δ xT B−1δ x + (H(xf ) + Hδ x− y)T R−1(H(xf ) + Hδ x− y)

where δ x = xa − xf   and H  is the Jacobian of H (tangent linear).

 H(xa ) becomes H(xf ) + Hδ x

 Computational efficiency since δ x now at reducedresolution of B, H maybe cheaper to compute than H, true

quadratic form.

Page 16: DATA ASIMILASI UNTUK PEMULA

7/21/2019 DATA ASIMILASI UNTUK PEMULA

http://slidepdf.com/reader/full/data-asimilasi-untuk-pemula 16/24

A Matter of Time

So far all data assumed to be at the analysis time.

 Assimilate e.g. four times a day.

 All data in 6-hour window assumed to occur at the middle

of that window.   Introduces some errors =⇒ weather systems move and

develop!

 Reduce errors by assimilating more frequently, but that has

its own problems.A better way is to introduce the time dimension into the

assimilation, 4-dimensional variational assimilation (4D-Var).

Ob i i

Page 17: DATA ASIMILASI UNTUK PEMULA

7/21/2019 DATA ASIMILASI UNTUK PEMULA

http://slidepdf.com/reader/full/data-asimilasi-untuk-pemula 17/24

Observations at two times

Red: Observations. Blue: 3D-Var. Green: 4D-Var.

4D V

Page 18: DATA ASIMILASI UNTUK PEMULA

7/21/2019 DATA ASIMILASI UNTUK PEMULA

http://slidepdf.com/reader/full/data-asimilasi-untuk-pemula 18/24

4D-VarAdd a term for the later time:

J (xa ) = . . . + (H2(M(xa ))− y2)T R−1

2

  (H2(M(xa ))− y2)

 M is the model forecast from t 1  to t 2

 Subscripts 2 refer to the time t 2.

The gradient becomes

∇J (xa ) = . . . + 2MT HT 2 R

−12   (H2(M(xa ))− y2)

 HT 2  is the adjoint of the Jacobian of H, takes information

about the observation-analysis misfit from radiance space

to analysis space

 MT  is the adjoint of the Jacobian of M and propagates this

gradient information back in time from t 2  to t 1.

4D V

Page 19: DATA ASIMILASI UNTUK PEMULA

7/21/2019 DATA ASIMILASI UNTUK PEMULA

http://slidepdf.com/reader/full/data-asimilasi-untuk-pemula 19/24

4D-Var

Minimising

J (xa ) = (xa − xf )T B−1(xa − xf )

+ (H(xa )− y)T R−1(H(xa )− y)

+ (H2(M(xa ))− y2)T R−12   (H2(M(xa ))− y2)

gives an analysis xa  at time t 1   that

 is close to the background xf   at t 1

 is close to the observations  y at t 1

 initialises a (linearised) forecast that is close to the

observations y2 at time t 2

Adding additional time levels is straightforward, as is the

incremental formulation (exercise).

4D Var anal sis of a single press re obser ation

Page 20: DATA ASIMILASI UNTUK PEMULA

7/21/2019 DATA ASIMILASI UNTUK PEMULA

http://slidepdf.com/reader/full/data-asimilasi-untuk-pemula 20/24

4D-Var analysis of a single pressure observation

One pressure observation at centre of low, 5hPa below

background, at end of 6-hr assimilation window.

MSLP analysis

increment at end of

6-hr assimilationwindow.

Gustaffson (2007,

Tellus)

NW-SE section of

temperature and wind

increments at start of

6-hr assimilation

window.

In practice

Page 21: DATA ASIMILASI UNTUK PEMULA

7/21/2019 DATA ASIMILASI UNTUK PEMULA

http://slidepdf.com/reader/full/data-asimilasi-untuk-pemula 21/24

In practice ...

This is not a small problem!  Atmospheric model has O (106 to 107) variables

 Millions of observations per day

 Limited time available under operational constraints

The model has several hundred thousand lines of code, 4D-Varrequires

 operations by the Jacobian of the model

 operations by the adjoint of the Jacobian

Good results require accurately estimating the necessarystatistics (R and B) and careful quality control of the

observations.

Extensions

Page 22: DATA ASIMILASI UNTUK PEMULA

7/21/2019 DATA ASIMILASI UNTUK PEMULA

http://slidepdf.com/reader/full/data-asimilasi-untuk-pemula 22/24

Extensions

Multiple “Outer Loops”   Problem:  Accuracy is limited by the linearisations of H and

M.

  Solution:  Update the nonlinear forecast (outer loop) several

times during the minimisation of the J (δ x) (inner loop).

Multi-incremental 4D-Var

  Problem:  Balancing speed of convergence against need to

resolve small scales.

  Solution:  Begin minimising with δ x at low resolution, and

increase resolution after each iteration of the outer loop.

Extensions: Weak Constraint 4D Var

Page 23: DATA ASIMILASI UNTUK PEMULA

7/21/2019 DATA ASIMILASI UNTUK PEMULA

http://slidepdf.com/reader/full/data-asimilasi-untuk-pemula 23/24

Extensions: Weak Constraint 4D-Var

 Doesn’t assume that the model is perfect

 Allows a longer window.

Summary

Page 24: DATA ASIMILASI UNTUK PEMULA

7/21/2019 DATA ASIMILASI UNTUK PEMULA

http://slidepdf.com/reader/full/data-asimilasi-untuk-pemula 24/24

SummaryVar is better than direct solution (a.k.a. Optimum Interpolation)

because:

 Can handle lots of observations  Can better cope with nonlinear observation operator H

 Solves for the whole domain at once

4D-Var is better than 3D-Var because:  Uses observations at the correct time

 Calculates analysis at the correct time

  Implicitly generates flow-dependent B

Special issues of QJRMS and JMetSocJapan from WMO DA workshops.

Kepert, J.D., 2007: Maths at work in meteorology.  Gazette of the Australian 

Mathematical Society, 34, 150 – 155. Available from

http://www.austms.org.au/Publ/Gazette/