26
IEI I I PORTLAND CEMENT ASSOCIATION Design Constants for Interior Cylindrical Concrete Shells

Design Constants for Interior Cylindrical Concrete Shells

  • Upload
    suman33

  • View
    236

  • Download
    6

Embed Size (px)

Citation preview

Page 1: Design Constants for Interior Cylindrical Concrete Shells

IEI I I PORTLAND CEMENT

ASSOCIATION

Design Constants for Interior Cylindrical

Concrete Shells

Page 2: Design Constants for Interior Cylindrical Concrete Shells

Design Constants forInterior Cylindrical Concrete Shells

In the discussion of the ACI article Cylindrical S’heJJAnalysis Simplified by Beam Method by James Chinn,design constants based on a linear transverse distributionof longitudinal strains, or in other words based on the

assumption that the shells behave like a beam, were

presented by Messrs. Parme and Comer, These constantsprovided a convenient method of readily evaluating the

internal forces and moments created in long and inintermediate length cylindrical shells by uniform arrddead load, While these constants are perfectly

satisfactory for long shells and were recommended in thisrange, some vagueness regnrding the applicable limit fnrintermediate length shells existed. This uncertainty was

caused primarily because the validity of the assumption

of linear strain depends not only on the ratio of radius to

longitudinal span but is as well a function of the subtended

@Portand Cement AssoclaUon196o

angle and the ratio of thickness to radius. Because of theinterdependence of the effect of these factors, no preciselimits for the beam method could be given.

To remove this uncertainty and at the same time reducethe labor involved in the design of cylindrical shellswhich cannot be adequately treated by the beam method,

a new series of compwable constants are presented inTable 1. These constants have been computed on the

basis of the shell theory expounded in ASCE Manual No.31 Design of Cylindrical Concrete Shell Roofs,Consequently these newer constants in contrast to thosepreviously given are a function of r/L and r/t as well as

the subtended angle, @k. To avoid interpolation as muchas possible, values are given for the three r/t values of 100,

200, and 300 and for six values of r/L with r/L varying

from a low of 0.4 to a high of 2.6, For @k less than 45

Page 3: Design Constants for Interior Cylindrical Concrete Shells

deg., it was found that the modified beam method was

sufficiently accurate for all values of r/L less than 0.6.Thus for the portion of Table 1 dealing with @k less than45 deg., the internal forces ure only given for values of

r/L greater than 0.6. When @’kis greater than 45 deg., itwas found necessary to include an r/L as low as 0.4 toprovide a gond transition from values as computed by thebearrr method to those computed by shell theory.

It should be noted that although values are tabulatedfor r/t = 300, which represents a shell beyond practicallimit, they have been included to avoid extrapolation forcases of r/t beyond 200. Likewise the selection of r/L =2.6 represents an arbhry limit. For values of r/L greater

than those listed the internal forces are concentrated near

the edge. For this reason, the arrangement of Table 1 isnot suitable for such shells.

Values have been given only for load vnrying as thedeud weight. This is due to the fact that numerouscomparisons made with different r/L values indicate thatthe effect of a uniform load could be very closely

approximated by an equivalent dead weight by the simpleexpression that

[)

sirrOkPd=Pu ~

The constants have been determined on the basis thattransverse and horizontal displacement of thelongitudinal edges of the shell are prevented, They arethus applicable to interior barrels in which restraint tosuch movement is provided by adjacent barrels. However

they can be applied with tolerable accuracy to the interiorhalf of the exterior bay since the effect of disturbance ofloads on the far edge has only minor influence on the first

interior valley. This is especially true since to preventexcessive deflection of the free edge an edge beam should

always be provided (except for long shells with shortchord width) at the exterior edge.

Detcrrnination of the internal forces in cylindrical

shells subject to uniform longitudinal loading by the shelltheory requires that the actual load he approximated asthe sum of pnrtial loads varying sinusoidally according toa Fourier Series in the longitudinal direction. From a

practical point of view generally only the first or at mosttwo partial loads are used with adjustments made

especially to the value of shear on the basis of staticalrequirements. However since Table 1 was prepared bymeans of an electronic computer, the algebraic sum offour partial loads was used to avoid the need of any

adjustment. Even with this number of loads to achievesufficient accuracy it was found necessary in some cases

to employ Euler’s convergence technique, The use ofsuch care should not hc interpreted however as needed orjustified on the basis uf underlying assumptions. Its worthrests solely on the fact that it permitted a more accurate

comparison of values as the parameters r/t and r/L arevaried, and enabled a more precise examination of the

variation of the internal forces in the longitudinaldirection.

In this connection, the constants in Table 1 give only

the transverse distribution of forces at midspan and at the

support as noted by the footnote in Table 1, with no

indication of the longitudinal distribution of forces. Thereason for this is that the exact expression for longitudinaldistribution even for simply supported shells is highly

complex involving four functions. Fortunately within the

range of the tabulated values the longitudinal dktributioncan be approximated by well recognized relationship.

For example, as shown in Fig. 1, the distribution of T.

as might be anticipated follows very closely that given bya parabolic distribution as the case of a uniform load onabeam even for widely different shells represented by r/L

equal to 0.6 and 2.6. Although the curves shown in Fig.1 havehcen computed on thehasis of Ok = 27.5 deg., theyare typical of those for other angles. A sinusoidal

distribution of T, would also be satisfactory.With respect to To, for design purposes this force can

be assumed to be uniform in the longitudinal direction ascan be inferred from Fig. 2, Because the analysis has beenbased on the prescribed boundary condition that the shell

is supported by a rigid member at x = O and x = L, thevalue of T$ decremes theoretically to zero at the support.The transition from zero to the full value however takesplace over a very short interval. Thus, especially furvalues near the crown, the assumption of a unifomrdistribution of T+, is justified. Distribution of T+ in the

valley can also be considered uniform even though acareful evaluation of the distribution in this area indicatessome departure from uniform distribution near thesupport. The computed variation near the support may

be due however to the sensitivity of the results to the

number of load terrrrs used. This is primarily due to thetlct that the absolute value is generally quite smallcompared to the crown value with the final result equalto the difference of almost like vahres, Because the valuesare small and have almost no effect on the design, theassumption of uniform distribution of T+ in the valley is

justified.As in the case of the distribution of the Tx furces, the

distribution of shear can be assumed to be like that i“ abeam with the shear varying Iirrcwly from a maximum

value at the support to zero value at midspan. As shownin Fig. 3, the distribution as computed by the shell theorygives slightly higher values, but the variation from the

linear distribution is negligible.

There is one important aspect of shear distributionwhich warrants some comments, As shown in Fig. 4, inwhich a plot of the transverse distribution nf shear at

various sections along the shell are superimposed on eachother, the shear tends to be concentrated towards the

valley as the support is approached, From this plot itshould not be inferred that the magnitude of shear doesnot decrease proportionally to the distance from thesupport. For purpose of clarity in presentation of the

variation in transverse distribution, all values have been

plotted in terms of the value of shear at CT= 0.5 @k. The

values hence are all relative. While this change in

transverse shear distribution is insignificant with respectto its effect on the direct stresses in the shell, it has a

pronounced effect on the longitudinal moment

distribution.

2

Page 4: Design Constants for Interior Cylindrical Concrete Shells

As in the case of To, the boundary condition of

supports rigid in the transverse dkection leads to zero

moment at the support. For long shells as discussed inReference 1, the moment increases at a vuriable rate fromzero at the support to a maximum value near the quarter

point, and there remains essentially uniform to midspan.On the other hand, for shells in the range covered by Table

1, the magnitude of the moment increases almostparabolically from the support to midsparr as shown inFig. 5, especially for the moment at the crown. At the

valley, the moment increases at a slightly faster rate for

smaller r/L values as can be seen by a comparison of thecurves of Fig. 5 and Fig. 6. In determining the amount oftransverse reinforcement for shells with rlL about 1.0, dueaccount should be taken of the greater curvature of thelongitudinal distribution of M+.

ContinuityThe design consta;ts of Table 1 are for simply supportedshells, i.e., the supports are assumed to offer no lateral

restraint. Thus it will be found that taking the summationof the moment of Tx forces at midspan about any axis will

equal to wL2/8, Nevertheless the constants can be appliedwithout any great loss of accuracy to shells continuous in

the longitudhral direction. The effect of continuity as one

might expect from beam behavior is to mdically changethe magnitude and sense of the T. forces without

affecting greatly the other internal forces such as TO andM+ However, while continuity alters greatly the

longitudinal distribution of T, forces, previousinvestigations have shown that only minor change in the

transverse distribution uccurs.Without becoming involved in complex mathematics,

a qualitative appraisal Of the effect Of continuity On thetransverse distribution can be made by recalling that thetmasverse distribution of Tx is a function solely of the

relative proportions of transverse to longitudinal

displacement. When as in the case of long shell, thevertical deflection of the edge measured with respect to

the crown of a unit strip at midspan is small compared tothe deflection of the same point measured longitudinally,the distribution of TX in the transverse direction is linearand thus is similar to that of the fiber stress in a beam. As

the relative displacement in the transverse direction tothat in the longitudinal direction increases, the transverse

distribution of T, departs from a linear pattern becomingcurvilinear with a decrease in the slope of the stress curvebelow the neutral axis. Since continuity decreases thedeflection of the section at midspan with respect to thesupport, the effect of continuity is to increase the ratio of

transverse to longitudinal deflection.From this it follows that the transverse distribution of

T. forces in a continuous shell has slightly greatercurvature than that of a simply supported shell of the same

span aud radius. An inkling of the relative difference

between the two distributions can be obtained bycomparing the design constants in Table 1 for any two r/L

values with one r/L being 1.4 times the other. A pint of

the two transverse distribution curves will show that

while there might be significant change in the magnitude

of Tx at the edge of the shell, the total urea below theneutral axis will be about the same for both curves. Ingeneral, the difference will not be greater than 3 or 4percent. Because of this, it is sufficiently accurate to use

the transverse distribution of stresses of a simplysupported shell, irrespective of the degree of continuity.

As shown by Dr. Olev Olsen in the article CcmrirumusShells in the Proceedings of the Second Symposium ofConcrete Shell Roof Construction, the transversedistribution of T. for all practical purposes is uniform

tbroughuut the length of the shell.By similar deductive reasoning, the longitudinal

distribution can also be accurately estimated. In longbarrel shells, because the transverse distribution is almost

linear, it is apparent that the magnihrde of T. at anysection will be to the Tx in a simply supported shell as the

ratio of the moment in a continuous beam of equal lengthand support condition is to the simple beam bending

moment. For short barrel shells, because of the effect ofsheur strain, the longitudinal stresses over the support willbe somewhdt greater than that indicated by the analogy

to a continuous beam. This increase, which will be slightfor the range of shells covered in Table 1, is of littleconsequence since an underestimate of the intensity of the

forces at the support will be compensated by anoverestimate of the forces in the region of positivemoment. Consequently proportioning the longitudinal

forces on the basis of the variation of the momentoccurring in a continuous beam can be applied withoutany decrease in the ultimate capacity.

The change in the transverse distribution of the T.

forces caused by continuity will naturally be reflected inthe transverse distribution of the shearing forces.However because very slight change in the location of tbeneutral axis occurs, the position of the peak shear willundoubtedly be quite insensitive to the effect of

continuity, and may therefore be considered to occur at

the same phace as in a simply supported shell. On theother hand the dnwnward drift of the tensile forces willcause the sh~ar curve to have more of a bulge near thevalley. Since the shear stresses in this region are notgenerally the critical ones, inaccuracy in this area is

relatively unimportant.With respect to the longitudinal distribution of shear,

the reasoning presented for TX applies. Refinementsaimed at increasing the accuracy of determining the

intensity of the shear forces are hardly warranted in viewof the cnmmon practice of providing shear resistance.Generally to avoid vuriable spacing, shear reinforcement

is placed uniformly and thus leads always to overdesignbecause of the large number of bdrs crossing a section of

principal stresses. For this reason, modification of tbeshear forces in a shell to correspond to the total shear in

a continuous beam is satisfactory.

ExampleThe ease with which the internal forces can be cumputed

makes the use of Table 1 self-explanatory. In all cases,

3

Page 5: Design Constants for Interior Cylindrical Concrete Shells

the internal force is equal to the product of a multiplier

and the design constants. The multiplier shown in the

third row of Table 2 equals the product of the load timesvarious powers of the dimension indicated in the headingof Table 1. However to avoid misinterpretation thecomputation required for a typical interior sheIl will beoutlined. From the dimensions given in Table 2

If the shell is continuous in the longitudinal direction,

the forces detemrined in Table 2 cam be modified as

previously discussed. For example if two 50-ft long shells

we continuous over a central arch, then the forces aremultiplied by the ratio of moments in a beam of similarcontinuity to the moment in a simply supported beam.Since the moment over a central support is -wL2/8,

obviously the ratio is -1.0. The ratio to be applied to the

forces at midspan isr/t=45 X 12/4= 135

WL2/~ 6— = 0.50WL218

r/L = 45/50= 0.90

Inspctimr of the constants in Table 1 show that thereis only slight differences in the constants for vafrres of r/tand r/L in the range with%= 25 deg. and 27.5 deg. Assuch, the design cnnstants will k selected from r/L= 1,0and r/t = 100. But interpolation for the specific @k isrecommended. To simplify this task, advantage will be

taken of the fact that linear interpolation can be aehlevedby adding algebraically a fixed ratio of the two adjacentvalues. For this example, tbe constants for @k = 25 deg.

are multiplied by

Similarly, the shear forces are rdtered by the ratio ofcontinuous beam shear at the interior support to that in asimple beam. The ratio is

%= 1.25

The shear forces at the outer support are given by thefollowing ratio:

3wLJ8 = ,75

wfJ2

As discussed above, continuity does not cause T$ andMO to change significantly.while the constants for 27,5 deg. are multiplied by

1- 0.45= 0.55 Notationh —

.

.

.

total vertical height of shell from edge to crown

vertical height of shell measured from edgelength of shell between supportscenterline radius of shellthickness of shell

longitudinal distance measured from the left

Thus the design constant for Tx at the crown for~k = 26,4

deg., r/L= 1,0 andr/t = ltXl is YL

-(4.482 X 0.45 + 3.509X 0.55) = -3,947 rt

xwhich is recorded in the first row of numbers, secondcnlumn of Table 2. The other coefficients me obtained

in a similar manner.In accordance with the formula given on page 2 and

the intensity of load listed in Table 2, the equivalent dead

load for which the shell is to be designed is

supportangle measured from the right edge of shellangle subtended by the edge of shell measured

.

from the centerline axisintensity of uniform load on unit meaintensity of dead load on unit area

the direct force component in the transversedirection, considered positive when tensile

puPdT(j

.

.pd=50+30~=79pSf

The multiplier for TX therefore is

L2 2~ pd = ~ X 79 = 4390 lb/ft

TO at midspan of the shell

the direct force component in the longitudinaldirection, considered positive when tensile

.

In a similar mamner the other multipliers can be

obtained as readily. The product of these and thetabulated constants gives the internal forces in the shellwhich appear in the columns marked Force.

A graphical representation of the tabulated values forT, and MO is given in l+g. 7 for comparison with valuesas obtained by the beam methed. As to be expected, thevalue of Tx as computed by the shell theory is slightly

larger while the value of the moment M+ is slightly less.For design purposes the difference is negligible,

However, thk gond agreement holds only for the interiorshells. If the outer edge of the exterior shell is not

stiffened by an edge beam, marked increase in theintensity of Tx will occur at the edge,

Tx at midspan of the shell

. the tangential shearing force, considered positive

when it creates tension in the direction ofincreasing values of x and CDS at the transverse supportthe moment in the transverse direction,considered positive when it produces tension in

the inner fibers

MO at midspan of the shell.

load per foot of length of shell

4

Page 6: Design Constants for Interior Cylindrical Concrete Shells

Iuu

le1

IIII

CrI

IUI

rvrb

cas,

,u

,.w,t

,pi=

Uy,

,.,u

,le

.-l!

“!!-

!!““

g,“

“=””

-“”

[1

Tx

.+

*P

dC

ol.

(1)

S*=-

L[p

dml

(3)]

T+

zr

[Pd

1C

ol.

(2)

M,:

r’[p

dcc

.,.(4

)]

@p

d~;

r/t

=10

0rt

t=

200

rl,

,30

0

Tx

T,

sM

*T

x‘*

sr/

L+

‘oT

xT

,s

‘+(1

)(2

)(3

)(4

)(1

)(2

)(3

)(4

)(1

)(2

)(3

)(4

)

IDo+

k-

5.97

6-1

.415

.~-

.002

89-6

.035

-1.4

32.O

oo-.

0031

5-6

.011

-1.4

76.0

00-

.003

28.7

5*K

-4.8

93-1

.187

1.95

9-.

0010

2-4

.946

-1.2

101.

882

-.00

118

-4.9

47-1

.219

1.78

7-

.002

23.6

.50*

~-1

.591

-.5

973.

238

.W35

1-1

.615

-.5

983.

227

.002

3625

4k-1

.648

-.3

836.

036

3.26

0.0

773.

034

.W26

3.0

0234

b.22

9.0

833.

126

.002

314.

123

.099

3.28

9.0

0238

022

.395

.390

.Wo

-.00

742

12.5

39.3

93.O

oo-.

0072

922

.608

.398

.Ooo

-.0

0738

Ioo*

k-5

.682

-1.4

30.O

w-.

0028

6-5

.461

-1.4

71-.

0030

7-6

.934

-1.4

71.O

oo-

.003

02.7

5*k

-6.7

77-1

.193

1.78

3-.

0010

2-4

.760

-1.2

19l:R

-.00

117

-4.6

26-1

.225

1.0

.%~

1.43

6-1

.808

-.3

893.

094

-.W

118

.W24

8.2

5%-2

.069

-.38

62.

998

.002

483.

853

.087

3.11

7-2

.510

-.5

932.

854

.002

42.0

0235

3.77

1.lW

3.24

7.0

0251

3.53

1.0

973.

360

0.0

0251

13.0

23.3

93.O

w-

.W74

313

.364

.3%

.Wo

-.00

727

14.3

39.3

%.O

oo-

.W71

5

I.O

oq-

5.10

3-1

.420

.Ooo

-.00

232

-4.1

74-1

.419

.Wo

-.00

251

-2.7

68-1

.360

.Wo

-.00

220

-4.5

55-1

.198

1.59

2:Z

k-

.W09

3-4

.337

-1.2

141.

299

-.W

103

-3.9

351.

4-

2.2U

-1.2

06.9

39-

.622

-.0

w96

2.91

1.0

0221

-3.0

94-

.644

25$k

2.72

5.0

0203

-4.2

60-

.7W

2.46

2.W

175

3.41

6.0

693.

222

.002

232.

972

.051

3.3%

.002

292.

255

0.0

023.

594

.002

16U

.172

.384

.Ooo

-.13

1371

3915

.834

.376

.000

-.00

661

17.9

99.3

38.O

oo-.

0061

1

1%-4

.305

-1.3

82.O

oo-

.W2w

-2.3

23-1

.328

.WO

‘.00

180

-.4

73-1

.224

.IX

X3

-.W

135

.7!5

$~-

4.23

8-1

.289

1.37

4-.

0007

9-3

.743

-1.1

%.9

11-.

0008

3-

3.ce

o-1

.175

.408

-.00

072

1.8

.W*

-2.

831

-.6

522.

701

.002

81-.

4.60

9-

.739

2.40

8.W

145

.25w

-6.1

24-

.838

2.lu

bl.W

I05

2.78

8.0

263.

341

.001

991.

817

-.04

03.

572

.W19

5.6

07-

.126

3.83

8.@

3175

o15

.841

.369

.Ooo

-.0

0648

19.0

67.3

44.O

oo-

.W36

822

.579

.314

.Ooo

-.W

93

22‘:

~[:

!:5

:1:

%::%

::=

:-3

.113

-1.3

27-1

.018

-1.2

37.0

00-.

WI1

91.

149

-1.1

18.0

00-.

0007

4-1

.173

.348

-.00

063

-2.2

83-1

.144

.009

-.0

W32

.:%.W

141

-5.5

96-.

832

2.09

5.0

W95

-7.

4U-

.%46

1.67

72:

W4

-.0

273.

456

.0W

55.W

171

.323

-.13

73.

729

.W16

2-1

.056

17.8

33.3

45.O

oo-

.131

3575

-.2

4222

.631

4.02

2.W

1.40

.310

.Ow

-.oL

vb77

27.0

29.2

76.0

00-.

0039

7

‘:3

~::%

-1.3

43.9

39:

:&”

9-1

.268

.Ooo

.064

-1.1

64.W

O-.

0007

51.

982

-1.0

30.O

w-.

0003

7-2

.341

-1.1

30.2

72-.

W04

8-1

.614

-1.1

182.

6-.

226

-.00

038

-4.

022

-.7

232.

282

.W10

7-6

.425

-.90

31.

821

.000

59-8

.098

-1.0

17.2

5~1.

386

1.26

9-

.076

3.55

0.0

W24

.00M

5-

.741

-.22

13.

838

.W13

4-2

.611

-.3

334.

102

.001

130

19.9

39.3

18.0

00-

.W30

226

.078

.281

.OW

-.oW

o331

.038

.248

.000

-.00

329

M-

..

..>.

——

‘sh

ear

tvrc

eso

re01

sup

oo

rrq

Ofn

ers

Ore

01m

low

an.

Page 7: Design Constants for Interior Cylindrical Concrete Shells

Tob

le1

Inte

rnal

Forc

esin

oM

ultip

leC

ylin

dri

cal

Sh

ell

Du

eto

Dee

dL

oo

d+,

=25

°

[1TX

,+=

Pd

Co

l.(}

)[1

S*=

-L

I?d

CO

I(3

)

T+

zr

[Pd

1C

ol.

(2)

[1M

O=

rzPd

CO

I.(4

)

“9P

*R

*

l/t=

300

Tx

T+

s‘Q

T,

TO

s‘~

(1)

(2)

[3)

(4)

‘/L@

.Oo

+k.7

5$k

50@

~.2

5$~

o Do$

k.7

5@

k.m

$~.2

5Qk

o

I.oo

~.7

5qk

t)o$k

.25$

ko

IClo

$k75

$lk

.50*

.25w o

l.cQ

k $.7

5~

.w+

~.2

5@k

o

I.W

$k.7

5$k

.m~

.z5@

~o

*She

er

(1)

(2)

(3)

(4)

-.4.

856

-3.9

86-1

.317

3.31

810

.171

-4.4

82-3

.84!

3-1

.603

1;:?

7

-3.7

47–3

.581

-2.1

702.

520

22.3

61

-2.8

22-3

.218

-2.8

7’4

1.79

014

.357

-1.9

44-2

.828

-3.5

27 .977

16.3

87

-1.2

59-2

.464

-4.0

14 .179

18.7

99

-1.4

28-1

.194

-.5

95.0

78.3

81

-1.4

41-1

.202

-.5

91.0

07.3

83

-1.4

10-1

.202

-.6

35.0

48.3

68

-1.3

49-1

.188

-.6

98-

.019

.342

-1.2

79-1

.164

-.7

5.5

-.0

89.3

13

-1.2

15-1

.137

-.79

6-.

147 .285

.Oo

o

1.73

32.

920

2.77

6.O

IN

-.W

368

-.0+

3133

.003

09.0

0295

-.0

@98

-4.8

51-4

.005

-1.3

593.

326

10.2

91

-3.9

51.3

.728

.2.0

782.

8043

11.7

92

-2.2

73-3

.171

-3.4

281.

759

14.7

77

-.5

82-2

.510

-4.7

89 .446

28.4

14 .571

-1.9

08-5

.703

-.8

S7

21.9

28

1.14

7-1

.415

.6.1

26-2

.057

25.1

15

-1.4

69.1

.214

.Oo

o1.

618

-.003

97-.0

0148

.003

20.0

0313

-.009

00

-.003

55-.0

0139

.@32

86.0

0300

-.003

60

-.002

52-.0

0112

.002

03.0

0255

-.007

30

-.001

53-

.W30

32.0

0120

.002

05-.0

0588

-4.7

40-3

.981

-1.4

553.

280

10.4

57

-3.

@57

-3.4

87-2

.805

2.38

513

.080

-.5

73-2

.640

-4.8

41 .810

17.5

36

1.24

0-1

.803

-6.3

41 .871

22.0

35

2.01

7-1

.115

-6.9

86-2

.441

25.9

92

2.03

8

-1.4

93-1

.222

-.5

64.1

15.3

93

-1.4

17-1

.214

-.6

41.0

55.3

68

-1.2

40-1

.179

-.8

13-

.099

.314

-1.0

96-1

.139

-.9

57-

.245

.267

-1.0

14-1

.107

-1.W

4-

.355

.234

.000

1.51

02.

765

2.93

6.O

oo

.0i3

01.

W5

2.37

73.

165

.CQ

o

.Oo

o.4

191.

895

3.46

3.O

oo

.Oo

o-

.067

1.&

713.

685

.Oo

o

.Oo

o-

.319

1.15

13.

788

.Oo

o

-.004

09-.0

0153

.003

27.0

0320

-.009

12

-.003

26-.

W13

4.0

0260

.W32

89-.0

0817

-.001

90-.0

0097

.001

49.0

0227

-.006

35

-.000

89-.0

0065

.000

65.0

0173

-.004

83

-.000

35-.0

0044

.000

20.0

0135

-.W

383

.6 1.0 1.4

I.e

22 2.6

.582

.097

2.85

12.

869

J300

.387

.Ooo

1.53

82.

740

2.86

8.O

oo

-.003

52“-

.001

31.0

02%

.002

93-

.01X

89

-1.4

57-1

.218

-.6

01.0

87.3

80

.Oo

o1.

31Y

I2.

579

3.01

8.W

o

.Oo

o.O

oo1.

310

2.53

22.

981

.Oo

o

-.002

91-.0

0114

.002

46.0

0267

-.0

CC

U9

-1.3

49-1

.200

-.7

10-

.011

.344

.871

2.23

33.

219

.Oo

o

.Oo

o1.

W+9

‘.002

16-.0

0092

.001

86.0

0230

-.007

19

-1.2

25-1

.170

-.8

36-

.135

.302

.Oo

o.4

291.

872

3.41

8.0

00

.Oo

o.1

071.

362

3.55

2.O

oo

.Oo

o-.

079

1.31

5

2.29

93.

105

.Oo

o

.Oo

o

.801

2.06

63.

215

.Oo

o

-.000

85-.0

0059

.000

64

-.001

50-.0

0070

.001

32.0

0191

‘.026

16

-1.1

29-1

.141

-.9

33-

.244

.267

i001

63-.0

0476

-.9

77.O

oo

-.000

10-

.564

-1.0

82-.

403

-.0C

030

-7.0

13-1

.087

.904

-.000

02-3

.920

-.4

373.

806

.001

0829

.611

.212

.Oo

o-.0

0319

.Ooo

.599

1.85

33.

291

.Oo

o

-1.C

49-1

.117

-.9

93-

.327

.241

——

-.00

W+4

-.00

W2

.000

30

-.001

00‘.0

0052

.000

91.0

0157

‘.005

253.

614

.Oo

o.0

0131

-.003

95

rces

are

0?su

pp

ort

s,o

tner

so

reo

rm

lasp

on

.

Page 8: Design Constants for Interior Cylindrical Concrete Shells

Tab

le1

Inte

rnal

Fo

rces

ino

Mu

ltir

31e

Cyl

ind

rica

lS

hel

lD

ue

toD

eed

Lo

od

+k=

27.5

°

[1T

,:

+2P

dC

ol.

II)[1

S*=

–L

pd

CO

I(3

)

T+

.r

[Pd

1C

ol.

(2)

[1M

O=

rzP

dC

OI.

(4)

ppd

yj

r/f

=10

0r/

+=

200

r/,

=30

0

Tx

T+

sM

+T

‘Qs

‘$T

,T

Or/

L+

s‘4

(1)

(2)

(3)

(4)

(1;

(2)

(3)

(4)

(1)

(2)

(3)

(4)

I.O

o.+

k-

4.00

8-1

.441

.000

-.0

0454

-3.

916

-1.4

82.~

_.o

~82

-3.6

72.7

5fk

-3.

304

-1.1

991.

536

-.001

66-

3.29

2-1

.492

.Ooo

-.0

W84

-1.2

171.

394

-.0

0180

-3.2

31-1

.222

1.27

1-.0

0182

.6.5

0.+k

-1.

118

-.3

882.

633

.003

75_

1.21

4_

.%7

2.53

2.2

50~

.003

87-1

.415

2.73

8.@

34.0

0361

-.5

612.

427

2.%

52.

71X

.003

87.1

082.

663

0.0

0379

2.59

7.1

162.

737

.003

828.

515

.372

.OQ

o-

.010

738.

699

.380

.00i

3-

.olw

~9.

038

.381

.000

-.0

W35

Ioak

-3.

5~-1

.441

.000

-.0

0412

-2.

619

-1.

411

.000

-.0

0380

-1.4

33.7

5Q

k-1

.323

.Ooo

-.003

13-

3.13

31.

2W1.

314

-.001

58-

2.89

8L

o.w

e~-1

.210

.991

-.0

0156

-2.5

57-1

.195

.651

-.001

41-

1.50

9-

.598

2.43

2.0

+334

1-

2.25

9-

.641

.25+

k2.

198

.003

04-3

.234

2.40

5.0

80.0

0349

-.7

241.

935

2.66

91.

979

.050

.002

492.

857

.003

401.

381

-.0

190

‘3.4

52.3

69.c

OO

3.L

W3

.003

12-

.010

3610

.809

.3%

.W-

.009

6812

.587

.332

.@30

-.008

73

I.xl

~-

2.60

0-1

.378

.000

-.003

11-

.737

.75

~-1

.250

.~-

.002

23.8

42-1

.115

.Ooo

-.001

35-

2.80

8-1

.197

1.03

5-

.@31

3fJ

-2.

240

-1.1

76.4

65-

.001

13-1

.670

-1.1

461.

4.a

$k.o

a7-

2.22

2-.0

0090

-.6

712.

190

.002

38.q

k-

3.78

8-

.800

1.78

81.

767

.013

.001

76-5

.123

-.9

271.

421

2.80

0.0

0102

.003

050

11.2

31.7

30-

.096

3.10

3.0

0268

-.3

02-

.207

3.34

9.3

44.0

00.0

0226

-.009

1214

.333

.306

.0+3

0-

.007

3617

.210

.269

.000

-.006

22

IDo%

-1.

606

-1.2

92.0

03-

.002

0a.6

38.7

5$~

-1.1

17.0

00-

.001

091.

818

-2.4

07-1

.176

.737

-.000

98-

1.59

4-1

.000

.Ooo

-.0

0W2

-1.1

39.0

56-

.000

76-

.932

-1.1

041.

8.5

0~-2

.990

-.7

381.

929

.001

74-.3

22-.0

0056

-4.

907

-.9

34.2

5Qk

1.42

4.0

0031

-5.9

65-1

.047

1.W

.947

.000

23-

.079

2.93

3.0

0250

.61M

-.2

370

13.4

993.

285

.002

04-1

.895

-.3

473.

497

.001

67.3

11.O

oo-.0

076

517

.937

.261

.000

-.0

0580

21.2

02

‘g~

:2:

E-1

:149

:R::%

:

.227

.Ooo

-.004

63

-121

31.

255

-1.

WO

.000

-.&

3~7

1.83

9-

.957

.000

-.000

05-

1.07

0-1

.109

-.161

-.0

0051

-.3

4922

-3.

576

-1.0

73-

.4@

3-.0

0036

-.8

251.

689

.Wll

o.2

5+~

-5.

391

-1.0

151.

146

.105

-.1

62.0

0029

-5.9

87-1

.100

.768

3.03

1.0

020

1.

1.84

2-.0

0009

-.3

423.

368

.001

58-3

..411

.279

-.4

463.

523

15.8

27.0

00.0

0129

-.006

34

21.1

46.2

30.0

00-

.004

6224

.769

.202

.~-.0

0371

‘:;:

:1:8

:-1

.153

.000

-.000

79

1.35

4-1

.003

.~_

.131

)131

81.

434

-1.1

22-

.94!

7.O

oo.0

0006

.324

-.000

51

-.6

63-1

.085

-.241

-.0

0035

2.6

.101

so%

_3.

913

-.8

68-1

.049

-.375

-.000

231.

488

.000

68

-5.4

17-1

.055

.934

.-,2

5$k

-5.5

71-1

.118

-.6

74-

.224

3.08

3.0

016

2-2

.974

-.4

18.5

50-.0

0021

3.37

7.0

0126

018

.005

-4.8

72-

.522

3.48

3.0

0101

.251

.000

-.005

30

24.C

40.2

08.O

oo-.0

038

528

.226

.184

.Ooo

-.003

11

‘Sh

eer

forc

esar

e0?

sup

po

rrs,

oln

ers

ore

or

m,o

spo

n

Page 9: Design Constants for Interior Cylindrical Concrete Shells

Tabl

e 1

Inte

rnal

Fo

rces

in

o M

ultip

le

Cyl

indr

ical

Sh

ell

Due

to

Dea

d Lo

od

&=

3o”

*She

ar

forc

es

ore

01 s

uppo

rts,

othe

rs

are

of

mid

spon

[‘d

3 C

d. (I

) s*

. -

L [p

d C

OI.

(3)]

T9 =

r[P

d 1

Cd.

(2)

m

9=

r 7

1 pd

cd

. (4

)

r/r : I00

r/+

=

200

*/f

= 30

0

“L

9 TX

r9

s

MO

5.

TQ

S

M

Q

TX

T9

S M

9

(I)

(2)

(3)

(4)

(1)

(2)

(3)

(4)

(I)

(2)

(3)

(4)

I .O

OO

k -3

.340

-

1.45

2 .w

o -

.w54

4 -

3.12

5 -1

.482

.o

w

- .W

562

- 2.

714

-1.4

65

.ooo

-

-005

4 0

-75

,509

, 9k

-2.7

17

- 1.

202

1.36

3 -.o

mO

l -

2.72

8 -

1.21

6 1.

197

-.W21

2 -

2.62

1 -1

.215

1.

045

- .0

020

a .6

-

.9ao

-

.579

2.

384

.o04

45

- 1.

167

- .5

63

2.2%

.o

o450

-

1.50

2 -

.581

2.

l25

.ow

3 1

.=@

k 2.

286

.091

2.

392

.ow

31

2.19

4 .ll

O

2.49

7 .w

444

2.00

9 .o

97

2.58

6 .o

o43

7 0

7.26

9 .3

63

.OO

O

- .0

1263

7.

5%

.368

.W

O

- .O

l268

8.

163

.363

.o

oo

-.ol2

3 8

1 m9k

-2

.678

-

I.425

.w

o -.o

o45i

-

1.44

4 -1

.336

.o

oo

-.W37

1 -

.148

-1

.208

.o

oo

-A02

6 .7

59k

-2.5

59

- 1.

204

1.10

2 -

.OO

lSl

- 2.

210

- 1.

193

.678

-

.W16

4 -

1.80

7 -1

.168

.2

87

-.Wl3

1.

0 .5

09k

-1.5

06

_ -6

15

2.1%

.o

o374

-

2.53

1 -

.7oa

1.

845

.002

%

- 3.

607

- .8

26

1.54

0 .O

OZO

.2

%,,

1.86

7 A

64

2.51

3 .o

o401

1.

248

- .O

lO

2.75

0 0

.W36

7 .5

38

- .ll

l 2.

960

-003

1 a.

663

.350

.o

oo

- .0

1171

10

.345

.3

24

.OW

-

.010

33

12.4

02

.291

.w

Q

-.OO

aS 16

6 .l ,O

4

1 .O

O$

-1.6

22

- 1.

325

.ooo

,7

59,

- .W

3oa

.326

-1

.144

.o

oo

- .W

170

1.45

3 -1

.015

.o

oo

-.ooo

7 -2

.177

-

1.18

5 .7

65

.%,

- .W

139

- 1.

520

- 1.

147

.130

1.

4 -.o

olo6

-

.9ai

-1

.113

-.2

41

-.oW

7 -2

.345

-

.723

1.

876

.259

k .W

251

- 3.

984

- .8

%

1.40

5 -

,038

.w

130

- 4.

981

-1.0

20

1.05

7 1.

117

2.66

8 .o

o331

-

.ce9

-

.189

3.

007

0 .o

o268

-

1.09

5 -

.3o3

3.

210

12

10.5

70

.315

.o

oo

- .w

975

14.o

40

-265

.@

30

- .w

747

16.6

57

.231

33

0 -

.w59

I"O9,

-

.671

-

1.22

1 .w

o 75

-1

.763

-

.WlS

l 1.

168

-1.0

31

.ooo

-.o

oo62

1.

635

- .9

47

.ooa

-.O

OW

9k

-

1.15

7 -3

.086

.4

54

- .O

W98

-

.942

-

I.6

.500

, 1.

108

- .1

71

-.ooo

67

- .3

39

-1.0

72

-.386

-.o

ow

- ,8

26

.246

1.

599

.25h

.w

147

1.07

4 -

.150

-

4.68

4 -

1.01

3 .o

oo39

-

5.la

2 -1

.100

.7

30

-.Wol

2.

801

.OO

260

- 1.

366

- -

- .W

16

GJ$

12.9

82

.327

3.

137

.w19

7 2.

634

.428

3.

272

.277

.w

+J

- .W

782

17.3

32

.225

.M

x)

- .w

559

20.2

16

.197

.o

oo

-.OO

Ul

g .

- 1.

144

.ooo

-.W

lW

1.28

5 -

.9a3

.O

OO

-

-1.1

29

-.OO

Ol6

1.

180

.940

.o

oo

.ooo

l .2

43

2.2

-.oW

6a

- .4

9a

- 1.

078

- .2

68

.894

-.o

ow3

.155

-1

.042

-3

46

-.OW

2 -

.259

k -

,580

:

-238

1.

368

.000

60

- 4.

755

-1.0

68

- .a

32

-.QW

ol

-4.7

62

-1.1

22

- A

81

-.000

2 0

15.2

63

2.87

8 l 2

03

2.54

4 .4

24

3.16

2 .W

lSl

-4.1

%

.521

3.

238

.w12

.2

46

.ooo

-

a063

4 20

.255

.1

99

.ooo

-.o

w47

23

.644

-1

76

.wo

-.005

6

1 .W

k .1

92

- 1.

094

- -

- .7

59k

-1.1

27

.ooo

.o

oo

.ow

l -

1.10

3 -

1.06

5 .9

70

.ooo

oO

.6O

3 .9

52

.ooo

2.

6 .-9

k .1

28

- .o

ao54

-3

.678

.o

oo46

.1

68

-1.0

57

- .2

61

-mo2

a .4

aa

-1.m

o -.2

45

-.ooo

l -

.931

.2

5‘h,

-1

.320

1.

188

.oW

42

- - 4.

488

3.63

6 -1

.087

-

.494

.6

47

- -2

98

-.OO

Ol6

- -

4.09

7

0 '1

7.32

7

2.90

0

.W16

1

3.12

8

.WllS

5.

589

-1.1

19

- 3.

157

.288

-A

003

,221

.5

%

.QQ

Q

-.W52

5 23

.021

.la

i A0

0 -

.w37

5 27

.073

.l6

1 .o

oa

-:Z

:: :9

:1

,2

.3

.5

I1

12

b5

Page 10: Design Constants for Interior Cylindrical Concrete Shells

Iuu

leL

,,,,G

,,,

”,,“

ruG

a!,,

u,.l

u,,!~

!u“,

!!!$

”!!

””!

-..-

..

-“-

.“--

---

----

[1T

X,

+2I)

dC

ol.

(1)

S*:

-L[P

d,0,.

,3)]

To

=r

[Pd

1C

ol.

(2)

h!,=

,’[p

dm

l.(4

)]

%Pd

~1

r/t

zIo

or/

+.2

00rl

+,

300

Tx

T$

sm

+T

1s

‘QT

X‘Q

r/L

4s

‘+(1

)(2

)(3

)(4

)(1

;(2

)(3

)(4

)(1

)(2

)(3

)(4

)

I.O

o+k

-2.7

92-1

.459

.000

-.00

634

-2.ld

8-

1.46

3.O

oo-2

.358

-.0

C62

4-1

.831

-1.4

09

.75

+K

-1.2

03.0

&3

-.00

562

1.21

0-.

0023

6-2

.264

-1.

211

1.01

3-

.002

39-2

.107

-1.2

04.8

16-.

0022

5.6

5oqk

-.8

94-

.570

2.16

8.0

0515

-1.2

04-

.576

2.00

9.0

0500

-1.6

83-

.626

1.84

5.0

W49

.25

@~

1.92

1.0

962.

247

.005

031.

754

.097

2.36

7.0

05V

41.

483

.057

2.47

8

06.

330

.352

.004

80.O

oo-.

0146

06.

863

.350

.Ci3

0-

.014

347.

686

.337

.Ow

-.01

352

ICY

3Q~

-1.9

44-1

.391

.Ooo

-.00

481

-.4

80-1

.240

.~-

.003

27.6

76-1

.096

.OW

-.00

189

.75

!?~

-2.0

S3-1

.197

.894

-.00

198

-1.6

45-1

.170

.384

-.0

0163

-1.2

31-1

.139

.003

-.00

127

1.0

.w$~

-1.5

74-

.646

1.90

3.0

0390

-2.7

90-

.791

1.52

4.0

u2%

-3.7

71-

.926

1.21

2.0

0145

.254

k1.

399

.034

2.39

6.0

W3

.620

-.0

s72.

675

.003

77-

.115

-.2

032.

877

.003

140

7.83

1.3

27.O

oa-.

0128

210

.136

.287

.000

-.0

1050

12.1

84.2

51.0

0i3

-.00

851

I.00

+-

.818

-1.2

%.0

00-.

0028

0.8

87-

1.05

2.0

00-

.031

091.

461

-.9

53.O

oo-

.@3@

4.7

5~

-1.6

60-1

.167

.511

-.00

140

-.9

88-

1.11

8-

.097

-.0

0095

-.4

951.

4so

$k-1

.083

--2

.475

-.7

851.

590

.002

25.3

34-.

0006

7-3

.937

-.9

791.

099

.000

77-4

.505

-1.0

79.7

8825

$k.5

59-

.101

.&X

303

2.57

0.0

0345

-.7

00-

.276

2.90

00

.002

60-1

.669

-.3

803.

037

10.1

87.2

83.0

e210

.Ooo

-.O

1OM

13.6

47.2

29.0

00-

.007

2015

.930

.200

.Ooo

-.01

3569

IOoo

k-

.028

-1.1

47.O

oo-.

0014

21.

189

-.9

75.~

-.0

0022

1.0s

7.7

5*k

-.9

32.O

oo-1

.262

.000

16-1

.134

.224

-.00

093

-.4

85-

1.o7

9-

.263

-.0

0056

.070

-1.

o43

-.3

27-.

0@33

61.

8.5

0&-3

.092

-.8

931.

315

.wJl

lo-4

.197

-1.

065

.807

.000

02-4

.220

-1.1

20.4

91-.

0003

5.2

5%-

.315

-.22

42.

689

.002

60-1

.918

-.4

022.

966

.001

89-3

.220

-.4

963.

029

.001

510

12.5

85.2

44.O

oo-.

0077

716

.614

.195

.~-

.005

3919

.302

.173

.Ooo

-.~

35

‘::$

~3::

;:p~

,::::%

;’.9

61-

.957

.000

.oO

O@

4.4

44-

.948

.~-

.110

.0W

18-1

.051

-.2

60-

.000

3422

.456

-1.0

14-.

210

-.00

018

-3.9

57-

1.09

4.5

93-

.000

23.2

5.$k

-.3

10.

-3.%

0-1

.119

.263

-1.1

02-.

0004

02.

735

.001

99

0-3

.070

-.4

922.

943

.001

42-4

.738

-.5

882.

952

14.7

36.2

15.0

0110

.Ooo

-.00

622

19.3

85.1

74.O

oo-

.004

3522

.713

.155

.~-.

0035

4

2,6

‘:%

-:;:

-1.0

47.0

00-.

0003

2.5

93-

.%1

.~.0

0010

-.0

72-

.970

-1.a

s2.0

00.0

0012

.011

-.00

021

.5U

W.1

41-1

.031

-.19

7-

.000

20.6

37-3

.325

-.9

%-.

~9-.

0000

8-

.978

.947

.000

19

-3.5

10-

1.09

6.4

30.2

5$k

-.0

0028

-2.7

73-1

.102

-1.7

96-.

366

.104

-.13

@33

52.

727

.001

56-4

.224

-.5

592.

876

.001

09-6

.079

-.6

630

2.84

016

.677

.194

.000

81.O

oo-.

0051

422

.090

.159

.0’3

0-

.003

6626

.101

.142

.~-.

0029

8

*Sh

eet

forc

eso

reat

sup

po

rts,

oth

ers

ore

atm

idsp

on

Page 11: Design Constants for Interior Cylindrical Concrete Shells

To

ble

1In

tern

ol

Fo

rces

ino

Mu

ltip

leC

ylin

dri

cal

Sh

ell

Du

eta

Dea

dL

oad

+,=

35°

~x,

+2[1P

dC

ol.

(1)

S*.

-I-

[pd

,0,.

w]

To

=r

[pd

CO

I.(z

)lM

O:

r’~

pd

coI.

(4]

1@

p”

E

r/L

. .6 1.0

1.4

1.s

22 2.6

+

I.O

o+k

.75

+k

.50@

~.2

5.$k

o

Ioa$

~7’

5@

k

.30$

.~

.251

$ho

I.oo

~.7

5~

.50$

k.2

5Qk

o

Iooo

k.7

5@

k.W

*.2

5w o

I.cn

k $.7

5~

.So$

k.2

5+k

o

I.m

+~.7

5+

k.3

a~.2

5$k

o

*Sh

eer

r[f

=Io

o

Tx

T$

sM

e(1

)(2

)(3

)(4

)

-2.3

23-2

.015 .8

521.

615

5.63

0

-1.2

93-1

.681

-1.6

83 .983

7.45

1

-.2

15-1

.244

-2.5

53 .096

9.91

7

.340

.881

-2.9

82 .748

12.1

91

.474

-.6

15-3

.041

-1.4

9114

.200

.405

-.4

31-2

.899

-2.1

4216

.W5

-1.4

38-1

.202

-.5

67.o

%.3

38

-1.3

39-1

.184

-.6

91-

.010

.300

-1.1

81-1

.145

-.8

51-

.170

.250

-1.0

81-1

.110

-.9

52-

.294

.213

-1.0

33-1

.083

-.9

96-

.374

.189

-1.0

14-1

.M2

-1.0

10-

.425

.170

.00i

71.

072

1.97

62.

127

.Oo

1’3

.Oo

o.6

891.

668

2.30

9.O

ao

.Ooo

.291

1.33

72.

490

.Oo

o

.Ooo

.fxo

1.07

92.

580

.Ood

.Ooa

-.038 .8

932.

593

.000

.000

-.0

+0.7

572.

559

-.007

18-.0

0270

.005

81.0

0573

-.016

54

-.004

76-

.002

C+3

.003

83.0

0473

-.013

56

-.002

33-.0

0134

.001

83.0

0347

-.010

01

-.000

98-.0

0054

.oa3

70.0

0234

-.007

58

-.000

39-.0

0053

.000

19.0

0192

-.006

05

-.000

14-.0

0034

-.000

01.0

0149

-.005

01

ces

ore

07w

pp

orr

s,o

ther

sor

eo

rm

tasp

on

r/~

=20

0

Tx

(1)

(2)

-1.7

69-1

.870

-1.3

071.

361

6.41

4

.207

-1.1

93-2

.941 .1

119.

963

1.03

7-

.602

-3.6

66-1

.147

13.1

32

.920

-.1

62-3

.570

-2.3

4215

.897 .514

.141

‘3.1

29-3

.474

18.6

11 .141

.301

-2.5

96-4

.465

21.2

74

‘1.4

22-1

.201

-.6

07.0

67.3

27

-1.1

41-1

.144

-.8

77-

.169

.250

-.9

87-1

.090

-1.0

38-

.348

.199

-.9

48-1

.053

-1.0

91-

.464

.171

-.953

‘1.

026

‘1.0

98-

.551

.153

-.%

8-1

.009

‘1.0

88-

.617

.140

s (3) .Ooo

.831

1.78

12.

268

.Oo

o

.Oao

.139

1.24

82.

6C@

.Wo

.Ooo

-.2

11.8

632.

771

.Ooo

.Oo

o-.2

55 .602

2.78

1.O

oa

.Ooo

-.1

85.4

a32.

722

.Ooo

.000

-.0

96.2

722.

629

.000

‘4 (4)

-.006

58-.0

0260

.005

27.0

0553

-.013

66

-.002

56-.0

0153

.001

99.0

0374

-.010

28

-.000

53-.0

0083

.000

27.0

0250

-.“

(M89

.000

05-.0

0046

‘.000

26.0

0179

-.005

23

.000

15-.0

0025

-.000

37.0

0132

-.004

24

.000

12-.0

0013

-.000

35.0

0098

-.003

57

r/t

~30

0

Tx

T*

s‘$

(1)

(2)

(3)

(4)

-1.0

37-1

.668

-1.9

061.

011

7.46

6

1.04

7-

.805

-3.6

86-

.593

11.8

07

1.12

4-

.145

-3.8

47-2

.121

15.1

96 .463

.335

-3.2

46-3

.701

18.5

37

-.1

38.5

74-2

.446

-5.1

4921

.916

-.465 .5

88-2

.678

.6.3

3225

.213

-1.3

29-1

.186

-.6

92-

.001

.305

-1.m

-1.1

10-1

.005

-.283 .2

16

-.9

27-1

.o%

.4.1

09-.4

42 .175

-.9

40-2

.016

●3.

118

-.5

%.1

52

-.969

-.991

4.09

9-.6

49 .136

-.990

-.9

804.

075

-.720 .1

25

.Ooo

.583

1.58

22.

4WI

.Ooo

.Oo

o-

.172

.959

2.77

3.O

do

.Ooo

-.3

16.5

832.

844

.Ooo

.Ow

-.2

W.3

052.

785

.Ooo

.Ooo

-.C

62.1

102.

674

.Ooo

.Ooo

.047

-.002

2.53

7.O

oo

-.0

0542

-.0

0233

.004

33.0

0505

-.0

1413

-.0

0111

-.0

0113

.000

78.0

0303

-.0

0810

.Ooo

11-

.000

55-

.000

31.0

0201

-.0

0551

.000

25-.0

0026

-.0

0049

.001

40r

.CW

25

.0i8

316

-.O

oolo

-.0

0w4

.000

98-

.003

45

.Ow

Pm

-.0

0002

-.0

0034

.000

68-

.002

90

Page 12: Design Constants for Interior Cylindrical Concrete Shells

,“”8

=L

i,,,v

r,,u

,IW

GC

=Ir

Iu

I.IU

IIIp

IGU

yIIII

UIIL

-UI

e,,=

,,U

U=

ivw

=...

uLu

uw

[1T

x,

+2

P*

Co

l.(1

)s?

-L

[pd

cd(3

)]

T,

:r

[Pd

Co

l.(2

)]M

@=

,’[p

,03

,.(4

]

%P

dH

C/,

=10

0r/

+=

200

r/t

,30

0

Tx

T+

s‘Q

T,

‘+s

I/L

4‘$

T,

T$

s

(1)

(2)

(3)

(4)

(1)

‘$(2

)(3

)(4

)(1

)(2

)(3

)(4

)

I.oo

@k

-1.9

05-1

.446

.000

-.007

87-

1.17

5-1

.361

.000

..0

05%

.75

$K-

.375

-1.2

34-1

.728

-1.1

99.0

00-.0

1348

0.9

44-.0

0300

.6-

1.53

1-1

.187

.50+

~.6

47-

.002

71-1

.298

-1.1

65.3

60-.0

0230

-.8

49-

.573

1.80

3.0

0636

-1.

448

-.6

%1.

567

.005

2425

Qk

1.34

9-2

.110

-.7

711.

343

.003

83.0

882.

028

0.0

2638

1.00

5.0

232.

197

.005

86.6

01-

.071

5.11

92.

351

.005

13.3

21.0

00-.0

1834

6.16

5.2

99.0

00-

.016

517.

362

.270

.000

-.014

19

Iooo

~-

.738

‘1.2

73.0

00.7

5$k

-.004

41.6

02-1

.056

.000

-.0

0176

1.07

2-

.951

-1.3

41‘1

.167

.494

-.002

09-

.847

.Ooo

_.m

1.0

.xl$

~-1

.118

-.0

34-

.001

39-

.491

-1.0

83-

.245

-.000

98-1

.799

-.7

471.

451

.003

53.2

54k

-2.

941

-.9

521.

023

.616

-.0

65.0

0130

-3.4

05-1

.058

.768

2.24

4.0

0019

0.0

0488

-.2

777.

225

-.2

432.

532

.270

.000

.003

63-

.948

-.3

472.

646

-.013

87.0

0292

9.71

3.2

17.0

00.

.009

8511

.317

.188

.m-.0

0773

I.a)

~.1

80-1

.109

.Ooo

.75

~-.0

0176

.915

-.%

9.0

00-

.Ooo

lo.6

53-.9

26-

.916

.000

.000

30-1

.122

1.4

.50*

N.1

22-.0

0124

-.3

19-

1.W

,5-

.235

-.0

0070

-2.5

44.1

06-

.913

1.12

2.0

0132

-1.0

28-

.232

-.000

43-

3.25

1-

1.07

3.6

82-

.000

14.2

5$k

-.2

72-3

.131

-1.1

15.4

21_

.000

55-

.238

02.

422

.003

40-

1.48

8-

.407

2.62

6.0

0240

-2.5

05-

.4%

2.64

59.

655

.219

.000

-.009

76.0

0190

12.5

69.1

74.0

00-

.006

6414

.553

.154

.000

-.005

37

IDo&

.482

-1.0

29.7

!3+~

.W3

-.5

97-.0

0058

.536

-.9

44.O

oo.0

0020

-.C

61-

.%0

.000

.000

24-1

.087

-.0

36-.0

0074

1.8

.50~

.061

-1.0

29-

.187

-.0

&33

5.4

65-

.992

-.069

-.13r

3131

5-2

.768

-.9

96.2

5~.8

90.0

0032

-2.

902

-1.

097

.442

..0

0345

-1.0

74-2

.353

-1.1

01.1

67-.0

0055

-.3

550

2.46

7.0

0244

-2.

681

-.5

182.

592

.001

68-4

.064

-.6

122.

545

.001

2611

.765

.187

.000

-.007

3315

.251

.151

.000

-.0

0509

17.8

83.1

34.0

00-

.01M

14

22‘:q

:-

:%:::

:;-

:&’

::Z5

.098

-.%

2.0

00.0

0017

-.4

80-

.990

.000

.Ooo

11.2

77-

1.00

5-.0

83-

.000

16.5

32-

.975

.%6

-2.6

75-.0

0002

-1.0

24.2

5$k

.726

-.000

05-

2.35

3-

1.C

f18

.271

-.0

CW

4-1

.779

-.4

29-1

.531

-1.0

72.0

19-

.o~3

2.44

9.0

0182

-3.

770

-.6

1W2.

505

.001

1913

.662

.166

-5.3

75.O

oo-

.701

2.41

0.0

0083

-.003

8717

.929

.135

.000

..0

0413

21.1

72.1

20.O

oo--

1303

35

‘:;:

-::2

-.994

.Ooo

-.000

02-

.192

-.9

81.0

00.O

oo11

-.5

98-1

.005

.~.O

oou

2,6

.m&

-1.0

43-.0

$3-.0

0027

.338

-.9

92.0

07-

.000

07.4

04-

.971

-2.4

46.1

45.0

0003

-1.0

37.6

09-.0

0016

-1.

802

-1.

070

.166

-.0

0036

-.8

25-1

.043

.25%

-2.3

90-.4

772.

394

-.040

..130

1331

.001

390

-4.

662

-.6

672.

393

.oo@

35-6

.368

2.25

215

.442

.150

.WJo

-.004

88-

.767

.000

5520

.531

.124

.OQ

o-

.003

4724

.353

.110

.Ooo

..002

81

‘Sh

ear

forc

esar

eat

sup

po

rts,

oth

ers

are

atm

idsp

on

Page 13: Design Constants for Interior Cylindrical Concrete Shells

Tab

leI

Inte

rnal

Fo

rces

ino

Mu

ltip

leC

ylin

dri

cal

Sh

ell

Du

eto

Dee

dL

oo

d+k

=~o

I

TX

.+2

[1‘d

Coi

‘1)

T+

zr

[Pd

]C

ol.

(2)

[1S

*=–

Lg

dC

OI

(3)

[1MO:,2P,d.

(4)

ri+

=Io

orf

+:

200

Tx

T+

s‘$

Tx

‘$s

‘e(1

)(2

)(3

)(4

)(1

)(2

)(3

)(4

)

*

r/L

I.O

o$k

.75

qk.5

0$k

.25Q

ko

I.oo

’o~

.75

Qk

.w+~

.250

ko

I.oo

@k

.75

Qk

.m@

k.2

5$k

o

IOoQ

k,7

5@

k.5

0&.2

5& o

I.m

k.$7

5~

.K3.

$k.2

5$k

o

I.m

$k.7

5$k

.Xl$

k.2

5@k

o

*Sh

eer

-1.5

24-1

.481 .8

791.

112

4.76

0

-.2

96-

1.0s

3-1

.885 .3

0$7.

066

.385

.665

-2.4

44-

.555

9.35

5

.467

-.3

87-2

.483

-1.3

2011

.320

.319

.206

-2.2

81-1

.992

13.1

43

.140

-.1

07-2

.003

-2.5

381.

4.87

5

-1.4

22-1

.192

-.5

90.0

70.3

00

.000

.819

1.64

41.

949

.000

.Ooo

-.008

34-.0

0325

.0C

674

.006

94-.0

1987

-.6

55-1

.239

-1.5

95 .689

6.03

4

.744

-.5

86-2

.803

-.5

689.

372

.649

-.1

11-2

.770

-1.7

6612

.033

.159

.198

-2.2

62-2

.946

14.6

81

-.2

10.3

13-1

.673

-3.9

5317

.303

-.3

80.2

81-1

.150

-4.7

2319

.822

-1.2

84-1

.169

-.7

18-

.033

.268

-.9

92-1

.093

-1.

oa9

-.3

06.1

88

-.9

35-1

.041

-1.0

87-

.456

.153

-.953

-1.0

07-1

.088

-.5

66.1

33

-.9

77-

.988

-1.0

68-

.650

.119

-.9

94-

.980

-1.0

45-.7

09 .109

.Ow

.466

1.36

92.

145

.Wo

.Ow

-.1

31.8

482.

440

.Ow

.Ooo

-.1

98.5

392.

473

.Ooo

.000

-.0

92.3

182.

405

.000

.Wo

.019

.178

2.29

6.O

w

.Wo

.094

.108

2.17

0.O

oo

-.006

09-.0

0273

.004

88.0

W02

-.016

81

-.W

099

-.W

124

.0W

64.0

0349

-.009

39

.000

18-.0

0058

-.000

44.0

0228

-.W

643

.000

25-.0

0025

-.000

56.0

0154

-.0W

95

.000

15-.0

0009

-.0W

46.W

105

-.004

01

.OO

W7

-.00W

1-.0

0035

.0W

72-.0

0336

.113

.994

-2.2

41 .264

7.26

0

.882

-.2

54-

3.W

7-

1.23

110

.804 .191

.269

-2.

437

-2.

824

14.0

07 .404

.469

-1.

586

-4.

293

17.2

74 .599

.376

.8~

-5.

427

20.4

42 .538

.164

.202

-6.

226

23.5

09

-1.1

39-1

.142

-.8

51-

.143

.235

.Ow

.169

1.13

72.

301

.000

-.003

86-.0

0218

.003

07.w

5ffi

-.013

79

.6 1.0

!.4 l.e 2.2

2.6

-1.2

01-1

.146

-.8

08-

.125

.239

-.W

381

-.002

02.0

0301

.004

90-.0

1379

-.9

24-1

.038

-L

.oa7

-.3

99.1

64

.Wo

-.2

43.W

O05

-.w

@34

-.W

028

.002

81-.

W74

4

.0W

36-.0

0031

-.0

W68

.W17

6-

.W52

3

.000

18-

.000

06-

.W03

6.W

llo

-.0

0401

.WO

05.W

O03

-.0

W39

.W06

9-

.003

24

.wow

.OO

W5

-.0

0026

.319

1.23

6.6

232.

503

2.19

1.O

oo.O

oo

-1.0

49.0

r30

.Ow

.947

2.32

9.O

oo

-.W

118

-.W

112

.000

80.0

0329

-.009

41

-.000

26-.0

0063

.Ww

o.0

0233

-.9

62-1

.004

-1.1

05 546

-:1

36

.Ooo

-.1

19.2

922.

450

.Wo

-1.0

98-

.963

-.2

99.1

91

.Ooo

-.9

94-

1.C

65-1

.024

-.4

as.1

64

.000

-’.07

5.9

83-

.975

-1.0

74-

.661

.118

.034

.079

2.32

2.O

oo

.739

2.34

8.0

00-.0

0708

.Ow

oo-.0

0036

-.000

23.W

171

-.W

569

.00W

5-

.Wo2

1-

.0W

25.0

0128

-.00$

74

.000

-.C

60.5

942.

306

.O

w

.000

-.0

16.4

95

-1.0

06-

.%6

-1.0

40-

.745

.lM

.Ooo

.159

-.012

2.16

0.O

oo

-.9

83-1

.042

-1.0

38-

.477

.146

-.9

86-1

.026

-1.0

32-

.523

.132

-1.0

13 .%9

-1.0

11-

.8G

4.0

97

.Ooo

.204

-.023

1.98

52.

236

.000

s.O

w

rces

ore

o?

sup

po

rts,

oth

ers

ore

of

mid

spo

n

.

Page 14: Design Constants for Interior Cylindrical Concrete Shells

Iaol

e1

irlIe

rTlu

Iru

fwa

III

ut.

IUII

IpIG

“Y,ll

lul,e

ul~

,,=,n

w..

!“u.

.”

L“.

~x

.+Z

[1P

dC

ol.

(1)

[1S

*=–

L%

CO

I(3

)

T@

,‘[

1pd

Col

.(2)

Mb,

,2[1‘d

Co

l.(4

1

%P

d~1

r/f

.10

0C

/t=

200

r/t

=30

0

T,

T$

sM

$T

‘+s

‘$T

xr/

L+

xT

+s

‘Q(1

)(2

)(3

)(4

)(1

)(2

)(3

)(4

)(1

)(2

)(3

)(4

)

I.O

o+k

-1.

416

-1.

446

.Ooo

-.011

48-

.y~

g-

1.36

8.0

00-

.009

74-

.439

.75

*K-

1.24

9-

1.24

4-

1.18

5.8

32-.0

0425

-1.

125

.000

-.0

0734

-1.

174

4.5

0+k

.619

-.5

4054

61.

554

.009

30-

.g~~

-.~

~~-.0

0387

-.9

80-

1.15

5.4

00-

.003

31

-:0

941.

706

1.38

0.0

+378

7.2

5$~

1.00

4.o

as89

-1.

344

-.7

261.

212

.005

93.7

970

.038

.278

.000

1.82

9.0

C82

2.5

47-

.046

1.94

7.0

0725

3.45

6-.0

2534

4.09

4.2

61.0

00-.0

2328

4.84

7.2

37.O

oo-.0

2017

I00+

k-

.856

_1.

335

.Ooo

-.0

0834

.75

Q~

.070

-1.1

21.0

00-.0

0423

.545

-.9

93.’3

00-.0

0175

.6-1

.078

-1.1

68.5

76-

.003

50-

.789

-1.1

27.s

o.tl

~.1

65-.0

0249

-.5

67-1

.095

-.059

-.o

o~s~

-.9

99-

.634

1.35

6.0

C67

4-1

.777

-.8

521.

038

.003

37.8

39.2

5.$

k-2

.207

-.9

77.0

0130

.701

.007

L.8

37.0

0765

.194

-.1

562.

C61

.005

88-

.197

2.17

50

-.2

63.0

0473

4.35

7.2

51.I

WO

-.0

2168

5.83

6.2

05.0

00-.0

1601

6.86

4.1

75.0

00-.0

1245

I.O

o$k

.213

_1.

068

.000

-.002

24.5

59-

.932

.000

.000

09.0

00.7

5+

k.2

73-

.929

.000

51-

.644

.1.1

03.0

75-

.001

74-

.235

-1.o

481.

0-

.149

flo$

k-.0

0093

.059

-1.0

11-

.109

-.0

0055

.25+

k-1

.892

-.9

18.9

49.0

0166

-2.2

71-1

.062

.608

-.000

37-

2.L

1O-1

.090

.410

-.0

0084

-.1

520

-.2

402.

033

.004

65-

.973

-.3

982.

220

.003

21-1

.686

-.4

822.

210

.002

546.

719

.182

.000

-.0

1287

8.59

5.1

44.O

llo

-.008

629.

920

.128

.000

-.0

0699

. I!30

$k.7

5$~

.396

-.9

76.O

oo-

.000

25.0

49-

.951

-.3

29.0

00.0

0037

-.4

13:

m:

.000

-1.0

56–

.067

.000

24-

.000

851.

4.1

31-

.999

-.C

40-.0

0033

.098

.50*

-2.0

47-1

.021

.338

-.0(

U30

7.6

94-

.000

07-1

.812

-1.0

73.3

36-.0

0075

.138

.25%

-1.2

70-1

.057

-.0

0073

0-

.937

-.3

932.

142

.003

00-2

.180

-.5

392.

168

.001

97-3

.215

-.6

322.

C$3

5.0

0141

8.66

8.1

46.0

00-

.008

6811

.123

.119

.000

-,005

0413

.049

.105

.Om

-.004

89

‘:~~

-:%

::1

:~_

:~-

:~g

-:&

z:H

:R-:E

2-

:fi:l:

M;%

:E;

1.8

.25$

k.1

.833

-1.0

41.5

25-

.000

43-1

.194

-1.0

45.1

74-.0

0060

-.4

70-1

.011

-.000

47

0-1

.650

-.4

9o2.

lM.0

0205

-3.2

32-

.645

2.05

3.0

0121

-4.

37L

-.7

351.

907

.000

7610

.464

.127

.000

-.0

0661

13.6

62.1

05.O

oo-

.0W

6216

.071

.091

.Ooo

-.003

73

I.I@

k.0

01-

.977

.Ooo

.000

13-

.457

-1.

OIM

.Ooo

,.0

0005

-.4

63-1

.017

.Ooo

-.000

02

22.7

2k-

.027

-1.0

08.0

21-

,000

21,1

69-

.968

.171

.000

03-

.042

-.9

66.2

46.0

0007

.25$

k-1

.526

-1.0

33.6

15-

.00W

2-

.657

-1.0

15.1

11-

.O@

wl

.115

-.9

75.0

50-.0

0027

0-2

.245

-.5

542.

030

.ooi

44-

&.o

o3-

.719

1.91

2.0

0075

-5.1

34-

.803

1.71

0.0

0041

12.1

91.1

13.0

00-

.005

3316

.103

.092

.000

-.003

7319

.003

.082

.000

-.003

01-- ‘s

hea

rfo

rces

ore

07S

UP

PO

rfS

,O

tner

so

reat

mid

spo

n

Page 15: Design Constants for Interior Cylindrical Concrete Shells

Tabl

e 1

lnte

rnol

Fo

rces

in

o M

ultip

le

Cyl

indr

ical

Sh

ell

Due

to

Oeo

d Lo

od

TX i

q LP

d 1

cd. II)

s*

= -

L [p

d C

OI.

(311

To =

dp

d 1

Cd.

(2

) M

O=

r pd

CO

I. (4)

‘[ 1

R

‘/, : 1

00

‘/+ = 2

00

7,

= 30

0

TX

TO

S M

Q

T,

TQ

S %

TX

TQ

S

“L

4 M

Q

(1)

(2)

(3)

(4)

(I)

(2)

(3)

(4)

11)

(2)

(3)

14)

I .O

OQ

k -

.998

-

1.39

9 -0

00

- -0

1249

-

.40/

a -

1.23

9 . 0

00

- .o

oa49

.0

64

- 1.

097

.OW

-

.005

ol

15 +

k -

.976

-

1.16

8 .6

78

- .0

0474

-

.813

-

1.14

2 .3

93

- .0

0382

-

-661

-

1.11

6 .I6

6 -.0

029t

.4

-5o'

?k

- ;5

75

- .5

70

1.35

2 .0

1015

-

1.06

6 -

.716

1.

132

.006

90

_ I.4

66

- .8

47

.961

.0

040:

.?.%

k .7

47

.065

1.

598

.Olo

Ol

-465

-

.050

1.

757

.a38

40

.202

-

-155

1.

876

.006

9!

0 3.

061

.237

.O

OO

-

.028

68

3.92

2 .2

06

.ooo

-.0

2344

4.

682

.178

.W

O

- .0

1871

I oo&

1

1;';;

-1

.214

.o

w

- .0

0700

-1

.135

.3

41

- 1.

000

. 000

75

0k

- .0

0204

.4

6(i

- .Y

28

-354

-

.003

38

.wo

-.000

15

.6

.-$k

- .4

97

-1.1

19

- .7

47

- 1.

085

,005

1.

111

-.002

07

- .)a

6 .0

0565

-

1.05

2 -.0

98

-.001

42

.25@

,, -1

.720

-

.951

.3

74

- -0

82

-815

.0

0153

-

1.88

5 -

1.03

4 1.

766

.661

.0

0771

-.0

0012

0 4.

162

-.115

-

.256

.1

97

1.95

5 .o

oo

.005

45

- .4

74

- -3

43

2.m

-

.021

53

5.49

9 .1

52

.WO

.0

0437

-.0

1441

6.

297

.132

.w

O

-.011

25

I .oo

q,

.307

-

.984

.

000

- .0

0080

.1

52

- .9

36

.WO

.7

5qk

- .3

68

-1.0

63

.000

53

- .2

31

- .9

67

-.016

.O

W

-.001

39

- .0

31

- 1.

007

-.041

.0

0046

1.0

-Qh

-1.6

84

- .9

83

- .0

0062

.1

81

_ .7

45

.973

.0

6Y

-.000

24

.=Q

k .0

0039

-1

.644

-

1.05

8 -

-326

.4

53

- .4

28

-.000

91

- 1.

304

1.95

1 -

1.05

1 .O

W26

-1

,259

-

.464

.2

78

-.OO

lOl

0 6.

251

-137

1.

990

.002

88

.wo

- 1.

990

- .5

52

1.93

7 -.0

1169

7.

902

.llO

.o

w

.002

14

-.008

02

9.20

7 .0

98

.wo

-.006

50

IDO

Q,

.15Y

-

.956

.75$

k .W

O

-1.0

20

.000

23

- .3

34

- .9

04

.WO

-

.139

.0

0026

-

.534

-

1.01

4 -.0

17

. 000

-

.000

59

. 000

05

1.4

cl68

-

.960

-1

.549

-1

.029

.1

23

- .0

0009

.1

49

- .Y

53

.231

. o

wo9

.E$

.533

-

.000

59

-1.0

32

- 1.

028

-1.1

71

- .4

60

.232

-.0

0079

-

A67

-

.995

1.

943

.002

66

-2.3

85

.118

-.0

0062

.112

-

.604

1.

886

.001

58

. 000

-

3.26

2 -

.691

1.

760

-.008

02

10.3

30

.091

. 0

00

.OO

lOl

- .0

0559

12

.097

.0

8@

.ooo

-

.004

4Y

l:iii

17;;;

; -

.973

.O

W

.000

22

- .4

58

- 1.

009

- .9

YS

.O

OO

.0

0005

-

.406

-

1.01

8 .0

60

-.000

23

.@38

-

.960

.w

o -.0

0003

I.8

-1.2

28

-1.0

22

.214

.o

ooffi

-

.126

-

.398

.9

63

.269

-.0

0060

.O

OO

lO

.250

, -

.465

-

.989

.1

54

-1.8

19

- .5

51

-.000

50

.I48

- 1.

872

.949

.1

27

.001

72

-3.2

09

- -

.000

31

0 9.

694

.OY7

.6

90

1.73

8 .o

w

.000

86

- 4.

075

- .7

75

1.54

7 -.0

@61

2 12

.669

.0

79

.wo

.wO

45

-.004

25

14.8

73

.070

.o

oo

- .w

343

I.OO

Qh

- .2

23

- .9

89

.WO

.7

5&

.OO

Oll

- .3

98

- 1.

013

. 000

. 0

00

-.Y84

-.w

wl

- .2

63

.. 1.

012

.123

.w

o -

.000

08

- .0

76

- -

.000

02

22

.%4k

.9

65

.243

-

-919

-1

.002

.o

ow7

- .3

28

.321

-

-975

.2

5Y

-.000

45

.000

05

.25+

h -

.066

-

.9%

.lb

O

-2.3

03

-.609

-.0

0029

1.

777

A63

-

.920

.1

93

.001

13

- .o

w13

0 -3

.727

-

.iW

1.57

8 11

.317

.o

s7

. 000

.0

0046

-

4.49

2 -

.826

1.

339

.004

92

14.9

17

.070

. 0

00

.ow

17

-.003

43

17.5

86

.062

. 0

00

- .0

0277

*She

-or

forc

es

ore

o+

wpp

orts

, ot

hers

or

e 01

mid

span

.

Page 16: Design Constants for Interior Cylindrical Concrete Shells

Tab

le1

Inte

rnal

Fo

rces

ino

Mu

ltip

leC

ylin

dri

cal

Sh

ell

Du

eto

Dee

dL

oad

+,’

55°

TX,

$[1

PdC

ol.(

1)[1

S*=

-L

PdC

Ol (

3)-’d

~

.*A

~

To

,r

[’,

]C

ol.

(2)

M+=

‘[p,

co,.

w]

r/L .4 .6 1.0 1.4

1.8

22

I,O

o$k

.75

$K.5

aqk

.25.

$~

o

Ioa$

k.7

5@

k.w

$~.2

5@k

o

I.oa

6k.7

5Q

k.3

0+k

.25Q

ko

Ioa+

k.7

5.$

k,5

a~.2

5& o

I.~$

k.7

5.$

kW

@k

.25$

ko

I,O

c+k

.75$

k.W

$k.2

5$k

o

*Sh

eer

r/+

z10

0

Tx

T+

s‘$

(1)

(21

(3)

(4)

-.6

40.

.764

-.6

42.5

322.

847

-.0

32.5

52-1

.157 .1

403.

977

.179

.231

-1.3

69 .599

5.74

8

.092

-.0

49-1

.083

-1.3

017.

382

.264

-.0

13-

.752

-1.8

468.

970

.310

.059

-.4

95-2

.201

10.4

67

1.31

81.

143

-.6

22.0

11.1

91

-1.

097

-1.

097

-.8

36-

.170

.147

.951

1.02

81.

001

.384

.103

.%6

.990

-1.

006

.509

.084

.989

-.9

73-

.983

.592

.073

-1.

001

-.9

69-

.959

-.6

42.0

65

.000

.528

1.17

41.

525

.000

.000

.193

.922

1.70

1.0

00

.000

.003

.616

1.80

1.0

00

.000

.081

.435

1.75

1.0

00

.000

.159

.342

1.65

b.0

00

.000

.202

.313

1.55

3.0

00

..0

121E

..0

049(

.009

9:.0

1053

..0

29%

.004

79.0

0298

.003

83.0

0728

.019

88

.000

11.0

0105

.OO

Q48

.003

85.0

1553

.00+

33:

-.0

003:

.00C

81.0

0226

-.0

073:

.00+

316

.000

0?.0

006(

.001

3!-

.005

5$

.000

0:.0

0001

.000

3!.0

008i

-.0

044;

rces

ore

0?su

pp

ort

s,o

ther

sar

eo

frn

idsp

on

T‘$

s‘Q

(1;

(2)

(3)

(4)

-.0

48.

1.10

9-

.585

1.10

6-1

.143

-.8

15.2

21-

.142

3.77

2.1

54

.298

-.9

41.3

13-1

.047

-1.

488

-.9

97.3

04-

.322

5.05

4.1

13

.189

-.9

66.0

55-

.974

-1.

086

-1.0

21-1

.439

-.5

177.

308

.083

.437

-1.0

08.0

57-

.953

.483

-.9

73-

2.37

6-

.645

9.54

0.0

58

.376

-1.0

15.1

19-

.959

-.0

43-

.933

-2.9

64-

.723

11.6

97.0

50

.285

-1.0

12-

.253

-.9

68.1

86-

.9C

8-3

.252

-.7

6813

.734

.053

.000

.215

.939

1.69

7.O

oo

.000

-.023 .6

791.

820

.0+3

0

.000

.097

.359

1.77

5.0

00

.000

.230

.220

1.63

5.0

00

.000

.268

.218

1.46

7.0

C4

.000

.265

.264

1.30

2.0

00

..0

060:

-.0

0344

.004

%.0

079:

-.0

2171

-.0

0037

-.0

+316

5.0

0005

.005

00-

.012

93

.000

51-

.000

31-

.001

08.0

0244

-.0

0737

.Ooo

os.O

oow

-.0

0068

.001

16-.

0050

$S

-.0

0002

.000

0$-.0

0035

.000

54-.0

0397

-.000

02.0

0005

-.000

16.0

0023

–.0

0311

rlt

=3o

a

Tx

T+

s‘Q

(1)

(2)

(3)

(4)

.243

-.9

91.O

oo.

.002

4(-

.449

.1.

076

.IM

5-

.002

5(-1

.411

-.9

32.7

96.0

0194

-.0

13-

.240

1.78

4.0

C63

$4.

395

.130

.000

-.0

1672

.192

.140

-1.4

63 .671

5.75

5

-.4

48.1

31.6

97-2

.098

8.51

9

.407

.108

.006

-3.0

5111

.136

-.2

46-

.328

.368

-3.5

5213

.680

-.2

00-

.380

.426

–3.6

6416

.157

.924

-1.

013

-1.

037

.396

.100

-1.

002

.951

.995

.602

.073

-1.

019

.955

.934

.721

.Cbo

-1.

012

-.9

71-

.897

-.7

85.0

52

-1.

007

-.9

79.8

80.8

19.0

47

.Ow

-.02

6 .547

1.82

6.0

00

.000

.205

.232

1.69

3.0

00

.000

.284

.190

L.4

79.O

oo

.000

.274

.260

1.25

5.O

CQ

.Ooo

.250

.340

1.05

7.0

00-

.001

M6

-.001

05-.0

0098

.004

06-.0

1033

.000

22.0

0001

-.00

+394

.001

66-.0

0592

-.000

04.0

0013

-.000

44.0

0%5

-.0

C40

8

-.000

03.0

0006

-.000

15.0

0020

-.003

11

-.000

01.0

0001

-.000

03.0

0000

‘.002

51

Page 17: Design Constants for Interior Cylindrical Concrete Shells

Tabl

e 1

lnte

rnol

Fo

rces

in

o M

ultip

le

Cyl

indr

ical

St

-11

nalp

+nn

anA

ln&

h=60

° 10

1.

““.a

.” 1-

v”

I--

s*=

- L

[p,

WI.

(3)

1 *p

d lrL

J&m

T,

= C

OI. (

211

MQ

= ,'[

pd

cd.

(411

“L .4

.6

1.0

1.4

I.6

22

I .O

OQ

k “=

4h

-=o+

k 2=

Qk

0

-.358

-

1.21

8 .o

oo

- .0

1041

-.5

97

- 1.

113

.392

m

.004

65

-.705

-

.691

1.

022

.008

62

.358

-

.056

1.

474

.010

3e

2.71

5 .1

44

.ooo

-

-029

12

.083

-1

.012

-

.4w

-1

.062

-1

.092

-

.896

-

.wv

- .2

38

3.72

3 .lO

b

l.OO

q,

-75%

=+

k 25

’+k

0

- .O

lO

- .9

52

- .1

3&

- .9

98

1.04

2 -

.986

-

.7a2

-

.424

5.

279

.075

.ooo

' -.W

256

.113

-

.002

49

.793

.0

0195

1.

622

.OO

b64

.OO

O

-.017

69

.OW

.W

OS

O

.076

-.O

W73

-5

35

-.000

95

1.65

1 .W

338

.WO

-.0

0964

lDO

Qk

75+k

.-Q

k .2

5&

0

- .2

55

- .9

85

.WO

.o

w27

-

.038

-

-967

.1

76

-.OW

lL

- .7

Oa

- .9

65

.391

-.O

Om

2 1.

333

- .5

41

1.57

5 .W

181

6.80

4 .0

62

.OO

O

-.OO

b62

I.00 .75

k -

.323

-,1

.003

.w

o .W

OO

7 -

.074

-

-960

=Q

k .2

32

.OO

OO

Z -

.420

-

.937

.2

5+k

.344

-.O

OO

Sl

-1.7

53

- -6

13

.ooo

99

0 1.

470

8.25

2 .0

53

.ooo

-.W

SW

l.wk

- .3

09

-1.0

06

.*+k

.WO

.o

owl

- .1

43

- .%

2 =Q

k .2

51

.OO

OW

-

.234

-

.915

=‘

+k

.347

-.0

0029

-1

.986

-

.653

0

1.36

1 .0

0055

9.

616

.a7

.ooo

-.w

399

+She

or

fa ~r

ces

are

01

supp

orts

, ot

hers

or

e at

m

idq

+ ‘/t

=

I00

TX

T*

S M

* (I

1 (2

) (3

) (4

1

f/+

= ZC

KI

TX

T*

S M

Q

(1)

(2)

(3)

(4)

-099

-

1.01

2 .o

oo

- .W

336

- -4

28

_ 1.

070

-117

-

.w29

1 -1

.107

-

-;&6

.808

.0

0272

.0

64

_ .2

15

1.62

4 .0

0731

3.

546

.llO

.w

o _

.019

28

,120

-

.932

-

.194

-1

.012

-1

.192

-

-998

-

.432

-

.364

I+

.617

.0

83

.ow

.o

oo%

-0

29

-.001

25

,594

-.W

O88

1.

677

.w53

.o

oo

- .0

1170

- .3

60

- .9

95

.ooo

.0

0030

.0

3e

- .9

52

.208

-.O

OO

OS

-

.656

-

-970

.3

25

-.OO

ll?2

-1.4

94

- -5

53

1.58

3 .w

193

b.73

3 .0

61

.oa

-A06

64

- .3

81

-1.0

16

.ooo

-

.103

-

.951

.2

84

- .1

44

- .9

18

-274

- .o

ooo2

.0

0012

-.W

Oso

-

2.21

3 -

.662

1.

418

.wo7

9 8.

739

-050

.o

w

-.Ow

+55

- .2

76

-1.0

12

.ooo

-.W

W3

- -2

61

- .%

3 .2

85

.WO

O7

.136

-

.884

.3

18

- .0

0020

-

2.57

9 -

.722

1.

244

.000

28

10.6

71

.043

30

0 -.w

345

- .2

31

-1.0

08

.wo

-.OO

Wl

- .3

15

- .9

71

-269

.o

ooo2

.2

07

- .8

69

.375

-.O

OO

%

-2.6

75

- .7

53

1.09

0 .W

OO

s 12

.536

.0

38

.OO

O

-.002

77

8.

yt

= 30

0

TX

TQ

S

M*

(1)

(2)

(3)

(4)

.205

-

.941

-

.312

-

1.04

0 -1

.234

-

.%8

- .1

4b

- .2

V4

4.03

2 .o

tw

,000

-

.ooo

, .0

26

- .0

020

,697

.o

oo2

1.67

0 .W

58,

.ooo

-

.014

3

- -0

86

- ,9

49

- -0

47

- .9

79

-1.0

57

-1.0

07

- -8

15

- A

37

5.29

1 .0

73

.ooo

.o

ooa:

.0

85

-.OO

%i

.471

-.w

13:

1.65

7 .w

351

.ow

-

.W94

!

- .4

40

-1.0

18

- -0

16

- .%

A

- .2

90

- .9

36

-2.0

33

_ .6

29

7.80

9 .O

%

- .2

70

-1,0

14

- -2

84

- .9

63

-210

-

.881

-2

.703

-

.725

10

.176

.o

w,

- .2

02

-1.W

6 -

.364

-

-974

.3

22

- .8

58

-2.9

06

- .7

70

12.4

69

.038

- -2

22

-1.0

05

- .3

24

- .9

76

^__

.ooo

.o

ooo2

.2

80

.000

1:

.259

-.0

007:

1.

481

.w12

c .o

w

-.w53

c

.m

-.ooo

o5

-295

.W

olC

.3

01

-.OW

25

1.24

9 .0

0034

.o

oo

-.003

65

.ow

-.O

OO

Ol

.268

,3

89

-:iE

E

1.03

5 .W

OQ

l .o

oo

-.002

77

.wo

.ooo

oa

.248

-.O

OW

l .2

16

- .tJ

x .4

55

.WO

o3

-2.7

87

- .7

87

.862

-.O

Ool

l 14

.699

.0

34

.ooo

-.0

0223

Page 18: Design Constants for Interior Cylindrical Concrete Shells

-,--

-,,

..

..

.,,..

...

..

.,.,

lam

ez

-L

olcu

larl

onoT

Tor

tes

Ina

sim

ply

supp

orT

eain

ferio

rcy

linar

lcal

snel

l

Giv

en: t=4

in.

+,=

26.4

°0

L=50

ft.P

d

r=

45ft.

P:

❑30

psf

‘50

psf

Wti

For

ce

Mul

tiplie

r

4

($:”

,

.751

pk

.50+

k

.25#

k

(va?

ley)

Tx

(L2/

r)pd

=43

90

Con

stan

t

-3.9

47

-3.4

55

–1.5

51

2.69

3

10.1

11

For

ce(lb

./ft.)

-173

00

–15

,200

-6/

300

I1,8

00

44,4

00

vi”

T+

sM

+

(r)

pd=

3560

-(L)

Pd

=-3

950

(rz)

pd=

160,

000

Con

stan

t

-1.4

41

–1.2

04

–.5

95

.083

.375

Far

ce(l

b./ft

.)C

onst

ant

::yf;,

Con

stan

t~f

p;:,;

f+.:

1–5

130

o0

-,00

385

-620

–42

901.

415

-559

0–.

0014

6-

230

–212

02.

57I

-10,

160

.003

2151

0

300

2.75

9-1

0,90

000

324

520

I340

00

-.00

970

-I5

50

Page 19: Design Constants for Interior Cylindrical Concrete Shells

Lo

0.8

r/L

=2.6

0.6

Par

ob

oti

cd

istr

ibu

tio

n04

-

0.2 0 0

0.1

0.2

0.3

0.4

0.5

x/L

Fig

.I

-Lo

ngitu

dina

ldi

strib

utio

nof

Tx

otvo

lley

Page 20: Design Constants for Interior Cylindrical Concrete Shells

‘6

N.*L

Page 21: Design Constants for Interior Cylindrical Concrete Shells

m

o al (Q (y- C3 o z o

*s/s

-4’u-lN

oII

Page 22: Design Constants for Interior Cylindrical Concrete Shells

I.C

O.E

0.6

c \ %

0.4

0.2 c

,75

.50

*“ ;

r/t

=13

5r/

L=0.

6+,

=27

.5°

0.2

0.4

0.6

0.8

1.0

s‘s

o.50

+k

Fig

.4R

elat

ive

dist

ribut

ion

ofsh

ear

Page 23: Design Constants for Interior Cylindrical Concrete Shells

k%3

Page 24: Design Constants for Interior Cylindrical Concrete Shells

-J

(0.*L

Page 25: Design Constants for Interior Cylindrical Concrete Shells

M+ (k - ft. /ft.)

I .0-i

r

.75

0.8

-0.5 0 0.5 Lo

L@ ‘ < ~

---M~.50

\ \

y~ by beam

method

0.6~“

s\ /

.

o.4~5 h ‘~\ //

TX by beam method

Y \r/t = 135

0.2 Ar/L= 0,9

+, =26.4°

o-6 -4 -2 0 2 4

—, .,.

TX (k /ft.)

Fig. 7 Transverse distribution of TX and M+ for interior shell example

Page 26: Design Constants for Interior Cylindrical Concrete Shells

This publication is based on the facts, tests, and authorities stated herein It is intended for the use of professional personnel competent to evaluate the significance and limitations of the reported findings and who will accept resposibility for the application of the material it contains. The Portland Cement Association disclaims any and all responsibility for application of the stated principles or for the accu- racy of any of the sources other than work performed or information developed by the Association.

Printed in the U.S.A. EB020.01 D