34
Differential Equations 2 2 2 2 2 2 2 2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ x y z dr dx dy dz v i j k iv jv kv dt dt dt dt dv dr dx dy dz a i j k dt dt dt dt dt Newton's Laws Law 1: an object with no force on it does not accelerate Law 2: A body with a force on it accelerates: F ma Law 3: Two bodies exert equal but opposite forces on one another position velocity acceleration r v a 3/15/2017

Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

Differential Equations

2 2 2 2

2 2 2 2

ˆ ˆˆ ˆ ˆ ˆ

ˆˆ ˆ

x y zdr dx dy dzv i j k iv jv kvdt dt dt dtdv d r d x d y d za i j kdt dt dt dt dt

Newton's Laws

Law 1:  an object with no force on it does not accelerate

Law 2:  A body with a force on it accelerates: F ma

Law 3:  Two bodies exert equal but opposite forces on one another

positionvelocityacceleration

rva

3/15/2017

Page 2: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

Consider a particle moving in the z direction

zz

dva tdt

1 1

2 2

2 1

1 0 0

2 0 0

10 0

0

:

0

0

t tz

z z

z

t t

z

z

t t

z z

dvv t v dt a t dtdt

dz v tdt

dzz t z dt v t dtdt

v a t dt dt

Example:   /00 0, 0 0, t b

z zz v a t a e

Find vz and z as functions of t

/ / /1 0 0 0 00

/0

/ 2 / 2 / 2 2 /0 0 0 0 0 0 0 0 00

0 1

1

0 1 1

t t b t b t t bz z

t bz

t t b t b t t b t b

v t v a e dt a be a b e

v t a b e

z t z a b e dt a bt a b e a bt a b e a b a bt a b e

' ' '

' '' '

Page 3: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

Object above the Earth's surface

29.8 / zF mg g m s

Can integrate to get  , zv t z t

Homogeneous ordinary linear differential equations with constant coefficients 

Ordinary:  no partial derivatives

Linear:  function and derivatives only to first power

derivatives: 2

2

d ydx

is possible;2dy

dx

is not

Example:2 3

0 1 2 32 3 0dy d y d ya a a adx dx dx

g = gravitational constant

Homogeneous  = 0

Page 4: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

Hooke's law  zF kz km z = 0 = rest

Harmonic oscillator2

2

d zma m kzdt

2

2 0d z k zdt m

assumes Hooke's lawis valid; ignores massof spring

position

Try tz e2

2

0

0

t tke em

k k kim m m

General solution

1 1 2

2

i t i tz c e c e

k vm

ω = angular frequency

Page 5: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

1 2 1 2cos sini t i tz c e c e b t b t

Need initial conditions to determine c1, c2 (or, equivalently, b1 and b2)

Suppose: 00 0, 0 zz v v

10 0 0z b

2 2sin cos zdzz b t v b tdt

00 2 20z

vv v b b

0 sinvz t

Uniform harmonic motion

position and velocity are of opposite phase

The classical equations of motion are deterministic

Page 6: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

Vibration of a diatomic molecule

m1 m2

reduced mass 1 2

1 2

m mm m

2 ,k

k is the force constant

212

V kx force constant = curvatureat the potential minimum

HF molecule: 1 141.24 10 secx

0

Page 7: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

sin t

1 2

So 1410 sec

Energy of harmonic oscillator

2 2 2

2

1 1 12 2 2

1,2

z tot z

z

KE mv E KE PE mv kz

dVF PE V kzdz

          

     potential energy 

2

t

time for one oscillation

period

Page 8: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

2

2 2 2 200 0

1 1 1cos sin2 2 2

vE mv t k t mv

KE and V vary in time, but their sum is constant

Energy is conserved

all E is PE

all E is KE

in QM, 1 , 0,1,2,2

   E h v v

v = 2

v = 1

v = o

Energy can only take on discretevalues and cannot be 0 (uncertainty princ.)

2kk m mm

Comment on classical turning point

Page 9: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

Damped harmonic oscillator:  a non‐conservative system

add a friction force proportional to velocity  fdrF vdt

1 2

2

2

2 2

2

2

1 2

1 2

21 2

0

0

1 4 ,2 2

t

t t

ti t i t m

d z dzm kzdt dt

z em k m k

km m

km m m

c e c e

c e c e e

           

                                       

if motion is inthe z direction

if friction small (underdamped),2

im

exponentiallydecays in time

Non‐conservative means that energy is not conserved: How is that possible?  Isn’t energy supposed to be conserved?

e Sin 5

try

Page 10: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

This is the sub‐critical damping case

The text treats this case slightly differently

it defines 

2 2

/2 /21 2

/21 2

'

2 2

cos sin

i t t m i t t m

t m

km m m

z t c e e c e e

b b e

'

'

        't 't

Damped sine/cosine functions

Greater than critical damping

2 4km m

In this case, the trajectory rapidly dies offand does not show oscillatory behavior

Keeps shift in frequencywhile it was ignored above

e . Sin

Page 11: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

Critical damping2 4k

m m

1 2

2

2tt m

m

z t ce ce

tz t teActually, there is a second solution

1 2tz t c c t e

similar behavior to greater than criticallydamped oscillator

Page 12: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

Consider the harmonic oscillator with an external force

2

2

2

2

d zm kz F tdt

F td z k zdt m m

Strategy for solving such equations

(1) delete inhomogeneous term and solve the DE  complementary equation(2) solve inhomogeneous DE(3) general solution is a sum of solutions (1) + (2)

Variation of parameters method to solve inhomogeneous DE

works if inhomogeneous term is tn, eat, cos(bt), sin(ct) or a combination of such terms

INHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS:

3 2

3 2 1 03 2

d z d z dzf t f t f t f t z g tdt dt dt

makes it inhomogeneous

forced HO has a term not proportional to unknown function or any of its derivatives

Example:

Page 13: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

Trial Solutions

0 1

1 00n n

nt t

At A At A t

e Ae

                                                                                

                                               

                                                  

0 1

sin cos sin ,

cos cos sin ,

n t t nn

t t

t t

t e e A At A t

e t e A t t

e t e A t t

                    

                                

            

           

InhomogeneousSystem

TrialSolution

ForbiddenCharacteristic

Root

If the characteristic equation for the complementary DE has a root equalto the forbidden characteristic root, then the trial function won't work

Try multiplying by tk , where k is the multiplicity of the root

Now return to the forced HO with  0 sinF t F t

20

21

sinF td z k zdt m m

Page 14: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

20

2

sinF td z k zdt m m

Complementary equation 1 2cos sincz b t b t

Trial function cos sinpz A t B t

Check 02 2 sincos sin cos sin

F tkA t B At tm

B tm

2 cos 0kA A tm

2 0sin sinFkB B t tm m

2

2 0 0

2

0 0

, 0

   or   

  and  

k Am

F FkB B Akm m mm

(1)

(2)

Page 15: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

General solution:

01 2

2

01 2 2 2

cos sin sin

/cos sin sin

Fz b t b t tkmm

F mz b t b t t

Note:  solution diverges at resonance(The divergence would not happen if we also included damping.)

Suppose

1

02 2 2

02 2 2

0 02 22 2

0 0 0

0

0

0 /sin sin

z

z

z

z bFv b

m

v Fbm

v F F mz t tm

when  close to  one gets "beating"

Page 16: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

0 02 2 2 2

0 02 2 2 2

02 2

0 0

0sin sin

1.1

0 1.1 sin sin 1.11.21 1.21

0 1.1 sin sin 1.10.21 0.21

0 1, 1, 1, 0.1

1.52

z

z

z

v F Fz t t tm m

v F Fz t t tm m

v F Fz t t tm m

v m F

z t

Let 

set             

sin 0.476sin 1.1t t

Page 17: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

Separable Differential Equations

f xdy g y dy f x dx

dx g y

g y dy f x dx c The x and y variables are uncoupled

Example:

( ) ,

( ) 0C kt kt

dc kcdt

dc kdtcn c kt C C

c t e e c t c e

      constant of integration

0 Cc e

first‐order kinetics chemical reaction

Page 18: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

2dc kcdt

for a second‐order reaction

2

1dc kdt kt Cc c

1 1

0kt

c c

10

Cc

0t

t

c(0)

0

00 1c

c tc kt

Page 19: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

f k constant

1 1

0 0

1 1 0 0

1 1 0 0 0 1

, ,

, , , ,

cx y

x y

f x y f x y df

f x y f x y M x y dx N x y dy

(x1, y1)

(x0, y0)

Gives algebraic equation that can be solved y in terms of x

Example: 22 0 2 , 2                  M Nxydx x dy x xy x

exact

1 1

0 0

1 1

0 0

21 1 0 0 0 1

2 2 2 2 2 20 1 1 0 0 0 1 1 1 0

2 21 1 0 0

, , 2x y

x y

x yx y

f x y f x y xy dx x dy

x y x y x y x y x y x y

x y x y k

Note error in text

2

2/x y ky k x

, , 0M x y dx N x y dy 0f df Mdx Ndy there exists   such that   

If exact, there exists

Exact differential equations

Page 20: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

Inexact differentials and integrating factors

, ,M x y dx N x y dy

we may be able to find an integrating factor G(x,y) to convert this to an exact differential

0GMdx GNdy

0xdy ydx Example: we already know howto solve this by writing

dy dxy x

Even if is an inexact differential equation,

But, for now, we'll "pretend“ we don't know this

Page 21: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

0ydx xdy Not exact

2

1x

is an integrating factor for this differential equation

2 2 2 2

2 2

1;

1 1,

M y N xM Nx x x x x

M Ny x x x

'=     '

' '    so the integrating

factor works

1 1

0 0

11

0 0

01 1 0 0 2

1

0

1

0 0 0 01 1

1 0 1 1 0 1

0

0

1, ,x y

x y

yx

x y

yf x y f x y dx dyx x

y yx x

y y y yy yx x x x x xyy c k

x xy kx

with the integrating factor

Agrees with our earlier solution

Page 22: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

Partial differential equations

Example:  vibrations of a stringat equilibrium the stringheight is y = 0 by definition

,y y x t

0x x L

2 2

2 2

2 22

2 2

y T yt x

y yct x

,y x t x t Try

T = tension = mass per unit length

Note:  this assumes theproblem is separable

Page 23: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

2 22

2 2

2 22

2 2

2 22

2 2 2

1 1

y yct x

ct x

kc t x

dependsonly on t

dependsonly on x

2 22 2 2

2 2

1 2

1 2

cos sin

cos sin

          d dk c kdx t

x a kx a kx

t b kct b kct

Boundary conditions

1

0 0, 00, , 0,1, 2,3

, 1, 2,3,4,...

La kL n nnk nL

   

       

   

0n nonvibratingstring

2 sinnn xx aL

a constant

Page 24: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

Initial conditions 10 0 0t y b

2 sin

, sin sin

n ctbL

n x n cty x t AL L

n ‐ 1 nodes, not counting end points

2n L 1/2

22 ; ;2 2

n c L nc n TL nc L L

        =

n = 1  fundamentaln = 2  first overtone

Page 25: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

1

, sin cos sinn nn

n x n ct n ctx t a bL L L

y

Principle of superposition

If string is clamped at both ends, The vibrations are standing waves

If it is not clamped at both ends,we can have traveling waves

, siny x t A k x ct does not separate

time dep. Schrödinger Equation

2 2

22d V x i

m dx t

Page 26: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

2 2

2

2 2

2

2

,

1 12

x t x t

V im x t

V im x t

Note typo in text

These two equations are equal to a constant, which we set = E

2 2 2 2

2 22 2d dV E V E

m dx m dx

               

H E

/

1

iEt

d Edt i

d i E t edt

Also

or

stationary statesystem prepared in one eigen state

Page 27: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

2 2

22d V E

m dx

free particle, V = 0particle in boxharmonic oscillator 21

2V kx V = 

0 a

0

Solving Differential Equations using Laplace transforms

Example

22 1

2

2 12

1

0

0 0

0

d z dz k kz z z zdt m dt m m m

z s z sz z

z s z z

L L

L L

z(2) and z(1) are short handexpressions for the derivatives

Examples

Page 28: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

2 1

12 0 0 0 0

kz z zm m

ks z sz z s z z zm m

L

L L L

z ZLLet

12

12

1

2

0 0 0 0

0 0 0

0 0

ks Z sz z sZ z Zm m

ks s Z s z zm m m

sz z zmZ ks s

m m

Page 29: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

Now need to do the inverse Laplace transform of Z

1

2 2

2

0 0

42

z s zmZ

ksm m m

2

2 22

2

4

amk k am m m

2 2 22

120 0z s zZ

s a s aa

1

2 22 2

0 0 0z s a z azs a s a

12 2

12 2

1

cos

sin

0 00 cos sin

at

at

s ts

ts

e f t F s a

z zz t z t t e

a

L

L

L

typo in treatmentin text

Page 30: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

Numerical solution of differential equations

In general, there is not an analytical solution,and we have to adopt numerical methods

Euler's Method

0

0 0

, , 0

,t

dx f x t x xdt

x t x f x t dt

but, in general x = x(t),so how do we solve?

1 0t t t is a small time stepwith t0 = 0

0 0 0 00,0 ,0

tx t x f x dt x f x t

0 0 0dxx t x t t tdt

Taylor series

1 ,i i i ix x tf x t

0

1

2

0

2

tt tt t

Generalize x4,t4x3,t3

x2,t2x1,t1

x0,t0

Page 31: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

Example

10, 1, 1 , 2 , 0.1final

dc kc c k s t s t sdt

 with        and 

0 10.1 0.90.2 0.810.3 0.729

2.0 0.1215

t c

                                           

                    the exact answer is 0.1353

if we use                   instead of 0.10, we get  0.05t 2 0.1258c

So, to get a very accurate result, we need a very small time step

Page 32: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

One can obtain well‐converged results with reasonable timesteps with methods based on higher order Taylor series

Runge – Kutta Method

1 1 2 3 4

,

1 2 2 26i i

dx f x tdt

x x F F F F

1

2 1

3 2

4 3

,

1 ,2 21 ,2 21 ,2

i i

i i

i i

i i

F tf x t

tF tf x F t

tF tf x F t

F tf x F t t

Fourth‐order method 5O hError

Euler is a first‐order method

2O hError

First step

1 0 0

2 0 1 0

3 0 2 0

4 0 3 0

,

1 ,2 21 ,2 21 ,2

F tf x t

tF tf x F t

tF tf x F t

F tf x F t t

F1 = slope at beginning of intervalF2 = increment using slope at midpoint of intervalF3 = increment using slope at midpoint of intervalF4 = increment using slope at endpoint of intervalh t

Page 33: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

Solving by use of Mathematica

Dsolve finds symbolic solution, if possible

Example

, , 1ax

dy ay xdxDsolve y x ay x y x x y x e c

'

Given initial condition 0 2y

, 0 2 , , 2 axDsolve y x ay x y y x x y x e '

Numerical solution: NDSolve

Example 2sindy xdx

These algorithms can be used to solve systems of equations

11 2

21 2

, ,

, ,

dy f x x tdtdx y x x tdt

Page 34: Differential Equations 15-Mar-2017jordan/chem1000-s17/diffeq.pdf · Differential Equations 22 2 2 22 2 2 ˆˆ ˆˆˆˆ ˆˆˆ x yz dr dx dy dz vij kivjvkv dt dt dt dt dv dr dx dy

2sin , 0 1 , , ,0,'s NDSolve y x x y y x Pi

2 / .y s

/ . ,0, .y x s x Pi Plot

0

0

0 2 sin

1 2cos 5

y y x dx

x